
Journal of Hydrology 596 (2021) 126097

Available online 20 February 2021
0022-1694/Published by Elsevier B.V.

Research papers 

Analytical solutions for contaminant fate and transport in parallel plate 
fracture-rock matrix systems with poiseuille flow 

Junqi Huang a,*, John Christ b, Mark N. Goltz c 

a Groundwater Characterization and Remediation Division, Center for Environmental Solutions and Emergency Response, U.S. EPA, Ada 74820 OK, USA 
b S&B Christ Consulting, LLC., 9555 Hillwood Dr, Suite 160, Las Vegas, NV 89134, USA 
c Department of Systems Engineering and Management, Air Force Institute of Technology, 2950 Hobson Way, WPAFB OH, 45433, USA   

A R T I C L E  I N F O   

This manuscript was handled by Corrado Cor
radini, Editor-in-Chief, with the assistance of 
Patrick Lachassagne, Associate Editor  

Keywords: 
Analytical solution 
Fate and transport 
Parallel plate fracture-rock matrix 
Poiseuille flow 
Taylor dispersion 

A B S T R A C T   

Modeling contaminant transport in fractured-rock matrix systems often approximates the effect of the parabolic 
flow field in the fractures (i.e., Poiseuille flow) on transport by adding a dispersion term to the uniform flow field. 
In this study, an analytical solution is derived to model contaminant transport in a parallel-plate fractured-rock 
matrix that explicitly simulates Poiseuille flow in the fractures, eliminating the need for the dispersion 
approximation. In addition to simulating Poiseuille flow in the fracture, the contaminant transport model 
developed here includes: (1) two-dimensional contaminant diffusion in the fractures and matrix, (2) first-order 
decay in the aqueous phase, and (3) rate-limited sorption onto matrix solids. It should be noted, however, that 
this model, much like the commonly employed Taylor dispersion approximation, neglects macro dispersion, 
thereby limiting the model’s applicability to systems having wide fracture apertures with extremely high flow 
velocities (Pe > 104). Model equations are analytically solved in the Laplace domain and numerically inverted. In 
addition, analytical expressions for the zeroth, first, and second spatial moments of the concentration profiles 
along the fractures are derived for both the new Poiseuille flow model as well as a model that approximates the 
effect of Poiseuille flow on transport by using a dispersion term. The first and second moment expressions are 
used to quantify how well the dispersion term approximates the effect of Poiseuille flow. Simulations confirm 
that the dispersion approximation will be adequate for natural fractures at long times. However, if a modeler is 
concerned with short-time transport behavior or transport behavior in systems with relatively wide-aperture 
fractures and high groundwater velocities where macro dispersion can be ignored, such as may be found at 
engineered geothermal systems and carbon capture and storage sites, there may be significant differences be
tween model simulations that explicitly incorporate Poiseuille flow and those that approximate Poiseuille flow 
with a dispersion term. The model presented here allows the modeler to analytically quantify these differences, 
which, depending on the modeling objective, may cause the dispersion approximation to be inadequate. Sim
ulations were also run to examine the effect of adsorption rate on remediation of fractured-rock matrix systems. It 
was shown that moderate adsorption rate constants could lead to very long remediation times, if remediation 
success is quantified by achieving low concentrations within the fracture.   

1. Introduction 

Modeling fate and transport in fractured subsurface formations is of 
importance for investigating waste disposal, contaminant remediation 
and long-term environmental management of complex contaminated 
sites. There has been considerable effort devoted to characterizing and 
quantifying contaminant fate and transport in fractured-rock matrix 
systems (Berkowitz, 2002; Neretnieks, 2017; Li et al., 2020). Accidental 
release and waste disposal of hazardous chemicals have resulted in 

widespread subsurface contamination, often at locations where the 
subsurface includes a fractured-rock matrix, which makes remediation 
and site management even more challenging. The most concerning is
sues for environmental risk assessment and risk management at these 
complex contaminated sites are: (a) accurately quantifying the mecha
nisms governing contaminant fate and transport along the preferential 
fracture flow paths, and understanding the influence of retention in the 
rock matrix on this flow, (b) characterizing how a contaminant trans
ported from a source zone will distribute in the fractured-rock matrix, 
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and (c) describing the influence of the immobilized contaminant in the 
rock matrix on the evolution of the contaminant source zone. To reliably 
simulate the fate and transport of contaminants in such complex sub
surface domains, mathematical models that accurately incorporate the 
important governing processes are needed. 

Numerous models developed to simulate solute transport through a 
fractured-rock matrix have been proposed (e.g., Berkowitz, 2002; Ner
etnieks, 2017; Li et al., 2020). Among the most common is the single- 
fracture-path model. This model treats the fractured-rock matrix as a 
dual-domain medium consisting of fast flow zones, the fractures, and 
stagnant water zones, the rock matrix. Contaminant mass is transferred 
between the two zones. Typical solutions to single-fracture-path models 
can be found in Neretnieks (1980), Grisak and Pickens (1981), Tang 
et al. (1981), Sudicky and Frind (1982), Barker (1982), Chen (1986), 
Maloszewski and Zuber (1985, 1990), Roubinet et al. (2012), and 
Houseworth et al. (2013). Conventionally, the water velocity in a frac
ture is assumed to be uniform across the flow channel, while in the rock 
matrix, the stagnant water acts to store contaminant. The main processes 
affecting the movement of contaminants in such a system depicted in 
Fig. 1a are advection and dispersion in the fractures, sorption to the solid 
matrix, diffusion through the immobile matrix water and, in some cases, 
first-order biological or chemical decay. 

While water flow in the single-fracture-path model is commonly 
assumed to be uniform, more realistically, the flow field is parabolic, 
with maximum velocity at the center of the fracture and zero velocity at 
the fracture wall, due to the no-slip condition (see Fig. 1b). This 

parabolic flow field is referred to as Poiseuille flow (Clark, 2009). To 
capture the contaminant spreading that results from Poiseuille flow in 
the fracture, a dispersion term (so-called Taylor dispersion (Taylor, 
1953)) is introduced in the single-fracture-path, uniform flow model. 
This dispersion term attempts to approximate the spreading observed in 
the field by introducing an effective dispersion parameter. The value of 
the dispersion parameter (Df ) that simulates contaminant spreading at 
long times due to Poiseuille flow has been calculated as (Fischer et al., 
1979; Detwiler et al., 2000; Wang et al., 2012; Liu et al., 2018): Df =

Dm + 2(dva)
2
/(105Dm), where Dm is the molecular diffusion coefficient; 

va is the average velocity in the fracture; and d is the half-aperture width 
of the fracture. Note that this approximation of the dispersion parameter 
(Df) neglects macro dispersion (or geometrical dispersion), which is 
caused by velocity variations due to variations in the fracture aperture 
dimension (Roux et al., 1998; Detwiler et al., 2000; Boschan et al., 
2008). Detwiler et al. (2000) demonstrate that Taylor dispersion dom
inates and macro dispersion may be neglected for values of the Peclet 
number (Pe = 2vad/Dm) greater than about 104. 

In this paper we propose to couple Poiseuille flow in the fractures 
with diffusion in the rock matrix. Explicitly modeling the Poiseuille flow 
through the fracture eliminates the need to approximate spreading 
behavior using an artificial dispersion term approximation. While there 
has been extensive modeling of fractured-rock matrix systems (e.g., 
Berkowitz, 2002; Zhu et al., 2016; Neretnieks, 2017; Zhou et al., 2017; 
Zhu and Zhan, 2018; Chen and Zhan, 2018; Zhou and Zhan, 2018; Li 
et al., 2020) a thorough review of the literature found only a single 

Fig. 1. (a) Conceptual model for fractured rock matrix (NRC, 1996) and (b) contaminant transport in single fracture-matrix model.  
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reference where Poiseuille flow was coupled with matrix diffusion 
(Bloechle, 2001). This model, however, is only applicable at late times 
and neglects the potential for contaminant degradation, which may have 
important impacts on contaminant fate and transport. Bloechle (2001) 
uses an asymptotic spectral comparison method (ASCM) to derive the 
approximate long-time solution to the model equations. Bloechle (2001) 
also derives the time-dependent behavior of the zeroth and first mo
ments of the concentration distribution. 

By contrast, this study derives an exact analytical solution in the 
Laplace domain to the model governing equations for Poiseuille flow in 
the fracture and diffusion in the rock matrix. The model equations also 
include terms describing first-order degradation in the aqueous phase 
and rate-limited sorption to matrix solids. The solution to the model 
equations in the Laplace domain is then numerically inverted to 
compute the contaminant concentration as a function of time. Analytical 
solutions to the spatial moments of the simulated concentration distri
butions along the fracture are also derived. The solutions presented here 
are applicable at all times. They can be used to more accurately and 
efficiently model contaminant fate and transport through fractured-rock 
matrix system that can be approximated as parallel plates, which will 
allow for the rapid evaluation of model parameters and their influence 
on contaminant fate and transport. This model can also be used to assess 
the error introduced by approximating spreading due to Poiseuille flow 
with a Taylor dispersion term, as the Taylor dispersion approximation is 
often employed out of mathematical convenience and has yet to be 
thoroughly evaluated to determine under what conditions the approxi
mation may not apply. It is also important to note that both the parallel- 
plate Poiseuille model developed here, and the parallel-plate Taylor 
dispersion approximation commonly employed in the literature, neglect 
macro dispersion, which is an important process to incorporate when 
modeling fracture systems with Pe less than 104 (Detwiler et al., 2000). 
Finally, the analytical model presented here may be used to verify nu
merical modeling results. 

2. Model description 

A conceptual model of the fractured-rock matrix is depicted in 
Fig. 1b. The fractured-rock matrix is composed of identical slabs of rock 
matrix separated by equally spaced, planar fractures. This is commonly 
referred to as the single-path-fracture model. Solving this problem re
quires the following assumptions:  

a) Water flow in the fractures is accurately described by Poiseuille’s 
law, with a parabolic velocity distribution in the y-direction.  

b) Contaminant transport in the fracture is governed by advection in the 
x-direction and molecular diffusion in the x- and y-directions.  

c) Water in the rock matrix is immobile, with contaminant transport 
governed by diffusion in the x- and y-directions.  

d) Mass transfer occurs at the interface between fractures and the rock 
matrix.  

e) First-order decay may occur in the aqueous phase in both fracture 
and rock matrix zones.  

f) Rate-limited adsorption occurs in the rock matrix zone.  
g) The model depicted in Fig. 1b provides useful insights into 

contaminant transport in a rock-fracture matrix system, such as is 
depicted in Fig. 1a.  

h) The two-dimensional representation of the rock-fracture matrix (x-y) 
is an accurate representation of behavior likely to occur in three 
dimensions. Therefore, macro dispersion, due to velocity variations 
in the plane of the fracture (Detwiler et al., 2000), is ignored. 

Assumption (h) is perhaps the least realistic of the assumptions, as it 
requires either (1) a large value of Pe that would only be seen in very 
wide fractures with extremely high flow velocities, or (2) fracture widths 
that have very little variance. While this limits the applicability of the 
model to simulate natural systems, there are instances, as will be 

subsequently discussed in Section 6, where high Pe flow in fractures 
occurs, and consideration of Poiseuille flow is necessary. 

3. Governing equations 

Two-dimensional contaminant fate and transport in the fracture is 
governed by advection, molecular diffusion and first-order decay, which 
can be described by: 

∂C
∂t

= Dm
∂2C
∂x2 − v(y)

∂C
∂x

+Dm
∂2C
∂y2 − λC (1)  

where C is the contaminant concentration in the liquid phase; v(y) is the 
velocity of fluid varying in the y-direction within the fracture, Dm is the 
molecular diffusion coefficient; λ is the first-order degradation rate 
constant; t is time; x and y are spatial coordinates. 

Poiseuille flow is described by a parabolic velocity profile in a frac
ture according to (Clark, 2009): 

v(y) =
3
2

va(1 −
y2

d2) (2)  

where, va is the average velocity in the fracture, and d is the half aperture 
of the fracture. 

Transport in the rock matrix is described by the two-dimensional 
diffusion equation: 

θ
∂Cm

∂t
+ρb

∂Sm

∂t
= Dex

∂2Cm

∂x2 +Dey
∂2Cm

∂y2 − θλmCm (3)  

where 

∂Sm

∂t
= α(kdCm − Sm) (4) 

and Cm is the contaminant concentration in the liquid phase in the 
matrix; Sm is the contaminant concentration in the solid phase in the 
matrix; θ is the porosity of the rock matrix, ρb is the bulk density of the 
rock matrix, Dex and Dey are the effective diffusion coefficients in the x- 
and y-directions in the matrix, respectively, λm is the first-order degra
dation rate constant in the liquid phase in the matrix; α is the non- 
equilibrium adsorption rate constant; and kd is the adsorption parti
tioning constant. 

3.1. Initial conditions 

To solve the set of governing equations given in (1) to (4), an initial 
condition that defines the distribution of contaminant along the fracture 
and in the matrix must be established. Although a variety of initial 
conditions can be set, the solution presented here assumed the 
following: 

C = Ci(x), t = 0, − ∞ < x < +∞, 0 ≤ y ≤ b (5a)  

Cm = Cmi(x), t = 0, − ∞ < x < +∞, b ≤ y ≤ b+ h (5b)  

Sm = kdCmi(x), t = 0, − ∞ < x < +∞, b ≤ y ≤ b+ h (5c)  

where Ci and Cmi respectively are a function of x only, which implies the 
fracture and matrix are initially contaminated at concentrations that are 
invariant in the y direction. Equation (5c) indicates that the initial solid 
phase contaminant concentration in the matrix is in equilibrium with 
the dissolved phase matrix concentration. 

3.2. Boundary conditions 

The boundary conditions used to solve equations (1) to (4) establish 
the concentration at the fracture walls and at the middle of the rock 
matrix, as well as at the far extent of the fracture according to: 
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C = 0, x→ ± ∞, 0 ≤ y ≤ b, t > 0 (6a)  

∂C
∂y

= 0, y = 0, − ∞ < x < ∞, t > 0 (6b)  

C = Cm, y = d, − ∞ < x < ∞, t > 0 (6c)  

Dm
∂C
∂y

= Dey
∂Cm

∂y
, y = d, − ∞ < x < ∞, t > 0 (6d)  

Cm = 0, x→ ± ∞, b ≤ y ≤ b+ h, t > 0 (6e)  

∂Cm

∂y
= 0, y = d + h, − ∞ ≤ x ≤ ∞, t > 0 (6f)  

where, h is the half thickness of the rock matrix. Boundary condition 
(6b) indicates that no mass may pass through the center line of the 
fracture, implying a symmetric concentration distribution about the 
fracture center line. Boundary conditions (6c) and (6d) indicate the 
continuity of concentration and mass flux at the surface of the fracture 
walls, while (6f) indicates no mass may pass through the center line of 
the matrix – implying a symmetric concentration distribution in the 
matrix between adjacent fractures. 

4. Model solutions 

4.1. Poiseuille flow case 

Having defined the governing equations, initial conditions and 
boundary conditions, the solution of equations (1), (3) and (4) can be 
developed using the Laplace transform in t and Fourier transform in x. 
Applying the initial conditions (5a to 5c), the Laplace transform of 
equations (1), (3) and (4) are: 

Dm
∂2C
∂x2 − v(y)

∂C
∂x

+Dm
∂2C
∂y2 − (p + λ)C = − Ci(x) (7)  

Dex
∂2Cm

∂x2 +Dey
∂2Cm

∂y2 − f (p)Cm = − g(p)Cmi(x) (8)  

f (p) = θ(p+ λm)+
αkdρbp
p + α (9a)  

g(p) = θ+
ρbkdα
p + α (9b)  

where the variables with overbar denote the Laplace transform and p is 
the Laplace transform variable. 

Further, applying the Fourier transform to equations (7) and (8) 
subject to the boundary conditions (6a) and (6e), and substituting 
equation (2), results in equations transformed in both time and space: 

∂2C
∂y2 −

(
Ay2 +B

)
C = −

1
Dm

Ci(ξ) (10)  

∂2C m

∂y2 − EC
m

= −
1

Dey
gCmi (11)  

where 

A(ξ) = −
3va

2d2Dm
ξi (12a)  

B(ξ, p) =
1

Dm
(p + λ +

3
2
vaξi)+ ξ2 (12b)  

E(ξ, p) =
1

Dey
[f (p) + Dexξ2] (12c) 

and the variables with the tilde denote the Fourier transform, and ξ is 
the Fourier transform variable. 

Applying the boundary conditions (6c) and (6f), the solution of 
equation (11) is: 

Cm(ξ, y, p) = [C (ξ, d, p) −
1

EDey
gCmi]

cosh[γm(d + h − y)]
cosh(γmh)

+
1

EDey
gCmi

(13)  

where: 

γm =
̅̅̅̅
E

√
(14) 

Substituting Eq. (13) into (6d) results in: 

∂C
∂y

+ βmC =
βm

EDey
gCmi, y = d (15)  

where: 

βm =
Dey

Dm
γmtanh(γmh) (16) 

Note that Eq. (15) ensured continuity at the fracture-matrix bound
ary, which results in a third type boundary condition that can be used to 
solve the system of equations. 

Using variable substitution [Polyanin and Zaitsev, 1995], 

C = e− z/2w(z) (17)  

z =
̅̅̅
A

√
y2 (18) 

the homogeneous counterpart of Eq. (10) becomes: 

z
∂2w
∂z2 +(b − z)

∂w
∂z

− aw = 0 (19)  

where: 

a =
1
4
(

B
̅̅̅
A

√ + 1) (20a)  

b =
1
2

(20b) 

Eq. (19) is the confluent hypergeometric equation and has a pair of 
linearly independent solutions, M(a, b, z) and z1− bM(1+ a − b,2 − b, z), 
where M(a, b, z) is the first kind of confluent hypergeometric function 
(Abramowitz and Stegun, 1970). Back substituting w through (17), we 
have the general solution of the non-homogeneous transformed Eq. (10): 

C = Δ1e−
z
2M(a, b, z)+Δ2e−

z
2z1− bM(1 + a − b, 2 − b, z)+C

*
(ξ, y, p) (21) 

where, Δ1 and Δ2 are the integration constants and C *
(ξ, y, p) is the 

particular solution of the non-homogeneous equation (10). The partic
ular solution may be solved using the Green’s function method. 

C
*
(ξ, y, p) = F0[e−

z
2z1− bM(1+ a − b, 2 − b, z)

∫ y

0
e−

z
2M(a, b, z)dy+

e− z/2M(a, b, z)
∫ d

y
e−

z
2z1− bM(1 + a − b, 2 − b, z)dy] (22)  

where: 

F0(ξ, p) = −
1

DmA1/4Ci(ξ) (23) 

and Δ1 and Δ2 are specified using the boundary conditions (6b) and 
(15). The application of these conditions leads to Δ2 = 0 and 

Δ1(ξ, p) =
ΦN

ΦD

dw1

Dm
Ci +

exp(zd/2)
ΦD

dβm

DeyE
gCmi (24) 
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ΦN(ξ, p) = (βmd + 1 − zd)M(1+ a − b, 2 − b, zd)+ 2zdM’(1+ a − b, 2 − b, zd)

(25a)  

ΦD = (βmd − zd)M(a, b, zd)+ 2zdM’(a, b, zd) (25b)  

w1(ξ, p) =
∫ d

0
e− z/2M(a, b, z)dy (25c)  

zd =
̅̅̅
A

√
d2 (25d) 

Substituting equations (22) and (24) into equation (21), allows for 
the solution to be written in the Laplace and Fourier domains as: 

C (ξ, y, p) = Δ1(ξ, p)e− z/2M(a, b, z)+C
*
(ξ, y, p) (26) 

Applying the inverse Fourier transform, we obtain the solution in the 
Laplace domain: 

C(x, y, p) =
1

2π

∫ ∞

− ∞
[Δ1(ξ, p)e− z/2M(a, b, z) + C

*
(ξ, y, p)]eixξdξ (27) 

Equation (27) is an analytical solution to the governing equations in 
the Laplace domain. This equation can be used to model the effect of 
Poiseuille flow in the fracture on contaminant transport without 
employing the Taylor dispersion coefficient as an effective parameter. 

4.2. Mean concentration 

To quantify the mean concentration across the fracture aperture, 
equation (27) may be integrated according to: 

C(x, p) =
1
d

∫ d

0
C(x, y, p)dy (28) 

Evaluation of Equation (28) is straightforward, which gives a solu
tion to the1-D transport problem in the fracture. The distribution and 
breakthrough of this mean concentration characterizes the typical non- 
Fickian diffusion behavior that is observed due to the effects of Pois
euille flow coupled with mass transfer to the rock matrix. 

4.3. Taylor dispersion case 

Conventionally, Taylor dispersion is implemented to approximate 
the effect of Poiseuille flow in the fracture on contaminant transport. 
Coupled with a uniform velocity flow field in the x-direction, the Taylor 
dispersion coefficient accounts for the long-time impact on transport of 
the more realistic parabolic velocity flow field and molecular contami
nant diffusion in the x- and y- directions. The Taylor model results in an 
equivalent governing equation for transport in the fracture: 

∂C
∂t

= Df
∂2C
∂x2 − va

∂C
∂x

− λC −
1
d

Jm (29)  

where, Df is the Taylor dispersion coefficient represented as 

Df = Dm +
2(dva)

2

105Dm
(30a) 

and Jm is the mass flux of contaminant on the fracture wall, repre
sented as 

Jm = − Dey
∂Cm

∂y
, y = d (30b) 

In the Laplace and Fourier domain, (30b) becomes: 

J
m
= − Dey

∂C m

∂y
, y = d (30c) 

Using equation (13), we have: 

J
m
(ξ, p) = Deyγm

[

C (ξ, p) −
1

EDey
gCmi

]

tanh(γmh) (30d) 

Sequentially, equation (29) subject to initial condition (5a) and 
boundary condition (6a) can be solved to obtain a solution in the Laplace 
and Fourier domain: 

C (ξ, p) =
1

d(p + λ + vaξi + Df ξ2) + Dmβm
[dCi(ξ) +

Dmβm

EDey
g(p)Cmi(ξ)]

(31) 

Applying the Fourier inverse transform yields: 

C(x,p)=
1

2π

∫ ∞

− ∞

1
d(p+λ+vaξi+Df ξ2)+Dmβm

[

dCi(ξ)+
Dmβm

EDey
g(p)Cmi(ξ)

]

eiξxdξ

(32) 

Equation (32), the solution of the Taylor dispersion model, can be 
compared directly to equation (28), the solution of the Poiseuille flow 
model, to quantify how the Taylor model approximation impacts con
centration versus time and concentration versus space simulations. 

4.4. Mass transfer and mass storage in the rock matrix 

The solutions derived above can also be used to quantify the mass 
flux through the interface between the fracture and rock matrix. This 
mass flux is modeled according to: 

Fmas = − Dey
∂Cm

∂y
(x, y = d, t) (33) 

In the Laplace and Fourier domains, (33) has the form: 

F
mas

= − Dey
∂C m

∂y
(x, y = d, t) (34) 

Applying equation (13) and substituting equation (16), equation (34) 
can be re-written: 

F
mas

(ξ, d, p) = Dmβm[C (ξ, d, p) −
1

EDey
gCmi] (35) 

Since the Fourier transform of the mean concentration is represented 
as: 

C (ξ, p) =
∫ ∞

− ∞
C(x, p)e− ξxdx (36) 

The zero-order moment, i.e. setting ξ = 0, gives the total mass stored 
in the fracture at time t: 

Mtot = C (0, p)d (37) 

Therefore, it is relatively straightforward to compute the total mass 
stored in the rock matrix as: 

Mm
tot = Mini − Mtot (38)  

where, Mini is the total mass initially stored in the system. 

5. Evaluation of model solutions 

Model solutions are evaluated using the baseline parameter values 
listed in Table 1. Two initial concentration distributions are proposed, a 
constant slug and a Dirac pulse. 

5.1. Solution verification for an initial constant concentration slug 
distribution 

A constant concentration slug is assumed to reside in a finite region: 

Ci(x) = C0[H(x − xa) − H(x − xb)] (39) 
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where, C0 is a constant, H(x) is the Heaviside step function, xa and xb are 
spatial locations that bound the concentration distribution (xa < xb). In 
the Fourier domain (39) becomes: 

Ci(ξ) = C0
e− ixaξ − e− ixbξ

iξ
(40) 

Though the analytical solutions are somewhat complex, the numer
ical evaluation is readily implementable. The Laplace domain solutions 
given in Eqs. (27) and (28) are numerically inverted using the inversion 
method presented by de Hoog et al. (1982) as implemented in MATLAB 
by Hollenbeck (1998). The solution includes a special function, i.e. the 
confluent hypergeometric function, which is calculated using Algorithm 
707, a Fortran subroutine collected from ACM (Nardin et al., 1992). The 
solution also includes calculus associated with the confluent hypergeo
metric function, for which some extensive numerical evaluations are 
needed. For confirming the correctness of the analytical solution, which 
relies on numerical Laplace inversion and evaluations of various func
tions, an alternative algorithm is used to compare with the analytical 
solution. The algorithm, designed as a semi-numerical method, numer
ically solves the intermediate equation (10) subject to the boundary 
conditions (6b) and (15) using a finite-difference method. The analytical 
and semi-numerical solutions are compared in Fig. 2a and 2b, where the 
concentration breakthroughs at three observation locations and the 
concentration spatial profile along the fracture at three times are 
respectively depicted. Both the analytical and semi-numerical solutions 
are in excellent agreement; giving confidence in the correctness of the 
analytical solution. Note that in Fig. 2, as well as in subsequent figures, 

the value of the concentration simulated by the Poiseuille flow model at 
a given value of x is the mean of the concentrations in the fracture 
transverse to the flow direction, since concentration varies within the 
fracture at position x as a function of y. 

Fig. 2 also shows the expected contaminant transport behavior in a 
fractured-rock matrix; a sharp breakthrough as the front makes its way 
through the fracture, followed by long tailing as contaminant seques
tered in the matrix slowly diffuses back into the fracture. 

5.2. Sensitivity to fracture aperture and matrix thickness 

In Fig. 3, the concentration breakthrough curves at three observation 
locations are depicted for three fracture aperture half-widths (d). Sim
ulations are run for both the Poiseuille flow model and the model that 
uses Taylor dispersion to approximate the effect of Poiseuille flow on 
transport. It may be seen that the use of the Taylor dispersion approxi
mation introduces very little error and the approximation improves at 
greater times. The figure shows that when the fracture aperture is 
relatively large, e.g., d = 10.0 mm, breakthrough arrives quickly and 
has a small tail, indicating less mass contribution from the rock-matrix; 
while for smaller fracture aperture widths, breakthrough is slowed, 
spreading is enhanced, and tailing is more significant. This is a conse
quence of the rock-matrix exerting a more significant influence on 
transport, resulting in more retardation, spreading, and enhanced 
tailing. 

Rock-matrix half-thickness (h) is another parameter that is expected 
to influence transport, as it controls the buffer capacity (i.e., storage) of 

Table 1 
Base line parameter values used for simulations.  

Parameter va (m/day)  d (m)  h (m)  Dm (m2/day)  λ (1/day)  θ  ρb (kg/L)  α (1/day)  kd (L/kg)  

Value 3.0 7.5e− 3 1.0e− 2 1.3e− 4 1e− 4 0.4 1.67 3e− 2 0.45 

Parameter Dex (m2/day)  Dey (m2/day)  λm (1/day)  Df (m2/day)  C0 (mg/L)  Cm0 (mg/L)  M0 (g/m)  xa (m)  xb (m)  

Value 6.5e− 5 6.5e− 5 2e− 5 0.0743 420 420 75 − 10 10  
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Fig. 2. Concentration (a) breakthrough curves at three down gradient observation points and (b) concentration spatial profile along the fracture at three selected 
times comparing the complete analytical solution and the semi-numerical solution using model parameters listed in Table 1. 
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the system. The concentration breakthroughs at three locations are 
depicted in Fig. 4 for three rock-matrix half-thickness values. Break
through simulations shown in Fig. 4 are for both the Poiseuille flow 
model and the model that uses Taylor dispersion to approximate the 
effect of Poiseuille flow on transport. Again the use of the Taylor 
dispersion approximation introduces very little error. A narrow and high 
concentration peak corresponds to a smallerh; while smoother 

concentration peaks with increasing retardation, spreading, and tailing 
occur for larger h, which shows that as the influence of the rock-matrix 
on transport increases, retardation, spreading, and tailing increase. 

5.3. Dirac pulse initial condition 

An instantaneous mass M0 input into a fracture at x = x0 may be 

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

C
 (m

g/
L)

d=10mm
d=5.0mm

d=2.5mm x=30m

P-flow (mean)
Taylor Disp

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

C
 (m

g/
L)

d=10mm

d=5.0mm
d=2.5mm

x=60m

P-flow (mean)
Taylor Disp

0 10 20 30 40 50 60 70 80 90 100
Time (d)

0

50

100

150

200

C
 (m

g/
L)

d=10mm

d=5.0mm

d=2.5mm

x=90m

P-flow (mean)
Taylor Disp

Fig. 3. Concentration breakthrough curves at three locations, comparing the Poiseuille Flow (P-flow) and Taylor dispersion models for three fracture aperture half- 
widths using model parameters listed in Table 1. 
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modeled using a Dirac pulse function: 

Ci(x) =
1

2d
M0δ(x − x0) (47)  

where, δ(x) is the Dirac delta function. In the Fourier domain: 

Ci(ξ) =
1

2d
M0e− ix0ξ (48) 

Fig. 5(a) depicts the concentration breakthrough at three locations, 
and Fig. 5(b) shows the concentration profile along the fracture at three 
times for an instantaneous input of M0 = 75g/m, which corresponds to 
an initial concentration (C0) of 5000 mg/L in a fracture of width 2d =

15 × 10− 3m. The characteristics of the contaminant breakthrough curve 
and the contaminant distribution in space are consistent with the 
expectation of an initial sharp breakthrough with tailing, eventually 
becoming more symmetric over time. 

5.4. Effect of different initial contamination scenarios 

Fig. 6a and 6b show the breakthrough curves and concentration 
spatial profiles along the fracture, respectively, for three scenarios: (1) 
an initially contaminated fracture and matrix, (2) an initially contami
nated fracture, but clean matrix, and (3) an initially contaminated ma
trix, and clean fracture. In the latter two scenarios it’s important to note 
that boundary condition (6C) is only applicable for t > 0. As described in 
Table 1, the initial contaminated zone exists between − 10 ≤ x ≤ 10; 
|x| > 10 is initially clean. In Fig. 6a we see that the initial breakthrough 
for the initially contaminated matrix, clean fracture scenario slightly 
lags the two breakthrough curves where the fracture is initially 
contaminated. This is a consequence of the time it takes for the 
contamination in the matrix to diffuse into the fracture before being 
advected to the sampling locations. We also see that as would be ex
pected, the breakthrough curves for the two scenarios that include initial 
contamination in the matrix have more significant tailing than the 
breakthrough curve where the matrix is initially uncontaminated, 
though importantly, all three breakthrough curves exhibit tailing, due to 
diffusion into the matrix from the fracture, with subsequent back 

diffusion. We may notice that the areas under the three breakthrough 
curves (i.e., the curves’ zeroth moments) are different. Area under the 
breakthrough curve is proportional to mass of contaminant passing the 
sampling point, and since each of the three scenarios has a different 
initial mass of contamination, the areas and corresponding zeroth mo
ments should be different. 

Fig. 6b shows the concentration spatial profile in the fracture for 
each of the above three scenarios. We see that after three days, the front 
for the scenario where the matrix is initially contaminated, but the 
fracture is clean lags the two fronts where the fracture is initially 
contaminated. This observation is consistent with the rapid transport of 
contaminant within the fracture. After 30 days, the concentration pro
files for the two scenarios that include contaminant in the matrix 
initially have more significant tailing than the uncontaminated matrix 
scenario. This reflects the additional contamination in the system and 
the extended time for the contaminant to diffuse from the rock matrix. 
Though it is worth noting that the 30-day concentration peaks are all 
approximately the same and all three distributions exhibit significant 
tailing, since even for the scenario where there was no initial contami
nant in the matrix, subsequent diffusion from the fracture into the ma
trix results in tailing. 

To examine the effect of adsorption on remediation of an initially 
contaminated system, another set of simulations was run using the 
scenario where contaminant is initially distributed in both the fracture 
and rock matrix. Fig. 7 examines the impact of the non-equilibrium 
adsorption rate constant (α) on the breakthrough (Fig. 7a) and con
centration spatial profile (Fig. 7b) curves. The figure shows that at large 
(α = 3× 10− 1d− 1) and small (α = 3 × 10− 4d− 1) adsorption rates 
(compared to the rates of the other transport processes like advection), 
both the breakthrough curves and concentration spatial profiles are 
relatively symmetric, while there is significant asymmetry and tailing at 

moderate 
(

α = 3 × 10− 2d− 1
)

adsorption rates. This behavior is char

acteristic of scenarios that involve remediation of systems where 
adsorption to solids is rate limited (Goltz and Oxley, 1991; Goltz and 
Huang, 2017). At very high adsorption rates, adsorption approaches 
equilibrium, where breakthrough and spatial profiles are symmetric and 
retarded. At very low adsorption rates, adsorption has minimal impact 
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Fig. 5. Concentration (a) breakthrough at three locations and (b) concentration spatial profile along the fracture at three times for an initial mass released at x = 0, 
using the model parameters listed in Table 1. 
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on transport, so the simulations only reflect the effects of advection and 
dispersion, thereby resulting in relatively symmetric breakthrough and 
spatial profiles. It is only at moderate rates, that is when the adsorption 
rate is comparable to the rates of the other transport processes like 
advection, does one see the early breakthrough and tailing characteristic 
of transport when adsorption is rate limited. This significantly impacts 

remediation, as the time to achieve a specified concentration level of 
contaminant when adsorption rates are moderate may be orders of 
magnitude greater than when adsorption is either fast or slow (Goltz and 
Oxley, 1991; Goltz and Huang, 2017). Fig. 7 also shows that the Taylor 
dispersion approximation does a reasonable job of approximating 
Poiseuille flow with only a slight over-prediction of the peak 
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concentrations. 
Given that non-equilibrium (i.e., rate-limited) sorption may occur in 

the rock matrix, it’s important to examine the impact on mass seques
tered. Fig. 8 depicts the mass sequestered in the fracture and rock matrix 
as a function of time for four different non-equilibrium sorption rate 
constants (α = 0.0, 0.0003, 0.03, and 0.3 d-1) and two different initial 
conditions – one where the initial mass is only in the fracture (Fig. 8a) 
and one where the initial mass is only in the matrix (Fig. 8b). When α =
0.0 d-1 there is no mass sorbed to the rock matrix solids, indicating that 
kd also is equal to 0.0 L/kg. Degradation is assumed to be negligible (λ =

0d− 1). 
Fig. 8a and 8b exhibit the same behavior, only in opposite directions, 

with mass being transferred from the fracture to the rock matrix in 
Fig. 8a and mass being transferred from the rock matrix to the fracture in 
Fig. 8b. The rate at which mass moves is a function of the adsorption rate 
constant, α. As the value of α increases from 0.0003 d-1 to 0.03 d-1 to 0.3 
d-1, the time for the system to reach equilibrium decreases, from 
approximately 104 d to 102 d to 10 d, respectively, since the rate of 
desorption of mass from the rock matrix solids increases as the value of α 
increases. When α = 0.0 d-1, as indicated by the solid lines in Fig. 8, 
equilibration is fast since there is no mass sorbed onto the rock matrix 
solids. In this case, the time to equilibration only depends on the rate at 
which mass is transferred in the liquid phase between the fracture and 
rock matrix (i.e., diffusion into/out of the rock matrix). When the system 
achieves equilibrium at long times, the figure shows that the ratio of 
mass stored in the rock matrix (dissolved plus sorbed mass) to the dis
solved mass stored in the fracture is: 

Massinrock
Massinfracture

=
Cm∙2hθ

∫∞
− ∞ dx + ρbkdCm∙2h

∫∞
− ∞ dx

C∙2d
∫∞
− ∞ dx

=
hθ + ρbkdh

d
(49) 

since at equilibrium C = Cm. For the Table 1 parameter values the 
ratio is 1.54. When α = 0.0 d− 1, which also means kd = 0.0 L/kg, the 
ratio is 0.53. Of course, since there’s no degradation, the total mass in 
the system remains constant throughout time. The plots also show an 
interesting characteristic of the mass vs time profile which is evident 

when the adsorption rate constant is very low; see the dashed lines for 
the α = 0.0003 d− 1 scenario. After an initial period of about 2 days, 
when mass is transferred relatively rapidly due to the concentration 
gradient in the liquid phase between the rock matrix and the fracture, 
mass transfer remains extremely slow so that it is only after 104 days that 
equilibrium is ultimately achieved. This slow rate of mass transfer is due 
to the very slow rate of desorption from the rock matrix solids. Taking 
account of the log-scale on the x-axis, we see that the rate of mass 
transfer between the fracture and rock matrix is relatively constant over 
time; on the order of several grams per thousand days. This mass 
behavior corresponds to the long but unseen tail for the α = 0.0003 d-1 

simulated breakthrough curve shown in Fig. 7a, where undetectably low 
concentrations of contaminant leach out from the rock matrix to the 
fracture over decades. 

Fig. 9a and b show similar mass transfer behavior. However, because 
there is degradation contaminant mass ultimately goes to zero in both 
the rock matrix and fracture. Note that the time to achieve zero mass, 
approximately 105 d, is the same, regardless of the value of the 
adsorption rate constant. The time is a function of the value of the 
degradation rate constant, λ. 

6. Analysis of the adequacy of the Taylor dispersion 
approximation 

Although the Taylor dispersion approximation was shown to give 
relatively accurate predictions in some scenarios depicted in section 4, 
the model developed here can be used to examine those conditions 
under which the Taylor dispersion scenario is no longer accurate. To 
perform this evaluation we derive analytical solutions for the zeroth, 
first, and second spatial moments of the Poiseuille flow and Taylor 
dispersion models (see Appendices A and B). The zeroth moment is a 
measure of the dissolved contaminant mass in the fracture at the sam
pling time, the first moment quantifies the displacement of the dissolved 
contaminant mass peak along the fracture at a given sampling time, and 
the second moment quantifies the spread of the dissolved contaminant 
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mass around the peak. 
In particular, the difference between the two models’ simulations of 

the first and second moments may be used to quantify how well Taylor 
dispersion approximates the effect of Poiseuille flow on transport. 
Figs. 10 and 11 plot the relative difference in the spatial first and second 

moments respectively simulated by each of the two models versus 
sampling time for various scenarios. The plots were constructed using 
the specific parameter values in Table 1 as a baseline; however, it is 
possible to make a number of generalizations based on the results. First, 
Figs. 10 and 11 show that in all cases, at long times, the Taylor 
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dispersion approximation model provides a reasonably accurate pre
diction of the Poiseuille flow model. It is only at relatively short times 
(less than about a day) that there is a significant difference between the 
modeled results. Relative differences in the first spatial moment are 
generally less than 10%. Relative differences in the second spatial 
moment, however, can be significant, often as much as a factor of 1 to 
1.5 more than the spreading predicted by the Poiseuille flow model. 
However, even these differences decline with time to less than 20 
percent within the first day. 

From the figures, we also see that relative differences between the 
model predictions at early times are a maximum when: (1) the average 
velocity is high (Fig. 11a), (2) the fracture half-aperture width is large 
(Fig. 10b and 11b), (3) the adsorption rate is fast (Fig. 10c), and the half- 
thickness of the rock matrix is large (Fig. 10d). Fig. 11a demonstrates 
that as average velocity increases, the difference between the second 
moment predictions of the two models increases. This is expected, as the 
second moment is indicative of spreading (dispersion). We see from the 
second term on the right hand side of equation (30a) that the dispersion 
term used in the Taylor approximation increases as the square of the 
average velocity. Fig. 10b and 11b show the effect of the fracture half 
aperture width on the difference between the two models’ simulations. 
As the fracture half aperture increases, the difference between the two 
models increases. This may be explained by the fact that for larger 
fracture apertures the velocity differences in Poiseuille flow are more 
pronounced, and the effects of diffusion within the fracture more sig
nificant. Thus, the Taylor approximation becomes less accurate as the 
fracture aperture increases. Fig. 10c and 10d demonstrate the effect of 
the adsorption rate constant and the rock matrix half thickness on the 
difference between the two models’ simulations. The effects are similar 
for both the adsorption rate constant and the rock matrix half thickness. 
As the adsorption rate constant and the rock matrix half thickness in
crease, more mass may be sequestered in the rock matrix, thereby 
increasing the difference in the simulations of the two models. 
Comparing the y-axes of Figs. 10 and 11, we also see that the Taylor 

dispersion approximation has a much greater effect on the relative error 
of the second moment, which is related to spreading, rather than the first 
moment, which is related to displacement. 

Hence, interpreting Figs. 10 and 11 illustrates that for natural frac
tures, which typically have aperture half-widths less than 0.5 mm 
(Vandersteen et al., 2003; Brabazon et al., 2019), and average velocities 
of less than 1 m/d (Schäfer et al., 2004), the Taylor approximation is 
adequate. However, the figures also show that under certain conditions 
there are significant differences between simulations of the Poiseuille 
flow model and a model that uses the Taylor approximation. As an 
example, Kittilä et al. (2020) conducted a tracer experiment at an 
engineered geothermal systems (EGS) site where hydraulic fracturing 
was used to improve injectivity. Fracture apertures on the order of 1–2 
cm and flow velocities ranging from 10 to 220 m/d were inferred from 
the tracer data. Such conditions correspond to Peclet numbers as high as 
4 × 104 where macro dispersion could be ignored, and in this scenario, 
depending on the modeling objective, these fracture characteristics may 
require consideration of Poiseuille flow as the Taylor approximation 
may provide a poor prediction of contaminant transport. 

Thus, while the results in Figs. 10 and 11 show that under natural 
conditions the Taylor approximation adequately captures the important 
attributes of the Poiseuille flow model, there may be instances, partic
ularly when fractures are artificially induced and flow is imposed, that 
the Poiseuille flow model is required to meet modeling objectives. In 
particular, large aperture fractures with high flow velocities may be seen 
in conjunction with carbon capture and storage (CCS) and EGS projects, 
which are increasingly being implemented throughout the globe. Frac
tures associated with EGS and CCS, which can be on the order of mil
limeters, may be the result of hydraulic fracturing that is undertaken to 
improve injectivity (Li, 2016). CCS projects may also see fracture width 
growth from exposure to carbon dioxide-acidified brine (Deng et al., 
2013; Ellis et al., 2011). 
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7. Conclusions 

Single fracture path models are useful for hypothesis testing and 
evaluation of groundwater cleanup in rock aquifers. The preceding 
analysis shows that in general, and especially at long times, the 
commonly used Taylor dispersion will, for most modeling needs, 
adequately approximate the effect on transport of Poiseuille flow in 
natural fractures. However, at short times the approximation may be 
inadequate, especially for artificially induced fractures that have rela
tively large (say ≥ 1.0 mm) fracture aperture half-widths and high 
groundwater velocities. In those cases, depending on the modeling 
objective, it may be appropriate to incorporate Poiseuille flow in the 
model. This paper presents an approach that allows the modeler to 
analytically quantify, for specified parameter values, how large a dif
ference there will be between simulations of a model that explicitly in
corporates Poiseuille flow and one that approximates Poiseuille flow 
with Taylor dispersion. 

Model simulations also showed that for fractured-rock matrix sys
tems that are characterized by moderate adsorption rate constants, 
remediation times could be extremely long, if remediation success is 
quantified by achieving low concentrations within the fracture. 
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Appendix A. Spatial moments of Poiseuille flow model 

Equation (10), rewritten here for convenience is denoted in the Laplace and Fourier domains as: 

∂2C
∂y2 −

(
Ay2 +B

)
C = −

1
Dm

Ci(ξ) (A.1) 

Equation (A.1) is subject to the boundary conditions: 

∂C
∂y

= 0, y = 0 (A.2)  

∂C
∂y

+ βmC =
βm

EDey
gCmi, y = d (A.3)   

Zeroth spatial moment 

Based on the definition of spatial moments, the zeroth spatial moment (m0x) is calculated as 

m0x = C̃(ξ = 0, y, p) (A.4)  

where the zeroth spatial moment satisfies following governing equation (A.5) and boundary conditions (A.6, A.7): 

∂2m0x

∂y2 − B0m0x = −
1

Dm
C0(xb − xa) (A.5)  

∂m0x

∂y
= 0, y = 0 (A.6)  

∂m0x

∂y
+ βm0m0x =

g
f
βm0Cm0(xb − xa), y = d (A.7) 

and, 

B0 =
1

Dm
(p + λ) (A.8)  
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βm0 =
Dey

Dm
γm0tanh(γm0h) (A.9)  

γm0 =
̅̅̅̅̅
E0

√
(A.10)  

E0 =
1

Dey
f (p) (A.11)  

σ =
̅̅̅̅̅
B0

√
(A.12) 

The solution of equation (A.5) subject to the boundary conditions (A.6, A.7) is: 

m0x =
(xb − xa)βm0cosh(σy)

σsinh(σd) + βm0cosh(σd)

[
gCm0

E0Dey
−

C0

B0Dm

]

+
C0

B0Dm
(xb − xa) (A.13)  

First spatial moment 

The first spatial moment (m1x) is calculated as 

m1x = i
∂
∂ξ

C (ξ = 0, y, p) (A.14) 

Carrying out the derivative of equations (A.1), (A.2) and (A.3) with respect to ξ, we may find m1x satisfies the following governing equation (A.15) 
and boundary conditions (A.16, A.17): 

∂2m1x

∂y2 − B0m1x = −
1

Dm
v(y)m0x(y) −

1
2Dm

C0(x2
b − x2

a) (A.15)  

∂m1x

∂y
= 0, y = 0 (A.16)  

∂m1x

∂y
+ βm0m1x =

g
2f

Cm0βm0(x
2
b − x2

a), y = d (A.17) 

The solution of (A.15) subject to the boundary conditions (A.16, A.17) is: 

m1x = b1e− σy + b2eσy +m*
1x (A.18)  

m*
1x =

1
2σ {eσy[Fint( − σ, y) − Fint( − σ, 0)] + e− σy[Fint(σ, d) − Fint(σ, y)]} (A.19)  

Fint(σ, y) = −
3va

2Dm
{

1
2
Am0x

[
1

2σe2σy −
1

d2(2σ)3e2σy( (2σy)2
− 4σy + 2

)
+ y −

1
3d2y3

]

+

Bm0xeσy
[

1
σ −

1
d2σ3

(
(σy)2

− 2σy + 2
)
]

}−
1

2DmσC0
(
x2

b − x2
a

)
eσy (A.20)  

b1 =
r2 − r1(βm0 + σ)eσd

(βm0 − σ)e− σd + (βm0 + σ)eσd (A.21)  

b2 =
r2 + r1(βm0 − σ)e− σd

(βm0 − σ)e− σd + (βm0 + σ)eσd (A.22)  

r1 =
1

2σ [Fint(σ, d) − Fint(σ, 0)] (A.23)  

r2 = −
1
2

(
1+

βm0

σ

)
eσd[Fint( − σ, d) − Fint( − σ, 0) ] +

g
2f

Cm0βm0(x
2
b − x2

a) (A.24)  

Am0x =
(xb − xa)βm0

σsinh(σd) + βm0cosh(σd)

[
gCm0

E0Dey
−

C0

B0Dm

]

(A.25)  

Bm0x =
C0

B0Dm
(xb − xa) (A.26)  

Second Spatial Moment 

The second spatial moment (m2x) is calculated as 
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m2x = −
∂2

∂ξ2C (ξ = 0, y, p) (A.27) 

Following a similar process to that used to obtain the first spatial moment, carrying out the second order derivative of equations (A.1, A.2, A.3) 
with respect to ξ yields: 

∂2m2x

∂y2 − B0m2x = − [2m0x(y) +
2

Dm
v(y)m1x(y)] −

1
3Dm

C0(x3
b − x3

a) (A.28)  

∂m2x

∂y
= 0, y = 0 (A.29)  

∂m2x

∂y
+ βm0m2x = Rd, y = d (A.30)  

Rd = β*
m0m0x(d) −

g
f 2

(
β*

m0f − 2Dexβm0
)
Cm0(xb − xa)+

g
3f

Cm0βm0(x3
b − x3

a) (A.31)  

β*
m0 =

Dex

Dm
̅̅̅̅̅
E0

√ [tanh(γm0h) + γm0hsech2(γm0h)] (A.32) 

Accordingly, the solution of (A.28) subject to the boundary conditions (A.29, A.30) is: 

m2x = d1e− σy + d2eσy +m*
2x (A.33)  

m*
2x =

1
2σ [eσy

∫ y

0
Ω(y)e− σydy + e− σy

∫ d

y
Ω(y)eσydy] (A.34)  

Ω(y) = − [2m0x(y) +
2

Dm
v(y)m1x(y)] −

1
3Dm

C0(x3
b − x3

a) (A.35)  

d1 =
u2 − u1(βm0 + σ)eσd

(βm0 − σ)e− σd + (βm0 + σ)eσd (A.36)  

d2 =
u2 + u1(βm0 − σ)e− σd

(βm0 − σ)e− σd + (βm0 + σ)eσd (A.37)  

u1 =
1

2σ

∫ d

0
Ω(y)eσydy (A.38)  

u2 = −
1
2

(
1+

βm0

σ

)
eσd

∫ d

0
Ω(y)e− σydy+Rd (A.39)  

Appendix B. Spatial moments of Taylor dispersion model 

The solution for the Taylor dispersion model in the Laplace and Fourier domains is presented in equation (31). The spatial moments can be derived 
accordingly. 

Zeroth Spatial Moment 

Settingξ = 0 in (31) yields: 

m0x(p) =
1

d(p + λ) + Dmβm0
[dC0(xb − xa) +

g
f
DmCm0βm0(xb − xa)] (B.1)  

First Spatial Moment 

Directly taking the derivative of (31) with respect to ξ and applying the definition of the first spatial moment results in: 

m1x(p) = (dC0 +
g
f
DmCm0βm0)[

dva(xb − xa)

[d(p + λ) + Dmβm0 ]
2 +

x2
b − x2

a

2[d(p + λ) + Dmβm0]
] (B.2)  
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Second Spatial Moment 

Taking the second order derivative of (31) with respect to ξ and applying the definition of the second spatial moment results in: 

m2x = F’’
1 (p)F2(p)+ 2F’

1(p)F
’
2(p)+F1(p)F’’

2 (p) (B.3)  

where, 

F1(p) =
1

d(p + λ) + Dmβm0
(B.4)  

F2(p) =
(

dC0 +
g
f
DmCm0βm0

)

(xb − xa) (B.5)  

F’
1(p) =

dva

[d(p + λ) + Dmβm0 ]
2 (B.6)  

F’
2(p) =

1
2
(dC0 +

g
f
DmCm0βm0)(x

2
b − x2

a) (B.7)  

F’’
1 (p) =

1
[d(p + λ) + Dmβm0 ]

3 {
(
2dDf + Dmβ*

m0

)
[d(p + λ) + Dm0βm0 ] + 2d2v2

a} (B.8)  

F’’
2 (p) =

1
3

(

dC0 +
g
f
DmCm0βm0

)
(
x3

b − x3
a

)
−

g
f 2DmCm0(β*

m0f − 2Dexβm0)(xb − xa) (B.9)  
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