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Abstract 

A deterministic geometric approach, the fractal-multifractal (FM) method, is proposed to 

temporally downscale (disaggregate) rainfall and streamflow records. The applicability of the 

FM approach is tested on: (1) two sets of rainfall records –– one from Laikakota, Bolivia and the 

other from Tinkham, Washington, USA; and (2) two distinct sets of streamflow records –– for 

water years 2005 and 2008 from the Sacramento River, California, USA. For the purpose of 

validation, the available daily records are first aggregated into weekly, biweekly, and monthly 

records and then the FM method is applied to downscale such sets back into the daily scale. The 

results indicate that the FM method, coupled with a threshold to capture the high intermittency of 

rainfall and a smoothing parameter to get the mild texture of streamflow, readily generates daily 

series (over a year) based on weekly, biweekly, and monthly accumulated information, which 
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reasonably preserves the time evolution of the records (especially for streamflow) and captures a 

variety of key statistical attributes (e.g., autocorrelation, histogram, and entropy). It is argued that 

the FM deterministic downscalings may enhance and/or supplement available stochastic 

disaggregation methods. 

Keywords: disaggregation, fractal-multifractal, deterministic, rainfall, streamflow 

1. Introduction  

The general lack of high-resolution (both in time and in space) hydrologic information limits our 

ability in the proper design, simulation, and operation of many water resources infrastructures, 

such as those associated with flood control and urban drainage. A common practice to overcome 

this problem is to disaggregate/downscale information available at a coarse scale into finer scales 

through some downscaling techniques. Such disaggregation approaches are generally designed to 

preserve some basic statistical characteristics of the records, including low-order moments, 

autocorrelations, power spectra, and multifractal properties, among others.  

A large number of temporal disaggregation approaches and models exist in the literature. 

Very early disaggregation models were generally based on statistical notions (e.g., Pattision, 

1965; Grace and Eagleson, 1966; Bras and Rodriguez-Iturbe, 1976) that preserve suitable 

moments. Some key contributions in this area are as follows. Valencia and Schaake (1972, 1973) 

introduced a linear disaggregation model, aimed at the preservation of low-order moments at 

various scales – yearly, monthly, and daily. However, this model does not account for the rather 

skewed distributions and highly intermittent character of rainfall. Subsequently, Mejia and 

Roussellee (1976), Tao and Delleur (1976), Hoshi and Burges (1979), Todini (1980), Stedinger 

and Vogel (1984), Hershenhorn and Woolhiser (1987), and Connolly et al. (1998), among others, 

popularized such a linear disaggregation model, with important modifications to the underlying 



  

3 

 

notions and implementation procedures. Despite the improvements in these models and their 

applications, limitations in such models continue to be highlighted. For instance, this class of 

models, in truth, belongs to a class of parametric approaches that requires prior assumptions 

about the probability distributions of the model parameters (e.g., Alvisi et al., 2015). 

Looking for an improved approach, Koutsoyiannis and Xanthopoulos (1990) introduced a 

single-site dynamic disaggregation model as a step-wise procedure, which accounts for low-level 

variables, to combine rainfall model with Markovian structure and normal or gamma 

distributions. Employing such a model, Koutsoyiannis (1992) converted a sequential simulation 

model into a disaggregation model, so that the model could explicitly preserve second order 

statistics of low-level variables at the finer time scale. Later on, Koutsoyiannis (1994) noted that 

these models are not applicable for short-scale rainfall disaggregation, but that they could be 

improved by making use of properties of gamma distribution. He also suggested the possibility 

to link them with a Markovian structure relying on only three parameters, and that this notion 

could be used to solve the engineering problems that seek defining a design storm. However, 

Zarris et al. (1998) argued that such an approach, defined for flood frequency curves, may not be 

adequate for continuous sets. 

In light of the fact that natural records, as measured around the world and commonly used  

in scientific investigations, are rather complex and intricate, the late great mathematician Benoit 

Mandelbrot suggested that geophysical records could exhibit a form of statistical self-similarity, 

that possibly bridges various temporal and spatial scales, via a concept now known as 

multifractality (Mandelbrot, 1982, 1989). Following such a lead, a number of studies have 

implemented stochastic (fractal, multifractal) theories in order to deal with the erratic and 

intermittent patterns of rainfall, streamflow, and other geophysical sets at hand; see, for example, 
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Gupta and Waymire (1990), Tessier et al. (1993), and Lovejoy and Schertzer (2013), among 

others. Using these notions, Olsson (1998) evaluated the possibility of modeling and 

disaggregating temporal rainfall using a multiplicative cascade model, which had the ability to 

preserve the scaling behavior of the records. This model was subsequently tested by Olsson and 

Berndtsson (1998), who showed that the model may account for seasonal non-stationarities. Such 

was also considered by Güntner et al. (2001), who, by studying issues regarding the 

transferability of parameters, identified the reasons why the autocorrelation function may be 

underestimated and why the model may overestimate extreme events.  

While classical and multifractal stochastic disaggregation models produce reasonable 

realizations of rainfall and streamflow processes, other approaches have also been tried searching 

for “better” outcomes. For instance, Lall (1995) proposed a nonparametric procedure that 

captures the nonlinearities present in the records, and Kumar et al. (2000) employed such a 

method to disaggregate daily streamflow and to approximate the probability distribution of a 

disaggregated streamflow vector at multiple sites. Based on such nonparametric notions, Prairie 

et al. (2007) proposed a technique for space-time disaggregation of streamflow, which ended up 

stressing that the nonlinear character of streamflow (and other hydrologic processes) cannot be 

disaggregated using traditional techniques, due to a high-dimensionality problem.  

Continuing with alternative approaches and in recognition of the presence of chaotic 

behavior in geophysical processes (e.g., Lorenz, 1963) and in their transformation between 

different scales, Sivakumar (2001) explored the presence of chaos in rainfall time series observed 

at four different temporal scales in the Leaf River basin, Mississippi, USA, using phase space 

reconstruction and correlation dimension. The outcomes of such a study led Sivakumar et al. 

(2001) to investigate the possibility of using chaos theory to transform rainfall from one scale to 
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another. Analyzing the dimensionality of the weights of the rainfall distribution between (any) 

two scales using the correlation dimension method and identifying the presence of chaotic 

behavior in such weights, Sivakumar et al. (2001) also proposed a chaotic model for rainfall 

disaggregation based on an approach that uses local approximation in the reconstructed phase 

space. Sivakumar et al. (2004) subsequently employed this approach to disaggregate streamflow 

in the Mississippi River basin at St. Louis, Missouri, USA. Despite the encouraging outcomes 

from chaos theory-based studies in hydrology, some criticisms of such studies have been raised; 

see Schertzer et al. (2002) and Sivakumar et al. (2002) for a discussion. A comprehensive 

account of the applications of chaos theory in hydrology, including for rainfall and streamflow 

disaggregation, is presented in Sivakumar (2017). 

On a systematic practical setting, Lanza et al. (2001) reviewed several works on rainfall 

downscaling techniques and pointed out that direct validation of downscaling approaches is 

problematic due to a lack of reliable measurements. Pointing out that the absence of high-

resolution rainfall records clearly introduces uncertainties in the rainfall-runoff processes 

involved, they emphasized the need to conduct standard synthetic tests in order to fully compare 

the different approaches. Koutsoyiannis (2003) and Koutsoyiannis et al. (2003) provided a 

general overview of the development of rainfall disaggregation models, most of which generate 

synthetic time series for partial durations.  

Recently, an “ensemble downscaling” method has been proposed by combining different 

sources of information. For instance, Liu et al. (2016) introduced an approach that couples a 

Bayesian model and ensembles from three statistical downscaling methods, to provide a 

scientific basis for the study of runoff response to climate change: one based on a support vector 

machine aimed at capturing nonlinear regression relationships between variables, another on a 
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weather generator scheme to yield long time series as needed in the risk analysis of climate 

change, and a third based on statistical downscaling model as a decision support tool. Such a 

study demonstrated the better performance of the “ensemble downscaling” method based on 

Bayesian model averaging than a single statistical downscaling approach. 

The downscaling techniques summarized above could be based on either stochastic or 

dynamical models. However, either type of models has its own limitations. Stochastic techniques 

(e.g., regression models, weather generators) are based on simplified assumptions, require 

substantially long records and large number of parameters, and are seldom capable of preserving 

the finer details present in hydrologic records. Dynamical techniques, on the other hand, turn out 

to be computationally intensive; see Fowler et al. (2007) for details, especially in the context of 

downscaling approaches, in time and space, for global climate model outputs.  

To deal with the intricacies inherent in natural records, Puente (1996) had earlier 

introduced the notion that a given “seemingly-random” set could be represented as a fractal 

transformation of a multifractal measure. As a consequence, a procedure –– named the fractal-

multifractal (FM) method –– was introduced, which: (a) is capable of producing a vast class of 

patterns defined over one and higher dimensions that look like natural sets; and (b) gives sets that 

may be conditioned to capture the overall trends and inherent details present on available 

records, beyond the preservation of some relevant statistical attributes, such as moments, 

autocorrelation function, power spectrum, and multifractal spectrum. Upon its discovery, the FM 

method has been found useful in various applications that include, among others: (a) the 

encoding of various rainfall events lasting a few hours (e.g., Puente and Obregón, 1996; Cortis et 

al., 2009, 2013; Huang et al., 2013); (b) the modeling of spatial contamination patterns in 

groundwater (Puente et al., 2001a,b); (c) the encoding of daily precipitation (Maskey et al., 
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2016a; Puente et al., 2018); (d) the encoding of streamflow gathered daily over a year (Maskey et 

al., 2016b); and (e) the simulation of daily rainfall (Maskey et al., 2016c) and of daily 

streamflow (Maskey et al., 2017). 

The encouraging outcomes from these applications suggest the possibility of using the 

FM approach also for temporal downscaling of hydrologic data. Herein, we propose an FM 

approach for downscaling rainfall and streamflow records. We validate the approach: (1) on 

rainfall using one year of data each from Laikakota, Bolivia and Tinkham, Washington State, 

USA; and (2) on streamflow employing two different years of data from the Sacramento River, 

California, USA. Having available daily records at such sites, we first aggregate such data to 

weekly, biweekly, and monthly scales and then use the FM method to disaggregate to daily scale 

to compare with the original records and, hence, validate the FM approach. 

The rest of this article is organized as follows. Section 2 re-visits the original fractal-

multifractal approach and presents adaptations used here to encode both rainfall and streamflow 

sets. Section 3 explains how the FM method is used in order to define specific downscales. 

Section 4 presents the results and discussion for the obtained disaggregated patterns for rainfall, 

and Section 5 reports such for streamflow. Section 6 summarizes the findings and provides 

remarks for further research. 

2. The Fractal Multifractal Method and Adaptations for Rainfall and Streamflow 

According to the FM framework, geophysical records may be represented, geometrically and in a 

system-theoretic sense, as “outputs” (derived distributions) produced by a complex “system” 

(defined by a fractal interpolating function) when the “inputs” to the system are also complex 

(multifractal measures) (Puente, 1996). This section briefly explains the FM approach and 

provides adaptations of the original notions that allow the method to be used to represent highly-
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intermittent records (e.g., daily rainfall sets) and mildly-intermittent records (e.g., daily 

streamflow sets).  

2.1 Theoretical Framework 

 Following Barnsley (1988), a fractal interpolating function  , defined from   into   (i.e., 

     ) and passing through     pre-specified points         satisfying           , is 

obtained iterating   simple affine maps, from the plane to the plane, i.e., from (   ) to (   ), of 

the special form: 

   
 
    

   
    

  
 
    

  
  
                    . (1)  

When these maps are constrained so that they contract the space in  : 
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 , (2)  

i.e., so that the     map compresses the first and last interpolating points into inner interpolating 

points. When the parameters    are less than one in magnitude, the iterations of such maps    

indeed define the graph   of a function  , i.e.,                        . By doing so, a set 

becomes the unique “fixed-point” of the maps   . And hence, successive calculations of images 

already in  , in any order, remain in the same graph, i.e.,      
 
      . 

 The conditions defined in Eq. (2) yield simple systems of linear equations that allow 

finding the coefficients   ,   ,    and   , in terms of the coordinates by which the fractal 

interpolating function passes, i.e.,        , and the parameters   , which, given their usage in 

Eq. (1), are also known as vertical scalings (Barnsley, 1988). At the end, specifying the 

interpolating points and the scaling parameters allows defining, via iterations, a convoluted 

function   whose graph has a fractal dimension        , and hence its notation.  
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 In a practical setting, the graph of such a function   may be found point by point, 

iterating the affine maps   , ultimately sampling the unique “attractor”   following a procedure 

known in the literature as the “chaos game” (Barnsley, 1988). Such a process starts at a point 

within   (say, an interpolating point) and progresses as per arbitrary “coin tosses” or iterating 

proportions assigned to the   maps. After enough iterations, the process not only converges to 

the graph of a function   but also induces a unique invariant measure (a distribution) over   as 

well. The latter, when projected over the   and   coordinates, yields interesting histograms that 

typically exhibit non-trivial intermittencies and possesses multifractal properties. These sets turn 

out to be inherent to the calculations and may be displayed at arbitrary scales just by varying the 

size and number of bins used to get the histograms. While the natural projection over   is a 

deterministic multinomial multifractal measure    generated via a multiplicative cascade (e.g., 

Mandelbrot, 1989; Puente. 1996), the projections    over   are deterministic derived 

distributions of    via a fractal function  , which typically resemble complex natural patterns 

(Puente 1996, 2004).  

These notions turn out to be akin to a generalization of the description of turbulent 

dissipation as a random binomial multifractal (Meneveau and Sreenivasan, 1987) and also to the 

construction of other intermittent sets as random realizations of Levy processes from universal 

multifractals (Lovejoy and Schertzer, 2013). The outcomes produced by the fractal-multifractal 

method could also be interpreted physically as specific realizations of a non-trivial multiplicative 

cascade process, in a way that a generic derived measure    represents a suitable geometric 

entity to represent natural phenomena (Cortis et al., 2013). 
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These abstract ideas are further illustrated next as used to represent both highly-

intermittent rainfall sets and mildly-intermittent streamflow series. So that the reader may better 

follow the notions, the next sections will be based on specific numerical examples. 

2.2 FM Representation of Rainfall Sets 

Figure 1 illustrates how the FM notions may be used to model highly intermittent sets. As 

shown, there is a fractal function    passing through the four interpolating points 

                                       (shown as filled circles) and induced via the iteration 

of the three maps: 
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(5)  

playing the chaos game according to proportions, in order,    , 2%, and 46 . 

 These maps, all having the structure of Eq. (1) and with coefficients defined while 

satisfying the contracting conditions in Eq. (2), have vertical scalings         ,        , 

and        , and transform the domain [0, 1] in   into the sub-intervals, in order,         , 

           , and         . As shown in the figure, the iterations induce, in addition to the fractal 

function    (whose graph    has a low fractal dimension of 1.03), projected histograms     

and    , of obtained values over   and  , respectively, which may be obtained at an arbitrary 

resolution, just by having a suitable number of bins over which chaos game numerical 

calculations are grouped –– 273 bins for this particular example. While     (the horizontal 

“input”) (i.e.,   vs.    ) is a deterministic multinomial multifractal having almost a zero value in 

the middle due to the 2% weight assigned to map   ,     (the “output” plotted vertically) (i.e.,   
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vs.    ) is a deterministic derived measure, i.e.,         
       , in which a     value (at a 

given level  ) is the sum of all “events” over   corresponding to such a level. The object    , 

akin to a distribution, can therefore be explained as a transformation of a multiplicative cascade, 

yielding, in this example, a highly-intermittent set that resembles rainfall records gathered daily, 

when   denotes time and     rainfall intensity. 

Figure 1 also includes (on the right) a set that results from an adaptation of the method, 

which yields other derived sets that may be used to further approximate rainfall records 

containing yet additional intermittency and many more zeroes. Such an object, named     to 

acknowledge a vertical cutoff (i.e., in the   coordinate), is naturally found from     by 

discarding “traces” below a threshold   , as marked in the center plot. This new set, shown re-

normalized so that it integrates to one as    , may be adjusted so that it better preserves the 

records (Maskey et al., 2016a, 2016c). 

2.3 FM Representation of Streamflow Sets 

Figure 2 depicts the construction of a mildly-intermittent derived distribution. As before, another 

fractal function   , passing through the four interpolating points marked       ,              

                   }, is defined via the iteration of the three maps, and distinct from those used 

earlier, given by: 
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(7)  

   
 
    

              
            

      
  
        

       
    

    
(8)  

used according to the proportions, in order,    , 44%, and 32 . 
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These maps, all having the simple structure of Eq. (1) and with coefficients satisfying the 

contracting conditions in Eq. (2), have scalings        ,         , and         . Their 

iteration, according to the aforementioned proportions, result in the fractal function    whose 

graph, as seen, requires more ink than the previous   , as its graph    has a larger fractal 

dimension of     . While the shown “input”     is still a rather intermittent multinomial 

multifractal (no longer with close to zero values, however), the new “output” derived distribution 

   , computed this time over 365 bins, is smoother than     before, as the bulkier fractal 

function    adds an increasing number of events over  , i.e.,         
       . As such, the 

deterministic histogram     (i.e.,   vs.    ) becomes suitable for modeling mildly-intermittent 

records, like streamflow data gathered daily, once again with   denoting time and     discharge. 

Figure 2 also includes on its rightmost plot a further adaptation for the encoding of streamflow 

records, which consists of finding a new set object    , just for appearance purposes, by 

performing local smoothing on the histogram     (Maskey et al., 2016b, 2017). 

 In practice, the modeling of a given rainfall or streamflow set requires the solution of an 

inverse problem over plausible FM parameters, namely: (a) the interpolating points through 

which a fractal interpolating function passes (here assumed without lack of generality that the 

first and last points are (0,0) and (1,1)); (b) the vertical scalings   ; (c) the iteration frequencies 

associated with each map in chaos game calculations (one minus the number of maps); and (d) a 

vertical threshold for rainfall modeling or a smoothing parameter for streamflow calculations. 

Hence, the usage of fractal functions defined via three affine maps, as shall be used herein based 

on our previous experience, requires a total of 10 FM parameters (four interpolating coordinates, 

                 , three scalings,   ,    and   , two iteration frequencies,    and    (   

       ), and one parameter for the adaptation, as defined above). 
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3. FM Temporal Downscaling Methodology 

This section describes the approach used herein to downscale (disaggregate) a given temporal 

set, either rainfall or streamflow, using the FM approach. It also includes information pertaining 

to the evaluation of goodness of the proposed approach.  

3.1 From Coarse to Fine Scales 

As explained in Section 1, there is a multitude of methods that may be employed to disaggregate 

both rainfall and streamflow records. Here, we propose, based on the success of the FM notions 

to encode rainfall and streamflow records at the daily scale (Maskey et al., 2016a, b; Puente et 

al., 2018), an alternative geometric approach for temporal disaggregation from a coarse 

resolution (week, biweek, or month) to a fine resolution (day), as follows. 

1. Given records (depths or volumes) at a coarse resolution, say every   days and for a total 

of   periods,       , such a set is first normalized so that it integrates to one. Then, its 

corresponding accumulated set (i.e., mass function),        , is upgraded so that 

         in such a way that          , where          

2. With the normalized accumulated records at resolution  ,        , specified, such a set 

becomes a target for a suitable representation via the FM approach. This entails finding 

the “best” FM parameters,   , minimizing the square errors of the available    

accumulated values and following a numerical optimization approach.  

3. If the calculations are performed in such a way that internal FM computations happen at 

the daily scale (i.e., employing precisely     bins in chaos game histogram calculations) 

while accumulating at the   scale for optimization purposes, the implicit derived measure 
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   within the procedure and at the daily scale would automatically be an estimate for 

downscaling the normalized information at the fine scale. 

4. When such a set is de-normalized by the total depth or volume for such a coarse set, a 

disaggregated FM representation of the geophysical process is found. 

In the present study, these notions are tested for downscaling rainfall and streamflow 

records from resolutions of      (weekly),    (biweekly), and    days (monthly) into daily 

sets. Certainly, the notions could also be used in a similar fashion to obtain temporal downscales 

involving arbitrary scales, that is, finer than daily.  

3.2 Solution Strategy 

The computation of fractal functions and projections associated with the FM approach happens 

to be a rather efficient procedure. However, as there are no analytical formulas for the derived 

measures, finding an FM representation for a given set requires a numerical scheme for solving 

an inverse optimization problem. As illustrated in Section 2, the search space when iterating 

three maps requires searching in 10 dimensions, but such is no obstacle for finding suitable 

solutions. 

Based on our experience, a heuristic optimization scheme, a generalized version of the 

particle swarm optimization algorithm, may be used to find a close solution of an FM inverse 

problem (Fernández Martinez et al., 2010; Huang et al., 2013; Maskey et al., 2016a). In 

particular, and to circumvent the dimensionality of the search procedure, the searches for the 

highly-intermittent rainfall and mildly-intermittent streamflow records herein are performed as 

follows. While the rainfall records employ 200 randomly generated swarms made up of 500 FM 

parameter values, the smoother streamflow sets use 100 randomly selected swarms containing 
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only 300 FM parameter sets. Then, all such swarms are allowed to evolve (having all members 

as leaders), for 300 iterations for rainfall and only 80 for streamflow. At the end, the best 

solution found over all swarms, even if a local optima, is considered to be the “optimal solution.” 

As shall be seen, the notions yield reasonable results, and finding such parameters only takes a 

day of computation for rainfall and 4 hours for streamflow on a personal computer. 

 As mentioned in Section 3.1, the objective function used in the calculations is defined as 

in previous studies (e.g., Obregón et al., 2002a, b; Huang et al., 2012, 2013; Maskey et al., 

2016a, b). Specifically, the    norm (i.e., the root mean square error) of the coarse accumulated 

records, every   days, vs. the accumulated FM approximations, also every   days, over the 

number of such periods over a water year, is minimized. Mathematically, such an objective 

function is defined as: 

        
 

  
                   

 

  

    

 

(9) 

where    is the number of periods in increments of   days, and         and          are the 

accumulated records and accumulated FM-related fits, as defined in Section 3.1. 

 Attempting to ensure that FM solutions share similar geometrical features with a target 

set, the aforementioned objective function is penalized so that: (a) the maximum deviations 

between the measured and the FM fitted records (      ) should not exceed a value of 10% 

on any given period considered; and (b) the discrepancy between the length of the FM data set 

and that of the observed set, from beginning to end and over the periods, should be less than 5% 

of that of the observed set. For downscaling of rainfall, an additional penalty is imposed so that 

the number of zeros (no-rain events) present in the FM representation will not be more than 10% 

of those in the actual set.  
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3.3 Assessment of Model Performance 

To validate the quality of the proposed FM approach in the context of downscaling, observed 

data sets at the daily scale are employed. This readily allows calculation of aggregated sets at a 

scale   to be fitted by the FM method and then the performance of the disaggregation notions is 

validated using the original records at the finer resolution. 

 The performance evaluation is done in terms of various statistics, not included in the 

optimization exercise, and also extended to the daily FM sets. Such include the root mean square 

error, the maximum error in the accumulated set, and the Nash-Sutcliffe efficiency for the 

implied data, both at the   coarse scale employed in the optimization (    ,      and      ) 

and at the disaggregated daily (fine) scale (    ,      and         Moreover, comparison 

(visual validation) is made by plotting the implied records at the distinct scales and by including 

(at the daily scale only) the autocorrelation function ( ), histogram ( ), and Rényi entropy 

function ( ), which are further compared in terms of Nash-Sutcliffe efficiency values. 

Herein, the Rényi entropy function for the daily data is defined as 

  
 

   
          

 

   

         
(10) 

where      is the rainfall or streamflow (intensity or discharge) value for day   (observed or 

fitted),   is the number of days of activity in a year, and   is a weight that varies from –5 to 5 for 

streamflow and from 0.1 to 5.1 for rainfall, in order to avoid the presence of zero values. 

The well-known Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970), for data sets or a 

given statistic, is defined in a general sense as 

      
         

  
   

          
   

  
(11) 
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where    is the     statistical value (or value) for an observed set,    is the mean of such a statistic 

(or value) over the total number of statistics (values) considered (  , and     is the     statistic 

(fitted value) for an FM-downscaled set. 

4. Downscaling of Rainfall Records 

To establish the applicability of the FM-based downscaling approach in the context of rainfall 

records, 7-, 14-, and 30-day accumulated records (i.e., weekly, biweekly, and monthly scales) 

computed from available daily records are analyzed at two sites: one from Laikakota, Bolivia for 

water year 1966 (from September 1, 1965 to May 31, 1966 and spanning 273 days) and the other 

from Tinkham, Washington State, USA for water year 1995 (from October 1, 1994 to September 

30, 1995 and spanning the whole 365 days).  

As mentioned before, rainfall data sets are normalized, so that the accumulated volume 

becomes a unity prior to using the FM method at all scales. As experience suggests that the 

inherent complexity in the daily sets may itself be achieved by the FM method employing three 

maps plus further trimming below a threshold (Maskey et al., 2016a), highly intermittent 

representations, as in Figure 1, are employed that rely on the 10 FM parameters defined by the 

end of Section 2, yielding, at the daily scale, a compression ratio of 27:1 for Laikakota and 37:1 

for Tinkham. Here, the parameters, including a vertical threshold, are to be obtained numerically, 

as explained in Section 3.2. 

4.1 Rainfall set from Laikakota, Bolivia 

Figure 3 presents the implementation of the FM method to the rainfall set from Laikakota, 

Bolivia. The two graphs on the top right portray, respectively, the measured daily rainfall set for 

water year 1966 and the corresponding accumulated rainfall over the water year comprising 273 

days. As may be seen, the records exhibit noticeable intermittency, contain three major peaks, 
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and have at least six distinct regions of sustained lack of rain. The rough accumulated rain profile 

dips below the average slope line with first, but it then crosses it and remains above it at about 

four months into the season. 

The next three rows in Fig. 3 present the results for 7-day, 14-day, and 30-day rainfall 

data. Shown in these plots are the real sets (in black) and the FM representations (in gray), 

including both the records and corresponding accumulated profiles. The FM fittings at the 7-, 14-

, and 30-day scale are shown on the left, and the corresponding FM downscales at the daily scale 

are depicted on the right. An observant reader may notice that the construction of the derived 

measure     in Fig. 1, corresponds, after due flipping, to the 7-day downscale results in Fig. 3, 

i.e., the set shown on the third column and second row of the figure. The actual values of the FM 

parameters for such sets, at various disaggregation scales, are included in the first block of 

Appendix A. 

As clearly seen in Fig. 3 for the accumulated rainfall plots,    vs.    , all optimized FM 

representations fit the accumulated records at all scales reasonably well. Although the overall 

geometries on the first column of the graph do show some imperfections in fitting the data itself, 

their overall shapes follow closely the records and accumulated sets (in gray, on the second 

column). This implies that the penalties imposed while doing the searches, as described in 

Section 3.2, are satisfied. As may be verified from Table 1, the root mean square errors at a 

coarse resolution obtained for the accumulated sets (    ) are certainly rather small, as they 

are, in order, 3.1, 2.8, and 3.1%, for FM representations at the 7-, 14-, and 30-day scales. The 

goodness of the fits may also be seen in the magnitude of the maximum errors in accumulated 

sets (    ), which are, for increasing scales, 8.7, 6.0, and 6.3%, with the more complex set at 

the 7-day scale providing the largest deviation due to noticeable disparities by the end of the 
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records, as seen in the second column and second row in Fig. 3. The closer renderings on 

biweekly and monthly scales are corroborated by the positive Nash-Sutcliffe efficiencies for the 

data in Table 1 (     ), which are non-trivial to achieve for such highly-intermittent records 

(Maskey et al., 2016a). However, the value of zero for such an attribute at the 7-day aggregation 

scale confirms the complexity of the records at the weekly scale. 

The third column and from the second to the fourth rows of Fig. 3 show the specific FM 

downscaling patterns obtained at the daily scale. As may be seen, the downscaled sets have 

intermittent textures similar to that of the original records and a reasonable following of the 

accumulated records. This is especially the case for the FM disaggregations found from data 

gathered every 7 and 14 days. As may be corroborated from the statistical information in Table 1 

(center), although the root mean square errors at the daily (finer) scale (    ) remain close to 

the values found from the optimization exercises at the coarser resolutions (from 3 to 4.3%), the 

performance steadily degrades when the starting records to be fitted are coarser. Specifically, the 

maximum errors in accumulated sets at the daily scale (    ) increase from 8.7 up to 11.3% at 

the 30-day scale; and the Nash-Sutcliffe efficiencies for the daily rainfall data (     ) decay 

and become increasingly negative, indicating the intrinsic difficulty in approximating rainfall 

sets. 

Notice that, while these trends are to be expected (for a coarser scale implies usage of 

less information), a comparison with an FM encoding of the actual set at the daily scale is 

required to truly gauge the goodness of an FM disaggregation. As the latter (i.e., optimizing at 

the daily scale) may be achieved with      and      values of 1.4 and 4.4%, respectively 

(Maskey et al., 2016a), the obtained downscaled patterns having statistics that are at least twice 

such numbers (see Table 1) are not as tight to the records as possible. Notice, however, that the 
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obtained patterns (even from accumulated data every 30 days) do look reasonable (see Fig. 3), 

which implies that they may be considered as suitable simulations of the highly variable rainfall 

data at the site. 

Figure 4 shows the statistical information regarding the obtained daily downscales at 

Laikakota as compared with the daily records. Such are (left to right), the autocorrelation 

function (i.e., lag vs.  ), the histogram (i.e., bins vs.  , with a total of 10 bins based on the scale 

of the records and placing an FM value larger than the maximum in the last bin if needed), and 

the Rényi entropy function (i.e.,   vs.  ) for the three FM daily sets presented in Fig. 3 in the 

same order, 7-, 14-, and 30- day scales from top to bottom. As may be seen, this information 

corroborates that all FM-based downscales (gray) are comparable as: (a) their autocorrelation 

functions follow the overall decay present in the records (black); (b) their histograms are rather 

close to the one of the records (with the one from 7-days being a bit better); and (c) their 

entropies exhibit similar decays, even if they are noticeably imperfect (with the one based on 30-

days being less biased). These trends are reflected in the Nash-Sutcliffe efficiencies for these 

attributes (see Table 1): (a) negative values for autocorrelations (    ) that reflect the high 

variability and near zero values for correlations; (b) values close to one hundred percent for 

histograms (    ); and (c) medium numbers for entropies (    ), with the FM representation 

based on 30-day aggregations being better as seen graphically. 

Finally, it is worth comparing the three downscaled sets at the Laikakota site based on 

some extreme information, for both large and small values. In this regard, the last two columns 

in Table 1 include, first for large values, the percent histogram mass in FM sets corresponding to 

the 90% decile of the records (    ) and, second for small values, the number of zeros in a set 

(  ) comparing observed records with FM downscales, with the former shown in parentheses. 



  

21 

 

As seen, and as hinted from the histograms, the FM-downscaled set from records every 7 days is 

a bit better in     , as instead of fitting the prescribed 90%, the other two FM representations 

have higher but close values of 93 and 92%. Regarding the number of zeros, the set found via 14 

days is found to be better (163 vs. 174), with the other disaggregation scales yielding sets having 

more zeros than those found in the records (201 and 202 vs. 174). 

4.2 Rainfall set from Tinkham, Washington 

Figures 5 and 6 show the counterparts of Figs. 3 and 4 for rainfall records gathered in Tinkham, 

Washington State, for water year 1995. As seen, at the daily scale (first row of Fig. 5), this series, 

made of 365 values, when compared with the one for Laikakota in Fig. 3, appears to be “more 

complex.” This highly-intermittent set contains many up and down swings and has a large peak 

within the first two months, which is followed by a collection of several peaks exhibiting mainly 

a decreasing trend until the middle of the water year. As may be seen on the left of Fig. 5, when 

the records are aggregated over 7, 14, and 30 days, the decaying trend from the main peak to the 

future remains, but, as expected, the increased smoothing makes the patterns less variable. 

Similar to the case for Laikakota, usage of a threshold on a derived measure, obtained via 

a fractal function generated by the iteration of three maps (as in Fig. 1 but with parameters 

different from such a figure), results in reasonable FM representations at the 7-, 14-, and 30-day 

resolutions (first and second columns of the bottom three rows in Fig. 5), with FM parameters 

included in the second block of Appendix A. Even though the locations of the FM peaks (in 

gray) are not identical to those of the records (in black) and the actual magnitudes are 

overestimated (especially at the 14-day resolution), all sets do exhibit similar textures and result 

in very close fittings of the accumulated records. Such reasonable fittings on coarser scales are 

supported by the smaller values of      and      (see Table 1 for Tinkham), with 2.9 and 
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8.2% at the weekly scale, 3.0 and 9.6% at the biweekly scale, and 2.0 and 4.8% at the monthly 

scale. Notice how these numbers are comparable to those found for the Laikakota site, even if the 

records for Tinkham reflect a longer water year length equal to the whole calendar year. The 

closer renderings on biweekly and monthly scales give rise, as previously found for Laikakota, to 

positive Nash-Sutcliffe efficiencies at those scales (see      ), but the negative value obtained 

at the 7-day scale confirms the complex nature of the records. 

Although noticeable differences in daily downscales at all resolutions are observed in the 

third column of Fig. 5, the last column there reveals that all disaggregated FM representations, 

using exactly the same parameters optimized at the coarser scales, yield equally good 

accumulated sets. Certainly, to the naked eye, the three FM mass functions follow the 

accumulated trends well, and such is reflected by the rather small and similar values of      

and      (see center of Table 1), which are close to those obtained by the optimization 

exercise, with values of about 3.0 and 9.6%, respectively. These numbers, when compared with 

encodings of the daily records themselves, reveal that the downscaled sets do not follow the 

accumulated records as closely as it may be modeled by an FM fit at the daily scale. This is the 

case as the smallest      and      values possible via the FM approach are 1.1 and 4.4% 

(Maskey et al., 2016a), which, once again, are less than half of what the downscaled sets 

portrayed in Fig. 5 yield. This result is consistent with what was reported earlier for the rainfall 

set from Laikakota. 

Although the accumulated sets look similar, surely the naked eye cannot be fooled while 

comparing the FM sets themselves on the third column in Fig. 5. As mentioned earlier, these sets 

are clearly different and no doubt exhibit distinct intermittencies. In this regard, what was found 

at Laikakota extends to Tinkham regarding the Nash-Sutcliffe efficiency of the records at the 
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finer resolution. Such a statistic,      , reflects the complexity of the records and the FM sets 

and degrades with an increased scale of the records, from  –27 at the weekly scale to –111 at the 

monthly scale (See Table 1), which as mentioned earlier is not uncommon even while encoding 

the information (Maskey et al., 2016a). 

 As illustrated in Fig. 6 for the Tinkham rainfall set, the quickly decaying autocorrelation 

function, the concentration of the histogram on small values, and the decrease of the Rényi 

entropy function are also nicely preserved for this rainfall set by all FM representations. These 

features, not included in the optimization exercise, give rise to low Nash-Sutcliffe efficiencies 

for autocorrelations (    ) (once again due to rather small statistically insignificant oscillatory 

values) and to high Nash-Sutcliffe efficiencies for both the histogram and the entropy function 

(     and     ), with values that are higher than 98% and 56%, respectively, and with the set 

based on the biweekly scale yielding a remarkable preservation of the entropy (see Table 1). As 

may be seen on the last columns of Table 1 for the extreme information related to the Tinkham 

sets, the large values at a 90% level (    ) are overestimated by the FM downscales at the 

weekly and biweekly scales (95 and 91%, respectively), although such is perfectly fitted at the 

monthly scale. As found for Laikakota, there is no clear relation between the fitting of large and 

small values, for the number of zeros recorded in the set, 198 days, may be under- or over- 

estimated by the FM representations, i.e., 199, 192 and 226 days (see Table 1). Altogether, 

however, the obtained downscales may be termed adequate to represent rainfall at this site at the 

daily scale. 

4.3 Remarks on rainfall downscaling 

The above analysis and results of downscaling of rainfall data from three coarser scales 

(weekly, biweekly, and monthly) to daily scale for the two distinct sites in different countries 
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(Laikakota, Bolivia and Tinkham, Washington State, USA) reveal that the FM approach is 

capable of representing the overall trends and intermittent features of the rather complex rainfall 

records in a reasonable, albeit imperfect, way. Although the Nash-Sutcliffe values obtained for 

the downscaled data at the daily scale may be negative, compared to the positive values of 

greater than 63.8% for the weekly-aggregated records found from daily encodings (Maskey et 

al., 2016a), the geometric shapes of the downscaled data do provide relevant and certainly useful 

information, at the very least from a simulation point of view. 

Clearly, the usage of other “solutions” of the optimization exercise provides yet other 

alternative FM representations, for various scales, that may also be used in practical applications 

for planning and design purposes. Figure 7 illustrates such an idea based on the weekly scale at 

the Tinkham site for three other “solutions” of the associated inverse problem, as included in the 

middle block in Appendix A. The modeled daily sets in Fig. 7 have similar textures to those 

shown in Fig. 5, and their statistical features (not presented here) are also found to be in 

reasonable agreement with those presented in Table 1 for the other sets. All these results suggest 

that the FM approach yields sensible realizations akin to random ones obtained via stochastic 

disaggregation methods, even if the magnitude of the peaks shown is smaller. These, therefore, 

are clearly alternative representations that, while following the overall location of the rain 

throughout the year, still maintain the highly intermittent nature of the records. 

5. Downscaling of Streamflow Sets 

This section reports the analysis of streamflow downscaling using the FM approach. For this 

purpose, streamflow data from the Sacramento River, measured near Freeport, California (USGS 

station 11447650) is considered. Similar to what was done for rainfall in the previous section, the 

FM approach is applied to downscale streamflow to the daily scale from 7-, 14-, and 30-day 
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aggregated sets. Two different water years having distinct geometries are considered to validate 

the method: years 2005 and 2008, both from October 1 to September 30 of the following year. 

For the daily data set (and, consequently, the aggregated 7-, 14-, and 30-days), a constant base 

flow equal to the minimum in the records is subtracted from the raw daily data, so that the FM 

approach may better fit those records. 

After normalizing an obtained streamflow set, downscaling of streamflow is attempted 

using a fractal interpolating function based on the iteration of three maps, adding a local 

smoothing, just for appearance purposes and based on our previous experience (Maskey et al., 

2016b), of 5 days, as illustrated in Fig. 2. At the end, the FM representations depend on only 9 

free parameters, as the smoothing is always set at the 5-day level. The representations, whose 

parameters are included in the last two blocks of Appendix A, hence correspond to a 

compression ratio (at the daily scale) of 365/9 or 40:1.  

To further illustrate the abilities of the FM approach to disaggregate streamflow (and 

perhaps other mildly intermittent hydrologic) records, the results that follow include a 

modification to the definition of optimality at the coarse scale. While calculations are guided by 

the same objective function as in the rainfall studies earlier (i.e., the root mean square error of 

accumulated coarse data      and subject to due penalties), the “best” results are defined from 

the minimum of the maximum error in accumulated coarse data     . This is done in the spirit 

of the Kolmogorov-Smirnov test for comparing two distributions and as a means of performing a 

sensitivity analysis on the choice of the objective function. 

Figures 8 and 9 present the streamflow downscaling results for water year 2005 and Figs. 

10 and 11 include the results for water year 2008. Figures 8 to 11 are similar to Figs. 3 to 6 

presented earlier for rainfall, with the distinction that the observed records at the fine scale are 
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now plotted on top of the obtained downscales. For the two water years, while Figs. 8 and 10 

present the original (daily) data sets and their accumulated sets (with actual records in black and 

FM representations in gray), Figs. 9 and 11 display their respective autocorrelation, histogram 

and entropy. In what follows, a step by step description of the obtained FM downscaled sets for 

the two water years is presented. 

5.1 Streamflow set from the Sacramento River: water year 2005 

Figure 8 shows the original data (in black) at the daily scale (right) and the aggregated weekly, 

biweekly and monthly data of streamflow records (minus base flow) for the water year 2005. As 

seen, these records are much less intermittent when compared to the rainfall sets studied earlier, 

and contain (at the resolutions shown) three main peaks located around the central portion of the 

water year, with the last one being the largest. Figure 8 also includes the three “optimal” FM 

representations (gray) found from the three coarse scales (left blocks), and the corresponding FM 

disaggregations (gray) at the daily scale (right blocks). Notice the rather faithful FM fits for all 

coarse scales (on the left), which result in accurate preservations of the main peaks in the sets. 

This is corroborated by the error measures included in Table 1, third block. 

 As seen, the root mean square error in accumulated sets (    ) and maximum error in 

accumulated sets (    ) (the new optimal) are always less than a mere 0.7 and 3.9% for all 

coarse representations, and the Nash-Sutcliffe efficiencies for those coarse records at all scales 

(     ) are always above a healthy 84%. Of all coarse representations (and somewhat 

surprisingly given the opposite trends found in rainfall), the one found for weekly records is the 

best, with      equal to 0.7% and      equal to just 1.5%. This is certainly much better than 

what was found for rainfall data (i.e., four times in the former and about 6 times in the latter 



  

27 

 

attribute). Altogether, the Nash-Sutcliffe efficiencies       do increase with coarser records, as 

reported in the rainfall cases before. 

Figure 8 also shows (right blocks) the downscaled patterns at the daily scale. As seen, the 

obtained set based on the weekly scale (top) gives the best following of the major peaks, as the 

first one is missed just by a few days and the two others are preserved almost perfectly in timing 

and magnitude. The daily representations emanating from 14 and 30 days do exhibit patterns that 

follow the main peaks, but with noticeable over-estimation For instance, the one from the 

biweekly scale over-predicts the second peak, while the one from the monthly scale over-predicts 

the third peak. Altogether, the accumulated daily sets (from the downscaled sets) rather closely 

follow those at the fine scale, i.e., the original daily records. This is confirmed in Table 1 (third 

block, center columns), for the statistics at the fine scale (     and     ), which are less than 

1.2 and 3.9%, respectively, and comparable to what is found while encoding the daily records 

themselves. Notice that errors at the coarse and fine scales corresponding to the 7-day scale are 

identical, i.e.,               and                , indicating an excellent 

preservation of the accumulated records by such downscales. Observe also that while the 

maximum accumulated errors are maintained for the other two sets (i.e.,            ), the 

process of disaggregation degrades the root mean square errors on the accumulated streamflow 

(i.e.,          ). Obviously, the downscaled daily data from the 7-day scale most closely 

resembles the original daily flows and such is also reflected by the Nash-Sutcliffe efficiency for 

the daily disaggregated data          which remains high at a rather healthy 73%.  

The statistical attributes in Fig. 9 further imply that the FM-based disaggregation 

approach performs very well at all aggregation scales considered. Notice the close following of 

the record’s autocorrelation function and histogram (albeit not perfect) and the rather close fits 
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(and almost perfect) of the entropy function. This is also reflected in Table 1 (third block, right 

columns), by the rather high Nash-Sutcliffe efficiency indices for such attributes that are quite 

close to 100% and the excellent fit of the extreme records at the 90% level. It is worth 

mentioning that it is hard to distinguish the quality of the three downscales just based on these 

statistics, an indication that the geometric FM method provides good downscales for this water 

year. 

5.2 Streamflow set from the Sacramento River: water year 2008 

Figure 10 presents the key graphs of the results of FM-fits and downscales for water year 2008. 

As seen, the original daily records (in black) contain three sharp peaks in succession, which 

remain at the 7-day scale but that are smoothed out at the 14- and 30-day scales. As observed on 

the left blocks in Fig. 10, the FM representations of the coarse records are excellent, both in 

accumulated records and in the data, with the latter particularly good for the two smoothed sets 

(i.e., 14-day and 30-day). This is reflected in Table 1 (last block, left columns) by comparable 

and small values of      and      (i.e., less than 0.8 and 2.5%, respectively) and by       

values that range, as the aggregation increases, from 82 to 95 to 98%, certainly remarkable 

numbers. 

Regarding the downscaled daily comparisons (right block of Fig. 10), while the 

accumulated sets yield, by eye, very similar behavior (corroborated by close values of      and 

    , which are close to those at the coarse resolution and to those found from FM encodings 

of the daily set; see center columns of the last block on Table 1), the sets themselves have 

varying qualities, as follows. The disaggregated pattern found for 7 days, emanating from an FM 

fit that captures well the last two sharp peaks, not surprisingly preserves the timing and overall 

shape of the same peaks. The pattern associated with the 14-day scale yields essentially similar 
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shapes at the fine (right) and coarse (left) resolutions, and, as a consequence, it misses the 

structure of the three peaks, even if the overall volume is correct. Finally, the downscaled daily 

set based on the 30-day FM disaggregation surprisingly captures the overall sense of the three 

peaks on the daily records. Curiously, the “optimal” solution spanning from the 30-day scale is 

equally good as the one done on a weekly basis, as is seen in Table 1 for the      attribute, 

which exceeds a rather high magnitude of 72% in both cases. 

The graphs in Fig. 11 show the statistical information of the FM downscaled data, and the 

pertinent statistical qualifiers are presented in Table 1 (last block, right columns). As seen, all the 

autocorrelations generally follow the overall decay in the records, although they miss the first 

noticeable dip. The      values are rather good, with greater than 92%, and better than what 

was reported earlier for the 2005 streamflow set. The histograms for the downscaled data for 

water year 2008 show, in general, more variation than those for water year 2005, and degrade in 

quality as the scale is increased (contrary to what was found for water year 2005). The      

values decay from 89 to 78 and to 73, and, as such, the set implied by the 30-day scale no longer 

competes with the one based on 7 days, although the      values are close to one another (89 

vs. 87). As seen in Fig. 11 and Table 1, all sets provide close fittings of the entropy function of 

the records, with      values in excess of a high 91%. 

 In summary, the application of the FM-based disaggregation model to streamflow records 

yield very good results, and much better than what was found for rainfall. These very good 

results for streamflow are to be expected given the smoother nature of the records when 

compared to rainfall.  

6. Concluding Remarks 
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This study has proposed a deterministic geometric fractal-multifractal (FM) approach to 

downscale hydrologic records, specifically rainfall and streamflow. The proposed approach for 

temporal downscaling is an adaptation of the original FM approach for encoding of records 

(Puente, 1996), which adds a threshold for rainfall and local smoothing for streamflow. By 

studying two rainfall records (from Laikakota, Bolivia and Tinkham, Washington State, USA) 

and two streamflow records (from the Sacramento River, USA), the FM-based method has been 

shown to be an effective and efficient tool for downscaling, especially for streamflow sets. As 

the notions are based on accumulated records, it is envisioned that the geometric downscaling 

approach may also be applied using data gathered at a coarse scale over not just one but multiple 

years. 

The results from this study clearly indicate that the deterministic FM geometric 

procedure, when coupled with an effective optimization procedure for the inverse problem for a 

given target set at a coarse resolution, not only encodes coarse-scale records (i.e., weekly, 

biweekly, and monthly) but also generates plausible downscale representations, at least for 

simulation purposes, at the finer scale (i.e., daily). Such a novel approach, yielding compression 

ratios as high as 37:1 for rainfall sets and 52:1 for streamflow records, may, therefore, 

supplement existing stochastic downscaling methods, supporting the notion of hidden 

determinism in natural complexity (Puente, 1996; Puente and Sivakumar, 2007). 

The proposed downscaling technique, in conjunction with simulations that may be obtained 

via the FM approach (Maskey et al., 2016c, 2017), may certainly increase the flexibility for 

generating time series in a multisite or multi-season framework as done by other approaches 

(e.g., Salas et al., 1995). As the same number of FM parameters define both coarse and fine sets, 

the evolution of the inherent complexity in the physical processes may be studied based on them. 
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It is envisioned that a sensible application of the FM-based disaggregation could be the temporal 

downscaling of coarse-scale outputs from global circulation models (GCMs) to catchment-scale 

hydrologic variables, in order to assess the impacts of climate change on hydrology and water 

resources in a region. 

List of Acronyms 

      : Observed records at scale   

       : FM fitted set at scale   

       : Observed accumulated records at scale   
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List of Figures 

Fig. 1 The FM approach for highly-intermittent records: from a multifractal   vs     to a 

derived projection   vs.    , via a fractal interpolating function         . The set   vs.      is a 

pruned version of     below a threshlod    in order to define further intermittency. 

Fig. 2 The FM approach for mildly-intermittent sets: from a multifractal   vs.     to a derived 

projection   vs.    , via a fractal interpolating function         . The set   vs.     is an 

averaged version of     for further smoothness. 

Fig. 3 Sets and accumulated records associated with rainfall gathered at Laikakota, Bolivia, 

during water year 1966. Observations (top row right); FM fits at coarse resolutions (three bottom 

rows left); and corresponding downscalings at the daily scale (three bottom rows right). The 

aggregation scales for the coarse records are 7, 14 and 30 days. Measurements are shown in 

black and FM-related information in gray. 

Fig. 4 Autocorrelation, histogram and entropy comparison for FM downscales in Figure 3.  

Measurements are shown in black and FM-related information in gray. 

Fig. 5 Sets and accumulated records associated with rainfall gathered at Tinkham, Washington, 

during water year 1995. Observations (top row right); FM fits at coarse resolutions (three bottom 

rows left); and corresponding downscalings at the daily scale (three bottom rows right). The 

aggregation scales for the coarse records are 7, 14 and 30 days. Measurements are shown in 

black and FM-related information in gray. 

Fig. 6 Autocorrelation, histogram and entropy comparison for FM downscales in Figure 5. 

Measurements are shown in black and FM-related information in gray.  

Fig. 7 Alternative daily downscaled sets based on FM fits at the 7-day scale for the water year 

1995 at the site at Tinkham. 

Fig. 8 Sets and accumulated records associated with streamflow gathered at Sacramento River, 

during water year 2005. FM fits at coarse resolutions (three rows left) and corresponding 

observations and downscalings at the daily scale (three rows right). The aggregation scales for 

the coarse records are 7, 14 and 30 days. Measurements are shown in black and FM-related 

information in gray. 
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Fig. 9 Autocorrelation, histogram and entropy comparison for FM downscales in Figure 8.  

Measurements are shown in black and FM-related information in gray. 

Fig. 10 Sets and accumulated records associated with streamflow gathered at Sacramento River, 

during water year 2008. FM fits at coarse resolutions (three rows left) and corresponding 

observations and downscalings at the daily scale (three rows right). The aggregation scales for 

the coarse records are 7, 14 and 30 days. Measurements are shown in black and FM-related 

information in gray. 

Fig. 11 Autocorrelation, histogram and entropy comparison for FM downscales in Figure 10. 

Measurements are shown in black and FM-related information in gray. 
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List of Tables 

Table 1 Error statistics for rainfall and streamflow FM downscales. Refer to the list of acronyms 

as defined in the text. 

Table 1 

Set Scale                                                        

Rainfall 

Laikakota 

1966 

7 3.1 8.7 0 3.1 8.7 -1 -32 100 45 90 202(174) 

14 2.8 6.0 11 3.0 9.2 -70 28 99 56 93 163(174) 

30 3.1 6.3 60 4.3 11.3 -103 -19 99 90 92 201(174) 

Rainfall 
Tinkham 

1995 

7 2.9 8.2 -16 2.9 9.3 -27 -29 98 56 95 199(198) 

14 3.0 9.6 19 3.1 9.6 -60 53 99 97 91 192(198) 

30 2.0 4.8 79 3.1 9.3 -111 -15 100 81 90 226(198) 

Streamflow  
Sacramento 

2005 

7 0.7 1.5 84 0.7 1.5 73 96 90 100 90  

14 0.6 3.9 94 0.9 3.9 41 90 97 100 88  

30 0.7 3.2 98 1.2 3.2 60 84 90 100 90  

Streamflow  

Sacramento 
2008 

7 0.8 2.2 82 0.8 2.2 73 94 89 95 89  

14 0.6 2.5 95 0.8 2.5 58 92 78 91 86  

30 0.6 2.5 98 1.0 2.5 72 95 73 98 87  
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Appendix A: Parameters for FM downscaling of rainfall and streamflow 

Figure 

(scale) 

FM parameters 

                              

3(7) 0.281 0.784 1.122 -2.628 -0.631 0.141 0.265 0.522 0.020 0.192 

3(14) 0.193 0.855 1.422 -2.155 -0.500 -0.629 0.301 0.452 0.080 0.155 

3(30) 0.120 0.753 2.238 -5.000 -0.517 -0.398 0.367 0.405 0.040 0.185 

5(7) 0.000 0.321 -4.260 -5.000 0.202 0.245 0.455 0.285 0.103 0.096 

5(14) 0.353 0.833 -2.131 -1.725 0.740 0.164 -0.064 0.634 0.121 0.074 

5(30) 0.249 0.508 4.004 -1.843 0.213 0.498 -0.154 0.046 0.593 0.053 

7(7) 0.174 0.782 4.685 -2.145 0.252 -0.263 0.821 0.202 0.308 0.250 

7(7) 0.022 0.317 4.720 -3.550 -0.194 -0.845 0.594 0.305 0.093 0.158 

7(7) 0.055 0.719 2.685 0.651 0.662 0.493 -0.118 0.474 0.358 0.200 

8(7) 0.297 0.519 3.348 1.296 0.277 -0.237 -0.789 0.509 0.167 - 

8(14) 0.375 0.560 2.988 4.999 0.303 -0.970 0.169 0.150 0.265 - 

8(30) 0.384 0.771 -4.060 -4.904 -0.195 -0.913 -0.429 0.390 0.246 - 

10(7) 0.398 0.780 2.413 -2.414 -0.567 -0.389 0.408 0.373 0.318 - 

10(14) 0.389 0.817 3.725 -3.525 -0.531 -0.376 0.469 0.358 0.380 - 

10(30) 0.273 0.912 -4.723 -2.403 0.516 -0.310 -0.874 0.245 0.438 - 

  



  

Downscaling rainfall and streamflow records through a deterministic 

fractal geometric approach 

Highlights 

• A deterministic approach is adapted to downscale aggregated records into daily sets 

• Results show faithful downscales from the fractal-multifractal (FM) method 

• Downscales preserve the time evolution of records and also key statistics 

• At most 10 geometric parameters are required for all coarse scales 

• FM downscaling enhances other available (stochastic) disaggregation methods 

 


