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A B S T R A C T

Baseflow is critical for water balance budget, water resources management, and environmental evaluation.
Prediction of baseflow index (BFI), the ratio of baseflow to total streamflow, has a great significance in un-
ravelling the baseflow characteristics for large scale trajectory. Therefore, this study compares BFI predictive
performance derived from a new multilevel regression approach along with two other commonly used ap-
proaches: hydrological modelling (SIMHYD, a simplified version of the HYDROLOG model, and Xinanjiang
model), and linear regression (traditional linear regression, and alternative traditional regression considers the
second-order interaction). The multilevel regression approach does not only group the catchments into the four
climate zones (arid, tropics, equiseasonal and winter rainfall), but also considers inter-catchment and inter-
climate zone variances. Likewise, calibration and two regionalisation techniques namely spatial proximity and
integrated similarity are used to obtain the BFI from hydrological modelling approach. Correspondingly, the
traditional linear regression technique estimates BFI establishing linear regressions between catchment attri-
butes and four climate zones. Then, all the three approaches are evaluated against combined average estimation
from four well-parameterised baseflow separation methods (Lyne-Hollick (LH), United Kingdom Institute of
Hydrology (UKIH), Chapman-Maxwell (CM) and Eckhardt (ECK)) at 596 catchments across Australia for
1980–2012. The findings show that the multilevel regression has greatly improved the performance of BFI
prediction in comparison to other methods. In particular, the two calibrated and regionalised hydrological
models perform worst in predicting BFI with a Nash-Sutcliffe Efficiency (NSE) of −8.44 and −2.58 along with
an absolute percent bias (PBIAS) of 81% and 146% (overestimation of baseflow), respectively. However, the
traditional linear regression remains in intermediate position with the NSE of 0.57 and bias of 25. In addition,
alternative traditional regression also shows very close proximity. In contrast, the multilevel regression approach
shows the best performance with the NSE of 0.75 and bias of 19%. The study also demonstrates that the mul-
tilevel regression approach can improve BFI prediction, and shows potential for being used in the prediction of
other hydrological signatures in large-scale.
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1. Introduction

Baseflow is the water flow from upstream aquifers/groundwater,
when the recharge (e.g., precipitation or other artificial water supplies)
is ceased (Brutsaert and Lopez, 1998; Brutsaert, 2005). Therefore, it is
considered as an important hydrogeological characteristic for a catch-
ment (Knisel, 1963). Correspondingly, baseflow index (BFI) is the
average rate of baseflow to streamflow over a long period of time
(Piggott et al., 2005; Partington et al., 2012). As a result, accurate es-
timation of baseflow and BFI has a profound influence on assessing
catchment water scarcity, during drought periods (Brutsaert, 2005;
Zhang et al., 2014; Miller et al., 2016). To be precise, it is critical for
water budgets (Abdulla et al., 1999), water management strategies
(Lacey and Grayson, 1998), engineering design (Meynink, 2011), and
other related environmental issues (Spongberg, 2000; Miller et al.,
2014).

As a consequence, various methods have been developed to separate
baseflow from gauged streamflow (Lyne and Hollick, 1979; Rice and
Hornberger, 1998; Spongberg, 2000; Furey and Gupta, 2001; Eckhardt,
2005; Tularam and Ilahee, 2008; Lott and Stewart, 2016). They are
mainly categorized into tracer-based and non-tracer methods (Gonzales
et al., 2009). The tracer-based method is applied to experimental
catchments due to the high consumption of both experimental time and
materials (Koskelo et al., 2012). To overcome the issue, several non-
tracer methods have been developed over the years. Digital filtering
technique is the major non-tracer based method which is widely used
owing to high efficiency and repeatability (Arnold et al., 1995; Zhang
et al., 2017). More importantly, they perform well when the digital
filtering parameters (i.e., recession constant and maximum baseflow
index) are appropriately estimated (Zhang et al., 2017). Besides, they
are only applicable for catchments with streamflow observations.
Therefore, for ungauged catchments, hydrological models and regres-
sion approaches can be used to separate baseflow from total stream-
flow. Since, their accuracy is largely unknown, they can be evaluated
against combined estimates from the non-tracer based methods at
gauged catchments. For reducing uncertainty of baseflow estimates,
four non-tracer based methods namely Lyne-Hollick (LH) (Lyne and
Hollick, 1979), United Kingdom Institute of Hydrology (UKIH) (Gustard
et al., 1992), Chapman-Maxwell (CM) (Chapman and Maxwell, 1996)
and Eckhardt (ECK) (Eckhardt, 2005) are selected.

However, most hydrological models include a baseflow generation
component (Luo et al., 2012; Stoelzle et al., 2015; Gusyev et al., 2016).
These models can be divided into two groups. One group considers
baseflow as a linear recession process for groundwater reservoir, in-
cluding SIMHYD (simplified version of the HYDROLOG model) (Chiew
and McMahon, 1994; Zhang et al., 2016), 1LBY (Abdulla et al., 1999;
Stoelzle et al., 2015), and HBV (Ferket et al., 2010) models. The other
group takes baseflow into account as a non-linear recession process
including Xinanajing (Zhang and Chiew, 2009), PDM (Ferket et al.,
2010) and ARNO (Abdulla et al., 1999) models. It is clear that the BFI
derived from those hydrological models have large uncertainties, since
the baseflow and total flow are greatly varied with the model struc-
tures, model calibration and parameterisation schemes (Beven and
Freer, 2001). Therefore, for ungauged catchments, their reliability al-
ways remains a question. However, Zhang et al. (2013) conclude, based
on review, that regression models are easy to implement and capable of
estimating baseflow with reasonable accuracy at ungauged catchments.

This method first establishes linear regressions between physical
characteristics of catchment (i.e., descriptors) and BFI is obtained from
the gauged catchments and then conduct the prediction for ungauged
catchments (Bloomfield et al., 2009; Beck et al., 2013). For the selection
of predictors, several studies have considered geological characteristics,
such as soil properties, to have important control over catchment BFI
(Brandes et al., 2005; van Dijk, 2010). A few studies have used me-
teorological indices, such as mean annual precipitation and mean an-
nual potential evaporation as variables to predict BFI (van Dijk, 2010;

Beck et al., 2013). Other similar studies have used mean annual pre-
cipitation, slope and proportion of grassland as predictors of BFI
(Haberlandt et al., 2001; Brandes et al., 2005; Mazvimavi et al., 2005;
Gebert et al., 2007; Bloomfield et al., 2009; van Dijk, 2010). However,
one major limitation of the linear regression approach is that it uses
constant value of parameters to predict BFI, and cannot handle issues at
different spatial scales (Qian et al., 2010), thus high uncertainties may
arise in BFI prediction for catchments located in a wide range of climate
and geological regimes.

This limitation can be overcome by using multilevel regression ap-
proach (Qian et al., 2010; Luo et al., 2015). It provides a robust tool to
establish the relationships between BFI and catchment attributes. The
basic idea of this approach is that higher-level variables vary within
lower-level variables (Berk and De Leeuw, 2006). This approach can
also handle the variables with various solutions using hierarchical
structure (Dudaniec et al., 2013). It has been extensively used to un-
derstand the interplay of ecosystem dynamics (i.e., carbon cycle across
different ecosystems and N2O emissions from farmlands) (Carey, 2007;
McMahon and Diez, 2007; Luo et al., 2015). In addition, some studies
are used multilevel model to address the hydrological related issues
(i.e., to predict the flow duration curve (Booker and Snelder, 2012), to
estimate the impacts of climate change to flow intermittency (Reynolds
et al., 2015) and effects of flow connectivity to dissolved organic matter
(Granados et al., 2020)). However, no study has been reported to use
this approach for predictions of BFI. This study, for the first time, ex-
plores the possibility of using multilevel regression to predict BFI across
widely distributed Australian catchments that cover various climate
and geological regions.

At this juncture, the main aim of this study is to evaluate various
methods in predicting BFI. To achieve this goal, we compare the three
BFI prediction methods (hydrological modelling, linear regression and
multilevel regression approaches) against combined average estimates
from four non-tracer baseflow separation methods. The specific objec-
tives of this study are:

i. To obtain “benchmark” BFI using the four non-tracer baseflow
methods LH, UKIH, CM and ECK) for 596 Australian catchments
(Fig. 1);

ii. To introduce the multilevel regression approach for BFI predictions
across large regions; and

iii. To assess relative merits of the three approaches for BFI predictions;

Fig. 1. The location of 596 selected unregulated small catchments in this study
and climate classification based on Köppen-Geiger (2006) classification
schemes in Australia.
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2. Data sources

2.1. Streamflow

Daily observed data (Q) (1975–2012) for 596 catchments across
Australia (Fig. 1) have been collated by Zhang et al. (2013) to assess the
three methods (hydrological modelling, linear regression, and multi-
level regression) for predicting BFI. Following criteria are used to select
the catchment streamflow data:

i. The catchment area is small enough to minimize routing process
influence (varying between 50 and 5000 km2);

ii. Streamflow is not subject to dam or reservoir regulations;
iii. The catchment is non-nested;
iv. The catchment is not subject to major impacts of irrigation and

intensive land use; and
v. The observed streamflow, containing at least ten-year

(> 3652 days) daily observations, with acceptable data quality
according to a consistent Australian standard (Viney et al., 2011).

2.2. Climate zones and catchment attributes

The climate zones are regarded as higher-level predictors due to the
influence on the predictors’ effect size and direction (Gelman and Hill,
2006). To be specific, the Australian continent is classified into five
climate zones (arid, equiseasonal-hot, equiseasonal-warm, tropics and
winter rainfall) based on Köppen-Geiger classification schemes (Kottek
et al., 2006). Herein equiseasonal-hot and equiseasonal-warm are
combined as one climate zone. The numbers of selected catchments
within arid, equiseasonal, tropics, and winter rainfall climate zones are
38, 385, 83, and 90, respectively.

On the other hand, the catchment attributes, regarded as lower-level
predictors, including climate (Mean annual precipitation, P, mean an-
nual potential evaporation, Etp), topographical (Mean elevation and
Mean slope), soil (Available soil water holding capacity) and land cover
(Forest cover ratio) characteristics are implemented in the linear re-
gression and multilevel regression approaches to estimate BFI. The
catchment attributes are collected from the dataset collated by Zhang
et al. (2013). The abbreviation for each catchment attribute and sum-
mary is shown in Tables 1 and 2 respectively.

2.3. Forcing data for hydrological modelling

The Xinanjiang and SIMHYD models are driven by 0.05° resolution
(~5 km) daily meteorological data (precipitation, maximum tempera-
ture, minimum temperature, incoming solar radiation, and actual va-
pour pressure) from 1975 to 2012, obtained from the Scientific
Information for Land Owners (SILO) Data Drill of the Queensland
Department of Natural Resources and Water (www.nrw.gov.au/silo).
There are about 4600-point observations across Australia used for in-
terpolation to obtain the SILO data. To have more details, please consult
Jeffrey et al. (2001). The daily and monthly gridded precipitation data
are obtained from the ordinary kriging method, whereas other gridded
climate variables are obtained using the thin plate smoothing spline

technique. Cross-validation results indicate good data quality with the
mean absolute error of the Jeffrey interpolation (Jeffrey et al., 2001) for
maximum daily air temperature, minimum daily air temperature, va-
pour pressure, and precipitation being 1.0 °C, 1.4 °C, 0.15 kPa and
12.2 mm/month, respectively.

Along with the climate forcing data, the two models also require
remotely sensed leaf area index (LAI), land cover and albedo data as
inputs in the Penman–Monteith–Leuning model to calculate actual
evapotranspiration (ETa) (Leuning et al., 2009; Zhang et al., 2010). LAI
data from 1981 to 2011 are obtained from Advanced Very High Re-
solution Radiometer (AVHRR) in Boston University (Zhu et al., 2013).
The temporal resolution and spatial resolution are of six months and
~8 km, respectively. The Moderate Resolution Imaging Spectro-
radiometer (MODIS) land cover product (2000–2001) is used to esti-
mate aerodynamic conductance, obtained from the Oak Ridge National
Laboratory Distributed Active Archive Center (Friedl et al., 2010). The
dataset has 17 vegetation classes, which are defined according to the
International Geosphere-Biosphere Programme (IGBP). The albedo
data, obtained from the 8-day MODIS MCD43B bidirectional reflectance
distribution function product at 1 km resolution, are used to calculate
net radiation. All the forcing data are re-projected and resampled using
nearest neighbour approach to obtain 0.05° gridded data.

3. Models and algorithms

3.1. Hydrological models

We have selected two hydrological models (i.e., more process-
based) SIMHYD and Xinanjiang because: (1) they are widely used in
various climate regimes, and (2) they have different baseflow genera-
tion mechanisms which consider linear and non-linear recession for
groundwater reservoir processes, respectively. Between them, SIMHYD
has been widely applied in runoff simulations and regionalization stu-
dies (Chiew et al., 2009; Vaze and Teng, 2011; Li and Zhang, 2016;
Zhang et al., 2016). Four water stores are used in this model to describe
hydrological processes, namely the interception store, soil moisture
store, groundwater store and channel store (Chiew and McMahon,
2002). Detailed model structure is available in Chiew and McMahon
(1994). However, the modified SIMHYD model by Zhang and Chiew
(2009), which uses remote sensing data and contains nine model
parameters, is used in this study.

On the other hand, the Xinanjiang model (Zhao, 1992) has been
widely used for humid and semi-arid regions including Australian
catchments (Li et al., 2009; Lü et al., 2013; Yao et al., 2014). This model
reproduces runoff by describing three hydrological processes including
ETa, runoff generation, and runoff routing. Details of the Xinanjiang
model are available in Zhao (1992) as well as in Zhang and Chiew
(2009). Here we use the modified Xinanjiang model proposed by Zhang
and Chiew (2009), in which ETa is estimated using remotely sensed LAI
data and the number of model parameters has been reduced from 14 to
12. These two hydrological models first simulate daily baseflow and
daily total streamflow time series, which are then aggregated as mean
annual baseflow and mean annual total streamflow, respectively.

Table 1
Catchment attributes and indicators used in present study.

Catchment attributes Notation Unit

Area A km2

Mean elevation H m
Mean slope S %
Mean annual precipitation P mm y−1

Mean annual potential evaporation Etp mm y−1

Forest cover ratio F %
Available soil water holding capacity in top soil Kst mm/hr

Table 2
Summary statistics of the catchment information including topographic, cli-
mate, geological elements and forest cover ratio in 596 catchments across
Australia. The abbreviations of catchment attributes are introduced in Table 1.

A H S P Etp F Kst

Max 4805.93 1350.97 16.02 3683.76 2237.88 0.91 507.28
Min 50.34 37.61 0.15 241.77 905.88 0.01 5.54
Mean 646.06 433.21 4.48 981.12 1384.12 0.49 158.83
25th 153.31 223.18 1.90 727.42 1155.48 0.34 105.42
50th 346.15 347.00 3.60 885.32 1294.93 0.52 161.17
75th 710.13 604.29 6.71 1162.30 1536.10 0.67 201.90
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Finally, the BFI is estimated using the mean annual baseflow divided by
the mean annual total streamflow.

Based on the BFI defined in the previous paragraph, we estimate
baseflow, total streamflow and BFI in three ways: calibration, re-
gionalisation from spatial proximity, and regionalisation from in-
tegrated similarity. The daily observed streamflow data from 1975 to
2012 (1975–1979 as warm up period) are used in calibration
(1980–2012). Herein, a short description of these three kinds of esti-
mates is given below.

A global optimisation method (a genetic algorithm) from the global
optimisation toolbox in MATLAB (MathWorks, 2006) is used to cali-
brate the model parameters for each catchment (Zhang and Chiew,
2009). This optimiser uses 400 populations and the maximum genera-
tion of 100, for searching the optimum point, which converges at ap-
proximately 50 generations of searching. More information is found in
Zhang et al. (2018). The model calibration is conducted by maximising
the Nash-Sutcliffe Efficiency of the daily square-root-transformed runoff
data (NSEsqrt) and minimising model bias (Li and Zhang, 2017).

Then, for spatial cross-validations, two regionalisation approaches,
spatial proximity and integrated similarity approaches are used (Zhang
and Chiew, 2009). The spatial proximity approach uses the parameter
set from geographically closest catchment considering as the donor
catchment to predict runoff at the target catchments. The integrated
similarity approach derives parameter set for the objective catchment
by combing the spatial proximity and physical similarity approaches,
where the physical similarity approach adopts parameter set from the
donor catchment. The two regionalisation approaches take five-donor
combined mean for prediction, as recommended by Zhang and Chiew
(2009) and Li and Zhang (2017).

3.2. Linear regression and multilevel regression approaches

In linear regression (1980–2012), BFI is predicted using one set of
parameters for all catchments. The details are:

= +BFI N α β X ε( · , ) (1)

where, BFI is the baseflow index for each catchment, N denotes the
normal distribution function, α is the intercept, β is the slope, X re-
presents the variables (i.e., catchment attributes), and ε is the variance.
However, this model ignores the potentially different effects of the same
variable on BFI across different climatic zones. Therefore, the α and β
are constant irrespective of the climatic zone (Abebe and Foerch, 2006;
Longobardi and Villani, 2008; Bloomfield et al., 2009). But, baseflow
processes are not only influenced by local catchment attributes, but also
by geographical backgrounds (i.e., climate zones). However, the con-
stant parameters (Eq. (1)) are not adequate to reflect the catchment
characteristics. Therefore, BFI prediction may be improved by taking
the influences derived from various catchment attributes and connec-
tion between different climate zones into account i.e. their cross-level
interactions at different spatiotemporal scales (Qian et al., 2010).

At this juncture, we introduce multilevel regression (1980–2012) to
overcome the limitation, due to its capability of capturing the cross-
level interactions (Gelman and Hill, 2006; Qian et al., 2010; Luo et al.,
2015). BFI in general associates with the climate variables (mean an-
nual precipitation and mean annual potential evapotranspiration) and
terrain attributes (area, elevation, slope, land cover and available soil
water holding capacity of top soil) in each catchment (i.e., i = 1, 2, 3,
…, 596). Furthermore, the effects of these predictors on BFI are as-
sumed varying with climate zones: arid, tropics, equiseasonal and
winter rainfall (i.e., j = 1, 2, 3, 4). The BFI for catchment in each cli-
matic class can be expressed as:

= + ∈ …BFI N α β X ε i( · , ), (1, 2, 3, ,596)ji ji j (2)

where, BFIji is the baseflow index for the ith catchment in the jth climate
zone. N is the normal distribution function, α is the intercept, β is slope,
X is the variables (i.e., catchment attributes), and ε is the variance in

each subset. For the linear regression approach, we firstly build the
linear regression model for total data and sub-data for each climate
class. Secondly, we consider second-order interactions through alter-
native traditional regression. In this study, the all subsets procedure
(Wasserman and Sudjianto, 1994) in R package of “leaps” (https://cran.
r-project.org/web/packages/leaps/index.html) is used as the platform
to determine the parameters and then the R basic function lm () is used
to build the linear regression model to predict BFI for total data and
subset data (each climate zone) separately (denotes the traditional
linear regression). To compare the model performance fairly, the al-
ternative “traditional regression” (denotes alternative traditional re-
gression) considers the second-order interaction also is used to build the
model using rFSA package in R (https://cran.r-project.org/web/
packages/rFSA/index.html) for total data. This tool provides a Fea-
sible Solution Algorithm to find a set of feasible solutions for a statis-
tical model of a specific form that includes second-order interactions
between climate class and some catchment attributes (Lambert et al.,
2018).

In comparison to the traditional linear regression approach, the
multilevel regression approach has the hierarchical structure, and al-
lows the assessment of the variation in model coefficients across groups
(e.g., climatic zones) and accounts for group-level variation when es-
timates individual-level coefficients. This model is a two-stage regres-
sion, estimating the effects for each individual group in stage one
(within-group), and then fitting interactive group effects on group-level
predictors in stage two (between-group). The final regression coeffi-
cients link parameters from both levels which contain catchment at-
tributes (lower-level) and climate zones (higher-level), including
varying coefficients (both the intercept and slope vary by the group)
(Gelman and Hill, 2006). For the application, there are two data ma-
trices are used to conduct the multilevel regression, one data matrix is
an individual catchment data matrix, and another is the classification of
climate zones as the group index variable. The details of the approach
are elaborated as follows:

+ = …BFI α β X σ iÑ( · , ), 1, 2, 3, ,596,i j i j i i BFI[ ] [ ]
2

(3)

where, Xi is the catchment attributes for each basin, and its intercepts
and slopes are decomposed into α and β terms for different climate
zones,

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
⎟ =

α
β N

μ
μ

σ
ρσ σ

ρσ σ
σ j~ , , 1, 2, 3, 4,

j

j

α

β
α

α β

α β

β

2

2
(4)

where, µα and σα are the mean and standard deviation of variable in-
tercept α; µβ and σβ are the mean and standard deviation of variable
slope β; ρ is the correlation coefficients between the two variables αj and
βj. The Eq. (3) is rearranged as a block matrix of

A N μ σ~ ( , ) (5)

The details of Eq. (5) are described as:

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

= ⎛

⎝
⎜

⎞

⎠
⎟A

α
β μ

μ
μ σ

σ ρσ σ
ρσ σ σ

, ,
j

j

α

β

α α β

α β β

2

2
(6)

Then, the Eq. (4) is calculated individually by:

α N μ σ~ ( , )j α α
2 (7)

β N μ σ~ ( , )j β β
2

(8)

However, the density function of the normal distribution N is (for
example, α variable):

=
−

−

f α
π σ

e( ) 1
2j

α

α μ

σ

( )

2
j a

α

2

2

(9)

This model considers variation in the values of αj and βj along with a
between-group correlation parameter ρ (Gelman and Hill, 2006; Qian
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et al., 2010). In essence, there is a separate regression model for each
climate zone with the coefficients estimated by the weighted average of
pooled (which do not consider groups) and unpooled (which consider
each group separately) estimates, i.e. partial pooling. When fitting the
model, each predictor X is standardized using z-scores:

− = −z scores X mean X
SD X

( )
2 ( ) (10)

where SD is the standard deviation. Herein, the “lmer” function in R
package of “lme4” (https://cran.r-project.org/web/packages/ lme4/
index.html) is used to perform the multilevel regression analysis. To
have a fair comparison, the multilevel regression and the linear re-
gression with climate units are compared. This can evaluate the relative
merits of the multilevel regression considering the interactive group
effects.

3.3. Baseflow separation algorithm for preparation of benchmark BFI

The benchmark BFI data are estimated using four widely used
baseflow separation methods namely LH (Lyne and Hollick, 1979),
UKIH (Gustard et al., 1992), CM (Chapman and Maxwell, 1996) and
ECK (Eckhardt, 2005). The successful use of the digital filter methods
mainly depends on estimation of the recession constant and maximum
baseflow index (Zhang et al., 2017). This study has used the Automatic
Baseflow Identification Technique (ABIT) for the recession analysis,
developed by Cheng et al. (2016) based on the recession theory pro-
posed by Brutsaert and Nieber (1977). The recession points selected, in
this method, dominantly consist of baseflows (Cheng et al., 2016). The
method plots dQ/dt against Q with the 5% lower envelope, which re-
presents the slowest recession rate (Fig. 2). Therefore, BFI estimated
from the digital filter methods is physically meaningful and can reflect
cumulative baseflow processes.

Besides, Fig. 3 shows that the four baseflow separation methods are
well correlated (with R2 ranging from 0.76 to 0.97). However, the BFI
estimated from LH and CM is noticeably higher than that estimated
from ECK and UKIH. In order to minimize uncertainties raised from the
four methods, we use their output average as a benchmark (denoted as
‘the benchmark BFI’) to evaluate the performance of hydrological

modelling and regression approaches (Jung et al., 2010; Cheng et al.,
2017).

3.4. Leave-one-out cross-validations

We apply leave-one-out cross-validation to assess the ability of the
two regression approaches to predict BFI in ‘ungauged’ catchments
where the streamflow data are unavailable. This cross-validation is
widely used since it can provide an almost unbiased estimate of the
probability of test error in model selection (Cawley and Talbot, 2003),
and would be more stable and more resilient to irreducible errors in
each validation (Zhang et al., 2018). In the leave-one-out cross-vali-
dation, (1) each catchment is left out in turn, and is purposefully treated
as “ungauged”; (2) a predictive relationship is then developed using
data from the remaining catchments; and (3) finally, the relationship is
used to predict the baseflow index for the catchment not used in de-
veloping the relationship. For each of the 596 catchments, the data
from other 595 catchments are used to predict its BFI. This procedure is
repeated over all 596 catchments. This cross-validation procedure ex-
plores the transferability of the two regression approaches from known
catchments to the ungauged and particularly evaluates the information
of the between-catchments.

4. Model evaluation

4.1. Bias

The absolute percentage bias was used to evaluate model perfor-
mance, which is calculated as:

=
∑ −

∑
×=

=

Bias
BFI BFI

BFI

( )
100i

n

s o

i

n

o

1

1 (11)

where BFIo is the benchmark BFI derived using the combined average
from the four non-tracer baseflow separation approaches (i.e., LH,
UKIH, CM and ECK), BFIs is the simulated BFI from the two hydrological
models or the two regression approaches. And n is the total number of
catchment. The unit of bias is a percentage (%). The larger the absolute
bias represents the worse the simulation. The value of Bias = ‘0’ in-
dicates that simulation is the same as the benchmark on average.

4.2. Nash-Sutcliffe efficiency (NSE)
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∑ −

∑ −
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The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that
measures the relative magnitude of the residual variance (“noise”)
compared to the measured data variance (“information”) (Nash and
Sutcliffe, 1970; Gupta et al., 2009). It is a classic statistical metric used
for evaluating model performance. It varies from −∞ to 1, with a value
close to 1 meaning a better prediction, 0 means that prediction is close
to the average level of the observed value.

5. Results

5.1. Spatiality of benchmark BFI

Fig. 4 shows that benchmark BFI varies dramatically across Aus-
tralia. Within latitudes 20°S and 30°S, BFI is smaller than that of the
regions beyond this latitude range. Catchments located in latitudes
higher than 30°S tend to have larger BFIs in general. Yet it is not the

Fig. 2. Estimation of the recession constant (Log (−dQ/dt) versus log (Q)) using
automated baseflow identification technique (ABIT) for Endeavour catchment
(station ID 107001). The black line is 5% lower envelope line has a slope 0.983
and the estimate of the characteristic drainage time scale K = 57.1 days.
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case in Tasmania, where catchments with latitude higher than 40°S
have smaller BFI values in the southeastern region within this island.
This indicates that the BFI spatiality is distinct from the main continent

to the island.

5.2. Performance of two hydrological models

These two hydrological models are well calibrated for 1980–2012
considering 1975 to 1979 as warm up period (Table 3). The model
calibration for SIMHYD model shows that there are more than 50%
catchments with NSE of daily runoff and NSE of daily square-root-

Fig. 3. Comparing baseflow index derived from four non-tracer baseflow separation methods. LH, UKIH, CM, and ECK are the baseflow index estimated from Lyne-
Hollick (Lyne and Hollick, 1979), UKIH (Gustard et al., 1992), Chapman-Maxwell (Chapman and Maxwell, 1996), and Eckhardt (Eckhardt, 2005) methods.

Fig. 4. Spatial distribution of the benchmark baseflow index across Australia.

Table 3
Summary of NSE of daily runoff, NSE of daily square-root-transformed runoff
(NSEsqrt) and Bias for SIMHYD and Xinanjiang models in their calibration
mode.

Percentile SIMHYD Xinanjiang

NSE NSEsqrt Bias NSE NSEsqrt Bias

10th 0.35 0.53 1 0.30 0.37 2
25th 0.50 0.65 3 0.46 0.58 3
50th 0.62 0.73 5 0.61 0.68 6
75th 0.71 0.80 8 0.71 0.76 10
90th 0.77 0.84 13 0.78 0.82 19
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transformed runoff data more than 0.61, and 0.73, respectively. How-
ever, the Bias between observed and simulated daily runoff is less than
5%. The model calibration for Xinanjiang model shows that there are
more than 50% catchments with NSE of daily runoff and NSE of daily
square-root-transformed runoff data more than 0.62 and 0.68, respec-
tively and with Bias less than 6%.

5.3. Comparison between the benchmark and hydrological model simulated
BFI

We further compared the benchmark and simulated BFI in scatter-
plots (Fig. 5). Fig. 5(a) and (d) compare the benchmark and simulated
BFIs from calibrated SIMHYD and Xinanjiang models, respectively.
Fig. 5(b)-(c) and (e)-(f) show the regionalisation results (i.e., spatial
proximity and integrated similarity) of these two hydrological models.
Notably, BFI estimated using SIMHYD model is much larger than the
benchmark values (Fig. 5(a)–(c)), with the majority of catchment BFIs
dotted above the 1:1 line. Under calibration, spatial proximity, and
integrated similarity, SIMHYD model simulates BFI with NSE being
−8.30, −8.42 and −8.44, respectively. The values of bias are 146%,
152% and 152%, respectively; indicating similar poor model perfor-
mance. In comparison, BFI estimated from Xinanjiang model tends to
scatter a larger range around 1:1 line regardless of the parameterisation
method (Fig. 5(d)–(f)), and is closer to the benchmark BFI. Xinanjiang
model under calibration, spatial proximity, and integrated similarity
simulates BFI with NSE being −2.75, −2.70 and −2.58, respectively.
The values of bias are 84%, 81% and 83%, respectively; indicating si-
milar poor model performance in prediction of BFI.

5.4. Comparison of linear regression and multilevel regression approaches
with benchmark BFI

Fig. 6 compares the benchmark BFIs and simulated BFIs using linear
multivariate regression and multilevel regression approaches across
four different climate zones. The best fitting equations for the tradi-
tional linear regression approach are shown in Table 4. Table 5 and
Fig. 6 summarize the performance of traditional linear regression, al-
ternative traditional regression and multilevel regression for estimating
BFI in each climate zone. In calibration mode, the model performance
from traditional linear regression and alternative traditional regression
is very close. However, it is clear that the multilevel regression ap-
proach outperforms the linear regression approach (Table 5 and Fig. 6),

with NSE for multilevel regression approach being 0.67, 0.70, and 0.72
in arid, tropics, and equiseasonal regimes, respectively. It is higher than
that from linear regression. Besides, the bias from multilevel regression
approach, in arid, tropics, and equiseasonal regimes are being 25%,
17%, and 19%, respectively; which are lower than that from the linear
regression. The two approaches show no significant difference in winter
rainfall climate zone, indicated by similar NSE and bias.

5.5. Comparison of linear regression and multilevel regression approaches
using leave-one-out cross-validation

We further check the leave-one-out cross-validation results obtained
from the two approaches (Fig. 7 and Table 5). It shows a higher per-
formance from calibration to cross-validations for the traditional linear
regression in arid, tropics, and equiseasonal climate zones. However,
the model performance has been decreased for the alternative tradi-
tional regression. In contrast, there is no noticeable improvement for
the multilevel regression approach for the three climate zones. In the
winter rainfall zone, all the approaches do not have apparent im-
provements and perform similarly. The leave-one-out cross-validation
results further demonstrate that the multilevel regression approach
outperforms the linear regression. Fig. 8 further summarises predictive
performances from calibration for the traditional linear regression ap-
proach in different climate zones.

5.6. Summary of the parameter values estimated for the multilevel
regression approach

Fig. 9 summarises parameters of the multilevel regression approach.
It is seen that P and Etp have strong positive and negative effects on BFI,
respectively. The mean elevation (H) and available soil water holding
capacity in top soil (Kst) also have a noticeable positive effect in all the
four climate zones. Other three characteristics area (A), mean slope (S)
and forest cover ratio (F) have a slope close to zero, suggesting small
impacts on BFI.

5.7. Comparison of BFI duration curves

Duration curve is a graphic method (i.e., calculative frequency
curve) that can be used to elucidate the relationship between the fre-
quency and magnitude (Kunkle, 1962; Cheng et al., 2012; Chouaib
et al., 2018). Similarly, baseflow duration curve represents the baseflow

Fig. 5. Scatterplots of benchmark baseflow
index versus simulated baseflow index using
SIMHYD and Xinanjiang models, where ca-
librated and regionalised model results are
presented in (a) and (d) (calibration), (b)
and (e) (spatial proximity regionalisation)
and (c) and (f) (integrated similarity re-
gionalisation), respectively. The blue el-
lipses represent the confidence level at 0.95.
SIMHYD is a simplified version of the
HYDROLOG model. (For interpretation of
the references to colour in this figure legend,
the reader is referred to the web version of
this article.)
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response under underlying factors of the catchment. Fig. 10 summarises
the BFI duration curves generated from the two hydrological models
with three modes (calibration and two regionalisation schemes) along
with linear regression and multilevel regression analysis results to
compare their results with benchmark BFI. Both models, in the three
parameterisation schemes, perform poorly for estimating BFI. SIMHYD
model largely overestimates BFI, while the Xinanjiang model over-
estimates BFI at 60% catchments, and its estimated BFI is closer to the
benchmark that obtained from the SIMHYD model. Differences between
the calibration and two regionalisation schemes are marginal for both
models. However, the two regression approaches show better perfor-
mances with respect to the benchmark BFI. Particularly, multivariable
regression analysis shows the best alignment among all the BFI pre-
diction approaches.

6. Discussion

In this study, different methods (separation algorithms are applied

to observed daily flow time-series) are used to gain the benchmark BFI
in comparison to BFI calculation method from the process-based models
(estimated using the mean annual baseflow divided by the mean annual
total streamflow). Though it remains a challenge to accurately measure
baseflow on a large spatial scale (Niazi et al., 2017), the benchmark BFI,
however, has an apparent spatial pattern across Australia (Fig. 4). Al-
though the benchmark BFI can be obtained through the comparison to
chemical baseflow separation method, it is almost impossible to im-
plement the chemical separations at large scale (Zhang et al., 2017).
The estimation of baseflow using non-tracer method is more applicable.
Since spatial pattern of BFI is consistent with streamflow recession in
Australian catchments (van Dijk, 2010), it provides perspectives for
understanding the dynamics of water cycle across large scales
(Ahiablame et al., 2017). However, many studies have investigated the
effects of catchment attributes on total streamflow (Golden et al., 2015;
Woodhouse et al., 2016), but the prediction for streamflow components
such as baseflow, is very limited. In this situation, the present study has
been carried out.

Fig. 6. Scatterplots of benchmark and simulated baseflow index using traditional linear regression ((a)-(d)), alternative traditional regression ((e)-(h)) and multilevel
regression ((i)-(l)) approaches that are built using the full catchment samples in four climate zones, with (a), (e) and (i) for arid, (b), (f) and (j) for tropics, (c), (g) and
(k) for equiseasonal and (d), (h) and (l) for winter rainfall, respectively. The blue ellipse is drawn at 0.95 confidence level. The black line represents 1:1 line. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
The traditional linear regression fitting for total dataset and sub-dataset using climate zone separately.

Climate zone Regression equation Number of data points

Total data BFI = 0.33 + 0.06P − 0.073H + 0.069F + 0.08Kst 596
Arid BFI = 0.38 + 0.02A + 0.08S + 0.22P − 0.14Etp 38
Tropic BFI = 0.16 + 0.03A + 0.06H + 0.12P + 0.09Etp 83
Equiseasonal BFI = 0.27 + 0.09H + 0.05P − 0.16Etp + 0.10F + 0.04Kst 385
Winter rainfall BFI = 0.47 + 0.05A + 0.24P + 0.06F + 0.03Kst 90
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6.1. Comparison of hydrological modelling results with benchmark BFI

Our results represent large biases in hydrological model simulations
to predict BFI. It seems that model structure has a considerable effect on
BFI prediction in comparison to parameter regionalisation. In fact,
baseflow is designed as an integrated store combined with river re-
charge (Chiew and McMahon, 2002), or directly is regarded as
groundwater discharge in Xinanjiang model (Li et al., 2009). Those
schemes may lead to overestimating/underestimating the baseflow
magnitude in some degrees. In particular, despite using similar cali-
bration and two regionalisation schemes, SIMHYD has larger bias than
Xinanjiang as summarised in Figs. 5 and 10. It is acceptable that the
initial purpose of both hydrological models are to estimate streamflow
and the estimations are reasonably well (NSE = 0.62 to 0.77,
NSEsqrt = 0.61 to 0.78, and NSE = 0.73 to 0.84, NSEsqrt = 0.68 to
0.82 from 50th to 90th percentile for SIMHYD and Xinanjiang models,
respectively; see Table 3). However, it is a challenge to estimate base-
flow and streamflow, separately, and their proportions from a hydro-
logical model (Fenicia et al., 2007; Lo et al., 2008). Since both hydro-
logical models are calibrated against total daily streamflow by
maximizing NSEsqrt, they can simulate and predict high streamflow
well, but are not necessarily suitable for predicting low streamflow. It is
possible to improve the BFI prediction accuracy by using a different
calibration objective function that focuses on low streamflow, such as
the NSE of reverse daily streamflow (Li and Zhang, 2017). It is possible
for hydrological models to improve the BFI predictions by modifying
their model structure to assimilate relative higher resolution data (i.e.,
remote-sensed soil moisture, actual evapotranspiration and vegetation
data (Li et al., 2009; Zhang et al., 2019)). Nevertheless, this is an open
question for hydrological community to answer.

6.2. Linear regression approach

The linear regression considers that the hydrological processes have
a well-behaved relationship with catchment attributes (Mazvimavi
et al., 2005; Gallart et al., 2007; Yao et al., 2014). However, spatial
variability and complexity of underground catchment characteristics
usually hamper its estimation accuracy (Oudin et al., 2008; Harman
et al., 2009). This impact would be significant on a large scale but often
overlooked. This suggests that linear regression can be greatly im-
proved through reclassifying the dataset when the similar character-
istics (i.e., geological classes) are properly handled (Oudin et al., 2008;
Bloomfield et al., 2009; Ahiablame et al., 2017). There exists predictive
performance with a higher bias for the whole dataset than the sub-
datasets (i.e., data from different climate regimes) for linear regression
approach. Therefore, to improve our understanding for baseflow pro-
cesses and BFI prediction, the interaction of catchment attributes within
different climate zones should be considered (Berk and De Leeuw,
2006).

6.3. Multilevel regression approach

Interactions of catchments and different climate zones may influ-
ence the baseflow processes (Tague and Grant, 2004; Bloomfield et al.,
2009). Thus, BFI is affected by catchment attributes including terrain
and climate factors (Gustard and Irving, 1994; Longobardi and Villani,
2008; van Dijk, 2010; Price, 2011). Therefore, when the cross-level
interactions are not strong, the benefit of using the multilevel regres-
sion approach is limited. In the winter rainfall climate zone, the linear
regression and multilevel regression has performed similarly (Fig. 8).
On the other hand, when the cross-level interactions are strong, the
multilevel regression approach can significantly improve the BFI pre-
diction. Thus, in the other three climate zones (Arid, Tropic, and
Equiseasonal), the multilevel regression outperforms the linear regres-
sion technique. Besides, the benefit of using multilevel regression is that
it considers the relationships between and within-group and it is usefulTa
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for uncovering the dynamics of real processes (Qian et al., 2010;
Dudaniec et al., 2013). It should be noted that multilevel model (i.e.,
with climate classes as random effects) contain more parameters than
the traditional linear regression method (with no information on cli-
mate classes). However, in this study, we focus on the models’ perfor-
mances rather than model parsimony. Because the parsimony of model
parameters is beyond the scope of this study.

Therefore, understanding the cross-level interactions, is funda-
mental to elaborate the hydrological dynamics in multilevel regression
technique (Qian et al., 2010). Climate factors influence the hydrological
processes and lead to changes in baseflow generation. This study de-
monstrates that P and Etp strongly influence BFI distribution and their
functions vary across climate zones. Santhi et al. (2008) and Peña-
Arancibia et al. (2010) have shown that climate attributes can be used
to predict recession constant. Such as, the increase of precipitation can
cause more frequent water saturation of the soil, and lead to increase in
baseflow (Mwakalila et al., 2002; Abebe and Foerch, 2006). In general,
Etp is related to the baseflow discharge over the extended period
(Wittenberg and Sivapalan, 1999), and has an adverse impact on BFIs
(Mwakalila et al., 2002). This result agrees well with the finding from
Mwakalila et al. (2002), i.e., the smaller Etp impact in the arid zone than
other climate zones. In comparison to P and Etp, other factors show
secondary or marginal impact. This is similar to the finding by Lacey
and Grayson (1998) who has found that the topographic parameters
have no significant relationship with BFI in southeastern Australia.
However, some studies have found that S and H have a strong positive
impact on the recession timescales (Peña-Arancibia et al., 2010;
Krakauer and Temimi, 2011). Other studies have shown that the
dominant factors influence ecological processes to vary (Berk and De
Leeuw, 2006; Qian et al., 2010). But this study shows that the BFI
controlling factors do not vary largely with climate regimes (Fig. 9).

Traditionally, the linear regression is directly used to model the re-
lationship between the predictors and variability; though the predictive
ability is limited in lots of cases. This study has a hydrological appli-
cation of the multilevel model, and demonstrates it outperforms classic
linear regression when considering between and within-group interac-
tions.

Generally, random effects should have levels that are sampled from
a larger population, and the purpose is to quantify the variation among
levels/units (Bolker et al., 2009). The multilevel model provides a
powerful tool to solve the data that involve random effects (Bolker
et al., 2009). However, climate category (number of classes = 4; names
of levels meaningful) is not drawn from many classes. Thus, this may
create inaccuracy in calculation as per Gelman and Hill (2006) and
Harrison (2015). They recommend that multilevel models require at
least 5 levels (groups) for a random intercept term to achieve robust
estimates of variance. Otherwise the mixed model may not be able to
estimate the among-population variance accurately (< 5 levels). In this
case, the variance estimate will either collapse to zero, making the
model equivalent to an ordinary generalized linear model (Gelman and
Hill, 2006) or be non-zero but incorrect if the small number of groups
that are sampled are not representative of the true distribution of means
(Harrison, 2015). But, the low sample size (< 5 levels) in the applica-
tions of the mixed-effects models such as ecology (Harrison, 2015) has
good model performance (Bolker et al., 2009). Additionally, it is also
meaningful or/and reasonable that adopt four climate classes as a
random effect across the Australia continent to predict BFI, and the
model has an acceptable performance. Thus, this is beneficial to
quantify the variation among different climate units at large scale.
Nevertheless, more validations are required for using the multilevel
regression approach to predict various hydrological signatures.

Fig. 7. As same as Fig. 7 but using the leave-one-out cross validation approach.
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Fig. 8. The difference of NSE and the difference of Bias between calibration and validation for traditional linear regression approach ((a) and (c)) and multilevel
regression approach ((b) and (d)).

Fig. 9. Parameter values estimated for the multilevel regression approach. Error bar represents standard error of each parameter. The abbreviations of catchment
attributes are introduced in Table 1.
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7. Conclusion

This study estimates combined baseflow index from four well-
parameterised baseflow separation methods (LH, UKIH, CM and ECK),
and finds that the baseflow index varies significantly among climate
zones across the Australian continent. Multilevel regression approach is
introduced to improve BFI estimation for 596 catchments across
Australia, and is compared with traditional linear regression method
and two hydrological models. It shows that the multilevel regression
approach outperforms the linear regression approach and hydrological
models. Traditional linear regression approach fails to considerate the
interactions across group levels. The two hydrological models have
good performance for simulating runoff yet fail to separate baseflow. In
contrast, the multilevel regression approach indicates that annual pre-
cipitation, potential evapotranspiration, elevation, land cover and
available soil water holding capacity in the top part of the soil-all have
strong control on catchment baseflow, where climate factors such as
precipitation and potential evapotranspiration are proven to be the
most significant. The multilevel regression approach can provide in-
sights into the control factors of baseflow generation, and has the po-
tential of estimating baseflow index and other hydrological signatures
in different parts of the world.
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