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In ungauged catchments or catchments without sufficient streamflow data, derived flood frequency
methods are often applied to provide the basis for flood risk assessment. The most commonly used
event-based methods, such as design storm and joint probability approaches are able to give fast estima-
tion, but can also lead to prediction bias and uncertainties due to the limitations of inherent assumptions
and difficulties in obtaining input information (rainfall and catchment wetness) related to events that
cause extreme floods. An alternative method is a long continuous simulation which produces more accu-
rate predictions, but at the cost of massive computational time. In this study a hybrid method was devel-
oped to make the best use of both event-based and continuous approaches. The method uses a short
continuous simulation to provide inputs for a rainfall-runoff model running in an event-based fashion.
The total probability theorem is then combined with the peak over threshold method to estimate annual
flood distribution. A synthetic case study demonstrates the efficacy of this procedure compared with
existing methods of estimating annual flood distribution. The main advantage of the hybrid method is
that it provides estimates of the flood frequency distribution with an accuracy similar to the continuous
simulation approach, but with dramatically reduced computation time. This paper presents the method
at the proof-of-concept stage of development and future work is required to extend the method to more
realistic catchments.
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1. Introduction 1.1. Flood frequency analysis

Flooding is one of the most frequently occurring natural hazards
worldwide, and often causes major damage to our society. For
example, every year in Australia, floods incur millions of dollars
damage to critical infrastructure and threaten humans lives.
Appropriate designs of flow regulation structures, such as dam
spillways, bridges, pipelines and flood detention basins are vital
for flood mitigation and the protection of important domestic
and commercial resources. These designs rely on the estimation
of both the frequency and the magnitude of extreme flow events.
However, due to the highly variable and complex climatic and
hydrological processes that drive flood extremes, it is a major chal-
lenge to provide reliable predictions.

Existing flood estimation methods can be broken down into two
major groups: flood frequency analysis and derived flood fre-
quency methods (Moughamian et al., 1987).
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Flood frequency analysis involves fitting a distribution model to
streamflow data so that the flow magnitude associated with a cer-
tain occurrence probability can be calculated using the mathemat-
ical equation of the fitted distribution. The success of the analysis
depends on achieving a reliable fit for the distribution, which re-
quires a sufficiently long and high quality streamflow record.
Unfortunately it is not available in the vast majority of catchments.
Furthermore if the catchment has undergone significant land-use
or climate changes in the past, the historical record cannot support
an accurate estimation of the flood frequency distribution.

1.2. Derived flood frequency methods

Derived flood frequency methods have been developed to over-
come the limitations of flood frequency analysis. These approaches
use meteorological data (rainfall, potential evapotranspiration) as
inputs for a rainfall-runoff (RR) model to generate streamflow data.
In general, historical rainfall data are longer and have more reliable
records than streamflow data and only a relatively short stream-
flow record is required to calibrate the RR model. Furthermore,
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to provide projections of the impact of climate change, a weather
generator can be used to simulate the meteorological data for a
certain climate scenario. The simulated meteorological data is then
input into the RR model to generate streamflow data, from which
the flood frequency distribution (FFD) under the projected climate
condition can be derived. Derived flood frequency methods are,
therefore, generally preferred over flood frequency analysis, and
have been developed as both analytical and simulation approaches.

Analytical methods were initiated in the early 70 s by Eagleson
(1972). The author derived the peak streamflow distribution from
the distributions of catchment and climate characteristics using a
kinematic runoff model in an idealised V-shaped flow plane. Fur-
ther development of the analytical methods was achieved by other
researches, e.g., Hebson and Wood (1982); James et al. (1986) and
Raines and Valdes (1993).

Recently, numerical simulation methods for deriving flood fre-
quency distribution have undergone considerable development.
These simulation techniques can be classified into two groups:
continuous simulation (CS) (Calver et al., 2000) and event-based
(EB) approaches (e.g. Rahman et al., 2002). CS runs a weather gen-
erator and a RR model in parallel continuously to produce a time
series of streamflow data from which the flood frequency curve
can be derived, while EB approaches focus on the events of interest.
These usually include rainfall events and catchment wetness con-
ditions that drive extreme flood events and are sampled from their
distributions to serve as inputs for the RR model that runs in an
event-based fashion. The average return intervals (ARI) of the gen-
erated flood events are associated with the ARI of the input events
based on certain assumptions.

In the following, two mainstream event-based (EB) approaches,
i.e., the design storm and the joint probability approaches will be
reviewed, followed by a brief discussion of continuous simulation
(CS).

1.2.1. Design storm approach

Among the EB methods, the most widely adopted one in the
guidelines of the world practicing water resource institutions (for
example, Australian Rainfall and Runoff AR&R Pilgrim, 1987) can
be attributed to the design storm (DS) approach, mainly because
of its simplicity. This approach involves design event rainfall gen-
eration, runoff production and hydrograph formation. It assumes
that a design rainfall event of a given ARI can be converted to a de-
sign flood of the same ARI and it relies on the specification of a
rainfall loss (aka antecedent soil moisture deficit) as an indicator
of the catchment wetness condition. A fixed value, typically the
median, is taken to represent the rainfall loss/soil moisture deficit
(AR&R Pilgrim, 1987), which ignores its variability. This assump-
tion (also referred to as the ARI neutrality assumption) can lead
to significant prediction errors, as the rainfall-runoff process is
basically a joint probability problem (Kuczera et al., 2003). For
example, a 1 in 100 year flood can be caused by a 1 in 50 year rain-
fall event falling on a wet catchment or by a 1 in 200 year rainfall
event falling on a dry catchment (Michele and Salvadori, 2002).
Thus it is important to capture the interactions of antecedent soil
moisture conditions and extreme rainfall events.

In order to overcome the problems of the ARI neutrality
assumption, Camici et al. (2011) proposed to calibrate the anteced-
ent soil moisture to the value that produces a flood with the same
ARI as that of the input rainfall event. For each return period of the
flood, a design soil moisture value is calibrated using the result of a
long-term CS as a reference. The design soil moisture values are
then regionalised as a function of the geo-morphological character-
istics of the catchment so that they can be applied to ungauged
catchments with similar characteristics. Given the popularity of
the DS approach and its major problem of defining the antecedent
soil moisture condition, the attempt to find the critical soil

moisture value that maintains ARI neutrality during the transfor-
mation from rainfall to runoff seems to be practical. Walsh et al.
(1991) undertook a similar study for New South Wales in Australia.
However the regionalisation showed huge variability. This indi-
cates the success of this method strongly depends on the strength
of regionalisation and the quality of the data. The other significant
limitation of this approach is that the design soil moisture is likely
to undergo significant change under climate change conditions.
The regionalised design soil moisture inputs are therefore likely
to produce unreliable estimates of the FFD.

1.2.2. Joint probability approaches

To account for the joint probability nature of the estimation of
extreme flood events, event-based Monte Carlo simulation tech-
niques have been developed (Rahman et al., 2002), in which the
values of the input variables, e.g., rainfall depth and antecedent soil
moisture amount are sampled from either their joint or indepen-
dent distribution and input into the RR model to generate a range
of streamflow events. Using the total probability theorem the
exceedance probability of these events can be estimated (Rahman
et al., 2002). To reduce the computational time, stratified Monte-
Carlo (SMC) techniques are used in Nathan et al. (2003), where
the sampling procedure of the input variables focuses selectively
on the probabilistic range of interest.

The major challenge of these techniques is to obtain the correct in-
put distributions from the causative events of the annual maximum
extreme flows that are of interest. These are very difficult to obtain be-
cause long-term historical records with many extreme events are not
readily available. Moreover, catchment soil moisture conditions are
not routinely measured, which requires calibrating a RR model to
flood events. Currently, practical guidelines (e.g., RORB by Laurenson
et al.,, 2010) recommend using the distribution of annual maximum
rainfall and some documented rainfall loss distribution (e.g. Hill
et al.,, 1997) estimated from short historical data to derive the annual
FFD. Part of this study will evaluate the use of these practical guide-
lines in the EB approaches for estimating the annual FFD.

As these procedures use the annual maximum rainfall as input
and take into account the joint probability of rainfall and catch-
ment antecedent soil moisture condition, we will collectively name
these methods as AMXJP methods hereafter, where AMX stands for
annual maximum rainfall and JP stands for joint probability.

1.2.3. Continuous simulation

In contrast to event-based approaches, continuous simulation
(CS) (Calver et al., 2000; Heneker et al., 2003) seems to solve all
the problems mentioned above, under the assumption that the ap-
plied weather generator and RR model adequately simulate the
rainfall-runoff process. It does not postulate ARI neutrality between
rainfall and runoff, nor does it require estimation of the input distri-
butions for an EB procedure. It simply runs a weather generator
coupled with a RR model in a continuous manner to simulate a long
time series of streamflow data, from which the annual maximum
flows can be extracted and in turn the annual FFD can be derived.

The major limitation of the CS approach is that it is computa-
tionally demanding. For instance, as will be shown in Section 4.4.2,
to get an estimate of the exceedance probability of 1 in 100 year
flood with a prediction error less than 20%, the minimum length
of the simulated streamflow data needs to be more than 9500
years at a daily time step. If a complicated RR model, such as a dis-
tributed and/or physically based model is required, the computa-
tional time can be prohibitive.

1.3. Contribution of this work

The main contribution of this paper is to develop a hybrid
event-based approach which overcomes the limitations of current
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EB approaches with a significantly reduced computational time
compared with a long-term CS. This hybrid method uses a short
CS run (e.g. 30-100 years) to provide input distributions into an
EB approach. As this method explicitly uses concurrent input
events that are the true causative events of the output flows, it is
named as the hybrid-causative events approach (hybrid-CE). A key
innovation is that the EB approach is combined with the total prob-
ability theorem to produce a so-called event streamflow distribution,
which is converted to the annual FFD using the peak over threshold
(POT) method. This enables improvement in the accuracy of the
predictions of the annual FFD compared with the existing EB ap-
proaches, and a remarkable enhancement in computation effi-
ciency compared with a long-term CS.

The paper is organised as follows: Section 2 outlines the hybrid-
CE methodology. Section 3 presents a synthetic case study to dem-
onstrate the advantages of the hybrid technique over the existing
EB approaches mentioned above, i.e., the DS and AMXJP methods.
Section 4 presents the results, which illustrate how the limitations
of the DS and AMX]JP methods produce significant errors in the
estimation of annual FFD and then demonstrate the accuracy of
the hybrid-CE method. The final part of Section 4 compares the
three different approaches. Section 5 provides some discussion of
relevant issues, including future research topics. Section 6 provides
the summary and conclusions.

2. Development of the Hybrid-CE approach

The hybrid-CE approach combines continuous simulation and
event-based approaches. A long CS of rainfall provides the rainfall
distribution and a short CS of the rainfall-runoff process provides
the soil moisture distribution. Together, they drive an EB simula-
tion of the rainfall-runoff process to produce the streamflow distri-
bution. Unlike the AMXJP method, for the hybrid-CE method the
input rainfall and soil moisture values are drawn from the distribu-
tions that are estimated from causative events to produce an event
streamflow distribution. The POT method is then applied to convert
this distribution to the annual FFD.

A schematic diagram shown in Fig. 1 illustrates the interactions
between different components of the hybrid-CE method. The fol-
lowing sections describe the three major components (continuous
part, event-based part and FFD conversion part) in details. This
method is generic and can be adapted to provide estimates of the
distribution of extremes for the events of interest, e.g., either

Long CS of rainfall model at the streamflow
event time scale of interest

¥

Long rainfall record

Short rainfall record Rainfall distribution f{(r)

Short CS of SO_lI mmstyre Event-based RR
RR model »: distribution model run
fslr) + ENIEE method
l Using [Eq.(2)
i motdel Event streamflow
Raias distribution F (q) :

Fig. 1. Flow chart showing the procedure of the hybrid-CE method.

instantaneous peak flow rates or event volumes. For the purposes
of demonstrating the value of the hybrid-CE method, we chose the
simplest case study, which is to estimate daily streamflow volume
extremes using daily rainfall depth and antecedent soil moisture.
Section 5.2 discusses future extensions to the hybrid-CE method
to estimate the more practically relevant distribution of extremes
of the instantaneous peak flow rate.

In the following discussions, the capital letters R, S and Q denote
the random variables representing rainfall, soil moisture and
streamflow, respectively and small letters r,s and q the corre-
sponding variates. F() is used to denote the cumulative distribution
function, while f() is used to denote the probability density
function.

2.1. The continuous part

Although rainfall records are more numerous than streamflow
records, they may not be available at the time scale or location of
interest. In general, stochastic rainfall models (e.g. Heneker et al.,
2001; Cowpertwait, 2006) can be used to circumvent limitations
of rainfall records and provide the required long-term rainfall
simulations.

As in the event-based part of the hybrid-CE method the rainfall
distribution is needed, the continuous part of the hybrid-CE ap-
proach first runs the rainfall simulation to generate a long-term
rainfall record based on the assumption that the rainfall simulation
runs much faster than the RR model. The grounds for this assump-
tion will be addressed in Section 3.5. Thus the rainfall distribution
can be estimated from this long-term record which covers more
extreme events than the observed data, or under climate change
conditions, predicts the rainfall in the future in a probabilistic
sense.

After that a short-term continuous simulation of the RR model
is run using part of the generated long rainfall record as input.
From this short term CS of the RR process, a short time series of soil
moisture values as well as streamflow values are obtained. Given
that soil moisture is less variable than rainfall, this short record
of the soil moisture is sufficient for the estimation of its distribu-
tion. The short streamflow record will be used to assess the POT
model parameters, as will be discussed in Section 2.3.

2.2. The event-based part

After obtaining the rainfall and soil moisture distributions, their
values (r and s) can be sampled to be input into the RR model. For
each EB run of the RR model, a streamflow value (q) is generated.
This value is compared to the streamflow value of interest (q). Note
that, in general, q can be either an instantaneous flow rate at a gi-
ven point in time or the volume over a given time period during
which the amount of rainfall and soil moisture are accumulated.
As noted earlier, we chose to adopt the simpler case of the daily
flow volume to exemplify the method. A follow-up discussion on
the extension of the method to estimate the more complicated
case, i.e., the instantaneous flow rate, is provided in Section 5.2.

Assuming that the RR model is deterministic, with no prediction
error, the conditional exceedance probability of the streamflow
conditioned on the rainfall and soil moisture values, P(Q > q|r,s),
can be evaluated:

1 ifg>q

P >ars) = {o 17 (1

In reality, RR models can have significant predictive errors due to
data and model structural errors (Thyer et al., 2009; Renard et al.,
2010). If a prediction error is introduced into the RR model, the va-
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lue of P(Q > q|r,s) will range between 0 and 1. For the current
study, we assume the RR model is deterministic.

Based on the total probability theorem, the unconditional
exceedance distribution 1 — F(q) of the streamflow can be calcu-
lated by:

Tr@= /Q /Q(l_F(Q\RS))f(r,s)dsdr
_ /Q [ P> qlr.f (ris)f (s)dsdr 2

where f(r,s) denotes the joint probability density of rainfall and soil
moisture, while f(s) stands for the rainfall probability density ob-
tained from the long-term rainfall simulation and f(r|s) denotes
the conditional probability density of soil moisture conditioned on
rainfall, which is obtained through the short-term CS of the RR
model. It is worth mentioning that if r and s are independent,
f(r,s) can be broken down into f(r) - f(s). F(q|r,s) denotes the cumu-
lative conditional distribution of streamflow conditioned on the in-
put r and s values. P(Q > g|r,s) is evaluated in Eq. (1).

The double integral in Eq. (2) can be computed through Monte
Carlo integration (Davis and Rabinowitz, 1975). Nathan et al.
(2003) developed a stratified Monte-Carlo (SMC) method which
improves the calculation efficiency by using stratified sampling
of the input values on the probabilistc range of interest.

In the hybrid-CE method, we developed an efficient numerical
integration for extreme events (ENIEE) to solve Eq. (2), where the
pairing of r and s is done on a grid of the domain Dom =R x S.
Using ENIEE Eq. (2) becomes:

1-F(@@) = 33 Pla; > Gl 5)f (i) AsAT 3)
i

Compared to the SMC technique, the ENIEE is more efficient, as
the input r and s values are checked in an ordered manner so that it
is easy to terminate further evaluations of the RR model at any
point of (rj, sj) that does not contribute to the g, value under inves-
tigation. For the SMC method, on the other hand, the program has
to wait until all the random samplings within the specific intervals
are finished. A detailed description of the ENIEE is provided in the
Appendix.

Like the AMXJP methods, the mathematical theory underpin-
ning the event-based part of the hybrid-CE method is also the total
probability theorem. However the major difference lies in the fact
that the AMXJP methods use the annual maximum rainfall and
user-defined soil moisture events (see Section 1.2.2) to assess the
input distributions for the calculation of the annual FFD. In con-
trast, the hybrid-CE method uses the rainfall and soil moisture
events that are truly concurrent/causative to the streamflow
events at the event temporal scale of interest. For example, if the
event temporal scale of the streamflow is daily/hourly, then the in-
put rainfall and soil moisture distributions will be evaluated
through the daily/hourly rainfall and soil moisture events,
respectively.

Hence the term F(q,) in Eq. 3 becomes the distribution of
streamflows at the event temporal scale of interest (referred to
as event streamflow distribution hereafter). Then the POT method
is incorporated to convert this distribution to the annual FFD,
which will be introduced in the next section.

One may argue that the event streamflow distribution can be di-
rectly estimated from the output streamflow data of the short CS
run of the RR model and that is therefore unnecessary to use the
EB simulation of the RR process and the ENIEE method. However,
the short time series of the rainfall data that drive the RR model
for a short CS run may not contain enough extreme events of major
interest. Therefore, the short series of streamflow data generated
by the short CS can lead to enormous uncertainties in the

subsequent estimation of the extreme events in the annual
maximum flow series, whereas in the EB component of the
hybrid-CE method, the input rainfall events are drawn from the
distribution which is estimated from the long-term rainfall record
where more extreme events are present. Therefore the resultant
event streamflow distribution is more reliable for use in the
subsequent derivation of the annual FFD.

2.3. Derivation of the annual FFD using the POT method

The POT method (Shane and Lynn, 1964; Todorovic and Zele-
nhasic, 1970) is often applied in flood frequency studies as an alter-
native to the annual maximum series (AMS) method. A
comprehensive discussion on the POT method can be found in
Rosbjerg (1993). As the current study was focused on the estima-
tion of annual FFD, we continued seeking the distribution of annual
maximum flows. The POT method was adopted as a tool to derive
the annual FFD from the event streamflow distribution.

In the POT method, the number of peaks over the selected flow
threshold g, per year is considered as a random variable, the prob-
ability of which is denoted by:

P(w peaks > q, in a year) =P, (4)

Under the assumption that the peak magnitudes are indepen-
dent and identically distributed (ii.d) with function
F(Q < q|q = qo), the distribution of the annual maximum flows
(Qg) can be calculated by Todorovic and Zelenhasic (1970):

w
Fo,(Qa < q) =) Pu(F(Q <qlq > qo))" (5)
w=0

where W denotes the number of basic time steps (e.g., daily or
hourly) in a year, depending on the measurement temporal resolu-
tion or the event time scale of interest. The probability distribution
of the number of peaks exceeding the threshold per year (P,) is of-
ten modelled by the Poisson distribution (Rosbjerg, 1993). However
Cunnane (1979) suggests that the negative binomial distribution is
more suitable for a POT series which exhibits great variability. In
the current study (Section 3.5.3), it was found that a negative bino-
mial distribution fits better to the data, hence it was adopted to the
model the P,, and thus Eq. (5) becomes:

w

Fo,(@) = Z%(l -p)’p"(FQ <dqlg > q))"
w=0 :
= (1-p)’(1-Fqlq = q0)p)”" (6)

where p and y are parameters of the negative binomial distribution
and F(q|q > q,) is the truncated distribution:

Fq)
> P N LA

F@ld > 0) =~ (o )
where F(q) is the event streamflow distribution which was defined in
Section 2.2. The denominator 1 — F(qy) is a normalising factor. The
problem of estimating the input distribution of annual concurrent
events is therefore reduced to estimating the distribution of the in-
put variables in accordance with the event time scale of interest. In
other words, the extraction of the annual causative events from a
long data series is no longer necessary and the distribution of the
input variables can be much more easily obtained either through
measurements or a short CS run.

2.4. Summary of the hybrid-CE approach

In summary, the hybrid-CE approach requires the following
steps:
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1. A long-term CS is run for the rainfall simulation at the stream-
flow event time scale of interest to generate a long time series
of rainfall data. The rainfall distribution is estimated from this
record.

2. A short rainfall record sampled from the simulated data is put
into the RR model for a short-term CS run at the same event
time scale to generate a series of soil moisture values for the
estimation of the soil moisture distribution. The streamflow
record generated by the short CS is used to estimate the POT
model parameters (qq,p and y in Eq. (6)).

3. The RR model is run in an event-based manner using the rainfall
and soil moisture values sampled from the estimated distribu-
tions and the ENIEE method is implemented to evaluate the
event streamflow distribution using Eq. (3).

4. The POT method is applied to convert the event streamflow dis-
tribution to the annual FFD using Eq. (5).

The flow chart of the above steps is illustrated in Fig. 1.

3. Case study

A synthetic case study is presented to demonstrate how the
assumptions underpinning the DS and AMX]JP approaches impact
on the estimation of the annual FFD. It also shows that the hy-
brid-CE approach can avoid this bias and provide more reliable
estimates of the annual FFD in an efficient manner.

The rainfall data of the synthetic catchment were generated
through a 1-D continuous rainfall simulation model. The simulated
rainfall data were input into a lumped RR model to generate a
long-term (10,000 years) sequence of daily streamflow values in
order to derive the virtual truth annual FFD.

Simple lumped rainfall and RR models were applied in this case
study, because the aim was to demonstrate the problems of the
existing approaches and the relative efficacy of the hybrid-CE
method. Extensions of the hybrid-CE method to a more compli-
cated RR model using realistic catchment data will be undertaken
in future research (see Section 5.2).

3.1. Rainfall simulation model

The daily rainfall simulation model consists of two parts: an
occurrence model for the generation of the dry-and-wet-day se-
quence and a model for the generation of the rainfall amount on
wet days (Srikanthan and McMahon, 2001).

The dry/wet day sequence is modelled by a first order station-
ary Markov chain (Weiss, 1964), the parameters of which are the
initial wet-day probability Py, and two conditional probabilities
Pww (the probability of a wet day given that the previous day
was wet) and Ppy (the probability of a wet day given the previous
day was dry).

The rainfall amount on wet days in the case study was drawn
from a log-normal distribution with parameter values
u=15,0=1.0.

3.2. Rainfall-runoff model

The applied RR model is a simplified HBV model (Bergstrom,
1995) with the snow and the dual-reservoir modules omitted.
The snow module was eliminated in order to illustrate a technique
that focuses on extreme rainfall driven peak flow events, rather
than snow-melt driven (or rain-on-snow) peak flow events, as
these types of events are rare in Australia. The reservoir module
was removed because this study was focussed on the frequency
distribution of extreme flows. The recession part of the hydrograph

Table 1
Summary of the annual statistics of the two climate scenarios. CV stands for the
coefficient of variation for the annual sums.

Annual max Annual min  Annual mean CV  Annual POE
(mm) (mm) (mm) (=) (mm)
Dry
Rainfall 1468.18 258.98 674.67 0.20 1277
Discharge  249.69 2.61 3291 0.57
Wet
Rainfall 2452.59 928.26 1540.76 0.11 1387
Streamflow 998.98 103.62 321.06 0.27

which is emulated by the reservoir module is not essential to the
problem.

3.3. Climate scenarios

To test the performance of different EB approaches under differ-
ent climate conditions, wet and dry climate scenarios were gener-
ated using different parameter settings for the rainfall simulator
and HBV model. The selection of the parameters for the two cli-
mate scenarios was based on a comparison of the annual rainfall
and runoff statistics from a database of 330 Australia catchments
(Peel et al., 2000). The wet/dry climate scenario was assigned an
annual mean rainfall in the upper/lower 1% of the Peel et al.
(2000) dataset. Table (1) summarizes the annual statistics of the
two climate scenarios.

3.4. Virtual truth reference for the annual FFD

After the model setup, a 10,000-year continuous simulation of
the rainfall and rainfall-runoff models was carried out at a daily
time step for both climate scenarios. As mentioned at the begin-
ning of the case study, the output streamflow data were used to de-
rive the virtual truth annual FFD, which was used to evaluate the
results of the different methods tested in the following.

3.5. Input information

In EB joint probability approaches, the distribution of the input
rainfall is required. In this case study, access to the long-term
synthetic rainfall record (10,000 years of daily values) and a
short streamflow record (e.g., 30-100 years of daily values) was
assumed. The difference in the accessible record lengths was based
on the assumption that the rainfall simulation would be much fas-
ter than the simulation of the rainfall-runoff process. A space-time
rainfall model using the circulant embedding method and fast
Fourier transformation needs just one second to simulate a
512 x 512 image (Qin, 2010). In contrast, it can take hours to
run a 2D hydrodynamic model at a smaller spatial resolution
(Neal et al., 2009).

3.5.1. DS approach

Given the ARI neutrality assumption of the DS approach, annual
maximum rainfalls should be used as inputs into the RR model to
derive the annual FFD. In this case study, the annual maximum
rainfalls were extracted from the simulated 10,000-year daily rain-
fall series.

Regarding the antecedent catchment wetness condition, the
primary assumption of the DS approach is that it uses a single fixed
representative loss value. Typically, a rainfall loss model (e.g, pro-
portional, initial/continuing) and a runoff routing procedure are
used to convert rainfall to runoff (e.g. Laurenson et al., 2010).
Traditionally the representative value of the initial loss is taken
as the median of some documented distribution assessed from
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historical data. In Hill et al. (1997), the distribution of the initial
loss is calibrated based on the rainfall events from a POT series
(events with ARI greater than one year) and their concurrent flow
events. The continuing loss value is determined through mass
balance.

For this case study we used the simplified HBV model to convert
rainfall to runoff in the DS approach because it was exactly the
same RR model used to generate the virtual truth FFD. This enabled
us to specifically test the impact of assessing a single representa-
tive antecedent catchment wetness value, without introducing er-
rors due to the ability of the RR model to represent the virtual truth.
Thus a single representative antecedent soil moisture (SM) value
was used, as it plays the same role in the HBV model as the rainfall
loss in a routing model. The rainfall threshold was evaluated based
on the 10,000-year daily rainfall record. Then, with the short daily
records (100 years), the soil moisture values prior to the rainfall
events that are above the threshold were selected to estimate the
SM distribution. Finally the median SM value was calculated from
this distribution as the representative value.

3.5.2. AMX]JP method

For AMXJP methods such as Nathan et al. (2003), the design
guidelines, e.g., RORB by Laurenson et al. (2010), recommend that
the input variables (rainfall and soil moisture) are treated as inde-
pendent variables. Thus the term f(r,s) in Eq. (3) becomes
f(r)-f(s). For the rainfall distribution, the distribution of annual
maxima is used (Nathan et al., 2003). In this case study, this distri-
bution is estimated from annual maximum rainfalls extracted from
the 10,000-year daily rainfall data.

Nathan et al. (2003) and Laurenson et al. (2010) recommend
that the loss distribution is taken from the documented distribu-
tion as described in Hill et al. (1997). This is the same as used by
the DS approach to obtain the representative value. Therefore the
soil moisture distribution estimated for the DS approach in the pre-
vious section was used to test the AMXJP method in this study.

3.5.3. Hybrid-CE method

In the application of the hybrid-CE method, first the depen-
dence between the daily rainfall depth and soil moisture amount
was investigated using Pearson’s p, Spearman’s p and empirical
copulas (Nelsen, 2006) as measures of dependence. No significant
dependence was found. Therefore as in the AMXJP method, the
individual distributions of rainfall and soil moisture were used.
The distribution of the daily rainfall depth was directly assessed
from the entire 10,000-year daily rainfall record. The distribution
of the daily soil moisture conditions was estimated using the
100-year daily SM record sampled from the long-term daily SM re-
cord (10,000 years).

In addition to the input distributions, the occurrence model of
the peaks over threshold and its parameters have to be specified
for the POT method to convert the daily flow distribution to the an-
nual FFD.

First of all, the peak threshold should be chosen. Rosbjerg
(1987) pointed out that a flow threshold that corresponds to a
yearly occurrence number exceeding 5 leads to a significant posi-
tive correlation between the peak magnitudes which violates the
basic assumption of the POT method. On the other hand, too small
value of the occurrence rate limits the number of events in a short
record for statistical analysis. Therefore in this study, a flow thresh-
old was chosen such that its average yearly occurrence number
was 3.

Two different models of the occurrence rate of peaks were con-
sidered, the Poisson and the negative binomial distributions. Visual
inspection of the frequency curves of the number of peaks per year
from the 10,000 year streamflow record (not shown) showed that
the negative binomial distribution provided a better fit than the

Table 2
Result of the chi-squared test for the goodness of fit of the occurrence models. 'df
denotes the degree of freedom, 'Chi-S’ denotes the chi-squared test statistics.

Poisson Negative binomial

df Chi-S P-value df Chi-S P-value
Dry 10 170270.3 0 24 22.1 0.57
Wet 10 26792.4 0 17 19.3 0.31

Poisson to the observed data. Table 2 reports the results of the
chi-squared test and confirms the above findings.

Therefore the negative binomial distribution was adopted. The
model parameters 7 and p in Eq. (6) were estimated using the
method of moments (Cunnane, 1979).

In the following application of the hybrid-CE approach, the POT
model parameters (qy,p and ) were assessed using the 100-year
daily records of streamflow randomly sampled from the 10,000-
year record generated by the long CS. This means for different ran-
dom samples, different sets of POT model parameters were
estimated.

4. Results
4.1. DS approach

Fig. 2 shows the predicted annual FFD from the DS approach for
both the wet and the dry climate scenarios compared to the virtual
truth annual FFD. Black curves indicate the virtual truth distribu-
tions. The light blue curves DS-100 indicate the results using ran-
domly sampled 100-year records (in total 100 independent
records) to assess the representative SM value. In addition, in order
to check the model performance in a condition free from sampling
error, the entire 10,000-year record was used to derive the repre-
sentative SM value, and the results DS-10000 are shown by the
dark blue curves.

The results highlight an overall under-estimation. For the very
small flood values, however, the DS approach produces a slight
over-estimation.

4.2. AMXJP approach

Fig. 3 shows the results of the AMXJP approach. The curves rep-
resenting AMXJP-10000 and AMXJP-100 have similar meanings as
DS-10000 and DS-100 described in Section 4.1. The results show
an averaged good agreement with the virtual truth, but with rela-
tively large estimation uncertainties.

The purple dashed lines representing the results of JPCE-10000
indicate the outcome of the joint probability (indicated by 'JP’)
method using input distributions estimated from the causative
events (indicated by ‘CE’), i.e., rainfall and SM events that are con-
current with/prior to the annual maximum flow events. They are
also in line with the virtual truth. The slight discrepancies are due
to the fact that the JPCE approach ignores the dependence between
the causative rainfall and SM events.

4.3. Hybrid-CE method

Fig. 4 shows the results of the hybrid-CE method. A relatively
good agreement between the average behaviour of the predictions
using the short records (HCE-100) and the virtual truth can be ob-
served. The same applies to the predictions resulted from the use
of the entire 10,000-year record (HCE-10000).

4.3.1. Optimal short record for the hybrid-CE method
As shown above, the predictions of HCE-10000 by the hybrid-CE
method are in line with the virtual truth distribution. But it relies
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Fig. 2. Results of the DS approach. Black curves indicate the virtual truth distributions, while the light blue curves indicate the predicted distributions using randomly
sampled 100-year synthetic records to derive 100 distributions of SM, to illustrate the impact of sampling error. The dark blue curves show the predicted distribution based
on the SM values from the 10,000-year synthetic records to illustrate the results free from sampling error. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 3. Results of the AMXJP approach. Black curves indicate the virtual truth distribution, light green curves the results of using randomly sampled 100-year synthetic
records to derive the SM distributions, dark green curves the results of using 10,000-year synthetic records, purple curves the results of using causative input events. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

on obtaining the input daily SM distribution and the POT model
parameters from the entire 10,000-year data records. That requires
a long CS of the RR model. However, as noted before, the aim of the
hybrid-CE method is to avoid running a long CS of the RR model, as
it can be very computationally expensive. On the other hand, when
using short records generated by a short CS of the RR model for the
estimation, the predicted distribution can have large or small er-
rors compared with the virtual truth distribution. Therefore the
question is whether certain statistics of the short record can be
found which select a short record among the different random
samples so that the error in predicting the annual FFD due to ran-
dom sampling is minimised.
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As stated in Section 3.5, it was assumed that a long-term rainfall
record can be simulated. The goal here was to choose a short (30-
100 years) rainfall record from the long rainfall record in order to
produce a short CS of the RR model from which the best estimates
of the SM distribution and POT parameters can be obtained. The
selection of the short rainfall record was determined by the match
between the statistical properties of the short rainfall record and
those of the long record.

Several statistics (daily mean, median, standard deviation and
skewness) and different record lengths were tested (30-100 years
with an increment of 10 years). It was found that mean daily rainfall
provided the best statistics for selecting the short rainfall record.
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Fig. 4. Results of the hybrid-CE method. Black curves indicate the virtual truth distribution. Pink curves show the results of using randomly sampled 100-year synthetic
records to assess the daily SM distributions and the POT model parameters, while red curves the results of using 10,000-year CS results. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5 shows the results of using this approach for choosing the
optimal short record for the 30, 40 and 50-year record lengths. The
values of RP in Fig. 5 indicate the percentage of the random sam-
ples of short records outperform the optimal short record. These
figures and the low RP values illustrate the fact that this method
for choosing the optimal short record provides a good match to
the virtual truth distribution, even for record lengths of 30 years.

4.4. Comparison of methods

4.4.1. Predictive ability

Figs. 6 and 7 compare the 95% confidence limits and the aver-
aged results of the three methods for the dry and wet cases, respec-
tively. They show that the DS approach produced the worst
performance. There are significant under-estimations especially
for the high annual maximum extreme flows. This outcome dem-
onstrates that using a fixed representative antecedent SM value
produces poor performance and highlights the importance of con-
sidering the variabilities of key input variables other than rainfall.
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The AMX]P approach provided good predictive performance on
average, however, it produced the largest prediction uncertainties
among the three methods. This good performance was despite
using arbitrarily chosen SM distributions, that were not based on
the causative events. Fig. 8 compares the rainfall and SM distribu-
tion from the causative events with the distributions used by
AMX]JP for the dry case. This shows that the good predictive perfor-
mance is due to a compensation of errors. The annual max rain dis-
tribution over-estimates the causative event rain distribution,
while the AMXJP SM distribution under-estimates the causative
event SM distribution (similar effect is observed for the wet case
which was not shown here). The AMX]P approach relies on this
compensation of errors to produce reliable predictions of the an-
nual FFD. A relevant question is whether this compensation of er-
rors applies only to this simplified case study and if it can be relied
upon over a large range of climate and catchment conditions.

The hybrid-CE method provided good predictive performance
on average except for a slight overestimation for the low flows in
the dry case. The resultant estimation uncertainty was smaller
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Fig. 5. Prediction of results using the selected optimal short records. Black curves indicate the virtual truth distributions, pink curves the results using randomly sampled
short records, red curves the results using the optimal short records. The values of RP indicate the % of the random samples that outperform the optimal record. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)



420 J. Li et al./Journal of Hydrology 510 (2014) 412-423

Dry Case
Q] .,
@ |+« + Virtual truth ’s
o | = = 95%CL-Ds Py
& 7| —— Average- DS 7
— — 95% CL- AMXJP J

&1 —— Average- AMXJP e

95% CL-HCE Al

Average- HCE

Annual max flows [mm]
15
|

T T T T T T T T T
1 2 5 10 20 50 100 200 500

Average return intervals [yr]
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Fig. 7. Comparison of the 95% confidence limits and averaged predictions of
different methods for the wet case.

than for the AMX]JP approach, but higher than for the DS approach.
The DS approach produces the narrowest prediction band simply
because it does not take into account the variability of SM condi-
tions unlike the other two methods. Despite the additional com-
plexities in the hybrid-CE method (estimating input distributions
and POT model parameters) when compared with the AMX]JP ap-
proach, the hybrid-CE produces smaller prediction uncertainties.
This demonstrates the relative robustness of the hybrid-CE meth-
od. Note that the relative uncertainty due to sampling variability
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is greater in the dry case than in the wet case for all three methods.
This is likely to be because of the larger coefficients of variation of
the rainfall and runoff data (Table 1).

A comparison of the relative prediction errors of the three dif-
ferent methods for different record lengths is presented in Figs. 9
and 10 which show the probability distribution of the difference
in the normalised root mean square errors (NRMSE) normalised
to the range of the true values from the virtual truth distribution.
The differences in the NRMSE were calculated between the results
of different methods. For example, to compare the performance of
the DS and the hybrid-CE approaches, the NRMSE_DS minus
NRMSE_HCE was calculated, while to compare the AMXJP and hy-
brid-CE approaches, the NRMSE_AMXJP minus NRMSE_HCE was
calculated. A positive NRMSE difference indicates that the hy-
brid-CE outperforms either the DS or AMXJP. The probability distri-
bution was based on 400, 200 and 100 independent replicates
(from the 10,000-year record) for the different record lengths of
25, 50 and 100 years, respectively. The percentage of replicates
with a positive NRMSE differences indicates the probability that
hybrid-CE outperforms either DS or AMX]P. Figs. 9 and 10 show
that hybrid-CE clearly outperforms DS (greater than 90% positive
NRMSE difference for the dry case and 85% to 95% for the wet case),
and also outperforms the AMXJP approach for the dry case (60-70%
positive NRMSE difference), while there is only a marginal
improvement in performance compared to the AMXJP for the wet
case (55-60% positive NRMSE difference).

These results indicate that if a single short record is randomly
selected it is likely that the hybrid-CE method will produce more
accurate estimates of the annual FFD than the DS and AMX]JP ap-
proaches, particularly for the dry case. In addition, Section 4.3.1
has shown that by selecting the optimal short record for the hy-
brid-CE method the prediction error due to random sampling of
the short records is significantly reduced and the result is very
close to that of using the entire 10,000-year records. Overall, these
results clearly illustrate that the hybrid-CE method provides more
reliable predictions than both the DS and AMXJP approaches.

4.4.2. Computational efficiency

The previous section showed that the hybrid-CE method pro-
vides more reliable predictions of the annual FFD than the DS
and AMXJP methods. The main advantage of the hybrid-CE ap-
proach over the long-term CS approach is its computational effi-
ciency. For example, to achieve a prediction error less than 20%
for the exceedance probability of the 1 in 100 year flood the re-
quired number of years n to be simulated in the CS at a daily time
step can be calculated according to the principle of Binomial pro-
portion confidence interval (Brown et al., 2001):
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Fig. 8. Comparison of the input distributions used in the AMXJP approach and the distributions of the causative events of annual maximum flows for the dry case.
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Fig. 9. Comparison of NRMSE between DS and hybrid-CE method (DS-HCE), AMX]JP
and hybrid-CE methods (AMX]JP-HCE) for different record lengths of the dry case.

Eq. (8) shows that to achieve the desired prediction accuracy, the
number of events which the RR model must simulate in the CS at
a daily time step is 3,470,420. In comparison, the hybrid-CE method
needs only 1.4% of the number of events to be simulated by the RR
model, if 100 years of daily CS run is required for estimating the SM
distribution and the POT parameters. If only 30 years of a CS run is
sufficient to get this information, the number of events which the
RR model simulates can be further reduced to 0.68% of that of the
long CS run. This reduction in computational time offers major
advantages when a complicated distributed RR model such as
TOPKAPI (Vischel et al., 2008) or HydroGeoSphere (Therrien et al.,
2010) is required to estimate the annual FFD. Table 3 compares
the prediction accuracy and computational efficiency of the differ-
ent methods.

5. Discussions
5.1. Comparing the hybrid CE approach against existing approaches

The synthetic case study demonstrated that the hybrid-CE
method outperforms the traditional DS and AMX]JP event-based
methods in terms of prediction accuracy. For the DS method, the
ARI neutrality assumption and the use of a fixed representative
SM value lead to significant under-prediction (13-46% for the dry
case and 2.3-17% for the wet case on average) of the annual FFD.
This under-estimation is due to a combination of assuming a fixed
value of the SM and the non-linear increase in event runoff re-
sponse when the SM increases. Although in practical applications
it is likely that the negative bias is compensated by low biased de-
sign values of losses (high soil moisture) and possibly high biased
temporal patterns of rainfall, these results should sound a warning
for flood engineers who use DS approaches.

For the AMXJP method, the use of the SM distribution instead of
a single value resulted in improved performance relative to the DS
approach, but with a lower predictive accuracy and higher predic-
tive uncertainty than provided by the hybrid-CE method (see
Figs. 6, 7, 9 and 10). Another significant concern with the AMXJP
method is that it relies on the compensation of errors arising from
the use of an arbitrarily assumed SM distribution combined
with the annual maximum rainfall distribution to provide good
predictive performance. In the simplified synthetic case study this
produced reasonable performance. However, whether this is true,
in a more realistic case study, using a more realistic rainfall and
RR model is an open question. A more realistic rainfall model
would produce subdaily rainfall predictions, taking into account
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Fig. 10. Comparison of NRMSE between DS and hybrid-CE methods (DS-HCE),
AMX]JP and hybrid-CE methods (AMXJP-HCE) for different record lengths of the wet
case.

seasonally varying wet and dry spell durations and rainfall intensi-
ties (e.g. the DRIP model of Heneker et al. (2001)) and also
inter-annual and multi-decadal variability (e.g. CIMSS approach
of Henley et al. (2011)). A more realistic RR model would provide
predictions of the subdaily flow, taking into account the non-linear
spatially varying catchment processes of infiltration and soil mois-
ture to generate baseflow, interflow and surface flow, which at any
time can contribute to the flood peak (e.g. TOPKAPI, Vischel et al.,
2008). Given these complexities it is unclear that assuming an
arbitrary SM distribution based on a POT series of the rainfall
(see Section 3.5.1) would provide reliable predictive performance
across a large range of catchment and climate conditions. In
contrast, the hybrid-CE is conceptually sounder because it uses
the rainfall and SM distributions of the causative events that
produce the streamflow events to provide efficient and reliable
estimates of the annual FFD.

As mentioned in the introduction, CS has the greatest potential
to provide reliable estimates of the FFD for both current and chan-
ged climate scenarios, but is the most computationally expensive
method, particularly as RR models are likely to become complex
in the future (e.g. TOPKAPI, Hydrogeosphere). The hybrid-CE ap-
proach is approximately 100-1000 times faster than the CS ap-
proach. Though the hybrid-CE approach does require some
additional calculations related to the EINEE and POT methods,
the additional computational time of these is minor compared to
the computational efficiency resulting from a 100 to 1000 times
reduction in the runtime of a complicated distributed rainfall-run-
off model. This would further improve if parallel computing was
utilised, since event based approaches are far easier to parallelise
than a single long run of CS.

Given the conceptually sounder approach of using causative
events and the improved predictive accuracy compared with exist-
ing EB approaches, and the vastly increased computational effi-
ciency compared with the CS approach, the hybrid-CE approach
ranks ahead of the other approaches for estimating the annual
FFD. However, there is still significant work required to further de-
velop the hybrid-CE approach in order to provide the practically rel-
evant estimates of floods in more realistic case-study catchments.

5.2. Future development of the hybrid-CE method
The advantages of the hybrid-CE method were demonstrated in

this paper using a simplified synthetic case study where the
extreme daily flow volumes were estimated. Future research will
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Table 3
Comparison of the performance of different methods.

Method Relative computation time Predictive performance

DS 1 Significant bias, accuracy worse than HCE 85-90% of the time

AMXJP 100 Large prediction uncertainties, accuracy worse than HCE 55-70%
of the time reliability based on arbitrary assumptions

cs 10%-10° Minimal bias, least uncertainty

HCE 100" Small bias

*

Long enough to manage the sampling error to acceptable level.
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Fig. 11. Illustration of the gridding procedure for the first two flow values. Black area indicates the grid points at which the RR model is evaluated and blue area the grid
points that are unnecessary to be checked. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

extend the hybrid-CE method to provide flood predictions for more
realistic practical applications. Of primary interest is estimating
the instantaneous peak flood rate instead of the daily flow volume.
As mentioned in the previous section, this will require using a
more realistic subdaily rainfall model, that takes into account spa-
tially and temporally varying rainfall characteristics and a RR mod-
el that captures spatial variability of catchment properties and
runoff-routing at the subdaily time steps. The EB component of
the hybrid-CE model must be run for the entire event duration,
as opposed to a single time step. As the current AMXJP method
(Nathan et al., 2003), already takes into account several of these
factors (seasonality, event duration modelling, temporal rainfall
patterns) these existing techniques will be incorporated into the
hybrid-CE approach, tested and refined as necessary. These future
extensions will enable the hybrid-CE approach to provide more
realistic predictions for practical applications.

One of the major assumptions of all the derived flood frequency
methods is the ability of the rainfall model and RR model to prop-
erly capture the dominant physical processes which produce ex-
treme flood events. Inherent in the development of any
environmental model is the predictive uncertainty produced by
data errors and model structural uncertainty (refer to Thyer et al.,
2009 and Renard et al., 2010 for further discussions). These predic-
tion errors can be incorporated into the hybrid-CE approach, by
modifying Eq. (1) to be probabilistic rather than deterministic. Note
the challenge is how to specify this probabilistic description given
the complex, heteroscedastic and autocorrelated errors in hydro-
logical model predictions. Research is ongoing on developing robust
approaches to handle these errors, see for example Schoups and
Vrugt (2010) and enhancements proposed by Evin et al. (2013).

6. Conclusions

This paper has introduced a new hybrid causative event method
for providing an efficient and robust estimation of annual flood

frequency distribution. The method uses a short continuous simu-
lation of the rainfall-runoff process to provide inputs to an event-
based approach for estimating the distribution of streamflow
events at the time scale of interest. The peak over threshold meth-
od is used to convert this distribution to the annual frequency dis-
tribution. It successfully combines the accuracy of continuous
simulation method with the efficiency of event-based methods. It
takes into account the joint probability nature of the rainfall-runoff
process, which avoids the potential for predictive bias in the
widely adopted design storm approach. The use of causative events
provides a conceptually sounder approach than the AMXJP method
by avoiding reliance on arbitrary assumptions about relevant soil
moisture distribution and compensatory errors. Significantly, it re-
duces computational demand compared with a long continuous
simulation run of the rainfall-runoff model. The study reported
here demonstrated the advantages (more efficient and reliable pre-
dictions) of the hybrid causative event approach over existing ap-
proaches using a simplified case study which estimated extreme
daily flow volumes. Future work will extend the hybrid causative
event approach to more realistic practical applications which esti-
mate extreme instantaneous peak flows, taking into account the
spatially and temporally varying characteristics of the rainfall
and rainfall-runoff processes.

Appendix A. Efficient numerical integration for extreme events
The procedure of the ENIEE method is outlined as follows:

1. The range of the streamflow Q values of interest is discre-
tised into m number of intervals. The mid points g, of these
intervals are extracted.

2. The ranges of the rainfall depth R and soil moisture amount S
that are causative to the streamflows of interest are discre-
tised into n intervals with increments of Ar and As, respec-
tively. The mid points r; and s; are extracted.



J. Li et al./Journal of Hydrology 510 (2014) 412-423 423

3. The outmost loop starts from the highest value of Q, namely,
q,. For q,, the inner loop also starts from the biggest value of
R, i.e., rq. 1y is combined with every possible S value s; in the
innermost loop to produce a streamflow using the RR model.

4. The innermost loop also begins by first starting at the high-
est value s; and search along the S values, until the smallest
streamflow which is greater than g, is found. The innermost
loop is terminated at this point and the corresponding s;
value is recorded and denoted as s¥'".

5. The R loop continues to the next value r, and the terminat-
ing s is recorded likewise.

6. Step 5 moves onto the lower end of the R range until the
smallest R value which contributes to a streamflow that is
greater than q,. The loop of R is terminated and this R value
is recorded and denoted as r¥'. Any R value that is smaller
than r{* will not produce a streamflow that is greater than
g, even it is combined with the biggest S value s;.

7. Then 3 set of the recorded S values Sy= (s{""',s{"",
...,s;"rT ) corresponding to all the checked R values, i.e.,
r1,72,..., ¥ is constructed.

8. The exceedance probability of g, is calculated using Eq. (3)
for every checked pair of (ry,s;).

9. The Q loop moves onto q,. For each r; value, steps 4-8 are
repeated, except that the starting point of the S loop is signi-
fied by the previously recorded s7'"" and a new ending value
sP" for each r; is recorded to replace this entry in Sy set for
the next Q value to be checked.

10. As this procedure moves beyond the previously recorded rf',
the loop of S starts from the very beginning, i.e., s;. The R
loop continues until the smallest R value r# that contributes
to g, as described, in step 5. Thus the set Sy is updated as
(st stz T

11. The exceedance probability of g, is calculated using Eq. (3)
for all the checked combinations of R and S values in this
run and added by the exceedance probability of g, calcu-
lated before. As g, is less than q,, the part of the probability
exceeding g, does not need to be recalculated for g,.

12. This procedure repeats for the rest of the Q values under
study.

Fig. 11 illustrates this procedure. As one can see, as the evalua-
tion moves onto the lower end of Q range, the computation accel-
erates as all the calculations done for the previous Q values can be
used.
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