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Abstract 13 

Wetlands provide a vital resource to ecosystem services and associated rural 14 

livelihoods but their extent, geomorphological heterogeneity and flat topography 15 

make the representation of their hydrological functioning complex. A semi automated 16 

method exploiting 526 MODIS (Moderate Resolution Imaging Spectroradiometer) 8-17 

day 500 m resolution images was developed to study the spatial and temporal 18 

dynamics of the annual flood across the Niger Inner Delta over the period 2000 – 19 

2011. A composite band ratio index exploiting the Modified Normalised Difference 20 

Water Index (MNDWI) and Normalised Difference Moisture Index (NDMI) with 21 

fixed thresholds provided the most accurate detection of flooded areas out of six 22 

commonly used band ratio indices. K-means classified Landsat images were used to 23 

calibrate the thresholds. Estimated flooded surface areas were evaluated against 24 

additional classified Landsat images, previous studies and field stage data for a range 25 

of hydrological units: river stretches, lakes, floodplains and irrigated areas. This 26 

method illustrated how large amounts of MODIS images may be exploited to monitor 27 

flood dynamics with adequate spatial and temporal resolution and good accuracy, 28 

except during the flood rise due to cloud presence. Previous correlations between flow 29 

levels and flooded areas were refined to account for the hysteresis as the flood recedes 30 

and for the varying amplitude of the flood. Peak flooded areas varied between 31 

10 300 km² and 20 000 km², resulting in evaporation losses ranging between 12 km3 32 

and 21 km3. Direct precipitation assessed over flooded areas refined the wetland’s 33 

water balance and infiltration estimates. The knowledge gained on the timing, 34 



  

3 

duration and extent of the flood across the wetland and in lakes, floodplains and 35 

irrigated plots may assist farmers in agricultural water management. Furthermore 36 

insights provided on the wetland’s flood dynamics may be used to develop and 37 

calibrate a hydraulic model of the flood in the Niger Inner Delta.  38 

Keywords 39 

Remote sensing; Wetland; MODIS; Flood dynamics; Niger Inner Delta; Water 40 

balance. 41 

42 
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1. Introduction 43 

In semi-arid regions, the annual flooding of large alluvial plains provides a vital 44 

resource to many ecosystem services, including agriculture, livestock, groundwater 45 

recharge and biodiversity. The extent, heterogeneity and flat topography of these 46 

wetlands however prevent field surveys and hydrological monitoring networks from 47 

providing a detailed representation of the propagation and characteristics of the flood 48 

across the floodplain. Remote sensing provides a useful tool to observe and 49 

understand the spatial and temporal dynamic of floods. Synthetic Aperture Radar 50 

(SAR) and optical images have been applied with varying precision in the study of 51 

several floodplains (Prigent et al., 2001), such as the Okavango delta (Gumbricht et 52 

al., 2004; Wolski and Murray-Hudson, 2008), the Mekong (Sakamoto et al., 2007), 53 

the Tana (Leauthaud et al., 2013) and the Niger Inner Delta (Aires et al., 2014; 54 

Crétaux et al., 2011; Mariko, 2003; Pedinotti et al., 2012; Seiler et al., 2009; Zwarts et 55 

al., 2005), as well as on large lakes and rivercourses (Alsdorf et al., 2007; Qi et al., 56 

2009; Yésou et al., 2009), and smaller water bodies (Coste, 1998; Gardelle et al., 57 

2009; Haas et al., 2009; Lacaux et al., 2007; Liebe et al., 2005; Soti et al., 2010). 58 

Though SAR images are not disturbed by cloud cover, they remain very sensitive to 59 

water surface effects resulting from wind and currents, which impede water 60 

discrimination. Conversely, optical images are highly affected by cloud presence but 61 

are less sensitive to surface properties and are therefore suited to delineating water 62 

bodies in semi-arid areas with low annual cloud cover. However, opportunities 63 

provided by continued improvements in the spatial and temporal resolution of remote 64 
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sensors and in image treatment and analysis must be further assessed and validated 65 

against field data. 66 

The Inner Delta of the Niger River situated in central Mali, West Africa is a large 67 

floodplain covering four million hectares and supporting over one million herders, 68 

fishermen and farmers (De Noray, 2003). Despite available global digital elevation 69 

models (Shuttle Radar Topography Mission, Advanced Spaceborne Thermal Emission 70 

and Reflection Radiometer), and extensive field surveys carried out in the early 71 

1980s, the knowledge about the floodplain topography remains insufficient to 72 

correctly model the propagation of the flood (Kuper et al., 2003; Neal et al., 2012). 73 

Detailed information on the spatial and temporal dynamic of the annual flood is of 74 

notable interest to stakeholders, considering the established correlations between the 75 

flood levels and the associated ecosystem services, including fish, fodder and crop 76 

production (Liersch et al., 2012, Morand et al., 2012, Zwarts et al., 2005). Early 77 

attempts by Olivry (1995) estimated the variations in the flooded surface areas 78 

through a water balance, exploiting the proportionality between flooded areas and 79 

total evaporation losses, but focussed on the Niger Inner Delta (NID) as a single 80 

entity. Similarly, a Mike Basin model of the Niger River was developed by DHI but 81 

considered the delta as a single reservoir. Kuper et al. (2003) modeled the flood based 82 

upon 109 hydrological entities, using a simplified topography of the floodplain and 83 

river channels. The objective was to develop an integrated model of the wetland 84 

ecosystem services and explore management options with stakeholders but did not 85 

seek a physical representation of flood processes. To develop a finer and spatially 86 
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explicit model of the delta, attempts have relied on agro-ecological models or remote 87 

sensing. Similarly to Cissé & Gosseye (1990), Marie (2000) attempted to use the fine 88 

knowledge of the vegetation dynamics in the southern part of the Inner Delta to 89 

develop a statistical relationship between the stage at Mopti and the types of 90 

vegetation flooded. Knowing the extent of each species over 22 000 km² and which 91 

vegetation classes are flooded for each stage height, he estimated the corresponding 92 

flooded surface area. It could not take topographic effects into account, nor the delay 93 

between the flood in the upstream and downstream parts of the NID but provided an 94 

estimate of flooded surface areas as well as information on associated ecosystem 95 

dynamics. The Carima 1D model with flood storage cells (SOGREAH, 1985) 96 

represented flow down the main river channel and overflow into longitudinal plots, 97 

but lacked data to validate flood dynamics in the floodplain and operated at a low 98 

spatial resolution (20 km). 99 

Recent studies using optical remote sensing on the NID provided essential 100 

information on the scale of the flood but were limited in the number of images used 101 

during the flood rise or decrease, notably due to image availability, cost and cloud 102 

cover. Zwarts et al. (2005) used Landsat images of 30 m resolution and an algorithm 103 

based on mid infrared reflectance to detect flooded areas. The method was developed 104 

on 24 images spanning 8 years of the late 1980s and the early 2000 to provide a 105 

spatially explicit model of the flooded areas for the varying dates and stage heights. 106 

Mariko (2003) used 1 km National Oceanic and Atmospheric Administration 107 

Advanced Very High Resolution Radiometer (NOAA AVHRR) satellite images over 108 
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1990-2000 and employed a Full Colour Composite of Normalised Difference 109 

Vegetation Index (NDVI), brillance index and a personal index based on near infrared 110 

to detect flooded areas. Seiler et al. (2009) later used the Gray Level Dependence 111 

Method (GLDM) on ENVISAT Advanced Synthetic Aperture Radar (ASAR) 30 m 112 

images combined with Normalised Difference Water Index (NDWI) on Advanced 113 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to study 114 

the flood over two dates. 115 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, which gather 116 

daily images at 500 m resolution, open exciting prospects to follow the variations of 117 

the flood in wetlands with increased detail (Aires et al., 2014; Crétaux et al., 2011). 118 

However, is the quality, accuracy and resolution of remotely estimated flooded areas 119 

sufficient to correctly represent flood dynamics? At what temporal and spatial scales? 120 

How can the insights provided by this wealth of freely available spatial information be 121 

used in hydrology? The objective of this paper is to focus on these questions by 122 

developing a semi-automated method to monitor the progress of the flood in a large 123 

wetland exploiting large amounts of MODIS satellite images. The method was 124 

applied over a 11-year period in the Niger Inner Delta and confronted against 125 

extensive hydrological field data. Results are used to highlight how the increased 126 

temporal and spatial resolution can improve the information available to stakeholders 127 

on the dynamics of the flood across the whole delta and in selected finer hydrological 128 

features. This knowledge is applied to refine the understanding of essential 129 

hydrological processes in the delta, notably evaporation and infiltration estimates and 130 
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to provide 2D information on flood processes on which to build and calibrate future 131 

hydraulic models. 132 

2. Study area and data  133 

2.1. The Niger Inner Delta 134 

The Niger River is the third longest watercourse in Africa after the Nile and Congo 135 

rivers. It is 4 200 km long and flows northeast from the mountains in Guinea and 136 

Sierra Leone towards the vast floodplain of the Inner Delta and the Sahara, before 137 

heading South East towards Nigeria and the Gulf of Guinea in the Atlantic Ocean. 138 

Situated in Mali in West Africa (Fig. 1), the Niger Inner Delta, also known as the 139 

Inner Niger Delta or the Niger Inland Delta, is a 40 000 km² floodplain, roughly 100 140 

km wide and 400 km long. The NID is extremely flat, and the altitude of the river bed 141 

decreases by less than 10 m over the 400 km which separate the entry and exit of the 142 

delta. It is composed of a multitude of lakes, streams and marshes of varying 143 

morphology and two main parts can be distinguished: 1) the upstream delta from Ke 144 

Macina to Lake Debo, characterised by large independant channels in the dry season, 145 

which become totally flooded during the wet season and 2) the downstream delta from 146 

Lake Debo to Koryoumé composed of multiple small lakes and ponds separated by 147 

East-West oriented sand dunes (Brunet-Moret et al., 1986). Due to its significant 148 

biodiversity, the Inner Delta is a wetland designated under the 1971 Ramsar 149 

Convention. 150 
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The Niger Inner Delta is situated in a semi-arid region where mean annual rainfall 151 

varies locally between 350 mm in the North and 700 mm in the South (Mahé et al., 152 

2009), though this is subject to strong interannual variations. The River is therefore 153 

vital to the livelihoods of the riparian population,whose extensive agricultural 154 

practices evolved to harness the benefits of the flood. These consist primarily of 155 

fishing, floating rice (Oryza glaberrima), rainfed millet on the fringes of the flooded 156 

areas, as well as bourgou (Echinocloa stagnina) and other fodder for which livestock 157 

herders undertake large seasonal migrations (Ogilvie et al., 2010). Their production 158 

depends on the characteristics (timing, duration, depth, extent) of the annual flood 159 

highlighting the importance of assessing spatialised intra-annual and inter-annual 160 

variations in the flood dynamic. Hydrological extremes such as those caused by the 161 

drought in the 1980s notably led many perennial and temporary lakes to dry out, 162 

resulting in famine amongst riparian populations. The development of several dams 163 

and weirs upstream of the delta including Markala (1947), Sélingué (1981), Talo 164 

(2007), and potentially Djenné and Fomi, also affect the natural flow regime and 165 

reduce the amplitude of the annual flood (Marie, 2000; Zwarts et al., 2005). 166 

The hydrological year for the Niger River and the Inner Delta is defined according to 167 

the regional unimodal rainfall pattern and runs from May to the following April. The 168 

rainy season peaks between the months of June and September, but because the flood 169 

is generated by rainfall 500 km upstream rather than locally, peak flow values occur 170 

between the months of September and December due to propagation lag times.  171 

INSERT FIGURE 1 AROUND HERE 172 
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2.2. Remote-sensing optical data 173 

MODIS sensors, aboard the NASA Aqua and Terra satellites, provide multispectral 174 

medium-resolution satellite imagery, suitable for studying large hydrological systems 175 

superior to 10 000 km² (Sakamoto et al., 2007). As moderate resolution sensors, they 176 

benefit from a large swath and shorter recurrence periods, allowing them to capture 177 

daily images. This temporal resolution is relevant for monitoring floods that have 178 

slow dynamics, such as the annual flooding controlled by the monsoon of the 179 

floodplain of the central Niger River and the lower Mekong River. Images are 180 

available since 2000 from the Terra satellite, while image acquisition for the Aqua 181 

satellite began two years later. The sensor acquires data at 500 m or higher spatial 182 

resolution from seven spectral bands (out of the 36 bands it detects) from the visible 183 

to the mid infrared spectrum, allowing the use of many classical composite band ratio 184 

indices. Though optical remote sensing is strongly affected by clouds and other 185 

atmospheric disturbances, which interfere with reflectance values, MODIS images can 186 

be used in the NID because most of the flood occurs when cloud cover is low. Indeed 187 

the flood is mainly caused by precipitation in the upper catchment and the flood peaks 188 

a few weeks after the rainy season. 189 

The fifth version of the “MOD09A1” surface reflectance data set with an 8-day 190 

temporal resolution and a spatial resolution of approximately 500 m were used in this 191 

study. These 8-day composite images provided by NASA compile in one image the 192 

best signal observed for each pixel over the following 8-day period and help reduce 193 
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errors due to clouds, aerosols or viewing angle. The images provided include 194 

radiometric corrections notably against diffusion and absorption by atmospheric gases 195 

and aerosols and geometric corrections. These images limit the risk of prolonged 196 

periods without a suitable image for the whole area. On the downside, the lag between 197 

two pixels can be anywhere between 1 and 15 days. MODIS images are freely 198 

distributed and rapidly available, and a single image covers the entire Inner Delta, 199 

avoiding the need for mosaicking pre-treatments.  200 

Images were ordered via the Reverb interface from the Land Processes Distributed 201 

Active Archive Center (LP DAAC), which is a part of NASA’s Earth Observing 202 

System (EOS). A total of 526 images covering the period between July 2000 and 203 

December 2011 were downloaded and treated. The method was developed on images 204 

for the hydrologic year running from May 2001 to April 2002, and from May 2008 to 205 

April 2009. Subsets of about 800 km in longitude by 480 km in latitude centred on the 206 

NID were extracted in GeoTIFF file format from the MODIS HDR files and projected 207 

to the Universal Transverse Mercator (UTM) 30° North coordinate system using the 208 

MODIS Reprojection Tool Batch programme (Dwyer and Schmidt, 2006). 209 

Four sets of images provided by the Enhanced Thematic Mapper+ sensor of the 210 

Landsat 7 satellite were also acquired for different phases of the 2001-2002 and 2008-211 

2009 flood to calibrate and evaluate the method. These images possess a spatial 212 

resolution of 30 m and data from six spectral bands from the visible to the mid 213 

infrared spectrum. Care was taken to select images with low cloud cover. Due to the 214 



  

12 

higher spatial resolution, the coverage is lower, and two images were needed and 215 

mosaicked to cover the Inner Delta. 216 

2.3. Hydro-meteorological data 217 

The Niger River due to its regional and transboundary importance benefits from a 218 

significant hydrological observation network, managed by Mali’s Direction Nationale 219 

de l’Hydraulique. There are 43 flow gauging stations in the Inner Delta with data 220 

ranging back to 1923, though time series are incomplete. As historical stations are 221 

principally located on the main stream channels, we installed in 2008 eight additional 222 

gauging stations (automatic pressure transducers and manually read vertical staff 223 

gauges) in the upstream part of the Inner Delta to record water stage on the Diaka 224 

tributary and in the floodplain. Stage data from irrigated rice plots around Mopti were 225 

also acquired from the Office du Riz Mopti (ORM). Furthermore, daily rainfall data 226 

from 5 gauges in the DIN over the period 2000-2009 was acquired through Mali’s 227 

Direction Nationale de la Météorologie. Field data was preferred over remotely 228 

acquired datasets such as Tropical Rainfall Measuring Mission (TRMM) considering 229 

their greater accuracy at this temporal and spatial scale. Nicholson et al. 2003 showed 230 

that the correlation between TRMM rainfall data and field data in West Africa was 231 

excellent at the seasonal scale for pixels of 2.5° spatial resolution. At the monthly, 1° 232 

scale needed for this study considering the spatial rainfall variability, the error was 233 

greater than 2 mm/day in august over half the grid cells tested, which corresponds to 234 

40% of the mean august rainfall over 2000-2009. Monthly potential 235 
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evapotranspiration (PET) values for 2008-2009 extracted from Climate Research Unit 236 

(CRU) 0.5° spatial resolution products (Harris et al., 2014) as we only disposed of 237 

field data from two stations (Mopti and Tombouctou). Satellite derived PET datasets 238 

(Bastiaanssen et al., 1998; Weedon et al., 2011) were not used as they typically 239 

require additional meteorological data and provide greater benefits when studying 240 

actual evaporation over different land surfaces. The CRU PET values are calculated 241 

from half-degree values of mean temperature, maximum and minimum temperature, 242 

vapour pressure and cloud cover and mean monthly wind values. The FAO grass 243 

reference evapotranspiration equation (Ekström et al., 2007), a variant of the Penman 244 

Monteith formula is used. Associated uncertainties stem from the station data, the 245 

interpolation technique and the model used. When compared to available station data 246 

for Mopti and Tombouctou over 2008-2009, we found CRU PET values to be 12% 247 

lower in both cases. 248 

3. Method 249 

 The method relied on the assessment of flooded areas using a composite MNDWI 250 

and NDMI index on MODIS images, shown below to provide the best results out of 6 251 

indices. Their performance and the optimal thresholds were assessed using confusion 252 

matrices against k-means classified Landsat images. An IDL programme combined 253 

areas detected by both indices for the 526 images over the period 2001-2011 and 254 

provided spatial and quantitative assessments of the flooded areas for each 8 day 255 

MODIS image. Based on the analysis of cloud interference on MODIS images 256 
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notably during the flood rise, time series of the flooded areas were smoothed. Results 257 

assessed the coherence of the remotely sensed flood dynamics across the wetland and 258 

within selected hydrological features such as lakes and floodplains, based on field 259 

instrumentation. Results were compared with previous studies and known correlations 260 

between Mopti stage data and flooded areas were refined to account for the varying 261 

amplitude of the flood and the hysteresis observed during the flood decline. Finally, 262 

wider applications in agricultural water management and hydrology namely to refine 263 

the water balance of the wetland were discussed and illustrated.  264 

3.1. Detection of cloud interference 265 

Though MODIS 8 day composite images (MOD09A1) seek to use the clearest pixel 266 

over an 8-day period, vapour clouds remained present in the downloaded images. As 267 

clouds reflect and absorb energy, their presence introduces errors in the reflectance 268 

values observed by satellite sensors, which can lead to difficulties and notably 269 

overestimation of flooded areas. Cloud information is contained in the Quality 270 

Assurance (QA) bits of MODIS scientific data sets (SDS). These SDS files are 271 

enclosed within the MODIS HDF files provided by NASA. A batch process of the 272 

MODIS Reprojection Tool (MRT) was used to first extract SDS files from the 526 273 

HDF MODIS files, crop and reproject them to WGS 84 Universal Transverse 274 

Mercator 30°N. A second tool (Roy et al., 2002) provided by the Land Data 275 

Operational Products Evaluation (LDOPE) facility responsible for Quality Assurance 276 

issues relating to MODIS images, was used to extract and display the QA bits from 277 
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MODIS scientific data sets (SDS), and allow detection and quantification of cloud 278 

presence. An IDL programme then computed for each image the percentage of cloudy 279 

and mixed (i.e. non-clear) pixels over the NID area and generated a corresponding 280 

Geotiff file locating the clouds. 281 

The Geotiff images and statistical results on the percentage of cloudy pixels per image 282 

showed that clouds covered on average 10% of the NID area in the 2000-2011 283 

MODIS images. Between 26 and 35 images out of 46 images per year contained less 284 

than 10% clouds. Between September and April, cloud presence remained low (3.9% 285 

on average) but during the months of May-August (Fig. 2), the cloud presence rose 286 

considerably to 23% of the NID area, disturbing most years the monitoring of the rise 287 

of the flood. Excluding images with more than 10% or 15% clouds was seen to 288 

improve the coherence of the flood time series, however to maintain sufficient images 289 

to follow the flood through all phases whilst reducing errors due to clouds, time series 290 

of flooded areas were smoothed using exploratory data analysis methods (Tukey, 291 

1977). Shown to be efficient in removing outliers, these methods assume that time 292 

series vary smoothly over time and seek to remove the rough component, using 293 

repeated applications of a combination of running median smoothers on short 294 

subsequences and full sequences, and Hanning linear smoothers. As a result of regular 295 

cloud presence during the flood rise, remotely sensed flooded areas for this phase may 296 

be overestimated. In 2001-2002 and 2008-2009 the reduced cloud presence allowed a 297 

more accurate detection of the flood rise. 298 

INSERT FIGURE 2 AROUND HERE 299 
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3.2. Discrimination of flooded areas in MODIS optical images 300 

3.2.1. Remote sensing principles 301 

Remote sensing of water bodies relies on the principle that land surfaces reflect 302 

energy differently according to their physical properties. In optical remote sensing, the 303 

reflectance of water is composed of its surface reflectance, volume reflectance and 304 

bottom reflectance, though surface reflectance is the most significant (Mather, 1999) 305 

whatever the wavelength (Mobley and Mobley, 1994). Shorter wavelenghts in the 306 

visible part of the electro-magnetic sprectrum are highly reflected by the surface of 307 

water bodies, while longer wavelengths, notably in the infrared are strongly absorbed. 308 

By contrast, soil and healthy vegetation strongly reflect energy in the near infrared 309 

(NIR) spectrum and vegetation has a low reflectance in the red spectrum. In addition 310 

reflectance in mid infrared (MIR) wavelengths is known to be sensitive to vegetation 311 

water content. As a result of these properties, reflectance values in the red, NIR and 312 

MIR spectra are particularly suited to distinguishing water bodies from vegetation and 313 

bare soils (Annor et al., 2009; Liebe et al., 2005; Toya et al., 2002). Longer 314 

wavelengths (bands 5, 6 and 7 in MODIS) are also less perturbed by the reflectance 315 

generated by sediments and bottom reflectance in shallow waters (Li et al., 2003). 316 

Variations in the reflectance values observed in specific spectral bands can therefore 317 

be used to distinguish types of land cover by thresholding reflectance values on a 318 

single band (here red, NIR or MIR) (Frazier and Page, 2000; Mialhe et al., 2008). A 319 

classical way to identify and delineate water bodies on multispectral satellite images 320 

is to define normalised band ratio indices using at least two bands. These improve 321 
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detection accuracy as reflectance values are normalised across the image, reducing the 322 

influence of localised distortion effects. Likewise, normalised indices also reduce the 323 

effect of distorsions over consecutive images and allow the same threshold to be 324 

applied at several dates thereby facilitating automation of the procedure. Finally they 325 

are better than single bands at taking into account turbid water or submerged 326 

vegetation, for which the reflectance profiles are less characteristic. A widely used 327 

index is the NDVI (cf. equation 1) computed from the near infrared and red bands and 328 

proposed by Rouse et al. (1973) to detect vegetation in images. This index can be used 329 

to detect water pixels (Mohamed et al., 2004), where it takes on negative values. 330 

Several other indices exploiting the sharp contrast between the reflectance of water in 331 

the visible and infrared sprectra have been proposed to detect water, notably the 332 

Normalized Difference Water Index (NDWI, cf. equation 2), proposed by McFeeters 333 

(1996) and calculated from the green and near infrared bands. To enhance the 334 

capacity of the NDWI to distinguish water pixels, Xu (2006) proposed the use of mid 335 

infrared instead of near infrared and called this new index the Modified Normalized 336 

Difference Water Index (MNDWI, cf. equation 3). Lacaux et al. (2007) used the 337 

opposite of this index to identify temporal ponds in Senegal, and referred to it as the 338 

Normalized Difference Pond Index (NDPI, cf. equation 4). These authors also used 339 

the Normalized Difference Turbidity Index (NDTI, cf. equation 5) computed from the 340 

red and green bands, to measure the water turbidity in ponds in accordance with the 341 

Beer-Lambert law (Mobley and Mobley, 1994). Another index using the near and mid 342 

infrared spectral bands was proposed intially by Hardisky et al. (1983) under the name 343 

of Normalized Difference Infrared Index. It was subsequently proposed by Xiao et al. 344 
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(2005) under the name of Land Surface Water Index (LSWI) and confusingly by Gao 345 

(1996) under the name of NDWI and finally by Xu (2006) as the Normalized 346 

Difference Moisture Index (NDMI, cf. equation 6). It was initially developed to detect 347 

the vegetation water content and by extension can be applied to detect partially 348 

submerged vegetation (Xiao et al., 2005). In order to discriminate all forms of water 349 

(open water, shallow waters, submerged vegetation), the strengths of each band and 350 

index can be combined (Crétaux et al., 2011). 351 

The band ratio indices referred to in this paper are defined with MODIS spectral 352 

bands as:  353 
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where B1 contains reflectances from 620 nm to 670 nm (red), B2 from 841 nm to 876 360 

nm (near infrared), B4 from 545 nm to 565 nm (green), and B6 from 1628 nm to 1652 361 

nm (mid infrared). 362 

3.2.2. Comparing and calibrating band ratio indices to detect flooded areas 363 

An unsupervised classification in 15 classes was first performed on the six spectral 364 

bands of four Landsat images (October 2001, April 2002, October 2008 and April 365 

2009) using the K-means clustering method. This iterative algorithm seeks to classify 366 

pixels into clusters and minimise the sum of the squared distance in the spectral space 367 

between each pixel and the assigned cluster center. The 15 clusters were reduced to 4 368 

classes (open water, submerged vegetation, dry soils and dry vegetation) based on 369 

existing land use maps, knowledge of the area, and the spectral profiles of each 370 

cluster. Open water and submerged vegetation classes were then agregated to 371 

“flooded areas”, and dry soils and dry vegetation  were grouped into “non-flooded 372 

areas” to produce  a binary image. The unsupervised clustering approach, which 373 

provides excellent results (Jain, 2009), could be carried out on the four Landsat 374 

images but as it is non parametric and image dependent, we required a fast, repeatable 375 

method based on objective parameters such as band ratio thresholds for the 526 376 

MODIS images. 377 

The six band ratio indices discussed in 3.2.1 (NDVI, NDWI, MNDWI, NDTI, NDMI, 378 

NDPI) were computed on MODIS images to compare their ability against concurrent 379 

classified Landsat images to discriminate flooded areas when water levels were high 380 

(October) and low (April). A programme in the R language was used to calibrate the 381 
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thresholds of the 6 band ratio indices by producing confusion matrices between each 382 

band ratio computed on MODIS images and two classified Landsat images for 383 

varying threshold values. The indices and associated thresholds which resulted in the 384 

lowest errors of omission and errors of commission were determined accordingly. The 385 

method’s consistency was assessed with confusion matrices against two additional 386 

classified Landsat images. 387 

3.2.3. Automated flood detection 388 

A programme was written in the IDL© language to automate the detection of flooded 389 

areas on the 526 MODIS images, chosen to monitor the annual and interannual 390 

variations of the flood. The IDL routine automatically computed the chosen 391 

composite MNDWI - NDMI index for each image and applied the thresholds 392 

previously determined to identify the flooded pixels. The IDL programme created 393 

GeoTIFF files of the flooded area for each image and compiled within a table the 394 

percentage of flooded pixels for each 8 day period. A mask was applied to exclude 395 

pixels which are not part of the NID, in order to increase processing speed. 396 

3.3. Comparing remotely sensed flood dynamics with hydrological 397 
field data 398 

Remotely sensed areas for the whole wetland over an 11 year period were compared 399 

with previous estimates and with existing correlations with field stage data (Aires et 400 

al., 2014; Mahé et al., 2011; Zwarts et al., 2005). Interannual variations in the timing, 401 

magnitude and duration of the flood and their consistency with hydrological 402 

observations were then explored. 403 
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A grid based on the hydrological features present in the NID developed for a previous 404 

model of the wetland (SOGREAH, 1985) was also adapted to study flood dynamics in 405 

selected hydrological units. Units were chosen to highlight the heterogeneous flood 406 

processes across the range of hydrological features present in the wetland, i.e. river 407 

channel, floodplain, lake and irrigated area, and according to the location of installed 408 

hydrological field equipment. To smooth out individual spurious pixels resulting from 409 

incorrectly classified binary pixels, large cells agregating information from around 410 

1 000 pixels (i.e. around 200 km²) were delineated centred on hydrological features 411 

(Fig. 1). The programme accepted cells issued from a meshing software (such as 412 

SMS© ems-i) or in shapefile format, and calculated the number of flooded pixels over 413 

time in each hydrological feature. Correlations between remotely sensed flooded areas 414 

and corresponding field data were then studied to confirm the coherence of remotely 415 

sensed flood dynamics within hydrological units. These focussed on 2008-2009, when 416 

the largest sets of hydrological and remote sensing data were available. Gauging 417 

stations were available at the upstream and downstream end of selected features but as 418 

the flood dynamic was homogeneous across each hydrological unit, the gauge with 419 

the most complete time series was used in the analysis. 420 

3.4. Water balance of the wetland 421 

500 m resolution assessments of the flooded surface area at an 8-day timestep 422 

provided by MODIS images were used to assess rainfall and evaporation over the 423 

wetland, and refine its water balance. Daily time series from Ke Macina situated 424 
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upstream on the Niger river were combined with those from Douna gauging station on 425 

the Bani tributary to assess inflows into the wetland. Due to the construction of the 426 

Talo dam on the Bani river in 2005, subsequent time series at Douna were 427 

interpolated from downstream and upstream data. Outflow from the wetland was 428 

estimated at the Koryoumé gauging station downstream. Climatic variables (monthly 429 

0.5° PET and daily rainfall values) were interpolated spatially over the wetland using 430 

Thiessen polygons and converted to the MODIS 8-day timestep. These values were 431 

multiplied by the corresponding MODIS estimated flooded area to assess actual 432 

evaporation from the wetland and direct precipitation into the wetland. The water 433 

budget residual term was then the difference between infiltration from the flooded 434 

areas and effective precipitation over non flooded areas.  435 

For 2008-2009, daily rainfall values were first interpolated over three subsections 436 

(based on isohyets) and monthly spatially explicit PET values for 140 cells (Fig. 15) 437 

were used. These results were compared with results obtained using daily P and 438 

monthly PET values interpolated across the whole wetland, which showed that total P 439 

and PET from the wetland varied by less than 10%. As a result, calculations for the 11 440 

year period used values of P and PET interpolated across the whole wetland. 441 

Sentitivity of the water balance to uncertainties was estimated. 442 
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4. Results and discussion 443 

4.1. Ability of band ratio indices to discriminate flooded areas 444 

Confusion matrices were used to compute pixel classification accuracy between the 445 

thresholded band ratio MODIS images and the k-means classified Landsat images. 446 

The lowest errors of omission and errors of commission were obtained using the 447 

MNDWI, NDMI and NDVI indices (Fig. 3). MODIS classified images showed that 448 

the NDVI detected vegetation correctly in the NID but was less suited to 449 

distinguishing between soils and pure water and between dry and flooded vegetation. 450 

The MNDWI was most suited to the detection of all types of water. It identified the 451 

water bodies and certain parts of flooded vegetation and could be used alone during 452 

periods of deep water. However, as the flood recedes and the areas of flooded 453 

vegetation become proportionnally more important, the vegetation growth led to 454 

difficulties in water detection, and the MNDWI systematically under-estimated water 455 

surfaces. The Inner Delta notably supports large areas of Bourgou (Echinochloa 456 

stagnina) which thrives in water depths up to 4 m and can be submerged during 6 457 

months. The NDMI, which was capable of identifying submerged vegetation but 458 

failed to reliably detect pure water was therefore chosen to complement the MNDWI. 459 

NDTI identified flooded vegetation correctly but was less discriminant between clear 460 

water and bare soils. NDWI was proficient in identifying pure water and parts of the 461 

flooded vegetation. Values for these land uses were also respectively high and very 462 

low, hence no single threshold could be used. 463 
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For the MDNWI, classifying pixels above the threshold of -0.34 as flooded areas 464 

produced the nearest match with the classified Landsat image during high floods 465 

(October 2001, 86% of well classified pixels) and during low floods (April 2002, 88% 466 

of well classified pixels). Incorrectly classified pixels can be explained by the inherent 467 

uncertainties (atmospheric, radiometric) in the measurement of spectral reflectances 468 

and in the classification of flooded vegetation and shallow waters. The variation in the 469 

flooded surface area detected by using a threshold of −0.3 and −0.4 were significative: 470 

during the flood, the difference was about 4 % but in the dry period it reached 23 %. 471 

The second decimal in the threshold thus needed to be taken into acount, contrarily to 472 

what was done in Sakamoto et al. (2007). For the NDMI, pixels above the threshold 473 

value of 0.15 were considered. The areas detected by the two thresholded indices were 474 

then added, i.e. an area that met either condition was identified as flooded, effectively 475 

creating a composite index.  476 

Confusion matrices between MODIS images and two additional Landsat k-means 477 

classified images (October 2008 and April 2009) showed that 85% of pixels were 478 

correctly classified. The result, comparable to 87% of correctly classified pixels on 479 

the 2001-2002 images, confirmed the method’s consistency in detecting flooded 480 

areas, compared to Landsat classifications. 481 

INSERT FIGURE 3 AROUND HERE 482 
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4.2. Flood monitoring at the Inner Delta level 483 

4.2.1. Annual and interannual flood dynamics (2000-2011) 484 

This method, which allows the automated treatment of vast quantity of images, was 485 

applied to 526 MODIS images of the NID covering the period between July 2000 and 486 

December 2011. Over the 11 hydrological years studied, the peak flooded surface area 487 

varied between a maximum flood of 20 000 km² in autumn 2008 and a minimum of 488 

10 300 km² in autumn 2011. The 2000-2011 mean of the maximum flooded surface 489 

area was 16 000 km² and the standard deviation 3 400 km², providing insight into the 490 

significant interannual variability in the extent of the flood. 491 

During the dry season, the flooded surface area receded progressively to a minimum 492 

of 3 800 km² (2000-2011 interannual mean) the following April before increasing 493 

during the month of June and rising rapidly in August. Minimum values, measured 494 

between mid March and mid April using images with less than 10% clouds, varied 495 

between 3 000 km² and 4 000km². Images for the later months were heavily 496 

influenced by cloud presence and could not be reliably used. Furthermore, when water 497 

levels are low and vegetation becomes important, the signal and therefore boundaries 498 

of water, soil and vegetation are noticeably hard to differentiate (Mialhe et al., 2008). 499 

No correlation between the peak and minimum flooded areas over a hydrological year 500 

was found, despite the former influencing the amount of water trapped in lakes and 501 

depressions, partly due to difficulties in estimating flooded areas during the dry 502 

season, and exceptional rainfall in March-April. 503 
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The Mopti gauging station is regularly used to model the annual floods in the Delta 504 

(Mahé et al., 2011; Zwarts et al., 2005), due to its central location where it perceives 505 

flow variations in the Niger river and indirectly the Bani river, a major tributary. 506 

Fluctuations in the total flooded area are indeed known to be driven by changes in 507 

rainfall of the Niger and Bani upper catchments (Mahé et al., 2009). The annual flood 508 

dynamic observed through remote sensing appeared coherent with Mopti flow regime 509 

(Fig. 4), providing confirmation of the method’s ability to correctly represent the 510 

phase of the flood. Interannual variations in the peak flooded areas were also strongly 511 

correlated (R² = 0.93) with the peak monthly flows in October at Mopti confirming 512 

the method’s capacity to represent the variations in the peak amplitude of the flood 513 

(Fig. 5). Peak values were obtained using the maximum value for images between 8 514 

October and 9 November, and manually excluding inconsistent peak values. This 515 

appeared legitimate, considering the prolonged peak flood. The range of values 516 

obtained and their variation according to peak flow in October (Fig. 5) were 517 

consistent with previous remotely sensed estimates (Aires et al., 2014; Mariko, 2003; 518 

Zwarts et al., 2005), though values were moderately superior. The difference in 519 

absolute values reveals the difficulty in assessing flooded surface areas accurately and 520 

may be due to better detection of flooded vegetation areas, with the NDMI, as well as 521 

differences in the delimitation of the wetland boundaries. Furthermore Zwarts et al. 522 

(2005) could not monitor directly the flood progress over a year, but instead relied on 523 

a correlation between 24 Landsat images spread over several years to derive a 524 

correlation between flooded areas and the Akka stage level. Mariko (2003) using 525 
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NOAA AVHRR was limited by the number of suitable images due to clouds and 526 

geometric distorsions. 527 

INSERT FIGURE 4 AROUND HERE 528 

INSERT FIGURE 5 AROUND HERE 529 

4.2.2. Stage-surface area correlations accounting for hysteresis and amplitude 530 

The relationship between stage values at Mopti and the concurrent flooded surface 531 

area across the whole NID was also explored for each image over the 11 years. To 532 

account for the fact that MOD09A1 images are a composition of pixels over the 533 

following 8 days, the corresponding average 8 day stage at Mopti was used. The flood 534 

rise (August-October) and decline (November-April) were differentiated in order to 535 

isolate the hysteresis behaviour described in 4.2.3, which causes flooded areas to 536 

recede much more gradually than they increase during the flood rise. The difference 537 

in the stage - surface area for both phases of the flood is shown in Fig. 6, which also 538 

illustrated how the relationship varies according to the amplitude of the flood. As the 539 

flood recedes, the flooded surface area is indeed determined by the amount of 540 

outerlying disconnected areas which were flooded during the flood peak. 541 

Accordingly, the hysteresis seen in Fig. 6 was most significant for the largest floods. 542 

Previous research suggested this (Mahé et al., 2011; Zwarts et al., 2005), but could not 543 

examine this due to an insufficient amount of images per year. During the flood rise 544 

(Fig. 6) the stage – surface area relationship is also indirectly determined by the 545 

amplitude of the peak flood. Indeed depending on the amplitude, when stage reaches a 546 
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certain value at Mopti, a larger flood wave will have flooded larger areas upstream of 547 

Mopti in a stronger year. Analysis was however limited by the cloud interference 548 

during the flood rise which may have overestimated flooded areas.  549 

INSERT FIGURE 6 AROUND HERE 550 

Due to the regional importance of the flood in the Inner Delta, these relations are of 551 

interest to stakeholders, and have in the past been linked through simple regression 552 

models to variations in upstream river levels (Mahé et al., 2011; Zwarts et al., 2005). 553 

Zwarts (2010) notably estimated from August flow data, the November stage levels at 554 

Mopti and Akka and the corresponding estimated flooded area. Our correlations 555 

improve upon former statistical relationships by distinguishing the amplitude of the 556 

peak flood and increasing the accuracy of estimated surface areas. Fig. 7 can be used 557 

to provide from the peak flow value in October an estimate of the peak flooded area 558 

across the whole wetland and an estimation of the flooded areas as it recedes. Care 559 

must be taken when extrapolating this relationship for floods beyond the range studied 560 

here, i.e. peak floods between 10 000 km² and 20 000 km². Furthermore, simulations 561 

of past or future floods must also account for possible changes in the NID hydraulic 562 

pathways due to dams or land use changes. 563 

INSERT FIGURE 7 AROUND HERE 564 
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4.2.3. Spatial heterogeneity of the annual flood 565 

The treated MODIS images allowed the representation and spatial analysis of the 566 

annual flood’s progress through the NID (Fig. 8) at high spatial (500 m) and temporal 567 

(8 days) resolutions. The significant presence of clouds between May and August 568 

(Fig. 2) prevented an accurate monitoring of the arrival of the flood, except in 2008 as 569 

a result of limited cloud cover. The flood peak and subsequent decrease were 570 

consistently detected every year. These images were then agregated to compute a map 571 

of the duration each pixel remains flooded between August and the following April 572 

(Fig. 9). Combined with numerical estimates of flooded areas in selected hydrological 573 

units (Fig. 10), these maps revealed significant spatial specificities in the flood 574 

dynamic. These occur as a result of the time needed for the flood wave to travel 575 

downstream and of the geomorphological differences encountered as the flood 576 

extends laterally. The hysteresis like behaviour which occurs when water remains 577 

trapped in lakes and agricultural plots, naturally by the riverbanks or intentionally 578 

through a system of manually operated gates, leads to significantly delayed and 579 

prolonged floods. The greater presence of lakes and depressions in the North of the 580 

wetland explains the longer flooding in this area (Mahé et al., 2009), which in 2008-581 

2009 lasted principally between September and January, with a peak delayed until late 582 

November. In the South the flood receded much faster lasting between the months of 583 

August and November, with a peak flood occuring in early October. This marked 584 

delay is in line with former observations (Brunet-Moret et al., 1986) and concurs with 585 

available flow data in the main river channels.  586 



  

30 

Fig. 8 showed that the flood in the South had in fact nearly subsided from evaporation 587 

and flow downstream, when the North became flooded. Conversely, Lake Oro in the 588 

North was still emptying when the upstream part begun to flood again (Figs. 10a and 589 

10d). These spatial differences in the timing and duration of the flood must be 590 

accounted for when modelling the propagation of the flood within the delta, and the 591 

NID can not be represented as a single unit or reservoir with a homogenous and 592 

gradual flood dynamic. Visualising the parts of the wetland flooded during the high 593 

flood in 2008-2009 (Fig. 9) could also lead to defining the contours of a suitable 594 

modelling grid, though a margin for the expanse of the flood in exceptional years 595 

must be included. The spatial heterogeneity observed in the flood duration and timing 596 

could also be used to derive a typology of flood dynamics and help define how cells 597 

can be agregated and the corresponding optimal spatial resolution. 598 

INSERT FIGURE 8 AROUND HERE 599 

INSERT FIGURE 9 AROUND HERE 600 

4.3. Flood monitoring at the hydrological unit level  601 

The percentage of flooded pixels calculated for each MODIS image in selected 602 

hydrological features (Fig. 1) was compared with corresponding available stage data. 603 

In cells along the main riverbed such as Mopti, Ke Macina and Diré (Fig. 10a), the 604 

flooded areas rose and receded in accordance with the relatively sharp and short flood 605 

hydrographs for nearby gauging stations. The high level of correlation is coherent 606 
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with a geometrical stage-surface relationship, and provided partial confirmation of the 607 

ability to use MODIS images to study flood dynamics locally. Where correlations 608 

were good, the equations derived from these relations may be used to monitor water 609 

depths using daily or weekly MODIS images. Fig. 11a shows that the correlation 610 

remained stable over the 11 years, implying that these relations could assist in filling 611 

gaps in data series or extrapolating to years before equipment was in place. 612 

Conversely, past and future stage time series could be used to estimate the flooded 613 

surface area in these cells. 614 

In floodplains (Fig. 10b), the flood dynamic observed remotely was slightly different 615 

to nearby stage measurements, but coherent with geomorphological considerations. 616 

The flood rise was delayed due to the lag before the water in the riverbed overflows 617 

its bank and enters the floodplain. Likewise, as the flood recedes, a hysteresis 618 

phenomenon leads to a slower decrease in flooded areas than stage, due to water 619 

remaining trapped in outer lying floodplains, which gradually dry out through 620 

evaporation, infiltration and water use. This different behaviour as the flood rises and 621 

recedes highlighted in Fig. 11b led to a greater surface area during flood decline than 622 

flood rise for the same stage level at Diondiori. In Lake Oro (Fig. 10d), the flooded 623 

area also only begins to rise when river stage values reach a certain level (Batti, 624 

2001). The connection between the river, where the Tonka gauging station is situated, 625 

and Lake Oro is however also influenced by a flood gate opened between october and 626 

february. Once river levels have risen sufficiently and the gate is opened, flooded 627 

areas increase rapidly. In february, when the lake has filled up, stage value have 628 
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reduced and the gate has been closed, the lake becomes disconnected again from the 629 

river and water levels in the lake reduce from evaporation, infiltration and water use. 630 

Flood gates are reopened the following october. 631 

In irrigated rice plots topographic information enabled the production of a surface-632 

stage relationship to convert MODIS estimated surface areas to estimated stage 633 

values. These showed a very similar trend to stage measurements available at the 634 

entrance of the canal at Diaby (upstream of the casier Mopti Sud), confirming the 635 

accuracy of this method. Estimated stage values for the plots remained marginally 636 

lower which is coherent with the configuration, considering the natural slope present 637 

to convey water to the plots. Fig. 10c shows the plots filling in October and the 638 

gradual decrease from evapotranspiration and infiltration during rice growth until the 639 

end of November, when the sluice gates are opened. Results also reveal the rapid 640 

decrease in flooded area after the sluice gates are opened, when local measurements 641 

have ceased. These examples illustrated insights which can not always be inferred 642 

from nearby stage measurements and the ability of MODIS images to be used for 643 

relatively small areas (60 km²) and over relatively short periods of flood rise and 644 

decline. 645 

INSERT FIGURE 10a, 10b, 10c, 10d AROUND HERE 646 

INSERT FIGURE 11a, 11b AROUND HERE   647 

4.4. Understanding local flood dynamics in agricultural water 648 
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management 649 

The differences observed in local flood dynamics also have strong applications in 650 

agricultural water management, where understanding the timing and duration of the 651 

flood can help target and time irrigation practices (Fig. 9). In Lake Oro, for instance, 652 

the maximum surface area was reached in January, over one month later than in the 653 

nearby river channel, and remained flooded until the following September, providing 654 

a valuable resource during the dry season (Fig. 10d). To identify the total surface area 655 

in the NID available to support certain ecosystem services or crop cycles, based on the 656 

length of their irrigation requirements, flood duration curves at the NID scale were 657 

extracted from the spatial information. Fig. 12 shows that in 2008-2009 around 658 

20 000 km² were flooded for at least 90 days, defining the areas where plots (with one 659 

to two metres water depth) are suitable for floating rice production (Liersch et al., 660 

2012). Around 500 km² remained flooded throughout the flood, mostly the main river 661 

channel and certain lakes, while the majority of the DIN remained flooded between 11 662 

and 15 weeks. Large areas were flooded very briefly, notably the banks of rivers and 663 

lakes, as well as minor depressions filled by rainfall or the flood. The total (non 664 

synchroneous) flooded area during the August 2008 - April 2009 flood reached 665 

32 550 km², i.e. a total of 32 550 km² were flooded for at some time in the year, but 666 

only 20 000 km² were flooded at the same time. 667 

INSERT FIGURE 12 AROUND HERE 668 



  

34 

Reduced floods, observed in 2002, 2004, 2005 and 2011, are known to have 669 

devastating consequences on the ecosystem services dependant on the flood, notably 670 

reduced rice production and fish production (Morand et al., 2012). Fig. 13 highlights 671 

how the hydrological response in specific areas was more or less affected by the 672 

variations in the amplitude of the flood, due to the morphology of the different 673 

sections, with more shallow areas of the delta flooding more easily. Fig. 14 displays 674 

flood duration curves created from flood hydrographs for a floodplain. The flood 675 

across the hydrological unit was considered synchrone, considering that these were 676 

delimitated on the basis of their homogeneous flood behaviour, i.e. areas where the 677 

timing, amplitude and duration of the flood are similar. In 2004, when the peak 678 

flooded area in the NID was 45% lower than in 2008, the peak flooded area in this 679 

Kakagnan floodplain reduced by only 22% compared to 2008 (Fig. 14). Fish catch, 680 

directly correlated to the peak flooded area, also decreased by around 22% or 520 681 

tonnes, based on a fish catch of 55 kg/ha (Morand et al., 2012). Areas flooded more 682 

than 90 days potentially suited to floating rice production however reduced by 33%, 683 

and possibly more as the crop requires a minimal water depth of one metre. The 684 

remote assessment of the flood dynamic within individual lakes and floodplains of the 685 

wetland thus provides increased opportunities for stakeholders to observe the impact 686 

of hydrological changes on dependent agricultural practices. 687 

INSERT FIGURE 13 AROUND HERE 688 

INSERT FIGURE 14 AROUND HERE 689 
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4.5. Improving the water balance of the NID 690 

4.5.1. Spatial and interannual evaporation variations 691 

Evaporation losses for 2008-2009 were calculated from MODIS estimated flooded 692 

areas and CRU PET data for 140 grid cells adapted from an existing grid 693 

(SOGREAH, 1985) providing a map of evaporation losses across the NID (Fig. 15). 694 

PET values range from north to south between 2120 mm and 1650 mm, and mean 695 

PET across the NID is estimated at 1970 mm. This is marginally lower than previous 696 

estimates by Olivry (1995) of 2 300 mm, and can be explained by the 12% lower 697 

CRU PET values compared to Mopti and Tombouctou station data as well as minor 698 

interannual differences.  699 

 Actual evaporation rates from the wetland varied between 4 mm/day and 7 mm/day 700 

over the year 2008-2009, which compare well with values between 3 mm/day and 7 701 

mm/day in (Dadson et al., 2010). In 2008-2009, cumulative evaporation losses from 702 

the whole wetland reached approximately 20 km3 (Fig. 16). This equates to 440 mm 703 

from the wetland or 1.2 mm/day, which is within the range of values modelled by 704 

recent studies over the same period, notably 1.1 mm/day (Dadson et al., 2010) and 1.8 705 

mm/day (Pedinotti et al., 2012). In this study, evapotranspiration from non-flooded 706 

areas of the wetland (soil moisture, vegetation) were not assessed, which would 707 

increase overall evaporation losses. However, evaporation from flooded areas may 708 

have been overestimated slightly, as evaporation rates from wetlands (i.e. water 709 
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bodies covered by vegetation) can be inferior to those of open water. Uncertainties on 710 

remotely sensed flooded areas are however expected to be more determinent. 711 

Though evaporation per flooded area was highest during the months of the dry season, 712 

total evaporation from the NID was superior during the months of October and 713 

November, due to the large surface area flooded. Likewise, spatial variations in actual 714 

evaporation (Fig. 15) were significant due to higher PET values in the Northern parts 715 

and the longer flood durations along river stretches and lakes. Over 2001-2011, 716 

annual evaporation varied between 12 km3 and 21 km3 (Fig. 17) with a mean value of 717 

17.2 km3. 718 

INSERT FIGURE 15 AROUND HERE 719 

INSERT FIGURE 16 AROUND HERE 720 

4.5.2. Accounting for rainfall and estimating infiltration 721 

The difference between inflows to the wetland calculated from gauging stations on the 722 

Niger and Bani rivers and outflows at Koryoumé ranged between 9.5 km3/year and 19 723 

km3/year over 2001-2010. This corresponds to a reduction ranging between 33% and 724 

40% of annual inflows as water flows through the delta in line with previous findings 725 

(Mahé et al., 2009). The annual losses were strongly correlated with peak flooded 726 

areas (Fig. 17), confirming the hypothesis used in previous works to assess flooded 727 

areas from downstream losses (Mahé et al., 2009; Olivry, 1995). 728 
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Evaporation losses (Fig. 17) calculated using MODIS remotely sensed flooded areas 729 

were superior to the difference between inflow and outflow, highlighting the other 730 

fluxes which must be accounted for, notably the non negligible contribution of rainfall 731 

into the NID. Rainfall interpolated over the NID varied between 280 mm/year and 732 

560 mm/year over 2001-2010, i.e. 33 to 66 km3/year over the total NID area. 733 

However, in the water balance, only effective precipitation must be accounted for. 734 

This is composed of direct rainfall falling on flooded areas (where the runoff 735 

coefficient is 1) and effective precipitation over non flooded areas. Direct 736 

precipitation over the wetland calculated from interpolated rainfall over the MODIS 737 

flooded areas varied between 2.6 km3/year and 8.5 km3/year. 738 

The water budget residual term is then the difference between infiltration over the 739 

wetland and runoff generated by rainfall falling upon non flooded areas of the NID. 740 

Interannual storage changes and flows from groundwater were neglected in line with 741 

previous studies (Mahé et al., 2002, 2009; Olivry, 1995), considering their minimal 742 

contribution. The calculated residual term of the water budget varied between -0.7 to 743 

5 km3/year. Fig. 17 shows how for larger floods the residual is positive implying 744 

infiltration is superior to effective precipitation over non flooded areas. This is 745 

coherent with greater flooded areas subject to infiltration and the reduced area 746 

contributing indirect runoff to the wetland. Infiltration occurs predominantly through 747 

the prolonged flood in the floodplain and in the sandy soils in the North (Mahé et al., 748 

2009), as the impervious clay soils along the riverbed otherwise limited surface-749 

groundwater exchanges (Gourcy, 1994). For smaller floods, the proportionally greater 750 
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rainfall over non flooded areas and the reduced infiltration from the wetland can 751 

explain the negative residual term. Mahe et al., 2002 estimated the runoff coefficient 752 

around the delta around 5% considering the strong evaporation, low slopes and 753 

presence of lakes and depressions which trap water. Based on this value, , the water 754 

budget leads to an estimated annual infiltration ranging between 50 and 400 mm, i.e. 755 

around 1 mm/day over flooded areas. The rare studies on infiltration in the NID 756 

(Alazard, 2009) suggested an infiltration rate around 100-200 mm/year depending on 757 

the size of the flood.  758 

Sensitivity tests where input values varied by ± 20% highlight that inaccuracies over 759 

rainfall gauge data and runoff coefficients have a limited influence (10-30%) however 760 

uncertainties over potential evaporation and flooded areas can drastically change 761 

mean infiltration estimates (over 100%), notably during low floods. Despite 762 

uncertainties at each step of the calculation of the water balance (flooded area, 763 

evaporation, direct rainfall, runoff coefficients), evaporation and infiltration results 764 

presented here were coherent with the limited knowledge available for the wetland’s 765 

hydrological functioning. Crucially, it highlighted that evaporation being superior to 766 

the difference between inflow and outflow, additional rainfall over the wetland must 767 

be accounted for. The high repetitivitiy of MODIS images may therefore be used to 768 

provide additional insights and refine the water balance of the NID.  769 

INSERT FIGURE 17 AROUND HERE 770 
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5. Conclusions 771 

This study developed a semi-automated method exploiting 8-day 500 m MODIS 772 

multispectral satellite imagery to monitor over several years the annual flood in large 773 

wetlands, such as the Niger Inner Delta (40 000 km²). The MNDWI was shown to be 774 

most suited out of six commonly used band ratio indices to detect flooded areas using 775 

fixed thresholds. Its combination with NDMI assisted in differentiating between 776 

flooded and humid vegetation, a common problem during the latter months of the 777 

flood. Additional ground truth data when the flood recedes would further improve the 778 

accuracy of the classification. Correlations with substantial field data from a range of 779 

hydrological entities confirmed the coherence and precision of remotely sensed flood 780 

dynamics in the floodplain, river channels, lakes and irrigated agricultural plots. 781 

Relationships to estimate the total flooded area from Mopti stage values were refined 782 

thanks to the high temporal repetitivity of MODIS images to account for the 783 

hysteresis phenomenon and interannual variations in the amplitude of the flood. 784 

This paper illustrated how MODIS images complement hydrological observations to 785 

monitor flood dynamics at high temporal and spatial resolution across large areas. 786 

This knowledge was applied to understand spatial variations in the flood 787 

characteristics (timing, duration, extent) and may help optimise agricultural water 788 

management. Remotely sensed flooded areas were used to refine evaporation 789 

estimates as well as precipitation and infiltration over the wetland. Though minor and 790 

often neglected, annual differences in annual rainfall and infiltration over the wetland 791 
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are essential to explain interannual variations in the water balance. Information on the 792 

propagation and dynamics of the flood may be used to develop and calibrate a two-793 

dimensional hydrodynamic model (Neal et al., 2012; Roy et al., 2012) of the wetland. 794 

Advanced cloud treatment methods or approaches combining MODIS imagery with 795 

Radar information could usefully reduce cloud interference and improve accuracy 796 

during the rise of the flood. 797 
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Highlights 

 Semi-automated method to monitor floods over 10 years using 8-day 500 m MODIS 

images 

 Combined MNDWI-NDMI index most suited out of 6 band ratio indices to detect 

floods  

 Flood dynamics coherent with field data in river, lakes, floodplain and irrigated plots 

 Correlations between total flooded area and flows refined accounting for hysteresis 

 Benefits to hydrology and agricultural water management are illustrated  

 



  

 

Figure captions 

 

Fig. 1. Full colour composite MODIS image of the Niger Inner Delta with the principal sites mentioned 

in the paper 

(B&W in print, colour for web) 

 

Fig. 2. Mean cloud interference over the Niger Inner Delta on MODIS 8 day images over 2000-2011 

 

Fig. 3. Confusion matrices between Landsat k-means classified images and 6 band ratio indices for 

varying threshold values 

 

Fig. 4. Flooded surface area in the Niger Inner Delta and Mopti stage values over the period 2000-

2011 

 

Fig. 5. Relationship between Mopti maximum monthly flows (October) and peak flooded areas 

 

Fig. 6. Relationship between the 8 day stage value at Mopti and corresponding flooded area across 

the NID as the flood rises and recedes for 4 floods of varying amplitude 

 

Fig. 7. Relationship between 8 day stage values at Mopti and total flooded areas as the flood declines 

according to the amplitude of the flood peak in October.  5 floods of varying amplitude are 

represented 

 

Fig. 8. Monthly progression of the flood in the Niger Inner Delta over the 2008-2009 hydrological year 

 



  

Fig. 9. Duration of the flood in the Niger Inner Delta between August 2008 and April 2009 

 

Fig. 10. Comparison between stage levels measured in situ and remotely sensed flooded surface 

areas for (clockwise from top left): a) Diré, main river channel, b) Diondiori, floodplain, c) Mopti 

irrigated rice plot (Casier Mopti Sud Tibo) and d) Lake Oro, situated on Fig. 1 

 

Fig. 11. Correlations between stage levels measured in situ and remotely sensed flooded surface area 

for a) Mopti, main river channel over 2000-2010  and b) Diondiori, floodplain 2008-2009 

 

Fig. 12. Surface area flooded according to the number of days in 2008-2009 

 

Fig. 13. Maximum flooded area at the end of October 2008 (20 000 km²) and in October 2011 (11 690 

km²)  

 

Fig. 14. Flood duration curves for 2001-2011 in the Kakagnan floodplain of the Niger Inner Delta 

 

Fig. 15. Potential evapotranspiration and actual evaporation values from NID flooded areas in 2008-

2009  

(B&W in print, colour for web) 

 

Fig. 16. Evaporation over the NID wetland in 2008-2009 

 

Fig. 17. Correlation between water balance terms and the annual peak flooded area over 2001 – 

2010  
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Figure 8
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