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Abstract

Understanding the hydraulics around injection and pradoctvells in unconfined aquifers
associated with rainwater and reclaimed water aquifeag®schemes is an issue of increasing
importance. Much work has been done previously to undetdtamathematics associated with
Darcy’s law in this context. However, groundwater flow vélies around injection and produc-
tion wells are likely to be dticiently large such as to induce significant non-Darffeas. This
article presents a mathematical analysis to look at Fointgrés equation in the context of water
injection and water production in unconfined aquifers. €rd&erent approximate solutions are
derived using quasi-steady-state assumptions and theotheftmatched asymptotic expansion.
The resulting approximate solutions are shown to be acetfwat wide range of practical scenar-
ios by comparison with a finite flerence solution to the full problem of concern. The appratenm
solutions have led to an improved understanding of the flomadyics of concern. They can also

be used as verification tools for future numerical model$is ¢context.
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1. Introduction

With the ever increasing significance of climate change ¢eduainfall variability combined
with increasing urban populations, understanding the fwailraulics associated with managed
aquifer recharge schemes continues to be an importantrcasepic for water managers around
the world (Bouwer, 2002; Dillon, 2005; Sheng, 2005; Pliakesd.€2005). Such schemes typically
involve storing rainwater in aquifers during abundant pesi and extracting it when droughts
occur (Donovan et al., 2002; Khan, 2008). In some casesaineetl wastewater is injected into
aquifers with a view that aquifer storage can provide addél treatment (Bouwer, 2002; Dillon,
2005) such that, after fiicient time, the water satisfies local drinking water quaditgndards
(Rygaard et al., 2011).

Appropriate hydraulic models can serve to estimate theitiond under which overflow in-
duced by well recharge might occur (Sheng, 2005), to estirtied recovery potential of stored
water, to estimate resident times in aquifers for bioremusul capacity, to forecast negative im-
pacts of recharge on building foundations, pipelines arepdeoted vegetation and to compute
energy requirements for aquifer recharge recovery schemes

In‘most studies of well hydraulics, it is assumed that the fb@iavior can be described by
Darcy’s law. By further taking into account the continuityuagjon, the water table evolution in
unconfined aquifers can be described by a single non-lireéiapdifferential equation (PDE), the
Boussinesq equation (e.g. Bear, 1979).

Existing analytical solutions of the non-linear Boussineggation for radial, transient, uncon-

fined flow induced by water injection to an unconfined aquiferiaited to Darcy-flow conditions
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and to initially dry aquifer conditions (Yeh and Chang, 201Bpbu and van Genuchten (1980)
used similarity transforms to transform the Boussinesq &mu#o an ordinary dterential equa-
tion (ODE) and then provided an approximate solution usipgraurbation expansion. A similar
ODE was derived using similarity transforms by Barenblatlef1990), to which Li et al. (2005)
provided asymptotic solutions for both small and large @alaf the similarity variable. Li et al.
(2005) combined these expansions to yield an approximaisgi@o valid for all values of the
similarity variable, which they verified by comparison tae@lent numerical results.

Analytical solutions of the linearised radial or two-dins@nal Boussinesqg equation for tran-
sient flow induced by water injection to an unconfined aquéfier more abundant (Hunt, 1971;
Marino and Yeh, 1972; Rai and Singh, 1995; Manglik et al., 39@Jfoglou et al., 2008). Both the
cases that water is introduced to an aquifer by an injectieth (Marino and Yeh, 1972), or by a
recharge basin (Rai et al., 1998) are examined. A lineaozati the Boussinesq equation either in
terms ofh, (Rai and Singh, 1995) or i?, (whereh is the water table elevation relative to the base
of the aquifer), is generally adopted. The resulting lineBE is solved using the Laplace trans-
form method, the finite Hankel transform approach/anthe eigenvalue-eigenfunction method
(Marino.and.Yeh, 1972; Teloglou et al., 2008; Rai et al., 199Revertheless the application
range of the solutions above is limited to the case that thefation of the water table elevation
induced by the water recharge is small.

Due to high velocities, inertial non-Darcy flow conditionayroccur in the well vicinity (Math-
ias and Todman, 2010; Moutsopoulos et al., 2009). Non-Detffegts cause additional head losses,
so that for the injection well problem, the rise of the heathatnear well field would be higher

than predicted by Darcy’s law. The potential engineeringlioations of these non-Darcytects
3
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are increased danger of overflow for water injection andeiased energy consumption for water
production.

Semi-analytical solutions for one-dimensional (non-afjdiransient Forcheimer flow in un-
confined aquifers have previously been developed by BordetZanmer (2000) and Moutsopou-
los (2007, 2009). A semi-analytical solution for one-dirsienal steady state radial flow in uncon-
fined aquifers has previously been presented by Terzid@3)2&However, to better understand the
role of non-Darcy &ects during water injection in unconfined aquifers, we preaeseries of new
approximate analytical solutions to explore one-dimemsligransient radial Forchheimer flow in
unconfined aquifers.

The outline of this article is as follows: The governing efiuas for transient one-dimensional
radial Forchheimer flow in a homogenous and isotropic unnedfiaquifer are presented. The
equations are normalized using an appropriate set of dim@ess transformations. Following
the ideas of Bordier and Zimmer (2000) and Sen (1986), tflemrint approximate solutions for
Darcian flow and strongly non-Darcian flow are derived fotiahisaturated zones of arbitrary
thickness by invoking a quasi-steady-state assumptiofioviag Mathias et al. (2008), an ap-
proximate solution for non-Darcy flow in an aquifer with a necaltely deep initial saturated zone
is derived using the method of matched asymptotic expandibe performance of the new ap-

proximate solutions are verified by comparison to a finitéedence solution of the full problem.

2. Governing equations

Consider the injectigiproduction of water intfrom a homogenous and isotropic unconfined

aquifer. Considering the so-called Dupuit assumption (Yteatical flow is negligible) (Bear,
4



s 1979), an appropriate one-dimensional mass conservajioatien can be written as

oh  14(rhq)
ot~ T ar 1)
ss  Where (Forchheimer, 1901)
bK oh
q+ E|Q|Q— _Kﬁ (2)

®
o

andS, [-] is the specific yieldh [L] is the water table elevation above a horizontal imperbiea

; formation,t [T] is time, r [L] is radial distance from an injection wely,[L ~!] is the Forchheimer

(]

s codficient, K [LT Y] is the hydraulic conductivity of the unconfined aquifer apfL.T 2] is the

o Qravitational acceleration constant.

% The relevant initial and boundary conditions can be stased a
h= hi, r >0, t=0
2rrthg=vQq, r— 0, t>0 3)
g=0, r-o, t>0

. whereh; [L] is a uniform initial water table elevatiorQ, [L3T~!] is a positive valued flow rate

©

. associated with a production well or injection well locatgad = 0 with y = 1 for an injection

©

s Well andy = -1 for a production well.

o Note that Eq. (2) can rearranged to the form (Mathias et @l42Mathias and Wen, 2015))

q=-FKZ (4)



s Where

4bK? |9h

ar

1/2171
) ] ©)

F :2[1+(1+

% 3. Dimensionless transformation

It is helpful at this stage to apply the following dimensiesd transformations:

©
N

Kt r h- hi . q _ hi _ bK?2
tD_Sy_H’ rD—ﬁ’ hD—T’ CID—R, E_ﬁ’ 'B_F (6)
s where
Q 1/2
A= (k) ™
e Ssuch that the above problem reduces to
oh 190
6TDD TS [ro (hp + €) Op] (8)
oh
Op = _FaTE 9)
1/2771
F=2 1+(1+4ﬁ‘%) ] (10)




hDZO, rp > 0, tpb=0

) (hD + E) db=7v, Ib— 0> tD >0 (11)
0o =0, o = oo, tp>0
100 Note that it is also possible to state that
oh
do + Bldbldo = —a—D (12)
b

w1 4. Analytical solution for large € and zerof

102 The case of very large corresponds to the case of very large values of the initis¢m@ble

03 elevation or very small values of the flow-rate, such thdttezithe raise in water table elevation in-
04 duced by water injection or the drawdown induced by wateraetion can be assumed negligible.
s In this way, the cross-sectional area, through which grauater flow takes place, can be assumed
s UNiform and constant, such that flow processes can be deddripthe same equations ordinarily
07 used to describe confined aquifers. The case of gerorresponds to a problem for which the
s Iinertial gfects are negligible such that the Forchheimer equatiorcestio Darcy’s law.

109 For very larges and zergs, the problem reduces to

ohp € d(rodp)

= 13
(9tD ' 8rD ( )
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€epp =7y, Ipb— 0, tp > 0 (14)
0o =0, b = oo, tp >0
ohp
L 15
= =5 (15)

which has the analytical solution (Theis, 1935)

Y e (5
hp = -E1|— 1
P 2¢ 1(46tD) (16)

whereE; denotes the exponential integral function.
Eq. (16) above is often referred to as the Theis solution aricequently applied to describe
drawdown around a fully penetrating production well siaghivithin a homogenous and isotropic

confined aquifer of infinite lateral extent (Bear, 1979).

5. Quasi-steady state solutions

In the following subsections, a series of quasi-steadie Salutions are obtained using a vol-
ume balance approach previously applied to obtain an appate& solution for transient non-
Darcy radial flow in a confined aquifer by Sen (1986). After sdime has passed, the system can

be expected to behave as in a quasi-steady-state (Bordi&himnaer, 2000) such that



_r
(hp + €)rp

o = (17)

0, 'p > Tep
120 Wherergp is a dimensionless radius of influence, which varies witletitg. From mass conserva-

121 tion considerations it can be shown that

feD
tp = )/f rDhDer (18)
0

122 Noting that

hD — O, I'b =TleD (19)

s application of integration by parts to Eq. (18) leads to

1

N

y hop
o = 2 f 2dhp (20)
2 Jo
e Where
o, y=1
hop = (21)
-6, y=-1

125 because it is not physically possible foy < —e.



5.1. Approximate solution for zero 8

1

N
o

127 Wheng = 0, Eq. (15) can be substituted into Eq. (17) to yield

GhD _ Y

=— 22
8I’D (hD + G)rD ( )
128 Separating variables, integrating both sides of Eq. (22 wespect tap and finding the
120 INtegration constant by imposing Eq. (19) then leads to
h2 e
L 4 ehny = = —N 2
> + ehp yln(l’eo) (23)
10 Which can be rearranged to obtain
r reo\|"? -
ho = 2yIn (LD) {e +|€e2+2yIn (iD)] } (24)
L)) b
11 and
h2 + 2eh
rd =r2 exp[—g] (25)

132 A relationship betweeng,, andtp can be obtained by substituting Eq. (25) into Eqg. (20) to

133 0btain (Wolfram Research, Inc., 2015)

1/2.3/2 2]y hop
L A [erf(hD+6)] (26)

2 1/2
r'eo 4 Yy
12« Where erf denotes the error function.

10
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5.1.1. Injection scenario

For an injection scenarig = 1, and recalling Eq. (21), Eq. (26) reduces to
o x2eerfole) |
©- 4tp

where erfc denotes the complementary error function.

A relevant expansion for erfg) includes (Wolfram Research, Inc., 2015)

e’ (1 1 .
erfC(X) = 71-1/2 (;( - ﬁ + O(X 5))

from which it follows that
1 (1 P -1/2
leD = [ID (Z + O(e ))]

5.1.2. Production scenario

For a production scenarip= —1, and recalling Eq. (21), Eq. (26) reduces to

2e<erfi(e) |
S
D

(27)

(28)

(29)

(30)

where erfi denotes the imaginary error function. Also no& énfix) = —ierf(ix), erfi(0) = 0 and

erfi(-x) = —erfi(x).

Relevant expansion for erfi( includes (Wolfram Research, Inc., 2015)

11



. e 1 1 .
erfi(x) = —i + 1 [;( + oV + O(X )] (31)

s from which it follows that

1 /1 . -1/2
feD = [RD (E + O(E ))] (32)
us 5.1.3. Correction for early-time response
147 For largee, EqQ. (24) reduces to
hp = 3|n(ri'°), e > 2hp (33)
€ I'D

148 Interestingly, for large times, Eq. (16) can be written asq@ and Jacob, 1946)

1 —0.5772/2
ho = M%) (34)
D

s Wherergp is found from Eq. (29).

150 Furthermore, substitution of Eq. (29) into Eq. (16) leads to

1 r2
hp = —E; |2 35
o= 762 (35)
151 By further consideration of Eq. (24), it therefore followsitla better approximation to the full

12 Darcian problem of concern takes the form

12
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161

(2 1/2y -1
62+yE1(rTD)] } (36)

eD

rp
hD = ’}/El - € +
reD

wherergp is found from

12621y | erfce), y=1
=2 37)

erfie), y=-1

As € becomes large, Eq. (36) converges exactly on to the Thaiti@o] given in Eq. (16), for

both small and large times.

5.2. Approximate solution for large 8

For very larges values, Eq. (15) should be replaced with

ohp

2 _ ——

which on substitution into Eq. (17) leads to

B dhp
(o + Aol aro (39)
which integrates to obtain
h3
R e (40)
D [lep

where againt¢p is defined as the radial distance at whigh= 0.

The only real root of Eq. (40) takes the form
13
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168

hp = (€ +F)®-¢

where

o2 L)

b Ted

(41)

(42)

To better understand how Eq. (41) behaves for large is useful to multiply the top and

bottom by

(E+F)P4(E+F) e+

which reveals that

ho F

T @+ F)B+ (8 + F) e+ 2
5.2.1. Zero e scenario
Whene = 0, Eq. (41) reduces to
1 1\]"°
o[l -7
b Ted

which can be rearranged to get

-2

he 1
2 _|_ b, =
rD - (3)’13 " reD)

14

(43)

(44)

(45)

(46)
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178

which on substitution into Eq. (20) leads to (Wolfram Reskahac., 2015)

2/312 173
18 Fep N = 7%l gp Np + 1773

32 6(renh? + 1)

5/3 _1/3 1/3 1/3\2 1/3 2 oo
r r->hp + 1-2 3h r<.h
tp = {y D 7 [In[ epo + 77 ]— 2(31/2)arctar( leo /1) D)] yo e’ D }
0

wheren = 3y8.
Eq. (47) can be simplified substantially to obtain

[313/2 (tD )3 1/5 1
- | = , »)/ —
B \21

00, vy=-1

lep =

5.2.2. Large e scenario

Whene > F, Eq. (40) reduces to
N
D~ €? ) leD

which on substitution into Eq. (18) and rearranging leads to

5.2.3. Intermediate € scenario

(47)

(48)

(49)

(50)

From the above sub-sections it can be seenrt@agrows withty at different rates depending

one. Egs. (48) and (50) intersect whgn= t.p, wheret,s is a dimensionless critical time, found

from

15



313/4ﬁ2

ko = Tere \
178 For intermediate values ef a good approximation faip can be obtained from
31872 /)3 1/5
—_— (—) Ip <tp
Fat
feD = (52)
26t
,3 D b > tp
80 6. Solution by matched asymptotic expansion
181 At large times, the head profile has spread out over a largendis. This can be specified by
12 Writing (Roose et al., 2001)
€T eR
tp = ﬁ and rp= F (53)
183 Let the outer and inner limit processesgfbe denotedhy andhy, respectively.

18« 6.1, Solution for the outer limit process
185 The solution of the outer limit process takes the form (leEgl (16)) (Roose et al., 2001;

185 Mathias et al., 2008)

ho = BEl(E) (54)

det

1z WhereB is an integration constant yet to be defined &dlenotes the exponential integral func-

188 tion.
16
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6.2. Solution for the inner limit process

For the inner region near the injection well, it is better égart back to the variablg, such

that the inner limit process is characterized by

gohy 19 ) )
62 07- - rD arD [rD (hO + 6) qO] (55)
where
do + Bl%pldg = ~ar (56)
D
from which it follows that
8 * *1 _ ﬁz
g [ro (h +e)gp] = O = (57)

Integrating Eq. (57) with respect tg and applying thep, — 0 boundary condition in Eq.

(11) then leads to

v _ Y
o e (58)

which, on substitution into Eq. (56) yields

oh,
L £ 1% (59)

(h+e)ro (ng+e)frz ¥

Following an approach previously adopted by Terzidis (30@3look at steady state non-

17



105 Darcian radial flow in an unconfined aquifer, consider a exfee point situated a dimensionless
e radial distance away from the origin,p. Let b}, be the value ofyj atrp = ryp. Substituting

200 U=h{—h;,/2into Eq. (59) leads to

M 4 1+ ¥ (60)
Irp (2u+h;,0+2€)rD (2u+ h\’;,o+2€)rD
201 Taking advantage of the expansion
(x+a)l=al-xa?+xa=2+0@" (61)
22 it can be seen that
2
o __ 4 1+ 2 +0((hyo + 2)%) (62)
drp (2u +he g+ Ze) Mo (h;;,0 + 26) o
203 Separating variables and integrating with respecptgields
W+ (ho+2)u-2G=0 (63)
200 Where
_ 2B
G=vy (s 200 Inrp|+C (64)
205 The positive root of Eq. (63) is of practical interest:

18



2u = —(h;o + 2€) + [(h, + 2€)? + 8G] 2 (65)

206 Taking advantage of the expansion

2
12 _ A1/2 X X -5/2
(x+a)’ =a’+ el 82 + O(a™) (66)
27 and reversing tha substitution it can be seen that
¥ 2G 4G?
hi = WO _ O((h*. + 2¢)° 67
0T Ty t20 (Mg + 200 (o +26)°) (67)

208 Noting that the truncation error in Eq. (62)@((h\j,0 + 26)_3), for consistency, the third term

200 0N the right-hand-side of Eq. (67) should also be excludet that it can be said that

43 2Inrp

hg =D - O((np +2¢)72 68
6 =0 s 2 (g 29| T O(ho+297) (66)
20 WhereD is a constant found from
¥ 2C
D=2, __~—~ _ 69
2 "+ 20) (69)
an 6.3, Matching of inner and outer limit processes
212 The constant® andD are determined by matching the inner and outer limit praegsse.
Jim b6 = i 70

19
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217

218

219
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221

Exploiting the asymptotic expansion of tkg function for smallR, Eq. (54) can be written in

the from

2
ho = —B|0.5772+ 2Inrp + In (f—)

€31

10 ((é)z) (71)

Therefore, by comparing Eqgs. (68) and (71), it can be sedn tha

B= 7~ (72)

e[ )

D=
4e37

¥ o((/-j)z) (73)

Similar to Mathias et al. (2008), adding the inner and outeit$ and subtracting out of their

__r
(Mo + 2¢)

sum the term that is common to both expressions in the oveelgipn then yields the composite

solution

.y r3 4y B\
o = (huo + 2€) Es (4etD) T (hup + 26025 O((Z) ) (74)

wherehyp = hp(frp = rwo).

6.4. Determining hyp

Theh,p term can be obtained by finding the real root of the cubic eguat

2
(Mo + 26)° — 2€(hup + 2% — v (i) (ho + 26 - 8 _ ¢ (75)
4EtD I'p

20



22 Which takes the form (Wolfram Research, Inc., 2015)

1/2 13 1/2 -3 4e
M = [(Tl2 ~T3)"+ Tl] £ T, [(Tf -13)" + Tl] -3 (76)
23 Where
8  ye r2 2ypB
Ti= —+ E,[22)+ 2= 77
152773 1(r§D)+er (77)
224 462 ’y r2
To=—+2E, (22 78
=+ a () (79
225
rep = (4etp)*'? (79)
226 Furthermore, it can be understood that a better approxamébr hy is obtained from
hp = hwp(fwo = I'p) (80)

2z and the approximation becomes identical to Eq. (36) when0 andB = 0 if rgp is calculated

s from Eq. (37) instead. Readers may benefit from the identity

2

N

Vi =2 cos(‘%”) (81)

s When verifying this for themselves.

2

N

21
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7. Comparison with a finite difference solution

The study reported in this article has led to the developroétiiree diferent approximate
solutions for production and injection wells in unconfinediers. The first approximate solution,
Egs. (36) to (37), reported in section 5.1, is hereaftenrefeto as the zerg quasi-steady-state
(QSS) solution. The second approximate solution, Egs., (@®), (51) and (52), reported in
section 5.2, is hereafter referred to as the Ig@@@SS solution.. The third approximate solution,
Eq. (80), Egs. (76) to (78) and Eqg. (37), reported in secti@) B hereafter referred to as the
matched asymptotic expansion solution.

To demonstrate the accuracy of the approximate solutiossritbed above, results from the
approximate solutions are compared to equivalent results & finite diference solution for the
full problem described in section 3.

The finite diference solution is obtained in exactly the same way as prsliqresented
by Mathias et al. (2008) but with the addition of th® (+ €) factor on thegp values shown in
Eq. (8), specifically associated with unconfined aquifers.simmarize, the partial fierential
equation in'section 3 is discretised in space using finfterinces. The resulting set of non-linear
ordinary diferential equations (ODE) with respect to time are then natiegl collectively using
MATLAB'’s sti ff ODE solver, ODE15s. The dimensionless radial distangeis discretised into
100 logarithmically spaced points, with the space stepgingnacross four orders of magnitude,
with the smallest space steps around the injegi@duction well. Thep — 0 andrp —
boundary conditions are approximated by instead applfnegassociated boundary conditions at

ro = 0.1 andrp = 1000, respectively. Manual specification of a time-stepoisraquired because

22
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263

264
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266

267

ODE15s adaptively chooses time-steps as the solution ¢gssgs.
An appropriate range efandg values to be studied were determined as follows. In areeg¢nt s
of packed column experiments, Salahi et al. (2015) detexd{L ~T] andB [L ~2T?] coefficients

for the Forchheimer equation in the form

onh
Aq + Bqlql = o (82)

for a wide range of of rounded and crushed granular mateBgisimple inspection it can be seen
thatK = A1 andg = B/A2. From their Table 1, it can therefore be shown that SalaHhi €2@15)
observedK values ranging from 0.022 mste 0.940 ms! andg values ranging from 1.438 to
153.7.

Possible production and injection rates can be expectedngerfrom 0.01 to 10.0 yday

wheread); might range from 1 m to 100 m. Considering that

. (27rKhi2)l/ ? (©3)

Qo

it therefore also follows that practical values torange from 1.1 to 23,000.

Fig. 1 shows plots of dimensionless pressure against diorass distance for a range of
dimensionless times for the special case when 0 for an injection scenario (i.ey, = 1). The
first thing to note is that the matched asymptotic expansoution and the zer@ QSS solution
produce identical results for al  The numerical model also produces almost identical result
for e > 1. Whene = 0 the finite diference model has less hydraulic head dispersion around the

radius of influence (i.e., whete, approaches zero). It is also interesting to see how hydrauli
23
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head distance profiles deviate from a linear-log relatignstormally associated with the Theis
solution, where < 10.

Fig. 2 shows plots of dimensionless pressure against diordass distance for a range of
dimensionless times for the case wigee 100 again for an injection scenario (i.¢.= 1). The
close correspondence between the 18 @SS solution foe < 1 helps confirm that the finite dif-
ference solution is performing in an accurate fashion feséhscenarios. The divergence between
the finite diference solution and the QSS solution for larger valuaesaafmes about because the
Darcian component (which is ignored in the lag)®SS solution) becomes more important when
e is larger. The matched asymptotic expansion solution sdésctive at describing these scenar-
ios except for wher > 100 andtp > 100 whene = 10. This discrepancy is consistent with the
order of accuracy assumed when deriving the matched asyimpigansion solution. Further-
more, it shows that the non-Darcy component of the Forchéeaqguation is more important for
smalle values (i.e., aquifers with a stronger unconfined, as ogptzseonfined, response).

Fig. 3 shows plots of dimensionless pressure against diorass distance for a range of
dimensionless times for a production scenario (ives, —1) wheng = 0 andB = 1. Note that it
is not possible to solve this problem fer= 0 because this would imply that there is no water to
produce. Figs. 3 a) and b) show production cases for yghe. Here it can be seen that there is
excellent correspondence between the finifgedence solution, the matched asymptotic expansion
solution and the zerg QSS solution. Note that the solution fer= 3 was only simulated up to
tp = 10 because shortly after that the well dries out.

Figs. 3 ¢) and d) show results for water production with thecRbeimer equation (witB = 1).

It is difficult to look at production scenarios withmuch greater than one in conjunction with
24
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moderate values af (i.e., e < 10), because the production well dries out too fast. Consglyue
the largeB QSS solution is not useful in this context. Furthermoreait be understood that it
is difficult to study the significance of Forchheimer flow under sgitprinconfined conditions for
the production scenario, because the Dupuit assumptiaklguecomes invalid in the region of
interest. Nevertheless, it can be seen that the matched&styrrexpansion solution is capable of
accurately predicting the results from the finitéelience solution for these scenarios.

By comparing Figs. 3 b) (where= 10 and3 = 0) to Fig. 3 d) (where = 10 and3 = 1), it can
be seen that in the latter case, where the inerffakés are non-negligible, the drawdown is more
significant in the well vicinity. For example fdp = 100,rp = 0.1 and forg = 0, hp = -0.64
whereas for the same case but with= 1, hp = —0.75. However, for larger distances, where
the velocities are smaller and subsequently the ineffiatts become negligible, the values of the

heads become identical for both valuegpbecause flow is Darcian in this region.

8. Summary and conclusions

This article presents a series of approximate solutionsedk &t Forchheimer flow around a
production well and injection well in an unconfined aquit&H.the presented solutions invoke the
Dupuit assumption that vertical flow is negligible.

The first approximate solution involved imposing a quasadi/-state assumption and fixing
B = 0 (and hence solves for Darcy’s law only). The quasi-stestdte assumption allows the
treatment of the hydraulic head distribution around thedatipryproduction well as a steady state
profile with a radius of influence, which moves out with in@ieg time. The location of the radius

of influence is determined by forcing the integral of the lagdic head distribution with respect
25
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to distance to be consistent with the volume of water thatltees injected or produced at that
particular point in time.

The second approximate solution involved imposing the squasi-steady-state assumption
but with 8 assumed to be fliciently large such that the Darcy component of the Forchaeim
equation can be ignored. This laggeolution is particularly applicable for coarse graineditays,
where small water table gradients (consistent with the Dugmsumption) often coincide with
fully developed turbulent conditions (consider the distois in Moutsopoulos, 2009, Appendix
A).

The third approximate solution was obtained by solving thle groblem using the method
of matched asymptotic expansions. The latter solution lisl ar O((ﬁ/e)z). For large values
of B, large head losses occur. For.small valueg,dither the initial water table height is small
or the pumping rate is large so that again the associated Ibeséls are expected to be large.
Interestingly, for large values of the ratj@/e, for the production well case, the well is predicted
to quickly dry out such that the Dupuit assumption does néit.ho

The three approximate solutions were compared to resulis & finite diference solution
modified from the finite dference solution previously presented by Mathias et al.§pfi con-
fined aquifers. The quasi-steady-state solutions weretablerify the finite diference solution
wheng = 0 and wherp = 100 is very large whilst < 10. The matched asymptotic expansion
solution was found to accurately predict the finitéelience results providing the ratio gfe is
suitably small. The results also illustrate that the nomep@omponent of the Forchheimer equa-
tion is more important for smad values (i.e., aquifers with a stronger unconfined, as opptise

confined, response).
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Overall, the analysis has added further support to the idaarton-Darcy ffects are likely
to be important around both injection wells and productiogllsvin unconfined aquifers. The
matched asymptotic expansion solution derived was foute @ccurate for most of the practical
cases studied. The solution is simple to evaluate and shmuttbnsidered for future numerical

modeling studies as an important model verification tool.
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a)e=0andpB=0 b)e=1landpB=0

Figure 1: Plots of dimensionless hydraulic helagl, against dimensionless distance from an injection well (vith
v = 1), rp, for dimensionless timesy, as indicated in the legends. The valueg ahdg applied are indicated in the
subplot titles. The solid lines are from the finitéfdrence solution of the full problem. The circular markeesfaom
the matched asymptotic expansion solution. The cross measgke from the zerg quasi-steady-state solution.
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Figure 2: Plots of dimensionless hydraulic helagl, against dimensionless distance from an injection well (vith
v = 1), rp, for dimensionless timesy, as indicated in the legends. The valueg ahdg applied are indicated in the
subplot titles. The solid lines are from the finitéfdrence solution of the full problem. The circular markeesfaom
the matched asymptotic expansion solution. The cross msagke from the largg quasi-steady-state solution.
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Figure 3: Plots of dimensionless hydraulic helagl, against dimensionless distance from a production well {ith

v = -1), rp, for dimensionless timesp, as indicated in the legends. The values @indB applied are indicated in
the subplot titles. The solid lines are from the finit&elience solution of the full problem. The circular markees ar
from the matched asymptotic solution. The cross markerframethe zergs quasi-steady-state solution.
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Non-Darcy flow in an unconfined aquifer.
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Simple approximate solutions are derived.



