
Uncertainty in the calibration of effective roughness parameters in

HEC-RAS using inundation and downstream level observations

F. Pappenbergera,*, K. Bevena, M. Horrittb, S. Blazkovac

aEnvironmental Science Department, Lancaster University, IENS, Lancaster LA1 4YQ, UK
bSchool of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK

cT G Masaryk Water Research Institute, Prague, Czech Republic

Received 18 February 2003; revised 11 June 2004; accepted 25 June 2004
Abstract

An uncertainty analysis of the unsteady flow component (UNET) of the one-dimensional model HEC-RAS within the

generalised likelihood uncertainty estimation (GLUE) is presented. For this, the model performance of runs with different sets of

Manning roughness coefficients, chosen from a range between 0.001 and 0.9, are compared to inundation data and an outflow

hydrograph. The influence of variation in the weighting coefficient of the numerical scheme is also investigated. For the latter, the

empirical results show no advantage of using values below 1 and suggest the use of a fully implicit scheme (weighting parameter

equals 1). The results of varying the reach scale roughnesses shows that many parameter sets can perform equally well (problem of

equifinality) even with extreme values. However, this depends on the model region and boundary conditions. The necessity to

distinguish between effective parameters and real physical parameters is emphasised. The study demonstrates that this analysis can

be used to produce dynamic probability maps of flooding during an event and can be linked to a stopping criterion for GLUE.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

One-dimensional (1D) flow routing approaches

such as Mike 11, ISIS or HEC, based on the St.

Venant/Shallow Water Equations or variations, still

form the majority of traditional numerical hydraulic

models used in practical river engineering. The

widespread usage in practice might be explained not
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only by the fact that 1D models are (in comparison to

higher dimensional models) simpler to use and require

a minimal amount of input data and computer power,

but also because the basic concepts and programs

have already been around for several decades (Stoker,

1957; US Army Corps of Hydraulic Engineers, 2001).

However, these models have been criticised not only

because of the expectation that representation of flood-

plain flow as a two-dimensional (2D) flow interacting

with the channel flow will give more accurate predic-

tions of flood wave propagation (Anderson et al., 1996;

Aronica et al., 1998; Bates et al., 1992; Bates et al., 1998;
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Nomenclature

q Weighting factor

Q Parameter set

mobs/com Observed and computed membership

value of the cells

Dm Absolute difference between observed and

computed membership value of each cell

Dt Time step

Dx Space step

c Speed of floodwave

D Kuiper statistic distance

F Coefficient of efficiency (inundation)

Lo(Q) Prior likelihood weight of parameter set Q

Ly(Qjz) Calculated likelihood weight of the par-

ameter sets (with the set of new obser-

vations z)

Lp(Qjz) Posterior likelihood weight

nSobs Number of flooded cells observed

N1,2 Number of data points in the first and

second distribution

R2 Coefficient of efficiency (outflow)

Sobs/comp Set of observed and computed flooded

cells/pixels, respectively

SN Cumulative probability distribution

t Time

Vk Constant sum of the negative and positive

Kuiper statistic D

Subscripts

c Channel

f Floodplain
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Cunge, 1975; Dutta et al., 2000; Ervine and MacLeod,

1999; Gee et al., 1990; Hromadka et al., 1985), but also

for the usage of the Manning equation (which can be also

a criticism for higher dimensional models). This flow

equation is computed:
(1)
 with an exponent of the wetted perimeter which

Manning set to 2/3 despite the fact that his (and

later) analysis of existing data showed that the value

can vary (in his case between 0.6175 and 0.8395)

(Laushey, 1989; Manning, 1891);
(2)
 is dimensionally inhomogeneous (Chow, 1959;

Dooge, 1992; Manning, 1895);
(3)
 furthermore, was developed to represent uniform

flow and not non-uniform conditions (see criticism

of Laushey, 1989).
All model packages focus on the calibration of the

roughness parameter which, together with the geome-

try, is considered to have the most important impact on

predicting inundation extent and flow characteristics

(Aronica et al., 1998; Bates et al., 1996; Hankin and

Beven, 1998; Hardy et al., 1999; Rameshwaran and

Willetts, 1999; Romanowicz et al., 1996).

Whether the model is more sensitive to either or

both of the roughness and geometry uncertainty is in

part a result of the dimensionality of the model

structure, which represents geometry in different ways
(Lane et al., 1999). Every model geometry is an

approximation of the real geometry, with all its

downstream variations, and therefore will have an

implicit effect on the values of the effective roughness

parameters. This also means that it should be possible

to compensate to a certain degree for geometrical

uncertainty, by varying the effective roughness values

(Aronica et al., 1998; Marks and Bates, 2000). The

extent to which this is possible varies with model

dimensionality and discretisation.

Therefore, the focus of this study is an evaluation of

the uncertainty of the roughness coefficients which is

also driven by the fact that many modellers see the main

problem in practical applications as a problem of

choosing the ‘correct’ roughness (Barr and Das, 1986;

Bathurst, 2002; Boss International, 2001; Dingman and

Sharma, 1997; Graf, 1979; Rameshwaran and Willetts,

1999; Rice et al., 1998; Tinkler, 1997). Some studies

(Trieste and Jarrett, 1987) have demonstrated discre-

pancies between calibrated effective model values and

roughnesses which have been estimated based only on

the nature of the channel and flood plain surfaces, despite

many sources of guidance about how to choose a value,

such as photographs (Arcement and Schneider, 1989;

Chow et al., 1988), tables (Chadwick and Morfett, 1999;

Chow, 1959; Chow et al., 1988; King, 1918), composite

formulae (Barkau, 1997; Bathurst, 1994; Dingman and

Sharma, 1997; Knight et al., 1989; Li and Zhang, 2001;



F. Pappenberger et al. / Journal of Hydrology 302 (2005) 46–6948
Rice et al., 1998; Riggs, 1976) or measurement

programs (Ackers, 1991; Dingman and Sharma, 1997;

Ervine and MacLeod, 1999; Harunurrashid, 1990).

These estimates have usually been based on

velocities measured for local velocity profiles or across

a single cross-section. A flood routing model requires

‘effective’ values of roughness at the scale of the

distance increment of the model (Beven and Carling,

1992), including all the effects of variable cross-

sections, heterogeneous slopes and vegetation cover at

that scale, as it is impossible to quantify every source of

energy loss separately (Ervine et al., 1993). These

parameters also have to compensate for the effects of

man made structures on the flood plain neglected in the

specification of the reach geometry, the method used to

combine the roughness of the floodplain and channels

(Bousmar and Zech, 1998), and possibly the particular

numerical algorithms used. Any attempts, for example,

to split the Manning roughness according to each of

these component losses (Arcement and Schneider,

1989) will experience difficulties. It is problematic to

quantify each loss in respect of the approximation of the

model structure.

Several studies have been conducted to investigate

the uncertainty in the structure of flood inundation

models. Horritt and Bates (2002) compared 1D and 2D

model codes (HEC-RAS, LISFLOOD-FP and TELE-

MAC-2D) in an optimisation framework without

consideration of parameter uncertainty. They found

that all models performed equally well, although

different responses to changes in the friction

parameterisation.

One methodological approach to formalise the

uncertainty in the roughness parameters is presented

in this study with the generalised likelihood uncertainty

estimation (GLUE) methodology (Beven and Binley,

1992), which is explained in more detail later. This

method has been applied by various researchers with

one, two and quasi-two dimensional inundation codes

(Romanowicz and Beven, 2003; Romanowicz et al.,

1996; Aronica et al., 2002; Aronica et al., 1998). It

could be shown that several sets of model roughness

parameters perform equally well.

The first objective of this study is to extend the

previous research of parameter uncertainty to the 1D

model code HEC-RAS (US Army Corps of Hydraulic

Engineers), because this type of inundation model is still

widely used. It further compares the findings of two
different sites (the River Morava in the Czech Republic

and the River Severn in Great Britain) and two different

data sets: elevation and inundation measurements for

cross-sections only for the River Morava; and a full

distributed inundation map for the River Severn. A new

methodology to quantify the global performance offlood

inundation within fuzzy set theory (extending Aronica

et al., 2002; Horritt and Bates, 2001b) is utilised.

The paper also investigates the role of the accuracy

of the numerical solution and its impact on model

predictions. The role of parameters which control

properties of the numerical solution are very often

neglected, although a considerable impact has been

found (Claxton, 2002).

Finally, a method to investigate the number of runs

necessary within the GLUE framework to achieve

consistent predictions is presented. This is a contri-

bution to the common question on how many

simulations are necessary within this type of Monte

Carlo framework.

This paper discusses initially the model which has

been applied, together with uncertainties faced in flood

inundation modelling. Then the GLUE methodology is

presented and how it has been applied within this

framework. This is followed by a brief presentation of

the catchments. Subsequently, the results of this study

are discussed and a final conclusion is drawn at the end.
2. Uncertainties in flood inundation modelling using

the example of HEC-RAS

In this section we explore some sources of

uncertainties of a 1D flood inundation model. These

are: structure, implementation of the numerical scheme,

topography, model input/output and parameters.

2.1. Structure

A large number of model structures have been

developed to predict flood inundation. However, each

structure only approximates nature and therefore has to

make many simplifications. For example, the unsteady

flow component UNET of HEC-RAS (Brunner, 2001)

assumes:
†
 that the flow can be represented by a cross-section

mean velocity and that the water surface is
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horizontal across any channel section (Bladé et al.,

1994);
†
 all flows are gradually varied with water of uniform

density and hydrostatic pressure prevailing at all

points in the flow so that vertical acceleration can be

neglected (Barkau, 1997);
†
 the model in this form cannot represent any complex

interactions between channel and floodplain (Knight

and Shiono, 1996) and complex floodplain flows

(Ervine and MacLeod, 1999; Sellin et al., 1993);
†
 the channel boundaries are fixed and therefore no

erosion or deposition can occur;
†
 the resistance to flow under dynamic flow conditions

can be approximated by empirical uniform flow

formulae such as Manning’s or Chezy’s equation

(Barkau, 1997).

(after Chow et al., 1988).

These assumptions may not always be fully valid

which may also not be necessary in every case.

Nevertheless, they will introduce uncertainty in the

model results to some extent.

2.2. Numerical scheme

UNET uses the St. Venant equations which can

be solved with an implicit finite difference scheme

using a modified Newton–Raphson iteration technique

(Barkau, 1982; Fread and Harbaugh, 1971). The choice

of the type of the numerical solution can introduce

additional uncertainty in some cases, although this is not

always the case (Bates et al., 1995; Bates et al., 1997; van

Looveren et al., 2000).

For this implicit numerical method, stability analyses

have been performed by Fread (1974); Liggett and

Cunge (1975) showing that theoretically the solution is

unconditionally stable for 0.5 !q#1.0 (q is the time

weighting factor of the numerical scheme). Moreover, it

is conditionally stable for qZ0.5. They also proved that

numerical diffusion is indirectly correlated to the ratio of

wavelength divided by the reach length. However, they

state that convergence should not be problematic,

because the spatial distances are short compared to the

wavelength. Nevertheless the user must be aware of the

fact that the solution must balance numerical accuracy

and computational robustness. Barkau (1997) suggested

that larger values of q produce a more robust simulation

at the cost of accuracy.
Another factor which has a great impact on the

model robustness is the time step. One rule of the

thumb, suggested by Barkau (1997), is to choose a step

which is one 20th of the time of the rise of the inflow

hydrograph (Barkau, 1997). Moreover, the user is

advised in the HEC-RAS User Manual to ensure that

the Courant condition (which indicates the limit for

explicit numerical solutions) is met:

DxRc!Dt (1)
Dx
 Space step
c
 Speed of floodwave
Dt
 Time step
However, it remains unclear how to choose an

optimal time step, especially because it is reported that

for implicit solutions the Courant condition does not

need to be satisfied and large time steps should produce

good results (Barkau, 1997).

The Courant condition and the analysis of the best

weighting parameter are based on theoretical linear

analyses and in practice many other factors influence

the results, including, for example, changes in cross-

section properties, hydraulic structures, a sudden

increase/decrease of the channel slope or the Manning

roughness. The choice of both can introduce numerical

errors, which may be hard to distinguish from responses

due to other sources and thus this choice introduces

additional uncertainty.
2.3. Topography

Topography is also often derived by using remote

sensing (Bowen and Waltermire, 2002; Burgmann et

al., 2000; Eineder, 2003; Kervyn, 2001; Wilson, 2004)

and although one of the main inputs into most models,

topography is very often seen as the factor with the least

uncertainty. Various studies have shown that small

errors in the topography can have significant effects on

model results (Aronica et al., 1998; Bates et al., 1997;

Nicholas and Walling, 1998; Wilson, 2004). The issue

is made even more complex when the representation of

infrastructure is included or very often neglected. This

study restricts investigations into uncertainty to the

model evaluation process and addresses the issue of

topography in the actual modelling process only to a

lower degree.
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2.4. Input/output

Another problem which is partially considered

within this study is the impact of input and output

uncertainty on the modelling process.

Model input is very often quantified by a discharge

hydrograph, which is either derived by rating curves or

is the output of another model. In both cases significant

uncertainty has to be considered. Flood inundation

models produce both hydrographs and inundation

information as model output. The latter is to an

increasing degree compared to data which are acquired

by manual survey (Romanowicz and Beven, 2003) or

remote sensing (see e.g. the SNAKE algorithm Horritt,

1999). Significant uncertainties can be introduced into

this comparison data, e.g. vegetation or wind (Ramsey,

1995; Richards et al., 1987; Wang et al., 1995) or survey

errors.

2.5. Parameters

Another factor is parameter uncertainty, in this case

surface roughness, which has been discussed in the

introduction and is the main focus of this study. It has to

be emphasised that uncertainty in effective local

surface roughness may influence inundation pattern at

local scale significantly, but can have only a small

impact on the overall inundation predictions. Further-

more, it will be significantly more difficult to identify

parameter combinations in a high dimensional space.

The uncertainties mentioned above are evaluated

within the GLUE.
3. The GLUE methodology

In this section the GLUE methodology is intro-

duced, followed by the introduction of the measures

used to evaluate model results. Finally, a stopping

criteria, which indicates the number of runs necessary

in performing such an analysis is presented.

3.1. Methodology

GLUE is a Bayesian Monte Carlo method which

allows that different parameter sets within a model

structure (here various roughness coefficients) might

perform equally well in reproducing the limited field
observations in any practical application (Beven and

Binley, 1992; Freer et al., 1996). This can also be the

case for different initial conditions, boundary con-

ditions, model structures or topographies (Ambroise

et al., 1996; Marks and Bates, 2000). In other words it

may be difficult to distinguish between the perform-

ances of various simulations in fitting the data (the

concept of equifinality Beven, 2002). In GLUE this is

acknowledged by running the model with many

different randomly chosen sets of parameters.

The choice of prior distributions of the effective

parameter range is influenced, but not necessarily

restricted, by the physical meaning. Uniform distri-

butions are mainly used as they make no assumptions

about prior parameter distribution other than specifying

a feasible range and scale (Freer et al., 1996). In GLUE

each parameter set is associated with a likelihood

weight and uniform sampling can then be retained

throughout any updating of likelihood (Beven and

Binley, 1992):

LpðQjyÞfLyðQjyÞLoðQÞ (2)
Lo(Q)
 Prior likelihood weight of parameter set Q
Ly(Qjy)
 Calculated likelihood weight of the parameter

sets (with the set of new observations y)
Lp(Qjy)
 Posterior likelihood weight
The numbers of parameters varied and parameter

ranges chosen will always also affect the minimum

number of runs required to sample the parameter space

adequately, which is not easy to determine a priori. If the

parameters are sampled without restriction from a

uniform distribution as suggested above, no clear

guidelines exist concerning the number of minimal

necessary runs. This depends on the number and range of

the parameters and on the peakiness of the response

surface which, unfortunately, is largely unknown in

advance.
3.2. Model evaluation criteria

The shape of this response surface is strongly

influenced by the kind of goodness-of-fit or objective

function which is chosen to evaluate the results of the

model runs. This in turn depends on the type of

observations available for model calibration. Possibi-

lities for likelihood measures include the sum of
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absolute errors or the R2 coefficient of efficiency

described by Nash and Sutcliffe (1970), which depends

on the sum of squared errors (for a discussion on the

suitability of this measure see Pappenberger and Beven,

2004; Pappenberger et al., 2004).

An interesting approach to evaluate the model

performance is used by Aronica et al. (1998) and

Romanowicz and Beven (2003) who applied fuzzy

based measures in evaluating a flood inundation

model to allow for measurements with high uncer-

tainties. The latter can be used to evaluate distributed

predictions. If the water level is interpolated from the

cross-sections on a DTM the uncertainty of this

interpolation algorithm and of the accuracy of the

DTM can be taken into account. A simple method is

to assume that a cell is fully flooded only when the

interpolated water level is higher than some threshold

and assume just a ‘partial’ flooding or membership

value on values below this (Fig. 1) where the

threshold reflects the approximate uncertainty in

the DTM.

The difference between an interpolated picture and

the observed one can then be determined, for example

by the global inundation measure of Aronica et al.

(Aronica et al., 2002; Horritt and Bates, 2001a)
F Z
No: of correct predicted cells KNo: of incorrect predicted cells

Total number of observed flooded cells
(3)
which is modified in this application to the fuzzy

classification to:

F Z

P
ð1 KDmðSobsgScompÞÞK

P
DmðSobsgScompÞP

mobs

(4)
Fig. 1. Membership function of interpolated inundation.
Dm Z jmobs Kmcompj (5)
where
F
 Fuzzy goodness of fit
Sobs/comp
 Set of observed and computed flooded

cells/pixels, respectively
mobs/com
 Observed and computed membership value

of the cells
Dm
 Absolute difference between observed and

computed membership value of each cell
This measure achieves a value of 1 for perfect fit and

gets increasingly negative with non-fitting simulations.

The likelihood values computed with Eq. (4) can be

used to reject certain parameter sets as ‘non-behavioral’.

The likelihoods of the remaining simulations are re-scaled

to sum to unity (Aronica et al., 1998; Freer et al., 1996).

The calculated likelihood weights can then be used to form

a likelihood-weighted cumulative distribution of predic-

tions from which uncertainty quantiles can be calculated.

3.3. Stopping criteria for GLUE

It must be stressed that the combination of

parameter values is important and that within the
GLUE methodology the calculated likelihood

measure is always associated with a particular set

of parameters conditioned on observed data variables.

The GLUE procedure allows also the evaluation of

sensitivity by analysing the cumulative distribution

function (CDF) of parameter classified behavioural

sets or marginal distributions for individual para-

meters classified behavioural by integrating across the

parameter space (Beven and Binley, 1992; Romano-

wicz et al., 1994). Convergence of the CDF can be

used as a measure to evaluate if the number of model

runs done is sufficient to justify, e.g. the prediction of

a 5 and 95% quantile. When additional model runs

do not change the shape of the CDF these predictions

can be made. One method to test this is the approach

of Kuiper (1962), which has the advantage of being

easy to apply and being sensitive towards changes in

the tails of the distribution which are of high interest

in the calculation of flood probabilities of sections or
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individual cells. The Kuiper statistic is defined in the

Appendix.

To compare distributions with different numbers of

runs a fixed number of increments can be interpolated

on the abscissa. The size of each increment is

determined by the accuracy wanted and the need to

have sample realisations in each increment.

As is clear from the outline of the GLUE method

above, parameter sets form the heart of this kind of

uncertainty analysis.
4. Model case studies

This section briefly describes the two locations and

the data available. It explains how the models have

been set-up and explains in which way the river

sections have been evaluated.

4.1. Catchment description

4.1.1. Morava

The first stream modelled is the River Morava, which

flows in the eastern part of the Czech Republic. The

region modelled has a length of approximately 25 km

and an average slope of 0.5 m/km. This region was

affected by large floods in 1938, 1966, 1981 and 1997

and for the 1997 event a comprehensive data set of

inflow, outflow and maximum water levels at 77 cross-

sections is available via the FRIEND network (for

information on the FRIEND network see Centre for

Ecology and Hydrology (2002)). An inflow hydrograph

with 200 time steps (each 30 min) which is also part of

this data set, was used as upstream boundary. At the

downstream boundary a Manning equation approxi-

mation was chosen which needs an initial guess of the

friction slope (average valley slope applied to a

boundary reach further downstream (Singh et al., 1997)).

4.1.2. Severn

The second stream modelled is a 60 km long reach

of the River Severn/UK (mean slope of 0.27 m/km).

The reach is described by 19 ground surveyed cross-

sections and airborne laser altimetry. The evaluation

data are provided on a 10!10 m high accuracy

(w15 cm) floodplain DEM (Mason et al., 1999).

Validation data is provided by a SAR image of the

30th October 1998. In principle there would also be
a second image of the 11th November 2000 available

(Horritt and Bates, 2003), however, the magnitude of

both events is very similar and therefore it was not

additionally included in this analysis. A statistical

active contour model (Horritt, 1999; Horritt et al.,

2001) was used to delineate the shoreline of the 1998

flood. This algorithm was capable of locating the

boundary to w2 pixels and could be used to derive an

inundation map with a resolution of 25 m. As in the

other reach, a dynamic discharge at the upstream end of

the reach has been imposed. To make this study

comparable to Horritt and Bates (2002) a downstream

boundary with an imposed dynamic water surface

elevation at the downstream end was used. However, in

order to match the analysis of the Morava, additional

runs have been done with the same Manning

approximated boundary type.

4.2. Model set-up

4.2.1. Morava

For the River Morava initial Monte Carlo tests of

10,000 model runs with different numbers (8, 17, 35,

77) and location of cross-sections showed that with an

increasing number of sections the number of numeri-

cally stable models decreased significantly. On the

basis of these tests it was decided to use a model with

eight cross-sections with two effective roughness

values for the whole region (one for the floodplains

and one for the river) and to perform additional tests

with three roughnesses for each individual region (two

for the floodplains and one for the channel).

4.2.2. Severn

The study of Horritt and Bates (2002) showed that

this region can be approximated with the profiles of the

19 measured cross-sections. Therefore, the main

analysis was done with these sections with roughnesses

chosen as for the River Morava case. However, a small

study with 38 and 72 sections indicated the same

behaviour with respect to stability as previously

mentioned.

Setting the cross-sections in both models to have on

average the same spacing allows a reasonably direct

comparison of the different types of evaluation data.

For both models it was decided to choose the

parameters randomly from a uniform distribution for

each section without any constraints. Therefore
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the edges of this distribution have been set between

0.001 and 0.900, which are the constraints given by the

UNET program and represent extreme values to be

expected physically for the Manning coefficient.

4.3. Model evaluation

4.3.1. Morava

For each of these simulations the sum of the absolute

error in the predicted maximum water surface elevation

height at each cross-section was calculated and

normalised for all behavioural simulations. A model

was classified as non-behavioural if the water level at

one single cross-section had an error of more than 2 m

or if the sum of errors over left and right floodplain

inundation levels for all sections was higher than 20 m.

These values have been chosen based on field

observations. The method can be combined with

additional rejection criteria (e.g. velocity) if data are

available. For these behavioral runs the efficiency of the

outflow level hydrograph was calculated by using the

R2 coefficient and the outcome was also normalised.

These two measures (hydrograph and inundation

error) are combined using a weighted average to give a

combined likelihood weight and again all simulations

are normalised. The cross-sections have been given the

weight of 8 (No. evaluation data for cross-sections) to

reflect the information content and model aim priority

(to predict flood inundation extent). However, in order

to build individual CDFs for each section it must be

borne in mind that the order of good performing models

for all sections does not necessarily reflect the order in

single sections, which can lead to inconsistency in

individual CDFs. Therefore, the stopping criterion is

demonstrated by comparing the CDF for the water

elevation at each single section.

4.3.2. Severn

The inundation extent on the River Severn was

predicted by using a linear interpolation algorithm

given the predicted local water levels at the cross-

sections projected onto the high resolution DEM. This

map was then compared to the inundation map using

the measure of Eq. (4), and all maps which predicted

less than 95% of the flooded cells correctly have been

classified as non-behavioural. Similarly to the River

Morava case study, the behavioural runs have been

used for an evaluation of the outflow hydrograph.
The two normalised performance values have been

combined as previously (this time a weight of 19 for the

result of the inundation). For the test of the stopping

criteria 19 individual cells at the location of the cross-

sections have been chosen and evaluated against the

overall inundation performances.

The CDFs for water elevation can then be used to

calculate a flood risk map. The flood risk map for the

distributed case of the River Severn could be calculated

for each individual cell of the high resolution DEM,

whereas at the River Morava only a computation at

each cross-section was possible. Strictly speaking any

outcome in the form of a risk map of flooding is only

valid for this particular case, at this particular time of

year, with this particular vegetation cover, with this

particular stream geometry (no additional flood

defences) and this particular size of flood event (as in

Romanowicz et al., 1996).

As mentioned above UNET showed that a surprising

number of runs failed because of stability problems

despite using a weighting parameter q of the implicit

scheme in the ‘unconditionally stable’ range. Conse-

quently a preliminary study of the model with different

randomly chosen values ranging from 0.6 to 1.0 was

performed for both regions.
5. Results and discussion

5.1. Stability

Many simulations, which have not been rejected as

unstable by UNET itself, have been identified as

physically impossible by visual inspection. The current

version of UNET appears to have significant numerical

problems that could not be associated with any

particular cross-section, roughness combination or

weighting parameter.

It must be pointed out that the user community is

aware of some of these problems and avoids them by,

e.g. cutting pilot channels in the original geometry and

avoiding ‘low flow’ periods, as part of the calibration

procedure. Sometimes the geometry is changed com-

pletely by, e.g. including additional cross-sections.

However, the stability is also affected by the choice

of other parameters in the model environment. For

example UNET requires the limits and accuracy of

the look-up tables for the hydraulic properties



Fig. 2. Histogram of stable model runs against the weighting

parameter of the numerical scheme.

Fig. 3. Weighting coefficient against the number of the best 10% of

the model runs divided by the total number of stable model runs.
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(area and conveyance vs. elevation) to be specified. This

relationship has to be carefully balanced between

necessary accuracy (small steps) and range (large

steps), because if a too small range is chosen one

might have a higher accuracy but the model classifies

more runs as unstable. This might be due to the fact that

the model run is classified as unstable when the program

has to interpolate above the range of the look-up tables

for several time steps. Of course, one further reason for

instability is the unconditional random sampling of

Manning’s n values, used in this study, which can

produce combinations of roughness values that result in

unstable solutions. However, no definite patterns of

roughness leading to instability could be found.

The time step is another parameter which influences

the stability and accuracy of the model outcomes to a

large extent. In this study a smaller time step (the

minimum allowed in UNET of 1 min) than the chosen

one (5 min for all models) did not change the findings

and did not lead to more stable model results. However,

the number of stable model outputs decreases signifi-

cantly with larger steps (maximum allowed is 24 h)

which is common to most flood inundation models. If

we had followed the guidelines in Section 2 and used a

time step of one 20th of the time of the rise of the inflow

hydrograph, a value of 2.3 (for the Morava) and 2.1 h

(for the Severn) would have been suitable. In addition,

a time step of lower than 4.6 (Morava) or 9.6 h (Severn)

(Eq. (1)) would satisfy the Courant condition. It is

somewhat surprising that all of these suggested time

steps would have significantly decreased the model

stability to the point of having no useful model results.

Other experience suggests that similar issues apply to

other 1D implementations of the St. Venant equations.

These findings show that the user of this program

has to evaluate the simulation results very carefully and

should compute basic properties like slope or minimum

elevation to verify any inference from model predic-

tions (such as flood risk zones).

5.2. Tests with different weighting parameters (q)

The other parameter, which has an important effect

on stability and numerical accuracy is the difference

weighting parameter, q. The results of the River

Morava and the River Severn show similar behavior

and therefore this section only presents example results

for the River Morava.
Out of a total of approximately 1,600,000 model

runs with q between 0.6 and 1.0, only 52,000 were

stable. These are shown in Fig. 2. Tests showed that any

q of 0.5 or below is rejected by UNET. The numerical

stability problem is apparently hardcoded into UNET

and a more detailed investigation is beyond the bounds

of the investigation.

For the same reason it cannot be verified why

instability or rejection of model runs occurs at higher

values of q, between 0.6 and 1.0, where any quasi-linear

solution should be unconditionally stable (Fread, 1974;

Liggett and Cunge, 1975). The analysis shows the

difficulty in separating errors in the numerical scheme

from variations due to parameters. Fig. 3 shows that
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when the number of the best 10% of the results divided

by the number of all working results (out of Fig. 2) is

plotted, the chance of getting a good model result is

much higher with a q of 0.9 or 1.0 than with 0.6. This

implies that choosing a q of 0.6 introduces difficulties in

this particular case.

5.3. Variation of Manning roughness parameters: using

2 parameters for the full region (1 floodplainC1

channel roughness)

Fig. 4 shows on the x axis the effective roughness of

the floodplain of the River Severn and on the y axis the

likelihood measure of the performance of the outflow

(evaluated with the Nash–Sutcliffe efficiency measure)

with an imposed stage boundary at the lower end.

Each dot represents one run of the model with

randomly chosen sets of Manning roughness coeffi-

cients. The figure shows a maximum around 0.08 and a

double peak, which is due to a change in the flow regime

(Singh et al., 1997). The better performing lower

roughness values of the floodplain are associated with

high channel Manning values and then the floodplain
Fig. 4. Performance of the outflow hydrograph with different floodplain rou

with a fixed downstream boundary.
acts as the main flow path in order to maintain the

downstream boundary condition. Consequently, the

plot of the channel roughness (Fig. 5) shows a double

peak and sensitivity, too. This figure also illustrates the

small range of stable and behavioral channel Manning

values (initial sampling range was much wider)

together with a clear rejection of models at the edges

of the distribution.

This compares well to the results of Horritt and

Bates (2003) which achieved an optimum in the range

0.08–0.10 for floodplain roughness and 0.04–0.05 for

channel against hydrometric data (using a measure

based on floodwave travel times rather than Nash–

Sutcliffe efficiency).

An evaluation of the performance of the predicted

inundation shows the same pattern (therefore it is not

shown here). However, when inundation performance

is plotted (Fig. 6) against the results of the floodplain

roughness, it becomes apparent that the double

maximum exists for this parameter as well, but these

are non-behavioral models across the range of rough-

nesses considered so that a clear equifinality of

floodplain roughness can be seen.
ghnesses for the River Severn (two roughness values for full reach)



Fig. 5. Performance of the outflow hydrograph with different channel roughnesses for the River Severn (two roughness values for full reach)

with a fixed downstream boundary.
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Fig. 6 also indicates the existence of a lower

performance boundary at higher floodplain Manning

values. This might be simply a restriction given by the

geometry in a way that a high enough roughness value

will always leads to a certain level of inundation and

cannot under perform (e.g. a complete filling of the

floodplain). In comparison with the previous figures the

best performing models are at different locations and

they are not at similar roughness values any more,

which supports the thesis of partial independence

between good flow and inundation predictions. More-

over, this can give us further insight into the hydraulics

of this area: as long as the floodplain fills, pretty good

extent results can be achieved, and because of the steep

bounding slopes over prediction is unlikely to occur.

It can be argued that the double peak only exists,

because, in one way or another, enough water has to be

delivered downstream to satisfy the lower boundary

condition. In fact when a different boundary condition

is assumed (Manning type with an initial guess for the

slope) the roughness of the floodplain becomes entirely

equifinal and the channel roughness shows only one

single peak in terms of the performance of the model in
predicting inundation or outflow (Fig. 7). This might

give us the hindsight to reject further simulations as

non-behavioural, because they are physically

unreasonable.

Fig. 7 shows a very distinctive peak which has a

lower boundary in performances at roughnesses lower

than about 0.05. The origin of this threshold in behaviour

could not be ascertained, but may be due to some

characteristics of the solution scheme, the effect of

which is only made apparent by these multiple runs. The

other obvious feature in this plot is that the roughness

range that is considered as behavioural is much larger

than with the previous boundary condition. In other

words, the new boundary condition allows more

flexibility in respect of the effective roughnesses by

not restricting the outflow. In contrast the River Morava,

which was set-up with the same boundary condition,

does not show any identifiability offloodplain or channel

roughness with any performance measure (inundation

and outflow), and shows an equifinality over a large

range (Fig. 8 shows the combined measure). This plot

also shows a non-existence of lower performance

boundaries due to a smoother geometry.



Fig. 6. Performance of the inundation with different floodplain roughnesses for the River Severn (two roughness values for full reach) with a

fixed downstream boundary.
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The roughness range of optimum values for the

River Morava and the floodplain of the River Severn

(Manning-type lower boundary) is larger than any table

or similar in a textbook would suggest as ‘reasonable’

values. Furthermore, the roughness of the channel for

the River Severn cannot be identified uniquely and

depends on the boundary condition. However, the

values for the channel are in the range of typical

engineering estimates, if the 20% error margin of

Trieste and Jarrett (1987) is considered.

The figures showing the combined likelihood look

very similar to the plots of the performance of the

floodplains, which is not surprising considering that the

inundation has the most weight in the combined

measure (River Severn see Fig. 9 for the floodplain).
5.4. Spatial variation of manning roughness para-

meters: results using 8 (Morava) or 19 (Severn) cross-

sections with individual parameters for the full region

It can be reasonably argued that the use of just two

roughnesses does not represent the heterogeneity of
the region. If multiple roughnesses are used the

equifinality problem for the River Morava does not

change (see for example cross-section 2, Fig. 10),

indeed it gets worse because with this set-up 8!3

parameters have to be considered. Also a change in a

single cross-section parameter gives only a small

change in global performance—to get big changes

you need to change the parameters together (i.e. get

back to a uniform parameterisation). It was not possible

to compute enough stable model results for the River

Severn to present an analysis in this paper. This

instability may be due to the higher number of cross-

sections (see above) such that it is very difficult to find a

stable combination of Manning roughness values.

In summary, it can be stated that the simulated River

Morava and Severn show different behaviours

especially in the sensitivity of the channel friction. The

Severn shows some sensitivity, whereas the Morava

does not. Both regions show the same insensitivity of the

roughness of the floodplain. The differences between

these results may be explained by the different data

quality. Whereas the Morava has to rely on very



Fig. 7. Performance of the outflow hydrograph with different roughnesses for the River Severn (two roughness values for full reach) with a

flexible downstream boundary.
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uncertain point measurements, the data set of the

Severn allows a fully distributed model evaluation.

However, the difference is also partly due to the

different scale and geometry of the reaches, otherwise

the plots of the outflow hydrographs would have a

similar shape.

Many modellers assume that a good prediction of an

outflow hydrograph always leads to a good inundation

map. Fig. 11 shows again the dotty plot of the

roughness of the floodplain and the likelihood measure

of the inundation of the River Morava of the best 10%

(as example) performing outflow models. If the

performances would have been linked directly this

plot should show only dots in the upper part of the

figure and no simulations in the lower part. A similar

picture can be shown for the River Severn and therefore

it is misleading to use only a hydrograph analysis for

the prediction of the inundation extent. This is not
contradictory to the results found by Horritt and Bates

(2002), which did find a connection between perform-

ance of outflow hydrograph and inundation predictions

because it may be on the one hand model dependent

and on the other hand a result of this more

comprehensive analysis of the parameter uncertainties.
5.5. Stopping criteria for GLUE

From the behavioural runs with eight cross-sections

of the River Morava 50,000 stable simulations were

taken and split in a way such that the first set contained

5000, the next set the 5000 of the first set and additional

5000 and so on. This simulates the addition of more and

more runs. For each of the resulting sets a CDF of the

sum of error was calculated for each cross-section and

compared to the previous CDFs. Tables 1 and 2 show

the results of the test with the Null hypothesis that



Fig. 8. Combined performance of the outflow hydrograph and inundation with different roughnesses for the River Morava (two roughness values

for full reach) with a flexible downstream boundary.
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the distributions are equal. A 0 means the Null

hypothesis can be accepted with a significance level

of 0.05 and 1 means it is rejected. It can be seen that for

this case 25,000 simulations would have been enough

for convergence at all cross-sections and the analysis

could have been stopped.

The same analysis has been performed on 19 points

at the cross-sections of the River Severn (with fixed

downstream boundary) with the overall performance of

the inundation. Tables 3 and 4 shows the results

indicating that 8000 runs would be sufficient to

calculate risk maps of inundation.

Both evaluations have been done in the post-model

run stage to explore different settings of significance

level and step sizes. Therefore, the overall number of

runs is much larger than the adequate number for

convergence. Furthermore, a smaller sufficient number

of runs results in a dotty plot of the performances
against model parameters which is much less convin-

cing than the one shown.

This comparison illustrates very clearly the

possibility of using different numbers of run-num-

ber-steps to test for stopping criteria. It also becomes

apparent that the criterion for stopping does not

solely correspond to the upper surface of the dotty

plots of the parameters (otherwise it would have been

expected that more simulations would be necessary

for the River Severn), but depends on the contri-

butions of all behavioural runs. Further, the tables

show the possibility of a behaviour change in

different sections, or in other words: although the

Null hypothesis has been accepted at one stage it gets

rejected at the next one. This is due to a small step

size and the sensitivity of this test towards the tails.

Therefore, it is advisable always to exceed the

number of runs and allow for this error.



Fig. 9. Combined performance of the outflow hydrograph and inundation with different roughnesses for the River Severn (two roughness values

for full reach) with a fixed downstream boundary.
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Another effect which seems apparent from these

tables is the faster stabilisation of DK compared to

DC. A closer look at the position of the distance DC

shows it occurs mainly at the lower end of the CDF

(at lower Manning values). This suggests a smoother

response surface towards high flood levels which

filled the floodplains fully for higher roughness

values.
5.6. Map of flood probabilities

As soon as the stopping criterion indicates a

sufficient number of behavioral model runs to define

the CDF of predictive variables, flood probability

maps can be drawn. The flood maps are direct

estimates of these CDFs. Fig. 12 is such an example

of a maximum flood inundation map for the River

Morava, which shows an example sub-reach (for

better illustration) of the river with probability

estimations of 5 and 95%. It can be seen that
the risk of flooding differs largely between these two

quantiles. The range of this uncertainty may be

narrowed, by the collection, evaluation and combi-

nation of additional information, although this will be

not necessarily the case (Blazkova et al., 2002;

Kuczera and Mroczkowski, 1998). The difference

between the quantiles behaves as we might expect:

they are widely separated over flat areas of the

floodplain (top of the reach) and are closer where

floodplain slopes are higher (bottom of the reach).

A similar picture can be drawn for part of the region

of the River Severn (Fig. 13), in which the inundation

calculations are based on a cell by cell evaluation for

the DEM. In this figure the probability for each cell to

get flooded in an event of this size is demonstrated

rather than drawing quantiles. The range of the

quantiles proves to be very small which is reasonable

considering that the flood filled up the floodplains

totally. Again variation in the spread of flood

probabilities can be seen, with the most uncertainty



Fig. 10. Combined performance of the outflow hydrograph and inundation with different roughnesses for the River Morava (three roughness

values for each section) with a flexible downstream boundary. Example cross-section 2.
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(probabilities w0.5) concentrated in small regions of

the floodplain. In other areas, there is a sharp transition

between PZ0 and PZ1, indicating a low level of

uncertainty in model predictions.

This methodology, while computationally inten-

sive, allows areas which are at risk of flooding and the

uncertainty in predicting future events to be defined

and communicated in a simple manner. In this way it

can be used for flood risk mapping. For example, some

areas of the floodplain (within the 5% quantile

boundary for the Morava, and in the PZ0.8 category

for the Severn) are inundated in nearly all simulations.

These areas can be classified as extremely likely to

flood, despite the uncertainty in the model. These

maps may thus be used to prioritise actions to reduce

flood risk in a way of which would be impossible

with single deterministic predictions. However,
the parameterisation and hence predictions may

require updating as soon as new event data are

available (Romanowicz and Beven, 2003) which also

has to be considered when design flood risks are

evaluated.
6. Conclusions

In this study a 1D unsteady flow model (UNET, part

of HEC-RAS 3.0) is analysed within a GLUE frame-

work. In this Monte Carlo type analysis the weighting

parameter of the numerical scheme (q) and the

Manning roughness parameters are varied using the

model for cross-sections of the River Morava (Czech

Republic) and the River Severn (United Kingdom). The

results are evaluated with an absolute error criterion



Fig. 11. Combined likelihood measure against Manning roughness for the best 10% performing models for the predicted outflow of the River

Morava.
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against maximum inundation level at cross-sections for

a 25 km long stretch of the Morava and with a

performance measure which is based on the full pattern

of the inundation in a 60 km section of the Severn.
Table 1

Test with significance level of 0.05 of DC. Null hypothesis: distribution

equivalent. 0 means Null hypothesis is accepted and 1 that it is rejected.

Cross-section

No. of runs

1 2 3 4

10,000 0 1 1 1

15,000 0 1 1 1

20,000 0 1 1 1

25,000 0 0 0 0

30,000 0 0 0 0

35,000 0 0 0 0

40,000 0 0 0 0

45,000 0 0 0 0

50,000 0 0 0 0
These likelihood measures have then been combined

using a weighted sum of the different measures with the

Nash–Sutcliffe efficiency measure of fit to the outflow

hydrographs.
s (with previous number of runs and current number of runs) are

(River Morava)

5 6 7

1 1 0

1 1 0

1 1 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



Table 2

Test with significance level of 0.05 of DK. Null hypothesis: distributions (with previous number of runs and current number of runs) are

equivalent. 0 means Null hypothesis is accepted and 1 that it is rejected. (River Morava)

Cross-section

No. of runs

1 2 3 4 5 6 7

10,000 0 1 1 1 1 1 0

15,000 0 0 0 0 0 0 1

20,000 0 0 0 0 0 0 0

25,000 0 0 0 0 0 0 0

30,000 0 0 0 0 0 0 0

35,000 0 0 0 0 0 0 0

40,000 0 0 0 0 0 0 0

45,000 0 0 0 0 0 0 0

50,000 0 0 0 0 0 0 0
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The models showed a high number of failed runs,

either detected by the model itself or by later analysis of

the outputs. This clearly indicates problems in the

numerical model algorithm for these geometries. It was

possible to carry out a detailed analysis using effective

roughness parameter values in eight reaches for the

Morava and 19 for the Severn.

These instabilities occurred despite using weighting

parameters of the numerical scheme which are in the

‘unconditionally stable’ range. It can be shown that

the choice of weighting parameter (q) for the implicit

scheme does not have any effect on the quality of the

model results. However, it does affect the percentage of

stable model runs, which decreases as q is changed

from 1.0 to 0.6. The difficulty of distinguishing between

numerical accuracy and variations due to different

parameter sets is demonstrated.

Further findings demonstrate the importance of the

boundary conditions applied in the model. At the River
Table 3

Test with significance level of 0.05 of DC. Null hypothesis: distribution

equivalent. 0 means Null hypothesis is accepted and 1 that it is rejected.

Cross-section

No. of runs

1 2 3 4 5 6 7 8 9

2000 0 0 0 0 0 0 0 0 0

3000 1 1 1 1 1 1 1 1 1

4000 1 1 0 0 1 1 1 0 1

5000 1 1 0 0 0 1 1 0 1

6000 1 0 0 0 0 0 1 0 1

7000 1 0 0 0 0 0 0 0 0

8000 0 0 0 0 0 0 0 0 0

9000 0 0 0 0 0 0 0 0 0

10,000 0 0 0 0 0 0 0 0 0

11,000 0 0 0 0 0 0 0 0 0
Severn for example, the boundaries of which impose

a level at the downstream end result in a double peak

of the performance measure. In this case, the main

flow pattern changes from channel dominated flow to

floodplain dominated flow in order to deliver enough

water to satisfy this downstream boundary. As soon

as this condition is relaxed and a flexible boundary

condition is assumed (in this case a Manning

equation type) this double peak disappears and the

roughness of the floodplain becomes unidentifiable.

However, the channel roughness still shows a peak in

performance. This is also the main difference to the

River Morava case study in which not only the

floodplain roughness is equifinal, but also the channel

roughness. This difference is due to the different

evaluation data available and illustrates the import-

ance of these. However, the different geometry and

magnitude of the two events compared must also

have an influence.
s (with previous number of runs and current number of runs) are

(River Severn)

10 11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



Table 4

Test with significance level of 0.05 of DK. Null hypothesis: distributions (with previous number of runs and current number of runs) are

equivalent. 0 means Null hypothesis is accepted and 1 that it is rejected. (River Severn)

Cross-section

No. of runs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F. Pappenberger et al. / Journal of Hydrology 302 (2005) 46–6964
The equifinality becomes more apparent when the

modeller tries to represent the heterogeneity of different

reaches by the application of multiple roughnesses.

Neither the channel nor the floodplain roughnesses are

then identifiable and a large range of model results has

to be considered as equally good. These findings can be

extended to the estimation of effective distributed

roughnesses. In principle it may be possible to get

better results by reflecting local effective values, in

practice it may be very difficult to find combinations in
Fig. 12. Predicted uncertainty bounds for an exempla
high dimensional space (especially since interactions

must be expected).

This study is novel that it demonstrated the use of a

stopping criterion for the GLUE by analysing the

change of the CDFs of each section. As soon as these

distributions do not change any more a probability map

of inundation risk can be drawn. Such a map is

fundamentally different from more traditional

approaches where just one line is used for, e.g. a 100

year flood event, because it shows the distributed
ry stretch of the channel of the River Morava.



Fig. 13. Predicted uncertainties for an exemplary stretch of the channel of the River Severn.
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probabilities of inundation for a given flow event and

provides an easy way to evaluate the risk of inundation

in future events.

This methodology is general and the visualisation

can be done with any flood inundation model (subject

only to computational limitations). However, it can

be expected that the findings of the parameter

uncertainty are valid for other 1D flood models like

ISIS and Mike 11, because studies comparing 1D

model types show the equifinality of different

implementations (Pappenberger et al., 2003; van

Looveren et al., 2000). This uncertainty analysis is far

from being complete and future testing on other model

parameter and data sets should be done, particularly

concerning how geometry structural parameters and

uncertainties in the upstream and lateral hydrograph

influence these results, or the importance of validation

with further internal validation data, e.g. multiple

continuous depth measurements.

This study demonstrates the use of distributed data

compared to cross-section or point variables. More-

over, recent developments show the increasing

availability of remote sensing data and the possibility
to use these for a wide variety of applications

(Halounova, 2002; Horritt et al., 2001; Yamada,

2001). If the possibility exists to use distributed data,

then of course one might ask why the 2D flow pattern

of the flood plains should be approximated by a 1D

model, especially if/when for such cases ‘ready to use’

models become available and do not require much

more work than a 1D approach. The answer is simple

and straightforward: The more complex model will

have similar uncertainty problems to the simpler one,

but on a larger scale, because it will normally require

more parameter values, which will be again effective

parameters at the model element scale compensating

for the remaining model errors. Experience suggests

that there will still be significant uncertainty in

reproducing both pattern information and discharge

hydrographs with higher dimensional models (Aronica

et al., 1998; Hankin et al., 2002), particularly when

predictions for design or warning purposes outside of

the discharge range of the available calibration data

are required.

All operational flood inundation predictions are

made in situations when the data available to define
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and evaluate model representations are limited

(see discussion of Beven, 2002). Thus, regardless of

which model is actually chosen as most suitable, the

modeller must also have in mind that there might be an

equifinality of the model structures and that the

parameters required by a model will always take

effective rather than ‘physically real’ values. A better

understanding of the interaction between these two

might ultimately allow the uncertainty of the predic-

tions to be constrained and to model, or assess the risk

of, flood inundation in ungauged catchments within

reasonable uncertainty limits.
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Appendix A. Kuiper statistic

The Kuiper’s statistic V is defined as:

V Z DC CDK

Z max
KN!x!N

½SN1ðxÞKSN2ðxÞ�C max
KN!x!N

½SN2ðxÞ

KSN1ðxÞ�
SN
 Cumulative probability distribution, 1 and 2,

respectively
D
 Kuiper statistic distances
The function to calculate the significance is given by

the following sum:
QKPðlÞ Z 2
XN

jZ1

ð4j2l2 K1ÞeK2j2l2

The significance level is then computed as:

ProbabilityðV OObservedÞ

Z QKP

ffiffiffiffiffi
Ne

p
C0:155 C0:24=

ffiffiffiffiffi
Ne

ph i
D

� �
Ne
 Effective number, defined as NeZN1N2=N1 CN2
N
 Number of data points in the first and second

distribution (Kuiper, 1962; Press et al., 2002).
References

Ackers, P., 1991. The Hydraulic Design of Straight Compound

Channels. SR 281, Hydraulics Research, Wallingford.

Ambroise, B., Beven, K.J., Freer, J., 1996. Toward a generalization of

the TOPMODEL concepts: topographic indices of hydrological

similarity. Water Resources Research 32 (7), 2135–2145.

Anderson, M.G., Bates, P.D., Walling, D.E., 1996. The general context

for floodplain process research, in: Anderson, M.G., Walling, D.E.,

Bates, P.D. (Eds.), Floodplain Processes. Wiley, New York.

Arcement, G., Schneider, V., 1989. Guide for Selecting Manning’s

Roughness Coefficient for Natural Channels and Flood Plains US

Geological Survey Water-Supply Paper 2339.

Aronica, G., Hankin, B., Beven, K.J., 1998. Uncertainty and

equifinality in calibrating distributed roughness coefficients in a

flood propagation model with limited data. Advances in Water

Resources 22 (4), 349–365.

Aronica, G., Bates, P.D., Horritt, M.S., 2002. Assessing the

uncertainty in distributed model predictions using observed

binary pattern information within GLUE. Hydrological Processes

16 (10), 2001–2016.

Barkau, R.L., 1982. Simulation of the July 1981 Flood Along the Salt

River, CE695BV. Department of Civil Engineering, Colorado

State University, Ft. Collins.

Barkau, R.L., 1997. UNET One-Dimensional Unsteady Flow

Through a Full Network of Open Channels User’s Manual. US

Army Corps of Engineers, Hydrologic Engineering Center,

Davis.

Barr, D.I.H., Das, M.M., 1986. Direct Solutions for Normal

Depth Using the Manning Equation Proceedings of the

Institution of Civil Engineers Part 2—Research and Theory,

81 pp. 315–333.

Bates, P.D., Anderson, M.G., Baird, L., Walling, D.E., Simm, D.,

1992. Modeling floodplain flows using a 2-dimensional finite-

element model. Earth Surface Processes and Landforms 17 (6),

575–588.



F. Pappenberger et al. / Journal of Hydrology 302 (2005) 46–69 67
Bates, P.D., Anderson, M.G., Hervouet, J.M., 1995. Initial compari-

son of 2 2-dimensional finite-element codes for river flood

simulation. Proceedings of the Institution of Civil Engineers-

Water Maritime and Energy 112 (3), 238–248.

Bates, P., Anderson, M., Price, D., Hardy, R., Smith, C., 1996.

Analysis and development of hydraulic models for floodplain

flows, in: Anderson, M.G., Walling, D.E., Bates, P.D. (Eds.),

Floodplain Processes. Wiley, New York.

Bates, P.D., Anderson, M.G., Hervouet, J.M., Hawkes, J.C., 1997.

Investigating the behaviour of two-dimensional finite element

models of compound channel flow. Earth Surface Processes and

Landforms 22 (1), 3–17.

Bates, P.D., Anderson, M.G., Horritt, M., 1998. Terrain information

in geomorphological models: stability, resolution and sensitivity,

in: Lane, S.N., Richards, K.S., Chandler, J.H. (Eds.), Landform

Monitoring, Modelling and Analysis. Wiley, New York.

Bathurst, J.C., 1994. Flow resistance estimation in mountain rivers.

Journal of Hydraulic Engineering (ASCE) 111 (4), 625–643.

Bathurst, J.C., 2002. At-a-site variation and minimum flow resistance

for mountain rivers. Journal of Hydrology 269 (1–2), 11–26.

Beven, K.J., 2002. Towards a coherent philosophy for modelling the

environment. Proceedings of the Royal Society of London Series

A—Mathematical Physical and Engineering Sciences 458 (2026),

2465–2484.

Beven, K.J., Binley, A., 1992. The future of distributed models:

model calibration and uncertainty prediction. Hydrological

Processes 6, 279–298.

Beven, K.J., Carling, P., 1992. Velocities, roughness and dispersion in

the lowland River Severn, in: Carling, P., Petts, G. (Eds.),

Lowland Floodplain Rivers. Wiley, New York.
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