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Clay rock formations, and compacted clay (e.g., bentonite) used as backfill within disposal drifts, have
been considered as natural and engineered barriers, respectively, for isolating high-level nuclear wastes
in mined geologic repositories. Accurately modeling unsaturated flow in those clay materials is important
for assessing the performance of a geological repository. While the non-Darcian behavior of water flow in
clay materials has been demonstrated in the literature, a systematic study of modeling unsaturated non-
Darcian flow is still lacking. Based on a hypothesis that pore water in clay becomes non-Newtonian as a
result of water–clay interaction, we propose new constitutive relationships for unsaturated flow, includ-
ing a relationship between water flux and hydraulic gradient and those among capillary pressure, water
saturation, and hydraulic conductivity. An evaluation based on a set of laboratory experimental observa-
tions supports the usefulness of the proposed relationships. More experimental studies are desirable for
further confirming the non-Newtonian water flow behavior in clay materials and evaluating the proposed
relationships.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction acceptable sealing of open spaces between waste packages and
Clay/shale formations have been considered as potential host
rock for geological disposal of high-level radioactive waste because
of its low permeability, low diffusion coefficient, high retention
capacity for radionuclides, and capability to self-seal fractures.
For example, Callovo-Oxfordian argillites at the Bure site, France
(Fouche et al., 2004), Toarcian argillites at the Tournemire site,
France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site,
Switzerland (Meier et al., 2000), and Boom Clay at the Mol site,
Belgium (Barnichon and Volckaert, 2003) have all been under
intensive scientific investigation with field experiments conducted
in underground research laboratories. These investigations, which
also included laboratory experiments and modeling analyses, have
focused on achieving a better understanding of a variety of rock
properties and their relationships to flow and transport processes
associated with geological disposal of radioactive waste.

In geologic repositories for radioactive waste disposal, com-
pacted expansive clay soils (bentonites) are often considered as
buffer materials within an engineered barrier system, to be placed
in the repository tunnels between the radioactive waste and the
host rock. The bentonite is usually compacted at low water con-
tent, and then progressively wetted by water from the surrounding
host formation. As a result, an unsaturated zone generally develops
within the near field of a clay repository. The unsaturated wetting
process is accompanied by bentonite swelling which ensures
ll rights reserved.

: +1 510 486 5686.
the corresponding host formation. At the same time, heat emanat-
ing from the decaying radioactive waste causes thermal gradients
and unsaturated flow within the engineered and natural barriers.
Accurately modeling unsaturated flow in such clay materials, and
how it is related to swelling and heat transfer processes, is critical
for assessing the performance of both clay rock and buffer materi-
als for isolating radioactive wastes at a disposal site.

It has been documented in the literature that water flow in clays
cannot be adequately described by Darcy’s law, which states that
water flux is directly proportional to the hydraulic gradient. For
example, Hansbo (2001) reported that water flux is proportional
to a power function of the hydraulic gradient when the gradient
is less than a critical value, whereupon the relationship between
water flux and gradient becomes linear for large gradient values.
He explained this behavior by positing that a certain hydraulic
gradient is required to overcome the maximum binding energy
of mobile pore water. In contrast, Dixon et al. (1999) presented
measured hydraulic conductivity data for clays, finding no ‘‘criti-
cal’’ or ‘‘threshold’’ gradients from their observations. However,
they did find that there were ‘‘transitional’’ gradients that define
two separate regions of Darcian flow. Lower hydraulic conductivi-
ties were observed for hydraulic gradients less than the transi-
tional gradient. Dixon et al. (1999) indicated that clay could
contain considerable quantities of structured water that shears at
gradients above the transitional gradient, allowing it to participate
in advective flow. Finally, Zou (1996) proposed a nonlinear
flux-gradient relationship depending on the activation energy of
pore liquid. He assumed that the activation energy of pore water
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Fig. 1. Schematic demonstration of relations between shear stress and stress rate
for a Newtoniain fluid and three typical non-Newtonian fluids.
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in clay (or other fine-grained materials) is not only variable with
the distance from the solid particle surface, but also with the flow
velocity of pore water. His model, including several empirical
parameters, was able to fit a number of data sets that show nonlin-
ear flux-gradient relationships at low hydraulic gradients and lin-
ear relationships at high gradients. More studies of non-Darcian
behavior for water flow in clay can be found in references cited
in Hansbo (2001), Dixon et al. (1999), and Zou (1996). Although
some inconsistency seems to exist among these studies, in general
these studies demonstrated the existence of non-Darcian flow
behavior in clay under conditions of relatively low hydraulic
gradients.

Note that such studies are all for saturated flow conditions. It is
expected that non-Darcian flow behavior becomes more significant
under unsaturated conditions, because in such conditions, pore
water exists as water films or occurs in relatively small pores,
and therefore should be subject to relatively strong interactions
with the clay surface. (As reported in Low (1961), soil–water prop-
erties change as a result of the interactions including hydration and
double-diffusive-layer effects.) This seems to be supported by
experimental observations recently reported by Cui et al. (2008).
They observed non-Darcian behavior for the full range of observed
hydraulic gradients under unsaturated conditions.

While several models have been proposed for describing non-
Darcian flow in clay in saturated conditions, a systematic investi-
gation of constitutive models for unsaturated flow in clay materials
is still lacking. The objective of this work is to develop such a mod-
el under unsaturated conditions, by considering pore water as a
non-Newtonian fluid.

2. Theoretical model

This section presents a theoretical model describing non-Darcian
flow under unsaturated conditions. The model will be verified in the
next section with data from a laboratory experiment. Theoretical
development of the model is based on the hypothesis that pore
water in clay materials is non-Newtonian and that flow is driven
by the hydraulic gradient.

2.1. Newtonian and non-Newtonian fluids

In general, fluids can be classified as Newtonian or non-Newtonian.
The former has a constant viscosity; thus, its shear stress is directly
proportional to the shear rate defined as the velocity gradient
perpendicular to the plane of shear. For non-Newtonian fluid, the
viscosity is not constant anymore, but rather a function of shear
rate and/or time. For example, Fig. 1 shows typical relations be-
tween shear stress and shear rate for a Newtonian fluid and three
non-Newtonian fluids. Pseudoplastic or shear-thinning fluids have
a lower apparent viscosity at higher shear rates, and dilatant, or
shear-thickening fluids increase in apparent viscosity at higher
shear rates (e.g., Wu and Pruess, 1998). Bingham plastic fluids have
a linear shear stress/shear strain relationship and require a finite
yield stress before they begin to flow. In other words, the plot of
shear stress against shear strain does not pass through the origin
(Fig. 1).

A relatively simple way to describe non-Newtonian behavior is
to express the apparent viscosity (le) as a power function of shear
rate @u

@y (e.g., Christopher and Middleman, 1965):

le ¼ j
@u
@y

� �n�1

ð1Þ

where j is a constant, u is water velocity parallel to the plane of
shear, y is a coordinate perpendicular to the plane of shear, and n
is a dimensionless number. The corresponding fluids are called
‘‘power-law fluids’’. In this case, the shear stress of fluid, s, is given
by

s ¼ le
@u
@y

� �
¼ j

@u
@y

� �n

ð2Þ

Eqs. (1) and (2) correspond to pseudoplastic fluids (n < 1),
Newtonian fluids (n = 1), and dilatant fluids (n > 1), respectively.
In this study, we focus on power-law fluids following Eqs. (1)
and (2); Bingham plastic fluid is not considered. As demonstrated
below, these equations seem to capture the non-Darcian behavior
of pore water under unsaturated conditions reasonably well. Note
that the methodology developed in this study can be easily applied
to Bingham plastic fluids as well, when needed.

It is well documented in the literature that water properties
will change near the clay surface as a result of water–clay inter-
action. Like other researchers (e.g., Zou, 1996), we believe that the
observed non-Darcian behavior for water flow is caused by non-
Newtonian properties of pore water in clay materials. These prop-
erties should be a direct result of strong water–clay interaction.
However, this argument is largely based on observations at core
scales, and to the best of our knowledge has not been directly
confirmed by measured viscosity and shear-rate data at pore
scale. Thus, at this point, it is appropriate to treat the considered
correlation between non-Darcian behavior and non-Newtonian
properties as a hypothesis.

2.2. Relationship between flux and hydraulic gradient for a capillary
tube

In this subsection, we derive a relationship between water flux
and hydraulic gradient for a capillary tube with radius R (Fig. 2).
This will be used as the basis for developing corresponding rela-
tionships for clay materials. For simplicity, we consider a horizon-
tal capillary tube here, although this relationship could easily be
extended to capillary tubes with other orientations.

Considering water to be a non-Newtonian fluid in the capillary
tube and using Eqs. (1) and (2), we can write the shear-stress rela-
tionship as

s ¼ j
du
dr

����
����

� �n

ð3Þ

where r is the radius coordinate. For a water surface with radius r
and length dx (Fig. 2), the total shearing force is

F ¼ sð2prÞdx ð4Þ



Fig. 2. A water element in a capillary tube with radius R. The variable r is the radius
of a water element within the capillary tube and ranges from zero to R.
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Then, the net shearing force for a water element with thickness
dr within the capillary tube, dF, is given by dF = 2p(dx)d(rs). For
laminar flow, the inertial effect can be ignored. In this case, the
shearing force should be balanced by an opposing pressure on
the water element that is (dp)(dr)(2pr). Therefore, we have:

dF ¼ 2pðdxÞdðrsÞ ¼ ðdpÞðdrÞð2prÞ ð5Þ

Combining (3)–(5) yields:

r
dp
dx
¼ dðrsÞ

dr
¼

dðrj du
dr

�� ��� �nÞ
dr

ð6Þ

The above equation can be solved for shear rate (or velocity gra-
dient du

dr)

r2

2
dp
dx
þ C ¼ jrð du

dr

����
����Þn ð7Þ

where C is a constant and determined to be zero by the following
boundary condition (that is a result of symmetry):

du
dr

����
r¼0
¼ 0 ð8Þ

Note du
dr

�� �� ¼ � du
dr for the capillary tube under consideration. Then

(7) can be rewritten as

� du
dr
¼ dp

dx

� �1=n r
2j

� �1=n
ð9Þ

Further, using non-slip conditions on the surface of the capillary
tube (u = 0 at r = R), the solution to (9) is given as

uðrÞ ¼ dp
dx

� �1=n Z r

R

r
2j

� �1=n
dr

¼ dp
dx

� �1=n 1
2j

� �1=n n
nþ 1

R1þ1
n � r1þ1

n

h i
ð10Þ

The above equation gives the velocity distribution along the ra-
dius direction. The average water flux across the cross-sectional
area of the tube is then determined by

qC ¼
R R

0 uðrÞðdrÞð2prÞ
2pR2

¼ 1
2j

� �1=n nðnþ 1Þ
2ðnþ 1Þð3nþ 1ÞR

1þ1
n

dp
dx

� �1
n

ð11Þ
2.3. Theoretical model for unsaturated clay materials

The pore space in a porous medium is often conceptualized as a
group of capillary tubes with different tortuosity values and sizes
(van Genuchten, 1980; Burdine, 1953). Thus, Eq. (11) for a single
capillary tube can be extended to represent the relationship be-
tween water flux, q, and hydraulic gradient dH

dx in porous media:

q ¼ �K
dH
dx

����
����

� �1
n

i ð12Þ

where H is the hydraulic head, K is hydraulic conductivity, and i is
the unit vector for hydraulic gradient. Note that for a single capil-
lary tube, K is proportional to R1þ1

n, rather than R2. (The latter is valid
for Newtonian fluids corresponding to n = 1.) The relationship be-
tween hydraulic conductivity for a capillary tube and its radius R
is the foundation for studying relative permeability under unsatu-
rated conditions. Equations similar to (12) were reported by a num-
ber of researchers (e.g., Pascal, 1983; Wu and Pruess, 1998; Lopez
et al., 2003). Most previous studies deal with single-phase fluid flow
except Wu and Pruess (1998), who did not, however, consider how
non-Newtonian behavior may affect unsaturated flow properties. As
discussed below, the major focus of this study is on determining
how non-Newtonian behavior impacts the unsaturated properties
of clay materials.

For unsaturated media, capillary pressure Pc can be related to
water saturation by the well-known Brooks and Corey (1964)
relationship:

Se ¼
Pc

Pd

� ��k

for Pc < Pd ð13:1Þ

Se ¼ 1 for Pc P Pd ð13:2Þ
In (13), k is a fitting factor related to pore-size distribution, Pd is

the air entry value, and Se is the effective saturation defined by

Se ¼
h� hr

hs � hr
ð14Þ

where h, hs, and hr are water content, saturated water content, and
residual water content, respectively.

In the literature, the relative permeability for unsaturated med-
ia has often been provided by the Burdine (1953) model:

Kr ¼
K

Ksat
¼ S2

e

R Se

0 P�2
c dSeR 1

0 P�2
c dSe

ð15Þ

where Ksat is saturated hydraulic conductivity. In Eq. (15), S2
e repre-

sents tortuosity, and 1
Pc

characterizes the size (or radius) of the cap-
illary tube (or pore space) under saturation Se. The power value of
�2 in the two integrals results from the fact that, for Newtonian flu-
ids, hydraulic conductivity for a capillary tube is proportional to the
square of its radius. Therefore, Eq. (15) is valid for Newtonian fluid
only, because for a non-Newtonian fluid, the hydraulic conductivity
of a capillary tube is not proportional to the square of the radius.
Based on Eq. (11), the Burdine (1953) model for a non-Newtonian
fluid needs to be rewritten as:

Kr ¼
K

Ksat
¼ S2

e

R Se

0 P�ð1þ
1
nÞ

c dSeR 1
0 P

� 1þ1
nð Þ

c dSe

ð16Þ

Combining Eqs. (13) and (16) yields

Kr ¼
Pc

Pd

� �� 1
nþ1þ3kð Þ

ð17Þ

and

Kr ¼ S3þ1þ1
n

k
e ð18Þ

In deriving Eqs. (17) and (18), we assumed that pore geometry
does not change with saturation or capillary pressure. The hydraulic
conductivity change is purely a function of changes in saturation. In
reality, clay swells (or shrinks) with changes in saturation. In this
case, the relative conductivity is given by
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K�r ¼
K

Kref
¼ Kr

Kref ;r

� �
Ksat

Kref ;sat

� �
¼ PcPref ;d

PdPref ;c

� �� 1
nþ1þ3kð Þ Ksat

Kref ;sat

� �
ð19Þ

The subscript ref refers to the reference case in which measure-
ments are available. For mechanically deformed media, it is conve-
nient to define relative hydraulic conductivity respective to a
reference case. In this case, relative conductivity can be larger than
one. Also, in (19), we assumed, for simplicity, that pore-size distri-
bution (or parameter k) remains unchanged during swelling/
shrinkage.

Based on the principle of Leverett (1941) scaling, relative
changes in pore size can be approximately characterized by rela-
tive changes in porosity /. By definition of air entry value Pd and
using (11), we have:

Pref ;d

Pd
¼ /

/ref
ð20Þ

Ksat

Kref ;sat
¼ /

/ref

 !ð1þ1
nÞa

ð21Þ

where parameter a > 1 accounts for the fact that the porosity ratio
may underestimate the corresponding size ratio for those well-
connected pores that determine the hydraulic conductivity. Dixon
et al. (1999) showed that a > 2.3 for some saturated clay materials
within a Darcian-flow regime.

Combining (19)–(21), we obtain

K�r ¼
Pc

Pref ;c

� �� 1
nþ1þ3kð Þ /

/ref

 !ða�1Þ 1þ1
nð Þ�3k

ð22Þ

In the right-hand side of (22), the first and second terms repre-
sent conductivity changes resulting from changes in capillary pres-
sure and swelling (shrinkage), respectively. The second term needs
to be determined by measurements or estimated using geome-
chanical simulators. Eqs. (12), (13), and (22) give the constitutive
relationships required for modeling unsaturated flow in clay mate-
rials. Their validity will be evaluated in the next section by exam-
ining their consistency with data.

3. Comparisons with experimental observations

As previously indicated, non-Darcian flow is a result of non-
Newtonian properties of pore water in clay. However, experimen-
tal studies of non-Newtonian flow in porous media are very limited
for unsaturated flow conditions. Most recently, Cui et al. (2008) re-
ported on measurements of unsaturated hydraulic conductivity for
a compacted sand-bentonite mixture. To the best of our knowl-
edge, this work provided the first reliable data set of water flux
as a function of hydraulic gradient under unsaturated conditions.

The tests of Cui et al. (2008) were conducted under two exper-
imental boundary conditions: constant volume and free swelling.
In this study, we focus on the data for constant-volume conditions
only, based on the reasoning that under constant-volume condi-
tions and for a given capillary pressure, hydraulic processes and
pore structures are approximately the same at different locations
within the soil sample (Cui et al., 2008). Experimental determina-
tions of the flux–gradient relationships required the use of this
approximation. Cui et al. (2008) used the instantaneous profile
method to determine the unsaturated hydraulic conductivity for
infiltration tests of a vertical sand–bentonite column. The sand–
bentonite mixture was directly compacted in a metallic cylinder
(50 mm in inner diameter, 250 mm high). The bottom of the test
cell was connected to a water source, and the upper end to an air
source under atmospheric pressure. Under transient water-flow
conditions, vertical distributions of capillary pressure were directly
measured as a function of time at several locations along the col-
umn. The relationship between water content and capillary pres-
sure was independently measured under constant volume
conditions. This relationship enables them to estimate vertical dis-
tributions of water content from the capillary-pressure measure-
ments. Based on these vertical distributions at different times,
and on the mass balance at each location within the soil column,
they estimated the water flux at that location as a function of cap-
illary pressure and hydraulic gradient. The details of this instanta-
neous method can be found in Cui et al. (2008).

Fig. 3 shows estimated water flux (data points) as a function of
hydraulic gradient under several capillary pressures. Obviously,
very strong nonlinear (non-Darcian) behavior emerges at all the
different capillary pressures, indicating that Darcy’s law is not valid
for the range of hydraulic gradients under consideration. Based on
Fig. 8 of Cui et al. (2008), the unit of hydraulic gradient in Fig. 3 is
m/m. This seems to support the notion that non-Darcian flow
behavior becomes more significant under unsaturated conditions.
In unsaturated materials, pore water exists in water films or re-
sides in relatively small pores, and therefore is subject to relatively
strong interactions with the clay surface, as previously indicated.

Fig. 3 also matches Eq. (12) (solid lines) with data for the six
capillary pressures. The single value of n = 0.28 is able to fit all
the data points reasonably well. In general, n can be considered a
measure of non-Newtonian behavior that may be saturation (or
capillary pressure) dependent. Thus, n may also be a function of
saturation in a general case. It appears that the data of Cui et al.
(2008) support the use of a constant n for different capillary pres-
sures—but more evaluations are needed before the issue can be
fully resolved.

The solid curve in Fig. 4 shows the values for relative hydraulic
conductivity defined in Eq. (19). The properties at capillary pres-
sure of 35 MPa are used as reference properties. Thus, K�r ¼ 1 in
Fig. 4 at that capillary pressure. Note that for Darcian unsaturated
flow in a rigid material, hydraulic conductivity always decreases
with capillary pressure, which is not the case here. This under-
scores the importance of the fact that conventional unsaturated
flow theory and methodology cannot be simply borrowed for clay
materials. The data presented in Fig. 4 are from laboratory mea-
surements reported by Cui et al. (2008). The flux and hydraulic
gradient data provided by Cui et al. (2008)—the data needed to
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compute relative hydraulic conductivity—are limited to the capil-
lary pressure range of the data points given in Fig. 4.

The observed relationship between hydraulic conductivity and
capillary pressure can be explained with Eq. (22), in which the first
and second terms represent conductivity changes resulting from
changes in capillary pressure and swelling (shrinkage), respec-
tively. For the observed range of capillary pressures, the effects
of shrinkage (as a result of increasing capillary pressure) may dom-
inate the changes in K�r . To further demonstrate our reasoning,
assume that porosity and capillary pressure obey the following
relationship:

/
/ref
¼ exp b

Pc

Pref ;c
� 1

� �	 

ð23Þ

where b is a fitting factor. The above equation is based on the
consideration that the amount of clay swelling seems to be an expo-
nential function of capillary pressure (Pham et al., 2007), and that
porosity change may be proportional to the amount of swelling
(or shrinkage) under constant-volume conditions.

The solid curve in Fig. 4 is calculated using Eqs. (22) and (23)
with n = 0.28 (obtained from Fig. 3), k ¼ 0:21 (obtained from
Fig. 2 of Cui et al., 2008), a = 3.27, and b = 1.13, and matches the
observed conductivities. Note that K�r decreases with increasing
capillary pressure for small levels of capillary pressure, and then
increases with increasing capillary pressure for higher levels of
capillary pressure. This is because for relatively small capillary
pressures, the behavior of K�r is dominated by the first term on
the right-hand side of Eq. (22); and for relatively large capillary
pressures, the behavior of K�r is dominated by the second term,
representing the effects of clay shrinkage. Although the definition
of hydraulic conductivity in Cui et al. (2008) is different from ours,
their results show similar behavior to the solid curve in Fig. 4.
However, it is important to emphasize that the solid curve in the
figure should be considered as an illustrative case, because the
derivation of Eq. (23) requires some untested assumptions. The
accurate determination of porosity change under test conditions
of Cui et al. (2008) needs to be rigorously based on coupled
hydro-mechanical processes. Nevertheless, comparisons between
our theoretical results and data (Figs. 3 and 4) support the useful-
ness of our approach.
More experimental studies are needed to further confirm the
non-Newtonian behavior and evaluate the proposed relationships
for the unsaturated flow properties. Development of more efficient
and applied experimental procedures is desirable for collecting rel-
evant data sets. Along this line, it is useful to note that a commonly
used method to estimate unsaturated soil properties for Newto-
nian fluids is the so-called Boltzmann transformation method
(Bruce and Klute, 1956). It is based on a mathematical transforma-
tion of the partial differential equation describing unsaturated
water flow in a horizontal soil column to an ordinary differential
equation (ODE). Then water content (or saturation) data from the
soil column are used to derive the unsaturated properties using
the ODE. The appendix to this paper extends the method to non-
Newtonian fluids, while swelling/shrinkage effects are not yet con-
sidered. Incorporation of these effects requires further study.

4. Concluding remarks

Unsaturated flow occurs over a period of time in the engineered
barrier and in the near field of a clay repository for high-level radio-
active waste. Therefore, accurately modeling unsaturated flow in
clay materials is important for assessing the performance of a
geological repository in isolating the radioactive waste. The non-
Darcian behavior of water flow in clay materials has been demon-
strated in the literature. While several models have been proposed
for dealing with non-Darcian behavior for saturated flow conditions,
a systematic study of modeling unsaturated non-Darcian flow is still
lacking. Based on the hypothesis that pore water in clay becomes
non-Newtonian as a result of water–clay interaction, we proposed
constitutive relationships for unsaturated flow, including a relation-
ship between water flux and hydraulic gradient and those among
capillary pressure, water saturation, and hydraulic conductivity.
An evaluation based on a set of laboratory experimental observa-
tions supports the usefulness of the proposed relationships.
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Appendix A

Based on continuity, a flow equation describing the movement
of water in a horizontal, semi-infinite unsaturated porous rock is
given by:

@h
@t
¼ � @qx

@x
ðA:1Þ

where h is the volumetric moisture content, t is the time since start
of test, x is the horizontal distance from inlet, and qx is the water
flux given by (12). Inserting (12) into (A.1) gives

@h
@t
¼ @

@x
DðhÞ @h

@x

� �1
n

" #
ðA:2Þ

where water diffusivity D ¼ K @H
@h

� �1
n is the moisture diffusivity. Eq.

(A.2) can be reduced to an ordinary differential equation by incor-
porating a new Boltzmann transformation:

k ¼ xt
�n

nþ1 ðA:3Þ
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Note that for an Newtonian fluid (n = 1), the power value in the
above equation is –0.5. This value has been widely used in the
literature of soil physics (Bruce and Klute, 1956). Combining
(A.2) and (A.3) yields:

� nk
nþ 1

dh
dk
¼ d

dk
DðhÞ dh

dk

� �1
n

" #
ðA:4Þ

To determine parameter n and water diffusivity from the above
equation, water content data need to be collected from the soil col-
umn. In general, water is applied at one end of a long horizontal
tube of air-dried or partially wet soil, at a small but constant pres-
sure, and allowed to move into the soil column for a measured per-
iod of time. The column must be sufficiently long to be regarded as
semi-infinite in length. Parameter n may be determined in such a
way that the observed water content value is a function of k only
through adjusting the n value in (A.3). Once n is determined, the
detailed procedure for estimating water diffusivity as a function
of water content from measurements is available from Bruce and
Klute (1956).
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