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ABSTRACT 

Enteric viruses are one of the major concerns in water reclamation and reuse at 

Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of 

bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) 

collected from a MAR site in Parafield, Australia. Column experiments were conducted using 

SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water 

velocities (1 and 5 m day
-1

) to encompass expected behavior at the MAR site.  The aquifer 

sediment removed >92.3% of these viruses under all of the considered MAR conditions. 

However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity 

and in EQ-SW that had a higher ionic strength and Ca
2+

 concentration. Virus removal was 

greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical 

condition. The vast majority of the attached viruses were irreversibly attached or inactivated 

on the solid phase, and injection of Milli-Q water or beef extract at pH=10 only mobilized a 

small fraction of attached viruses (<0.64%).  Virus breakthrough curves (BTCs) were 

successfully simulated using an advective-dispersive model that accounted for rates of 

attachment (katt), detachment (kdet), irreversible attachment or solid phase inactivation (μs), 

and blocking. Existing MAR guidelines only consider the removal of viruses via liquid phase 

inactivation (μl). However, our results indicated that katt > μs > kdet > μl, and katt was several 

orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in 

the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs 

exhibited blocking behavior and the calculated solid surface area that contributed to the 

attachment was very small.  Additional research is therefore warranted to study the potential 

influence of blocking on virus transport and potential implications for MAR guidelines. 

Keywords: Virus; Calcium; Transport; Solid Phase Inactivation; Stormwater; Managed 

Aquifer Recharge  
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1. INTRODUCTION 

The availability of high-quality drinking water has decreased due to climate 

variability and population growth, while demand has increased to meet agricultural, 

industrial, environmental, and municipal water needs (Levantesi et al., 2010; Shannon et al., 

2008; Yates et al., 1987). The United Nations has estimated that about 1.8 billion people 

around the globe will face severe water stress and scarcity by 2025 (UN, 2013). 

Consequently, there is an urgent need to find alternative sources of freshwater, such as by 

developing economic and effective water reclamation, recycling, and preservation techniques 

(Levantesi et al., 2010; Shannon et al., 2008; Yates et al., 1987). Water recycling can be 

achieved by various engineering techniques and natural or passive treatment. Major water 

recycling techniques employ multiple barrier approaches, including secondary treatment, 

riverbank filtration, reverse osmosis, UV disinfection, chlorination, and ultrafiltration (Page, 

2010a). However, many countries across the world do not have access to cheap and efficient 

wastewater treatment plants (Vega et al., 2003). Managed Aquifer Recharge (MAR) is a 

collection of natural treatment techniques, including Aquifer Storage, Transfer, and Recovery 

(ASTR) or Aquifer Storage and Recovery (ASR), that has gained a lot of attention recently 

(Ayuso-Gabella et al., 2011; Bekele et al., 2014; Bekele et al., 2013; Bekele et al., 2011; 

Stevens, 2014; Toze and Bekele, 2009; Ward and Dillon, 2009). Water recycling is facilitated 

during MAR by purposefully recharging lower quality water into aquifers for natural 

treatment prior to recovery (Dillon et al., 2009; Page et al., 2010a). Currently, MAR is 

considered as an effective and economical option to store water in the treatment train; e.g., a 

sequence of multiple stormwater treatments, which are designed to meet the needs of a 

particular environment, in order to maximize results (MelbourneWater). MAR provides a 

natural buffer, increases public perception, provides a residence time that can facilitate 

removal of biodegradable organic matter and pathogens, improves the quality of the treated 



  

 

  

 4 

 

wastewater or stormwater, and reduces the cost of seasonal peak demands (Dillon et al., 

2009; Levantesi et al., 2010; Page et al., 2010a). However, current MAR guidelines require 

expensive and energy-intensive pre-treatment of injected water and post-treatment of 

recovered water depending on the end use, with drinking water supply requiring the highest 

level of treatment  (Dillon et al., 2009).  

One of the major concerns with potable water reuse is the microbiological quality of 

recovered water and the possibility of transmitting infectious diseases from pathogenic 

microorganisms (virus, bacteria, and protozoa) that are not eliminated by conventional 

wastewater treatment (Costán-Longares et al., 2008; Levantesi et al., 2010; Shannon et al., 

2008). Enteric viruses pose the greatest public health concern because they can travel long 

distances (Schijven and Hassanizadeh, 2000) and are infectious at very low doses (Ward et 

al., 1986). MAR systems can improve the microbiological quality of water by natural 

attenuation processes during soil filtration and/or aquifer transport (Asano et al., 2007; Dillon 

et al., 2008; Levantesi et al., 2010; Mayotte et al., 2017). For example, inactivation occurs 

when viruses lose their ability to infect host cells and replicate because of the disruption of 

proteins and the degradation of nucleic acid (Gerba, 1984; Schijven, 2003). The most 

important factors affecting virus inactivation rate include temperature, groundwater microbial 

activity, pH, salt species and concentration, some forms of organic matter, and virus type 

(McCarthy and McKay, 2004; Schijven and Hassanizadeh, 2000). However, decay rates for 

human enteric viruses, determined using diffusion chambers in monitoring wells at MAR 

sites, have been found to be slow and nonlinear (Sidhu et al., 2015; Sidhu and Toze, 2012). 

Quantitative microbial risk assessment calculations for MAR systems have been developed 

from a detailed hydrogeological assessment of the aquifer and in-situ decay studies (Donald 

et al., 2011; Page, 2010b; Page et al., 2015a; Toze et al., 2010). These risk assessment studies 

considered that liquid phase virus inactivation was the only reliable mechanism for virus 
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removal in the aquifer, and neglected the processes of virus attachment, detachment, and 

solid phase inactivation (Abu-Ashour, 1994; Dillon et al., 2008).    

In addition to liquid phase inactivation, virus removal from groundwater may occur 

by attachment from the bulk solution to the solid phase (Shen et al., 2012a; Shen et al., 

2012b), whereas detachment refers to the reverse process of virus release from the solid 

phase to the bulk solution (Bergendahl and Grasso, 2000). Virus attachment to aquifer 

materials is a strong function of many physicochemical variables, including pore-water 

velocity (Hijnen, 2005); solution ionic strength (IS) (Da Silva et al., 2011; Knappett et al., 

2008; Xu et al., 2005); solution ionic composition  (Bales et al., 1991; Lipson and Stotzky, 

1983; Sadeghi et al., 2013; Sasidharan et al., 2014; Walshe et al., 2010); and the presence of 

humic materials (Zhuang and Jin, 2003), and metal oxides (Foppen et al., 2006). 

Consequently, an accurate assessment of virus attachment at MAR sites must consider 

realistic solution chemistries and aquifer mineralogy. In contrast, most virus transport studies 

have been conducted under highly idealized conditions using clean sand or glass beads, and 

simple electrolyte solutions.  

Attachment during MAR can only serve as an effective, long-term treatment when 

viruses are irreversibly retained or inactivated on the solid phase. It is difficult to separately 

quantify the processes of irreversible attachment and solid phase inactivation because they 

both decrease the number of infective viruses that can detach from the solid phase (Ryan et 

al., 2002). Consequently, much less is known about solid than liquid phase inactivation 

(Murray and Laband, 1979; Ryan et al., 2002). Solid phase inactivation has been reported to 

increase with the strength of the adhesive interaction and the temperature (Loveland et al., 

1996; Murray and Laband, 1979; Ryan et al., 2002). Yates et al. (1985) found that the 

inactivation rate of MS2 in eleven groundwater samples increased with the Ca
2+ 



  

 

  

 6 

 

concentration. However, low levels of virus detachment have been commonly observed under 

steady-state physicochemical conditions (Bales et al., 1993). Furthermore, changes in 

solution chemistry (e.g., a decrease in IS or an increase in pH) have been observed to produce 

large pulses of released colloids (Bales et al., 1993). Consequently, there is a concern that 

attached viruses can be remobilized with a decrease in IS or divalent cation concentrations 

during rainfall events (Gerba, 1983; Yates et al., 1988).    

The main objective of this work was to systematically examine virus removal 

processes in urban stormwater from a wetland (Urrbrae, South Australia) when in contact 

with aquifer sediment collected from an ASTR site (Parafield Gardens, South Australia). 

Three bacteriophages (PRD1, MS2, and ΦX174) were used as surrogate viruses for enteric 

human viruses. Laboratory scale virus transport experiments and inactivation studies were 

conducted. Additional studies investigated the release of attached viruses by sequentially 

injecting step pulses of solutions with alternating solution chemistry. Virus breakthrough 

curves (BTCs) were simulated using the numerical solution of the advection-dispersion 

equation with terms for attachment, detachment, Langmuirian blocking, and a sink term that 

accounted for irreversible attachment and solid phase inactivation. Model parameters were 

obtained by inverse fitting to the observed BTCs. Results from this study provide valuable 

insight on the relative importance of natural attenuation processes for viruses at MAR sites 

and indicate that microbial risk assessments that only consider liquid phase inactivation may 

be overly conservative in some instances.   

2. MATERIALS AND METHODS 

2.1 Stormwater 

Stormwater (SW) samples were collected from the Urrbrae Wetland located in 

Mitcham, South Australia (Figure S1). The wetlands were constructed to collect urban 
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stormwater for flood protection in the nearby area and for potential future use in MAR 

operations (Lin et al., 2006). The stormwater chemistry (major and minor elements) was 

analyzed using an Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the carbon 

content was measured using Varo TOC Cube (Analytical Chemistry, CSIRO, Adelaide). The 

pH and electrical conductivity (EC) were measured using a Eutech PC 700 (Eutech 

Instruments).  

Dissolved calcium is a weathering product of almost all rocks and is, consequently, 

abundant in most groundwater sources. Water from limestone aquifers may contain 30–100 

mg L
−1

 of calcium, gypsiferous shale aquifers may contain several hundred milligrams per 

liter (Sadeghi et al., 2013), and dolomite produces water with high levels of calcium and 

magnesium (Wade, 1992). The calcium concentrations range from 0.03 to 36.5 mg L
−1 

in 

Australian groundwaters (Radke et al., 1998). When water percolates through soils, the 

concentration of divalent cations in soil solutions often increases with depth along the vertical 

weathering-leaching gradient (Sadeghi et al., 2013; Sverdrup and Warfvinge, 1993). It is, 

therefore, logical to anticipate that the solution IS and divalent cation concentration will 

increase with a travel distance and residence time during ASTR, due to mineral dissolution, 

along with mixing in aquifers containing groundwater of higher salinity. In a limestone 

aquifer, increases in calcium are prevalent due to the dissolution of calcium carbonate. This 

increase in solution IS and Ca
2+ 

concentration may increase virus attachment.  Virus transport 

and survival experiments were therefore also conducted using stormwater after it was 

equilibrated with the aquifer sediment (50 g of sediment with 200 mL of stormwater), 

denoted as EQ-SW. Table S1 provides a summary of selected chemical properties for EQ-

SW.  
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2.2 Porous Media 

Aquifer materials were collected from an ASTR site situated in Parafield Gardens, 

Adelaide, Australia (Figure S1) established for stormwater storage and treatment (Page et al., 

2015b). The target aquifer for ASTR is the lower Tertiary marine sediments of the Port 

Willunga Formation (T2 aquifer), a well-cemented sandy limestone aquifer which is 

intersected between -149 and -214 m Australian Height Datum (AHD) (160 to 220 m below 

ground surface). At this location, the target aquifer is approximately 60 m thick and overlain 

by 7 m thick clay aquitard of Munno Para Clay which prevents the migration of injected 

stormwater to the overlying aquifers. A schematic cross-section of the aquifer is given in 

Figure S2. Karstic features were not identified during construction of the site (Vanderzalm et 

al., 2010). The mineralogy in the storage zone is dominated by calcite (65  23%), quartz (30 

 22%), and a trace amount of ankerite, goethite, hematite, pyrite, albite, and microcline 

(Vanderzalm et al., 2010). Goethite and hematite largely account for the 2.1% Fe2O3 

quantified by X-ray Fluorescence (XRF). The transmissivity of the aquifer ranges from 100 

to >200 m
2
 d

-1
, depending on the silt content and degree of weathering (Miotliński et al., 

2014). Considerable variability exists in hydraulic conductivity within the aquifer and, 

therefore, the ASTR was constructed with partially penetrating wells to avoid the zone of 

high hydraulic conductivity in the lower part of the aquifer and to exclude excessive mixing 

between native groundwater and injection water (Miotliński et al., 2014). The aquifer is low 

in organic carbon (<0.5 %) and has an average cation exchange capacity of 1.5 meq/100 g 

(Page, 2010b). The aquifer has a temperature of 25 °C at ambient conditions. The design, 

operation, hydraulic, chemical, and physical properties of this aquifer has been extensively 

studied and reported in the literature (Adkinson et al., 2008; Dillon et al., 2008; Kremer et al., 

2008; Page, 2010b; Pavelic et al., 2004; Rinck-Pfeiffer et al., 2005; Vanderzalm et al., 2010). 

The aquifer material used in this study was obtained from intact core samples taken at a depth 
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of 171.30 m below the ground surface. The collected aquifer sediments were directly used in 

the experiments without any further treatment. Selected physical and chemical properties of 

the sediment are provided in Table S2. The bulk mineralogy of the sediment sample was 

determined by X-ray Diffraction (XRD). The major elemental composition was determined 

by XRF and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

following reverse aqua regia acid digest. Sieve analysis was used to determine the particle 

size distribution.    

Additional transport experiments were conducted using ultra-pure clean quartz sand 

(Charles B. Chrystal CO., Inc., NY, USA) with size ranging from 125–300 μm. This sand 

was cleaned using an acid wash and boiling procedure described by Sasidharan et al. (2014).  

Transport experiments with the ultra-pure quartz sand represent a worst-case scenario for 

virus transport because of minimal chemical heterogeneity.   

2.3 Viruses 

Bacteriophage MS2, PRD1, and ΦX174 were used as model viruses in this study. 

These microbes were chosen because of their structural resemblance to many human enteric 

viruses and they have been used in numerous investigations as surrogates for human enteric 

viruses (Chu, 2003; Schijven and Hassanizadeh, 2000). It should be mentioned that recent 

studies have demonstrated that the transport and fate of human enteric viruses may not 

always be well correlated with that of bacteriophages (Bellou et al., 2015). Additional 

research is, therefore, warranted to identify the best surrogate for the transport and fate of 

pathogenic viruses, but this issue is beyond the scope of the present study. The 

bacteriophages were analyzed using their respective Escherichia coli host. The production of 

bacteriophages and their analysis using double layer agar (DLA) methods were detailed in 

Sasidharan et al. (2016). Stock solutions of viruses were diluted in stormwater to obtain an 
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initial concentration (C0) of ~5 × 10
6
 plaque forming unit mL

-1
.  The survival of viruses over 

a 7 h interval was determined in both SW and EQ-SW solutions. 

2.4 Zeta Potential and Size Measurements 

The electrophoretic mobility (EM) of viruses, crushed aquifer sediment, and quartz 

(<2 μm) was measured in both SW and EQ-SW using a Zetasizer (Malvern, Zetasizer Nano 

Series, Nano-ZS). The EM measurements were repeated five times with more than twenty 

runs per measurement. The Smoluchowski equation (Elimelech et al., 1994) was used to 

convert the measured EM values to zeta potentials. The size distribution of viruses in both 

SW and EQ-SW was measured using a dynamic light scattering (DLS) (Malvern Instruments 

Ltd, 2004; Sikora et al., 2016) process (Malvern, Zetasizer Nano Series, Nano-ZS).  

2.5 Transport Experiments 

The column experiments were set up in a constant temperature laboratory (20 °C). 

Sterilized polycarbonate columns (1.9 cm inside diameter and 11 cm height) were wet packed 

using aquifer material or ultra-pure quartz sand while the column was being vibrated. After 

packing, the column was preconditioned with >10 pore volumes (PV) of stormwater water 

using a syringe pump (Model 22, Harvard Apparatus) at a flow rate of 0.394 mL min
−1

. A 

suspension with known C0 of viruses (PRD1, MS2, and ΦX174) and solution chemistry (SW 

or EQ-SW) was introduced into the column using a syringe pump at a constant pore water 

velocity (1 or 5 m day
−1

) for 13 PV (Phase I), followed by injection of ~7 PV of virus-free 

solution at the same solution chemistry and velocity (Phase II). To study the reversibility of 

attached viruses, the experiments were continued by flushing the columns with ~ 11 PV of 

Milli-Q water (Phase III), followed by injection of 3% Beef Extract with pH=10 (Phase IV). 

Virus release is enhanced in Milli-Q water by a reduction in solution IS which expands the 

double layer thickness, and increases the magnitude of the sediment and virus zeta potentials 
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(Chen et al., 2014; Sasidharan et al., 2017b). Beef extract is a mixture of peptides, amino 

acids, nucleotide fractions, organic acids, minerals, and some vitamins, with a pH of 10 and 

its injection further enhances the virus release by masking positively charged sites with 

organic matter, and reversing the charge of some pH dependent sites (Landry et al., 1978; 

McMinn, 2013). Effluent samples were collected using a fraction collector (CF-2, Spectrum, 

USA). The effluent concentrations (C) of viruses were enumerated using the methods 

described above. Separate column experiments were run for each porous medium (aquifer 

sediment or ultra-pure quartz sand), solution chemistry (SW or EQ-SW), and pore-water 

velocity (1 or 5 m day
−1

) combination.   

Breakthrough curves (BTCs) were plotted as a dimensionless concentration (C/C0) of 

viruses as a function of PVs. A mass balance was conducted for the viruses in the column 

experiments using information on injected and recovered viruses during Phases I–IV. The 

percentage of virus mass retained on the solid phase (Ms) was determined as the difference in 

the mass of injected virus and mass of virus recovered in the effluent BTC (MBTC = MI + MII) 

during Phases I and II. The percentage of injected viruses that was recovered during Phases 

III and IV were denoted as MIII and MIV, respectively. The percentage of injected viruses that 

were irreversibly retained (Mirr) was determined as 100-MBTC-MIII-MIV.  The log removal of 

the viruses in the column effluent experiments was determined as -log10(MBTC). 

2.6 Simulation of Virus BTCs 

Experimental BTCs for viruses were simulated using the HYDRUS-1D model 

(Šimůnek et al., 2016). The HYDRUS-1D program numerically solves the Richards' equation 

for variably saturated water flow and Fickian-based advection-dispersion equations for heat 

and solute transport. The governing continuum-scale flow and transport equations are solved 

numerically using Galerkin-type linear finite element schemes (Šimůnek et al., 2016). The 
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following aqueous and solid phase mass balance equations were considered in this model for 

each virus.  

  

  
   

   

   
  

  

  
            

   

 
                                                                                

   

 
 
  

  
             

   

 
    

   

 
                                                                                              

where t (T; T denotes unit of time) is time, z (L; L denotes units of length) is the direction of 

mean water flow, C (NL
-3

; N denotes the virus number) is the aqueous phase virus 

concentration,  (L) is the dispersivity, v (LT
-1

) is the average pore water velocity,    (ML
-3

; 

M denotes the unit of mass) is the bulk density,   is the water content,   (NM
−1

) is the solid 

phase concentrations of virus,      (T
-1

) is the virus attachment rate coefficient,      (T
-1

) is 

the virus detachment rate coefficient, and    (T
-1

) is a sink term which accounts for 

irreversible attachment and inactivation of viruses attached on the solid phase, and    (T
-1

) is 

the inactivation rate coefficient for viruses in the liquid phase. The parameter ψ is a 

dimensionless Langmuirian blocking function that is given as (Adamczyk et al., 1994) 

     
 

    
                                                                                                                                         

        

where      (NM
−1

) is the maximum solid phase concentrations of retained virus.  

The fraction of the solid surface area that is available for retention (Sf) was calculated 

from Smax as (Kim et al., 2009; Sasidharan et al., 2014): 
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where     (L
2
N

-1
) is the cross sectional area of a virus,    (L

-1
) is the solid surface geometric 

area per unit volume, and   is the porosity of a monolayer packing of viruses on the solid 

surface that was taken from the literature to be 0.5 (Johnson and Elimelech, 1995). 

The value of the sticking efficiency (α) was determined from the fitted katt value and 

the filtration theory as (Schijven and Hassanizadeh, 2000; Yao et al., 1971): 

  
         

        
                                                                                                                                         

                                                                                                                   

where n is the porosity (0.4) and    (L) is the collector (median grain) diameter. The value of 

the single collector-efficiency, η, was calculated using the correlation equation presented by 

(Messina et al., 2015). 

3. RESULTS AND DISCUSSION 

3.1 Characterization of Solution Chemistry  

SW had a pH of 7 and EC of 260 μS cm
-1 

and after equilibration with the aquifer 

sediment the pH and EC of the EQ-SW increased to 7.3 and 2230 µS cm
-1

, respectively 

(Table S1). In addition, the concentration of all major ions also increased in EQ-SW, notably, 

with ~7 times increase in Ca
 
and K, and ~11 times increase in Na concentration. Therefore, 

the ionic strength of the EQ-SW (0.014 mM) increased 10 times compared to SW (0.002 

mM). This increase in pH and EC of EQ-SW compared to SW was attributed to the 

dissolution of limestone in the aquifer sediment (Table S2) that leaches CaCO3 and increases 

the solution pH (Earle, 2013; Panthi, 2003). The measured concentration value of Ca
2+ 

in EQ-

SW (151 mg L
-1

, Table S1) was very close to Ca
2+ 

(135 ± 5 mg L
-1

) in ambient groundwater 

from the T2 aquifer (Page et al., 2010b) and, therefore, it confirms that the solution chemistry 

of the EQ-SW was representative of the target aquifer. 
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3.2 Characterization of Aquifer Sediment  

The average particle size of the sediment was ~110 μm, with 93.5% within the 20–

200 μm size fraction (Table S2) and only 6.5% in smaller or larger size fractions. The 

quantitative bulk mineralogy of the sediment in Table S2 showed that the aquifer material 

was made of quartz (58.1%), calcite (35.0%), and goethite (2.2%). Major element analysis 

(Table S2) indicates the presence of a large fraction of SiO2 (53.4%), Al2O3 (1.2%), Fe2O3 

(3.5%), and CaO (19.6%). Acid digest data (Table S2) revealed the presence of other major 

ions such as K, Mg, and Na in the sediment. These results demonstrated that the sediment 

was rich in major metal oxides such as CaO, MgO, Fe2O3, and Al2O3, as well as minerals 

such as quartz and clays. The metal oxide surfaces are positively charged and the mineral 

surfaces are negatively charged at the experimental pH (~7.3) due to surface chemical 

reactions with H
+
/OH

−
 ions, respectively (Tombácz, 2009). Consequently, the aquifer 

sediment surface is expected to be chemically heterogeneous and possess a distribution of 

negative and positive surface charges. It has been shown that minor degrees of positive 

charge heterogeneity on the collector surface result in attachment rates that are an order of 

magnitude larger than similar surfaces having no charge heterogeneity (Schijven and 

Hassanizadeh, 2000).  

Table 1 shows that the crushed aquifer sediment and quartz were negatively charged 

in the presence of SW and EQ-SW. We assume that some of the positively charged surfaces 

were masked by negatively charged P, Dissolved Organic Carbon (DOC), and Dissolved 

Inorganic Carbon (DIC) present in the SW (Table S1), which will lead to a reduction in the 

overall surface potential and a net negative zeta potential value for the sediment (     
 ) 

(Karageorgiou et al., 2007). Furthermore, the presence of SiO2 and clays will significantly 

decrease the value of      
  (Chen et al., 2014). Consequently, the zeta potential for quartz 

was lower than the aquifer sediment (Table 1). Table 1 also indicates that the zeta potential 
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for the aquifer sediment and quartz was more negatively charged in the presence of SW than 

EQ-SW. This could be explained by an increase in EC, divalent cation (Ca
2+

 and Mg
2+

) 

concentration, and IS by more than 8 times in EQ-SW compared to SW, and the compression 

of the electrostatic double layer (Elimelech, 1994). Increased Ca
2+

 concentration can also lead 

to charge reversal (Lipson and Stotzky, 1983; Moore et al., 1981; Redman et al., 1999; Roy 

and Dzombak, 1996) and charge neutralization (Bales et al., 1991). 

3.3 Characterization of Viruses 

The average size of MS2, ΦX174, and PRD1 was measured to be 27.6–28.3 nm, 

29.6–30.0 nm, and 68.0–69.0 nm, respectively.  These values are within 3-5 nm of previously 

reported values (Chrysikopoulos and Aravantinou, 2012; Sasidharan et al., 2016; Thomson, 

2005), and this indicates that aggregation of these viruses was negligible under our 

experimental solution chemistry conditions. Table 1 shows the measured zeta potential values 

of viruses in SW and EQ-SW. The absolute value of the zeta potential for these viruses was 

always negative, but smaller in magnitude in the presence of EQ-SW compared to SW.  

Similar to the sediment, this can be explained by an increase in IS, compression of the double 

layer, and higher Ca
2+

 concentration for EQ-SW. In addition, Ca
2+

 is expected to bind to the 

carboxyl functional groups on the viral protein capsid which reduces the negative surface 

charge density (Harvey and Ryan, 2004).  

3.4 Virus Retention Under Various Physicochemical Conditions 

Figure 1 shows observed and fitted BTCs for the viruses under various solution 

chemistry (SW and EQ-SW) and pore-water velocity (1 and 5 m day
-1

) conditions. The 

normalized effluent concentrations C/C0 (where C0 is the influent and C is the effluent virus 

concentration) were plotted as a function of pore volumes. Table 2 presents experimental 

mass balance (MBTC, Ms, MIII, MIV, and Mirr) information. This data is summarized in Figure 2 
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which presents bar plots of the log removal (e.g., -log10(MBTC)) of viruses under different 

physicochemical conditions. The value of Ms=26.2% is in the worst-case transport scenario 

using clean quartz sand and SW at 5 m day
-1

 (Figure S3). In contrast, values of Ms in the 

aquifer sediment were always much higher (>92.3%) than this control experiment. The 

maximum retention for all three viruses was observed in the experiment conducted under EQ-

SW at 1 m day
-1

 (>4.6 logs), whereas the least retention was observed under SW at 5 m day
-1

 

(Ms=92.3%). A detailed discussion of the dependence of virus retention on water velocity, 

solution chemistry, and virus type is given below.   

Figure 2 indicates that all three viruses always had a higher removal in EQ-SW than 

SW at a given velocity. Table S1 indicates that the IS and concentration of Ca
2+

 were much 

higher for EQ-SW than SW. This increase in IS and concentration of Ca
2+

 lowered the 

magnitude of the zeta potential of the sediment and viruses (Table 1) in EQ-SW and thereby 

increased the adhesive interaction between the sediment and viruses. Consequently, one key 

consideration in the determination of virus removal is the effect of ionic strength and the 

presence of multivalent cations (Harvey and Ryan, 2004). The effects of multivalent cations 

on virus attachment can be attributed to a number of factors, including the larger ionic radius 

of Ca
2+

 (1.61 Å) compared to Na
+ 

(1.02 Å ) (Gutierrez et al., 2010), change in electrostatic 

interactions between virus and mineral surfaces (Carlson Jr et al., 1968), cation bridging 

(Bales et al., 1991; Chu, 2003; Pham et al., 2009), charge neutralization (Bales et al., 1991; 

Lukasik et al., 2000), screening of repulsive surface interaction energies between virus and 

grain surfaces (McCarthy and McKay, 2004), reduction of the net charge within the 

electrokinetic shear plane (Simoni et al., 2000), compression of the double-layer (Huysman 

and Verstraete, 1993), inner sphere complexation of the cations at the virus surfaces (Sadeghi 

et al., 2013), and the calcium binding to the carboxyl functional groups on the viral protein 

capsid (Harvey and Ryan, 2004).   
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Greater removal of viruses occurred at a lower (1 m day
-1

) than higher (5 m day
-1

) 

pore-water velocity under given solution chemistry conditions (Figure 2). Previous studies 

have similarly demonstrated that the retention of colloids such as viruses, nanoparticles, and 

bacteria in porous media is velocity dependent (Hendry et al., 1999; Kim and Lee, 2014; 

Sasidharan et al., 2017a; Sasidharan et al., 2014; Toloni et al., 2014; Torkzaban et al., 2007). 

Greater retention of viruses at low flow velocity can be explained by: (i) an increase in the 

virus residence time (Meinders et al., 1994; Xu et al., 2005); (ii) an increase in the virus 

adhesive interaction (Xu and Logan, 2006); and (iii) a decrease in the applied hydrodynamic 

torque that acts on the virus (Bradford et al., 2011; Sasidharan et al., 2017a). It should be 

mentioned that an increase in residence time increases the time for virus removal. It also 

increases the probability that viruses can diffuse over shallow energy barriers on physically 

and chemically heterogeneous surfaces. Consequently, virus removal at a MAR site will be 

influenced by the flow field, with less removal near the injection well.  Careful consideration 

of the flow field and separation distance between the injection and recovery wells is therefore 

necessary to achieve the maximum virus removal.  

PRD1 is generally considered as the most conservative model for enteric viruses in 

subsurface viral transport studies (Harvey and Ryan, 2004; Schijven and Hassanizadeh, 2000; 

Stevenson et al., 2015). In contrast, Figure 2 indicates that MS2 had the highest removal 

followed by PRD1 and then by ΦX174 for a given physicochemical condition.  

Consequently, ΦX174 was the most conservative model virus (had the least removal) in our 

sediment and stormwater. It is commonly believed that the removal and interactions of 

viruses with a solid surface are the results of their electrical charge and hydrophobicity 

(Shields and Farrah, 1987). Table 1 shows that the measured zeta potential values for all three 

viruses in each solution chemistry were in the same range, so differences in the net zeta 

potential of the viruses cannot explain these variations in retention. Both PRD1 and MS2 are 
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known to be partially hydrophobic and ΦX174 is hydrophilic in nature (Sasidharan et al., 

2016; Schijven and Hassanizadeh, 2000). The presence of some forms of hydrophobic 

organic matter in the solution (Table S1) and the sediment surface may enhance the 

hydrophobic interaction between the partially hydrophobic viruses (PRD1 and MS2), which 

lead to their higher retention. In addition, nanoscale chemical and especially physical 

heterogeneity on the surfaces of colloids are known to strongly influence their adhesive 

interaction (Attinti et al., 2010; Bradford et al., 2017). The viral protein coat may contain 

weakly acidic and basic amino acid groups which act as localized positive and negative 

charges (Gerba, 1984) and it has a span of hydrophobic amino acids which will determine the 

hydrophobicity of viruses (Bendersky and Davis, 2011; Bradford and Torkzaban, 2012; Shen 

et al., 2012d). The virus surface also contains nanoscale roughness features such as spikes 

(Huiskonen et al., 2007). Additional research is needed to fully characterize nanoscale 

variations in chemical heterogeneity and roughness features on the surfaces of our viruses 

and to assess the influence of these factors on virus retention. Considerable experimental and 

theoretical research would be needed to address this issue, and it is beyond the scope of this 

applied study.   

3.5 Mathematical Modeling of Virus Retention 

Table 3 shows the liquid phase inactivation rate (μl) for viruses over the course of the 

transport and release experiments. The value of μl was negligible (~10
-7

 sec
-1

) in both SW or 

EQ-SW, and was consequently neglected in the mathematical model. A number of different 

model formulations were employed to describe the virus BTCs. However, low values of the 

Pearson correlation coefficient (R
2
) and nonunique parameter estimates were obtained in 

many instances. The best model description (R
2 
ranged from 67–98%) was obtained when 

considering attachment, detachment, blocking, and a solid phase sink term that accounted for 

irreversible attachment and inactivation. Straining, clogging, and wedging were not 
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considered as important mechanisms for virus retention in this study, as the ratio of virus to a 

sediment grain diameter is far below the suggested threshold of 0.003 (Bradford and 

Bettahar, 2006). Table 4 presents fitted model (katt, kdet, Smax/C0, and μs) or calculated (α, η, 

and Sf) parameters, and the R
2
 for the goodness of model fit. 

Blocking decreases the attachment rate coefficient as available retention sites become 

filled, and has typically been neglected in most previous virus transport studies (Schijven and 

Hassanizadeh, 2000). However, Figure 1 (BTC is plotted in log scale) and Figure S4 (BTC is 

plotted in normal scale) indicate that blocking occurred for our viruses and sediment. In 

particular, BTCs were initially delayed (arriving after 1 PV), next they rapidly increased, and 

then slowly approached the influent virus concentration. Consistent with our observations, 

Xu et al. (2017) observed blocking behavior for ΦX174 on a goethite-coated sand. Many 

others have reported on similar blocking behavior for nanoparticles (Li et al., 2008; 

Sasidharan et al., 2014; Virkutyte et al., 2014). 

Fitted values of Smax in the blocking model were subsequently used to determine Sf 

(Table 4). Calculated values of Sf for the viruses were very small (1.30×10
-8
─1.45×10

-4).  

Similarly, Xu et al. (2017) reported small values of Sf (0.3×10
-6–0.5×10

-6) for ΦX174 on a 

goethite-coated sand. In contrast, values of Sf for 50 and 100 nm latex nanoparticles were 

much higher on clean quartz sand (0.009-0.39) (Sasidharan et al., 2017b; Sasidharan et al., 

2014). Natural solid surfaces like sand grains always contain a wide distribution of physical 

(e.g., roughness) or chemical (e.g., metal oxides) heterogeneities (Bhattacharjee et al., 1998; 

Shen et al., 2012c). Previous studies have demonstrated that roughness height and fraction, 

and positive zeta potential and fraction, at a specific location on the collector (sand) surface 

can significantly reduce the magnitude of the energy barrier to attachment and the depth of 

the primary minimum for viruses (Bradford et al., 2017; Bradford and Torkzaban, 2013; 
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Bradford and Torkzaban, 2015; Sasidharan et al., 2017b; Torkzaban and Bradford, 2016). In 

contrast to smooth latex nanoparticles, the virus exhibits chemical (e.g., lipid membrane and 

protein coat) (Meder et al., 2013) and physical heterogeneity (e.g., spikes and tail) 

(Huiskonen et al., 2007; Kazumori, 1981) on their surface. The combination of physical and 

chemical heterogeneities on both virus and collector surfaces apparently created a shallow 

primary minimum with negligible energy barrier to attachment and detachment for viruses, 

and thus, only a very small fraction of the collector surface contributed to Sf.    

Previous research has shown that the relative effluent concentration increased and the 

relative retention decreased with increasing input concentration of colloids as a result of 

blocking (Leij et al., 2015; Wang et al., 2012). All three viruses were run in the same 

experiment and had a total input concentration of ~4.9×10
8 
viruses in this study. Conversely, 

urban stormwater has a much lower enterovirus concentration of 6-170 virus/10 L (Strassler 

et al., 1999). Consequently, blocking and the subsequent exhaustion of retention sites may 

not be apparent in some natural systems with low input concentrations.  However, recharging 

stormwater with a high concentration of some forms of organic matter or negatively charged 

phosphate ions (Table S1) can mask and reverse the charge of positive sites that are favorable 

for virus retention (Schijven and Hassanizadeh, 2000). This competition for the same 

retention sites and Smax could potentially cause blocking to be enhanced.     

Colloid filtration theory (CFT) has been developed to predict the value of katt under 

different physicochemical conditions (Yao et al., 1971). CFT considers that katt is 

proportional to the product of α and η that account for adhesion and mass transfer, 

respectively. Consistent with CFT predictions, the value of katt (Table 4) increased with 

increasing fluid velocity at a given solution chemistry. Similar to Figure 2, values of katt for 

MS2 and ΦX174 were always higher for EQ-SW than SW at a given water velocity.  
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However, values of katt for PRD1 were nearly the same for EQ-SW and SW. The observed 

dependence of katt on the solution chemistry and the virus type was likely complicated by 

blocking which reduced the apparent value of katt.  Both α and Sf are strong functions of the 

interaction energy between the virus and sediment (Shen et al., 2010; Tufenkji and Elimelech, 

2004), so it may not be possible to separately quantify these effects especially when Sf is very 

low.   

The virus BTCs shown in Figure 1 exhibited low levels of concentration tailing when 

the columns were eluted with virus-free SW or EQ-SW. The model did not provide an 

accurate description of this tailing region when kdet was considered and μs was neglected.  

Conversely, a good fit was obtained to both the retention and the tailing portion of the BTCs 

when μs and kdet (Table 4) were included in the model. Little is known about solid phase 

inactivation of viruses other than the need for a strong binding force which may disintegrate 

the protein structure and thereby inhibit the ability of viruses to infect their host (Harvey and 

Ryan, 2004). Only a few approaches have been developed to separately quantify the rates of 

virus attachment and solid phase inactivation (Grant et al., 1993; Harvey and Ryan, 2004) 

such as radiolabeling polio virus capsid and RNA to track the fate of these components 

(Murray and Parks, 1980). These approaches are difficult, time consuming, and/or require 

specialized equipment. In this research, these technical challenges were partially overcome 

through numerical modeling that allows the determination of attachment (katt) and detachment 

(kdet) rates, and a sink term to account for the combined rate of irreversible attachment and 

solid phase inactivation (μs).   

Guidelines for MAR have only considered inactivation of viruses in the liquid phase, 

but have neglected irreversible attachment and solid phase inactivation of viruses (Abu-

Ashour, 1994; Dillon et al., 2008). Tables 3 and 4 indicate that katt > μs > kdet >μl, and katt is 3-
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4 orders of magnitude higher than μl. Consequently, guidelines for MAR that only consider 

liquid phase inactivation will be overly conservative for the considered experimental 

conditions.  Recognizing the removal of viruses via irreversible attachment and/or solid phase 

inactivation during aquifer storage would help to eliminate some of the expensive post-

treatment for recovered MAR water. However, we acknowledge that the virus removal via 

irreversible attachment and/or solid phase inactivation is highly site specific. Therefore, 

conducting site specific microbial risk assessment and subsequent development of 

appropriate MAR design that considers adequate residence time and travel distance based on 

the horizontal and vertical flow field, soil heterogeneity, and chemical characterization is 

necessary to achieve the maximum virus removal.  

3.6 Release of virus   

Figure 3 shows plots of ΦX174, MS2, and PRD1concentrations in the column 

effluent during Phases III and IV when Milli-Q water and 3% beef extract with pH=10 were 

injected into the column, respectively. Small pulses of released viruses were observed during 

both phases, with a small peak followed by long concentration tailing. Table 2 summarizes 

mass balance information from Phases III and IV. Only a very small percentage (<0.5%) of 

the initially attached viruses were released even under the worst-case scenario of beef extract 

with pH=10.  

Table 2 shows the mass of viruses on the sediment surface that was not recovered 

after the release Phases III and IV (Mirr = 100 - MBTC - MIII - MIV). The negligible release of 

viruses and the presence of large Mirr >91% indicate that the viruses were irreversibly 

attached or inactivated on the solid surface. Values of Mirr followed similar trends to Ms with 

physicochemical conditions. In particular, Mirr was higher for EQ-SW than SW for a given 

velocity, Mirr was higher at lower (1 m day
-1

) than higher (5 m day
-1

) pore-water velocity at a 
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given chemistry, and Mirr was highest for MS2 followed by PRD1 and then ΦX174. The 

presence of a large Ms and Mirr value for the EQ-SW experiment implies that viruses will 

irreversibly attach and/or inactivate on the solid before the water reaches the recovery well 

during an ASTR operation, provided that a sufficient residence time is achieved. An injection 

event will only release a very tiny fraction of the viruses which may mobilize and re-attach to 

the surface as the water equilibrates with the sandy limestone aquifer sediment and the IS and 

the divalent cation concentration increases. Therefore, during ASR operations the chance of 

releasing the attached viruses during the reverse flow is negligible. However, we assume that 

the ASTR operation has added advantage of long residence time and travel distance 

compared to ASR and, therefore, ASTR would be the best option when removal of viruses 

via attachment/solid phase inactivation is considered.  

4. CONCLUSIONS AND FUTURE DIRECTIONS 

This research was conducted to better understand and quantify the relative importance 

of various virus removal processes during MAR in a sandy limestone aquifer. The aquifer 

sediment was found to remove >92.3% of bacteriophage MS2, PRD1, and ΦX174 from SW 

and EQ-SW when the pore-water velocity was 1 or 5 m day
-1

.  However, much greater virus 

removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW because of an 

increase in residence time, IS, and Ca
2+

 concentration. Bacteriophage ΦX174 showed less 

removal than either PRD1 or especially MS2, and was, therefore, the most conservative 

model virus for this site. Negligible virus detachment (<0.64%) occurred when columns were 

flushed with Milli-Q water or beef extract at pH=10, and this indicates that viruses were 

irreversibly attached or quickly inactivated on sediment surfaces.  

Virus BTCs were successfully simulated using the advection-dispersion equation with 

terms for attachment, detachment, Langmuirian blocking, and solid phase removal by 
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irreversible attachment and/or surface inactivation. Values of katt> μs> kdet > μl, and katt was 3-

4 orders of magnitude greater than μl. The value of kdet was always small under steady-state 

physicochemical conditions. The remaining viruses on the solid phase were either irreversibly 

retained or inactivated. This process was modeled using the μs term. Blocking has commonly 

been neglected in previous virus transport studies. In contrast, our results clearly 

demonstrated blocking behavior. The relative importance of blocking is expected to decrease 

in a natural setting with lower input concentrations and/or higher Smax (Leij et al., 2015). 

Furthermore, the value of Sf was found to be very small for viruses. This result was attributed 

to the presence of a shallow primary minimum due to roughness on both the virus and 

sediment surfaces. Additional research is needed to further assess the potential influence of 

blocking on virus transport at MAR sites.   

MAR has only been considered as a storage option in a water recycling train. 

Consequently, all previous field scale studies for MAR risk assessments have only considered 

virus removal by liquid phase inactivation. Current MAR guidelines do not acknowledge the 

removal of viruses by attachment and solid phase inactivation. This research clearly 

demonstrated that viruses were irreversibly attached or inactivated on the sediment surface 

when given enough residence time and that katt>>μl. Natural treatment of injected water 

during infiltration through the unsaturated zone is widely recognized. However, the 

mechanisms for natural treatment of virus within the saturated zone is not well understood 

and the selection of a sub-section of aquifer material with lower carbonate content/higher 

quartz content represents an environment that is less favorable for virus removal (worst-case 

scenario). Furthermore, greater virus removal is expected as water moves away from an 

injection well due to a decrease in water velocity and an increase in IS and Ca
2+

 ions.   

However, field-scale experiments under actual artificial recharge conditions, using the same 

bacteriophages employed in this study, showed that the safe setback distance depended on 
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site-specific physicochemical conditions. For example, the setback distance was estimated to 

be just a few meters (~10 m) in a sandy aquifer in Los Angeles County (Anders and 

Chrysikopoulos, 2005), whereas the reported setback distance was 8000 ± 4800 m in a 

fractured aquifer in Southern Italy (Masciopinto et al., 2008). Future MAR guidelines and 

microbial risk assessment may therefore need to consider site specific removal of viruses by 

irreversible attachment and solid phase inactivation during the storage period. This could help 

to eliminate some of the expensive post-treatment to achieve desired water quality. 
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TABLES AND FIGURES  

Table 1. The measured zeta potential values of viruses and sediment and the measured values 

of the size of viruses in stormwater (SW) and stormwater equilibrated with aquifer sediment 

(EQ-SW).  

Virus Solution ζ+ Size 

  mV nm 

MS2 
SW -22.4 ± 1.2 27.6 ± 3.4 

EQ-SW -12.6 ± 1.1 28.3 ± 3.3 

ΦX174 
SW -23.8 ± 1.2 29.6 ± 2.6 

EQ-SW -13.7 ± 0.9 30.0 ± 2.9 

PRD1 
SW -23.3 ± 1.4 69.0 ± 0.82 

EQ-SW -14.8 ± 1.3 68.3 ± 2.5  

Sediment 
SW -19.8 ± 0.8 - 

EQ-SW -16.2 ± 1.5 - 

Quartz 
SW -31.5 ± 2.8 - 

EQ-SW -27.2 ± 1.3 - 
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Table 2. Experimental conditions and mass balance information from the column 

experiments. Here, MBTC, Ms=100-MBTC, Mirr=(100-MBTC -MIII -MIV), MIII, and MIV denote the 

percentage of the injection MS2, PRD1, and ΦX174 viruses that was recovered in the 

breakthrough curve, retained on the solid phase, irreversibly retained on the solid phase 

following the  completion of Phases I–IV, and recovered with the injection of Milli-Q water 

in Phase III and Beef extract with pH 10 in Phase IV, respectively.  

Bacteriophage Velocity 
Solution 

Chemistry 

Retention Release 

MBTC Ms Mirr MIII MIV 

 [m d
-1

]   [%] [%] [%] [%] 

ΦX174 

1 
SW 0.98 99.02 98.37 0.14 0.50 

SW EQ 0.00 100.00 99.94 0.01 0.04 

5 
SW 7.70 92.30 91.86 0.06 0.38 

SW EQ 0.35 99.65 99.40 0.01 0.24 

MS2 

1 
SW 0.04 99.96 99.94 0.01 0.01 

SW EQ 0.00 100.00 100.00 0.0001 0.001 

5 
SW 1.32 98.68 98.67 0.002 0.006 

SW EQ 0.01 99.99 99.98 0.002 0.009 

PRD1 

1 
SW 0.09 99.91 99.87 0.02 0.02 

SW EQ 0.00 100.00 100.00 0.0002 0.0004 

5 
SW 2.51 97.49 97.46 0.01 0.02 

SW EQ 0.01 99.99 99.97 0.001 0.01 
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Table 3.  The inactivation rate coefficients (μl) of MS2, PRD1, and ΦX174 in the stormwater 

(SW) and stormwater equilibrated with aquifer sediment (EQ-SW) for the experiment 

duration (4500 min = 75 hours) and the Pearson correlation coefficient (R
2
)

 
value calculated 

using linear regression analysis.  

 
Solution 

 μl R
2 

[sec
-1

]
 

[%] 

ΦX174 
SW 8.33 × 10

-7 
99.63 

EQ-SW 6.67 × 10
-7
 90.98 

MS2 
SW 5.00 × 10

-7
 95.37 

EQ-SW 3.33 × 10
-7
 100 

PRD1 
SW 1.17 × 10

-7
 99.78 

EQ-SW 1.00 × 10
-7
 100 
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Table 4. A summary of experimental conditions (solution chemistry and water velocity), model parameters that were fitted to the virus BTCs 

(the attachment coefficient,     ; the detachment coefficient,     ; the maximum solid phase virus concentration,  
    

  
; and a sink term that 

accounts for irreversible attachment and solid phase inactivation,   ) and parameters Sf, α, and η which were calculated from 
    

  
,     , and the 

correlation equation of Messina et al. (2015), respectively.  The table also includes the Pearson correlation coefficient (R
2
) for the goodness of 

model fit, and the standard error values (S.E.Coeff) on fitted parameters.   

Virus Solution Velocity R
2
 katt 

S.E.Coeff- 

katt 
kdet 

S.E.Coeff- 

kdet 
µs S.E.Coeff- µs Smax/C0 

S.E.Coeff- 

Smax/C0 
Sf α η 

  (m day-1) (%) (sec-1)  (sec-1)  (sec-1)  (cm3 gr-1)     

MS2 

SW 
1 

94.28 3.25×10-3 9.6×10-3 2.83×10-6 7.8×10-5 1.94×10-5 2.7×10-4 2.11 0.35 1.72×10-6 0.162 0.211 

EQ-SW 67.37 4.26×10-3 1.4×10-3 1.08×10-5 7.6×10-4 3.99×10-5 1.2×10-3 2.49×101 0.19 2.01×10-5 0.213 0.211 

SW 
5 

96.81 5.80×10-3 6.1×10-2 2.65×10-6 1.5×10-5 2.32×10-4 3.2×10-3 1.12 0.45 9.12×10-7 0.145 0.085 

EQ-SW 97.21 1.43×10-2 1.7×10-2 1.63×10-5 1.6×10-4 7.14×10-5 7.6×10-4 4.94 0.58 3.99×10-6 0.356 0.085 

PRD1 

SW 
1 

79.63 4.86×10-3 5.8×10-2 4.81×10-5 3.2×10-3 5.93×10-5 8.9×10-4 7.77×10-1 0.13 2.74×10-6 0.007 0.127 

EQ-SW 93.53 4.00×10-3 2.4×10-3 3.93×10-6 6.2×10-5 2.11×10-5 1.9×10-4 2.31×101 0.75 1.45×10-4 0.006 0.127 

SW 5 98.60 1.52×10-2 6.3×10-2 3.95×10-6 8.4×10-5 1.87×10-4 1.7×10-3 7.32×10-1 0.007 2.58×10-6 0.011 0.048 

EQ-SW  96.51 1.21×10-2 1.2×10-2 2.43×10-5 3.2×10-4 4.89×10-5 8.9×10-4 1.53×101 0.21 9.62×10-5 0.01 0.048 

ΦX174 

SW 
1 

96.17 1.18×10-3 2.4×10-3 8.09×10-6 2.2×10-4 1.92×10-5 2.5×10-4 2.24 0.22 4.01×10-8 0.001 0.203 

EQ-SW 96.84 2.86×10-3 6.1×10-3 4.14×10-6 8.9×10-5 4.85×10-5 3.4×10-4 2.17 0.31 5.54×10-8 0.002 0.203 

SW 
5 

93.55 1.08×10-2 5.8×10-3 1.25×10-4 2.3×10-3 1.86×10-4 1.4×10-4 7.27×10-1 0.003 1.30×10-8 0.005 0.081 

EQ-SW 97.11 3.06×10-2 1.9×10-1 1.08×10-3 1.7×10-2 3.11×10-4 8.6×10-4 1.06 0.12 2.71×10-8 0.013 0.081 
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 Figure 1. The observed breakthrough concentrations of viruses (A) ΦX174, (B) MS2, and 

(C) PRD1 at Phase I (injection of virus in SW or EQ-SW) and the observed effluent 

concentration in Phase II (injection of virus-free SW or EQ-SW). The Phases I and II were 

conducted at pore water velocity of 1 or 5 m day
-1

 using either stormwater (SW) or 

stormwater equilibrated in the aquifer sediment (EQ-SW). Here, the markers are observed 

data and the solid black line is the fitted model.  
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Figure 2. Bar plots of the log removal (e.g., -log10(MBTC)) of viruses under the different 

physicochemical conditions shown Figure 1.   
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Figure 3. Observed effluent concentrations of viruses (A) ΦX174, (B) MS2, and (C) PRD1 

in Phase III (Milli-Q water) and IV (3% beef extract with pH 10) at a pore-water velocity of 1 

and 5 m day
-1

.  
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HIGHLIGHTS  

 Aquifer sediment has a great capacity for virus removal under recharge conditions.  

 Virus attachment was mainly irreversible or viruses were quickly inactivated on the solid 

phase. 

 Attachment increased with solution Ca
2+

 and decreasing water velocity. 

 Negligible detachment occurred in Milli-Q water or beef extract at pH=10.  

 

  



  

 

  

 53 

 

 


