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A network scale, intermediate complexity1

model for simulating channel evolution over2

years to decades3

Roderick W. Lammers∗, Brian P. Bledsoe†4

Abstract5

Excessive river erosion and sedimentation threatens critical infras-6

tructure, degrades aquatic habitat, and impairs water quality. Tools for7

predicting the magnitude of erosion, sedimentation, and channel evo-8

lution processes are needed for effective mitigation and management.9

We present a new numerical model that simulates coupled river bed10

and bank erosion at the watershed scale. The model uses modified ver-11

sions of Bagnold’s sediment transport equation to simulate bed erosion12

and aggradation, as well as a simplified Bank Stability and Toe Ero-13

sion Model (BSTEM) to simulate bank erosion processes. The model is14

mechanistic and intermediate complexity, accounting for the dominant15

channel evolution processes while limiting data requirements. We apply16

the model to a generic test case of channel network response following17

a disturbance and the results match physical understanding of channel18

evolution. The model was also tested on two field data sets: below19

∗Department of Civil and Environmental Engineering, Colorado State University, Fort
Collins, CO; Corresponding author: rodlammers@gmail.com
†College of Engineering, University of Georgia, Athens, GA

1



  

Parker Dam on the lower Colorado River and the North Fork Toutle20

River (NFTR) which responded dramatically to the 1980 eruption of21

Mount St. Helens. It accurately predicts observed channel incision and22

bed material coarsening on the Colorado River, as well as observations23

for the upstream 18 km of the NFTR watershed. The model does not24

include algorithms for extensive lateral migration and avulsions and25

therefore did not perform well in the lower NFTR where the channel26

migrated across a wide valley bottom. REM is parsimonious and useful27

for simulating network scale channel change in single thread systems28

responding to disturbance.29

Keywords: channel evolution; erosion; sedimentation; modeling; watershed30

scale31

1 Introduction32

Excessive river erosion and sedimentation are triggered by a variety of wa-33

tershed disturbances which alter natural flow and sediment dynamics. For34

example, urbanization increases discharge (Hollis , 1975; Rosburg et al., 2017),35

channel straightening increases slope (Simon, 1989), and dam construction36

decreases sediment supply and modifies flow regimes (Williams and Wolman,37

1984). Channel instability and sediment imbalance threatens infrastructure,38

degrades aquatic habitat, and impairs water quality. Landowners and envi-39

ronmental resource agencies often respond to these threats by attempting to40

stabilize channels, sometimes without success (e.g. Miller and Kochel , 2009).41

Stream stabilization projects may fail if designers do not account for altered42

hydrology and sediment supply, or simply due to the inherent uncertainty of43

channel response (Simon et al., 2007; Roni and Beechie, 2013; Wohl et al.,44

2005; Bernhardt and Palmer , 2007). It is challenging to predict how streams45
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will adjust and what new equilibrium state — if any — they will attain.46

Numerical modeling can address this issue by providing a simple and re-47

producible way to (1) assess channel sensitivity to disturbance and (2) predict48

channel adjustment. While morphodynamic modeling has advanced in recent49

years, most of the research has focused on large spatial and temporal scales50

(e.g. landscape evolution models (Lague, 2014)) or individual processes (e.g.51

bar formation (Nelson et al., 2015)). Models that predict channel changes at52

intermediate spatial and temporal scales (10s – 100s km2 watersheds; 10s –53

100s of years) are needed to help guide river restoration and management.54

Recent research has attempted to fill this gap with regime-based models of55

river response (Eaton and Millar , 2017), watershed-scale accounting of sedi-56

ment dynamics (Parker et al., 2015; Czuba and Foufoula-Georgiou, 2014, 2015;57

Schmitt et al., 2016; Soar et al., 2017), and mechanistic bank erosion modeling58

(Langendoen et al., 2012; Stryker et al., 2017). These approaches are useful59

but they either do not account for all relevant erosion processes or require sig-60

nificant amounts of data, making it difficult to assess uncertainty and provide61

results useful to managers. The aim of this study was to develop a network-62

scale morphodynamic model for simulating channel incision and bank erosion63

with limited data requirements. To achieve this goal, we use specific stream64

power (Bagnold , 1966), allowing us to model channel erosion and deposition65

without simulating detailed flow hydraulics. Avoiding hydraulic calculations66

has several advantages — less computation time, fewer data and calibration67

requirements, and fewer sources of uncertainty. Specific stream power is a68

physically based, easily calculated parameter which is directly related to the69

erosive processes we are interested in modeling. Furthermore, the simplicity70

gained by using specific stream power facilitates running Monte Carlo simula-71

tions, allowing us to be transparent about uncertainty — explicitly translating72
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variability in model inputs into probabilistic predictions of channel evolution.73

This paper introduces this new stream power-based morphodynamic model74

— the River Erosion Model (REM). REM is designed for modeling channel75

evolution at the watershed scale, integrating a bank stability model based76

on Lammers et al. (2017) with novel stream power based sediment transport77

equations (Lammers and Bledsoe, 2018). REM is likely most applicable in78

smaller watersheds (10s – 100s km2) where model input data are more easily79

collected. Unfortunately, we are not aware of any data on watershed-scale80

channel response in these smaller systems. We therefore test REM on a generic81

watershed responding to base-level fall as well as two field datasets of rivers82

responding to different types of disturbance. The first is a reach of the lower83

Colorado River which incised and coarsened after Parker Dam was constructed84

in 1938. The second is the North Fork Toutle River (NFTR) which has followed85

a complex trajectory of channel change following massive sediment deposition86

from the eruption of Mount St. Helens in 1980. Applying REM to these87

complex systems tests the basic model processes, explores uncertainty and88

model sensitivity, and pushes the limits of model application, determining the89

range of conditions for which it is most suitable.90

2 Model Description91

REM simulates bed erosion and aggradation in non-cohesive sand and gravel92

using a sediment mass balance and into cohesive bed material using an excess93

shear stress approach. Channel width changes are simulated accounting for94

fluvial bank erosion (e.g. excess shear) and bank mass failure. Finally, REM95

can account for meander bend migration and subsequent increases in sinuosity,96

as well as knickpoint migration and associated sediment loading. These fea-97
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tures are described below. Applying REM to the Colorado River and NFTR98

test the bed and bank components of the model, but we did not include any99

cohesive bed erosion, meander migration, or knickpoints. These are useful100

model features but they require further testing.101

2.1 Cross section geometry102

REM assumes a prismatic channel, based on user-supplied bottom width, bank103

and toe heights and angles, and floodplain width and slope (Figure 1). All104

channel geometry variables are unique for the right and left banks. Bank soil105

parameters (e.g. cohesion) can be distinct for the bank toe and upper bank106

soil but are the same for the right and left banks in a reach. For each cross107

section, a cohesive layer may be placed some distance below the channel bed.108

Aggradation and degradation only occur across the flat channel bottom.109

2.2 Network structure and sediment routing110

The model uses a simple reach-node network structure, where a series of chan-111

nel reaches are connected by nodes (Figure 1) (Schmitt et al., 2016; Czuba and112

Foufoula-Georgiou, 2015). The user specifies inputs individually by reach,113

and each reach may have multiple cross sections. Model inputs are constant114

within each reach (e.g. initial bed grain size distribution, bank soil parameters,115

etc.), so we recommend defining reaches as relatively homogoneous sections of116

a stream. There is no defined length of model reaches — they may be as117

short (one cross section) or long (10s of km) as necessary depending on the118

requirements of a specific model application.119

Incoming bed material load to each cross section is the sum of sediment sup-120

plied by the upstream cross section (or cross sections at tributary junctions),121

sediment from local bank erosion, and any user-inputted upland sediment sup-122
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Figure 1: Schematic of cross section (a) and network (b) geometry included
in REM. Q = water discharge and Qs = sediment discharge; wchnl and wfp

= width of channel and floodplain, respectively; Hbank and Htoe = total bank
height and bank toe height, respectively; and αfp, αbank, and αtoe = angle of
the floodplain, bank and bank toe, respectively.

ply. Upland sediment and bed material load from eroded banks are assumed123

to be the same grain size distribution as the initial bed grain size distribution124

for that reach. The washload component of any bank, cohesive bed, or knick-125

point erosion is immediately routed to the watershed outlet. The effects of126

grade controls or bank armoring can be incorporated by placing non-erodible127

cross sections within the channel network (i.e. cohesive soils with high τc). A128
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table of required and optional model inputs is included in the Supplementary129

Material.130

2.3 Stream power131

Many models use the standard step method or a simple flow resistance relation-132

ship to compute flow depth, velocity, and shear stress (e.g. El Kadi Abderrezzak133

et al., 2008; Allen et al., 1999). In contrast, we use specific stream power to134

directly model channel incision and bank erosion. Specific stream power is the135

power available to do work in the stream, normalized by bed area (Bagnold ,136

1966):137

ω =
Ω

w
=
γQS

w
(1)138

where ω is specific stream power [W m−2], Ω is total stream power [W m−1],139

γ is the specific weight of water [9,810 N m−3], Q is discharge [m3 s−1], S is140

the friction slope [m m−1], and w is the water surface width [m].141

Specific stream power is a useful variable because it is readily calculated142

throughout a stream network but still represents the physical processes in143

rivers. Because of this, it has been used to determine erosion and deposi-144

tion potential (Parker et al., 2015; Vocal Ferencevic and Ashmore, 2012; Bizzi145

and Lerner , 2015; Soar et al., 2017), explain dominant modes of channel ad-146

justment (Knighton, 1999; Bull , 1979), model sediment transport processes147

(Bagnold , 1977, 1980; Martin and Church, 2000; Eaton and Church, 2011),148

and explain historic variability and future evolution of rivers (Fryirs et al.,149

2012). Discharge data are typically available from gaging stations, regional150

regression equations, or hydrologic modeling. Channel slope and width can151

be obtained from high resolution digital elevation models, often created from152

airborne LiDAR data.153
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2.4 Discharge154

REM is driven by a user-supplied flow record with a given time step (e.g.155

daily, hourly, or 15-minute). To account for overbank flooding, the model uses156

the Manning equation to partition flow between the channel and floodplain157

using the sub-area method, similar to the approach used by HEC-RAS and158

others (e.g. Soar et al., 2017). The channel and two floodplains are treated as159

separate sections (j), each with their own Manning roughness coefficient (nj).160

The discharge for each section is calculated using trial values of water surface161

elevation. This processes is repeated until the sum of these discharges equals162

the known total flow:163

Q =
3∑
j=1

(
AjR

2/3
j S1/2

nj

)
(2)164

whereAj is the section area [m2], Rj is the section hydraulic radius [m], and S is165

the channel slope. Only the discharge within the channel, and the correspond-166

ing flow width, are used to calculate specific stream power. This approach167

assumes flow is uniform and quasi-steady, meaning changes in stream power168

are driven entirely by changes in local bed slope and channel geometry (e.g.169

width and total area). This means REM cannot accurately simulate areas170

with unsteady or non-uniform flow, such as channel constrictions or weirs.171

2.5 Channel incision172

The model simulates incision into non-cohesive and cohesive bed material,173

including a mix of both bed types as described below.174
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2.5.1 Non-cohesive incision175

Fundamentally, the model uses the Exner equation to simulate bed elevation176

changes based on a sediment mass balance:177

∂η

∂t
= − 1

wavg(1− λ)

∂Qb

∂x
(3)178

where η is the bed elevation [m], λ is the bed porosity (assumed to be 0.4), wavg179

is the average bottom width of adjacent cross sections, Qb is the volumetric180

sediment transport rate [m3 s−1], and t and x are time and downstream dis-181

tance, respectively. REM models sediment transport by grain size and tracks182

changes in bed material composition:183

∂Fk
∂t

= − 1

La
(Fk − flk)

∂La
∂t

+
1

Lawavg(1− λ)

(
−∂Qbk

∂x
+ flk

∂Qb

∂x

)
(4)184

where Fk is the fraction of the kth grain size in the active layer (where there is185

some finite, user-defined number of grain sizes), La is the active layer thickness186

[m], Qbk is the volumetric sediment transport rate of the kth grain size [m3 s−1],187

and flk is the interface exchange fraction which depends on whether the bed188

is degrading or aggrading:189

flk =


fk, if ∂η

∂t
< 0

αFk + (1− α)pbk, if ∂η
∂t
> 0

(5)190

where fk is the fraction of the kth grain size in the channel bed subsurface191

(below the active layer), pbk is the bedload fraction of the kth grain size, and192

α is a weighting parameter than ranges from 0 – 1 (we assume α = 0.5).193

The model does not store bed stratigraphy, meaning information on buried194

sediment size is lost if the channel aggrades and then incises.195
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The active layer thickness La is calculated as three times the surface layer196

D90. Sediment fluxes are discretized using the κ scheme with flux limiters197

(Hirsch, 2007):198

Qbe = Qbi +
1

4

(
(1− κ)ψ(ri) + (1 + κ)riψ

(
1

ri

))
(Qbi −Qbi−1) (6)199

where Qbe is the volumetric sediment flux out of the control volume centered on200

the ith cross section [m3 s−1], Qbi−1 and Qbi are the volumetric sediment fluxes201

at the ith−1 (upstream) and ith cross sections [m3 s−1], and κ is a constant that202

controls the discretization scheme. We use second order upwinding (κ = −1;203

(Hirsch, 2007)). ri is defined as:204

ri =
Qbi+1 −Qbi

Qbi −Qbi−1
(7)205

Finally, REM uses the Superbee limiter function (ψ):206

ψ = max(0,min(2× ri, 1),min(ri, 2)) (8)207

The model uses two new stream power based equations (Bagnold , 1980)208

for calculating bedload and total load sediment transport capacity (Lammers209

and Bledsoe, 2018):210

qb = 1.43× 10−4(ω − ωc)3/2D−1/2s q−1/2 (9)211

212

Qt = 0.0214(ω − ωc)3/2D−1s q−5/6 (10)213

where qb is the mass sediment transport rate per unit width [kg m−1 s−1], Qt214

is the total load [ppm], q is unit discharge [m2 s−1], Ds is the grain size [m], ω215

is specific stream power [W m−2], and ωc is the critical specific stream power216
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for incipient motion [W m−2]. This value is calculated for each grain size using217

a stream power based hiding function:218

ωrk∗
ωr50∗

=

(
Dk

D50

)−b
(11)219

where ωrk∗ is the reference dimensionless specific stream power of the kth grain220

size, ωr50∗ is the reference dimensionless specific stream power of the median221

grain size, and b is an empirical exponent that varies from 0 (size independent222

mobilization) to 1.5 (equal threshold mobilization). Details about this hiding223

function are described in Supplementary Material. Stream power is made224

dimensionless by:225

ω∗ =
ω

ρ(g(s− 1)Ds)3/2
(12)226

where ρ is water density [1,000 kg m−3], g is gravity [9.81 m s−2], and s is227

sediment specific gravity (usually 2.65). For each grain size, ωrk∗ is calculated228

from Equation 11, converted to a dimensional ω (Equation 12), and used as229

ωc in Equation 9 or 10.230

These sediment transport equations do not explicitly incorporate channel231

roughness in the calculation of ω; however, channel roughness is indirectly in-232

cluded in equation coefficients that were fit to field data where channel rough-233

ness influences the relationship between ω and sediment transport rates. These234

coefficients (and the ωc term) account for the specific stream power available235

to move sediment (i.e. not including stream power used to enable the flowing236

water to overcome the frictional resistance of the channel boundary) (Bagnold ,237

1980).238
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2.5.2 Cohesive incision239

The model uses a simple excess shear stress equation to model cohesive bed240

erosion (Partheniades , 1965):241

E = k∆t(τ − τc) (13)242

where E is the erosion distance [m], k is the erodibility coefficient [m3 N−1 s−1],243

∆t is the time step [s], τ is the applied shear stress [Pa], and τc is the critical244

shear stress of the bed material [Pa]. The erodibility coefficient is calculated245

based on an empirical relationship developed by Simon et al. (2010) after work246

by Hanson and Simon (2001):247

k = 1.6× 10−6τ−0.826c (14)248

Equation 13 calculates erosion using excess shear stress, but this model249

is based on a stream power approach. Since data on τc of various soils are250

widely available in the literature, and there is no work that we are aware of251

defining critical stream power of cohesive material, we chose to use an empirical252

equation to calculate average bed shear stresses directly from ω.253

τ = 1.96ω0.72 (15)254

We fit this empirical equation using calculated average bed shear stress (τ =255

γhS) and specific stream power (ω = γQS/w) using depth, discharge, and bed256

slope measurements from a large database of rivers and flumes (Lammers and257

Bledsoe, 2018). This approach assumes wide channels (w/d > 20) and uniform258

flow. Channel roughness is only indirectly accounted for in the calculation of259

τ used to fit the equation. These assumptions and limitations could introduce260
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additional variability into the analysis (see Supplementary Material for more261

details). This estimated value of τ (Equation 15) is then used to calculate262

cohesive erosion rates (Equation 13).263

2.5.3 Mixed non-cohesive/cohesive incision264

In streams with both non-cohesive and cohesive bed material, modeling bed265

elevation changes is more complicated. Sand and gravel can be deposited on266

top of cohesive material and transport capacity may not be representative of267

actual sediment movement if the stream is supply limited (e.g. no alluvium on268

the bed). To account for these processes, REM calculates the actual volume of269

sediment transported out of a cross section as the minimum of the transport270

capacity (Qbe, Equation 6) and the sediment available for transport (sum of the271

incoming sediment from upstream and bank erosion and of the available non-272

cohesive alluvium on the channel bed). The available non-cohesive sediment273

is calculated as:274

Qbk,avail =
[(η − La − ηcohesive)fk + LaFk]wavg(1− λ)∆x

∆t
(16)275

where Qbk,avail is the volume of bed sediment of the kth size class available for276

transport, converted to a rate [m3 s−1], ηcohesive is the elevation of the cohesive277

layer [m], ∆x is the distance to the next cross section [m], and ∆t is the time278

step [s]. If ηcohesive = η or Fk or fk = 0, there is no available bed sediment.279

2.6 Bank erosion and failure280

The model simulates two fundamental bank erosion mechanisms: fluvial ero-281

sion and mass wasting. Bank erosion is calculated at the discharge time step282

(e.g. daily, hourly, 15-minute, etc.), independent of the time step for bed283
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aggradation and degradation.284

2.6.1 Fluvial erosion285

Fluvial erosion is the removal of bank soil by flowing water once the resistance286

threshold of the bank material has been exceeded. Similar to cohesive inci-287

sion, REM models fluvial bank erosion using an excess shear stress approach288

(Equation 13). We use an empirical equation to calculate average wall (i.e.289

bank) shear stress directly from ω.290

τw = 0.83ω0.65 (17)291

where τw is the shear stress acting on the channel bank [Pa]. This equation292

was fit using data on average measured wall shear stress and stream power293

calculated from discharge, width, and bed slope from six flume studies. This294

approach assumes uniform flow and is unfortunately limited to flume data295

since there are no direct field measurements of shear stress at the channel296

banks (see Supplementary Material for more details). A user specified fraction297

of the eroded bank material is added to the bed material load (i.e. sand and298

coarser). The remainder is exported from the watershed as washload.299

2.6.2 Mass failure300

Planar mass failure is modeled using a modified version of the Bank Stability301

and Toe Erosion Model (BSTEM) (Simon et al., 2000, 2011). BSTEM esti-302

mates bank stability using a limit equilibrium analysis to calculate a factor303

of safety — the ratio of resisting to driving forces acting on the bank. The304

bank is predicted to be stable if the factor of safety is greater than one and305

unstable if it is less than one. BSTEM accounts for several processes that306
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increase or decrease bank strength, including: (1) water pressure in soil pores307

(positive pressure decreasing stability and negative pressure increasing stabil-308

ity); (2) confining pressure of the streamflow; and (3) increased soil cohesion309

from plant roots. Although the simplified version of BSTEM accounts for the310

first two processes, we exclude vegetation effects since they have a negligible311

effect on BSTEM output in sensitivity analyses (Lammers et al., 2017) and312

increase computation time and data requirements. This gives the following313

factor of safety equation:314

FS =
cL+ (µa − µw)L tanφb + [W cos β − µaL+ P cos(α− β)] tanφ′

W sin β − P sin(α− β)
(18)315

where c is apparent cohesion [kPa], L is the length of the failure plane [m], W is316

the weight of the soil block per unit bank length [kN m−1], P is the hydrostatic317

pressure force of the water in the stream [kN m−1], β is the failure plane angle318

[degrees from horizontal], α is the bank angle [degrees from horizontal], µa319

is the pore-air pressure [kPa], µw is the pore-water pressure [kPa], φ′ is the320

effective friction angle [degrees], and φb is an angle describing the rate of321

increase of shear strength from matric suction (assumed to be 15◦ (Lammers322

et al., 2017)).323

BSTEM uses a horizontal layer method to calculate a net factor of safety324

for the bank, accounting for different soil layers. The simplified version follows325

this same approach but uses simplified bank geometry (see Section 2.1), as-326

sumes only two soil layers (main bank and toe), and assumes the failure plane327

intersects the bottom of the bank or top of the bank toe. For a more detailed328

description of BSTEM see Midgley et al. (2012); Daly et al. (2015a); Simon329

et al. (2000, 2011).330
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2.6.3 Coupled bank erosion modeling331

Fluvial erosion and mass failure are linked processes. Fluvial erosion is typ-332

ically higher at the bank toe, which steepens the bank and makes it more333

susceptible to failure. After a bank fails, the collapsed soil is often deposited334

at the base of the bank toe, temporarily protecting the bank from fluvial ero-335

sion (Thorne, 1982). Bank erosion also controls channel width, which creates336

a feedback between specific stream power and bank erosion. Fluvial erosion337

widens the channel bottom, reducing ω. Mass failure deposits soil at the base338

of the toe, narrowing the channel bottom (increasing ω) but increases channel339

top width, which can increase total channel area as the failed soil block is340

eroded.341

We account for these dynamic and coupled processes in two ways. First,342

fluvial erosion is assumed to be a maximum at the base of the toe. This343

node is eroded the most (widening the channel bottom), with zero erosion344

at the top, creating a steeper toe angle. If the new toe angle exceeds 90◦345

(e.g. an undercut bank), the overhanging bank immediately collapses, and the346

bank and toe angles and bottom width are updated accordingly. This bank347

steepening, coupled with bank heightening from bed erosion, increases the348

chance of mass failure. If the bank fails, the collapsed soil block is deposited at349

the bank toe — narrowing the channel bottom — and the toe angle is reduced350

to conserve the mass of the failed block. If the failed block is too large to351

fit at the base of the toe, any extra bank material is stored in a “tank”. No352

further fluvial erosion is allowed until the material in this ”tank” is eroded353

(Lai et al., 2015). The area of the failed soil block is calculated based on bank354

geometry and the calculated failure plane angle from the BSTEM sub-routine.355

See Supplementary Material for more details.356

16



  

2.7 Meandering357

In addition to incising, meandering channels can also reduce their slope via358

lateral migration. REM incorporates this process by simulating meander mi-359

gration from fluvial erosion, allowing the channel to increase its length, thereby360

decreasing its slope.361

The effects of curvature on shear stress distributions can be simulated by362

directly modeling flow mechanics, typically using a high resolution 1-D or 2-363

D model (Crosato, 2007; Huang et al., 2014; Darby et al., 2002); however,364

REM does not directly calculate boundary shear stress distributions, meaning365

it cannot mechanistically account for the effects of bend geometry on bank366

erosion. Instead, we use an empirical equation to find the maximum shear367

stress on the outside of bends (Army Corps of Engineers , 1970):368

τmax = 2.65τw

(
Rc

w

)−1/2
(19)369

where τmax is the maximum bend shear stress [Pa], τw is the wall shear stress370

calculated using Equation 17 [Pa], Rc is the bend radius of curvature [m], and371

w is the channel bottom width [m].372

Equation 19 is based on only five small flume datasets, and more recent373

analysis suggests that no single relationship adequately predicts maximum374

shear stress in bends (Thornton et al., 2012). Field studies, however, show375

that radius of curvature is a major control on channel migration rate (Nanson376

and Hickin, 1983, 1986; Hooke, 1997). We therefore used Equation 19 —377

imperfect as it may be — to account for this process.378

Including meander dynamics in the model requires two user inputs for each379

reach. Radius of curvature and sinuosity are used to build and track changes380

in channel planform. We conceptualize the channel as a series of circular arc381
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segments, where each arc is one bend. The number of bends between each382

cross section is calculated from the user defined cross section spacing, radius383

of curvature, and sinuosity using equations describing circular arcs. Meander384

migration modeling will not be physically realistic unless there is at least one385

full meander bend between adjacent cross sections (i.e. dx must be sufficiently386

long depending on the supplied Rc and sinuosity); however, more than one387

bend can be present between adjacent cross sections. Additionally, REM does388

not account for complex bend geometry, down-valley migration, or meander389

cutoffs. See Supplementary Material for more details.390

2.8 Knickpoint migration391

Knickpoints or headcuts are small waterfalls or locally steep stream sections392

where bed erosion is especially pronounced. These vertical drops tend to393

migrate upstream as they erode, and can initiate substantial bank erosion394

(Schumm et al., 1984). We use a simple, empirical model to simulate headcut395

advance (Allen et al., 2018):396

hcm = 0.00126× Ehc×Q0.5
cum ×H0.225

hc (20)397

where hcm is the headcut migration distance [m], Qcum is cumulative daily dis-398

charge [m3] (calculated from the user-supplied discharge series), Hhc is headcut399

height [m] (user supplied), and Ehc is an erodibility resistance parameter that400

is a function of soil erodibility and vegetation cover:401

Ehc = 17.8 + 16.5Kd − 15RCF (21)402

where Kd is soil erodibility [cm h−1 Pa−1] (user supplied) and RCF is a root403

cover density factor (dimensionless, 0 – 1.4). While channel beds are usually404
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unvegetated, using RCF = 0 sometimes requires a negative Kd value to accu-405

rately predict knickpoint migration rates; therefore, REM assumes RCF = 1.4406

and requires users to calibrate Kd to match observed migration rates (see Sup-407

plementary Material for more details). This sub-routine requires the user to408

input the initial location (i.e. reach and station), elevation, height, and Kd409

of each knickpoint. The position of each knickpoint is tracked as it migrates410

upstream (including into any tributaries) and bed elevations are adjusted ac-411

cordingly; however, knickpoint height does not change. As the knickpoint412

migrates, the volume of eroded sediment is calculated based on migration dis-413

tance, knickpoint height, and channel width. A user-specified proportion of414

this eroded sediment is added to the bed material load (e.g. sand and gravel),415

while the rest is considered washload (e.g. silt and clay) that is exported to416

the watershed outlet.417

3 Model Testing418

3.1 Generic model test419

While REM is suited for application to small watersheds, there are no datasets420

for these types of systems with the necessary input data and sufficiently de-421

tailed monitoring of channel evolution across decadal time scales. Therefore,422

we applied REM to a simple, generic watershed to test its applicability in this423

context and confirm that REM can simulate the type of channel evolution424

we expect based on physical understanding of these processes. We simulated425

channel evolution in a generic watershed with six distinct reaches. The total426

channel length of 10.4 km corresponds to an approximate drainage area of427

6.5 km2 (Hack (1957, Eq. 3)). Initial grain size (2 mm), slope (0.003), and428

bank height (2 m) were constant throughout the watershed. Channels were429
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assumed to be straight, with no meandering. Discharge was steady at a sta-430

tion but increased moving downstream. Upstream sediment supply was equal431

to the transport capacity of the undisturbed channel. A full table of model432

inputs is included in Supplementary Material. Beginning with an initially sta-433

ble channel, we dropped the downstream elevation by 2.5 m, including a 1.5434

m tall knickpoint, and modeled 20 years of resulting channel evolution. Given435

this base-level drop, we expected significant channel incision and bank failure,436

with the area of disturbance migrating upstream with the knickpoint.437

3.2 Colorado River438

3.2.1 Study area439

Parker Dam, completed in 1938, is one of several large dams on the lower440

Colorado River built for water supply and power generation. Like most hy-441

dropower dams, Parker Dam altered flows and trapped sediment. The com-442

bined effects of these changes caused the Colorado River downstream from the443

dam to incise while the bed material coarsened (Williams and Wolman, 1984).444

3.2.2 Data collection and modeling445

Initial longitudinal profiles and grain size data for a 144 km reach downstream446

of Parker Dam were obtained from two U.S. Bureau of Reclamation reports447

(U.S. Bureau of Reclamation, 1948, 1950). We used a single grain size distri-448

bution for the entire reach. The pre-dam grain size data were all finer than449

2 mm; however, later observations included gravel up to 32 mm, presumably450

unearthed as the channel incised. Since the channel coarsened over time (and451

REM does not account for bed stratigraphy), we adjusted the initial grain size452

distribution to include a small amount of coarser material. Average channel453

widths were calculated from 1938 aerial photographs (Norman et al., 2006)454
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and contemporary satellite imagery (Google Earth Pro, 2017).455

We ran the model from 1938 – 1975 using daily discharge data from USGS456

gage 09427520. Only bed elevation changes were modeled, no bank erosion or457

meander migration was included. We used a cross section spacing of 2,000 m458

and a time step of 2,400 seconds. The total load sediment transport equation459

was used for all grain sizes < 4 mm and the bedload equation for all coarser460

grain sizes. We assumed no sediment inputs from upstream (i.e. the dam461

trapped all sediment). Model results were compared to measured longitudinal462

profiles for a 66 km subreach (from 27 – 93 km downstream of Parker Dam)463

(Williams and Wolman, 1984). We also compared modeled D50 to measured464

values from three cross sections (26, 64, and 130 km downstream of Parker465

Dam) (Williams and Wolman, 1984).466

In addition to the single model run described above, we ran 5,000 Monte467

Carlo simulations varying the initial grain size distribution, channel width,468

floodplain geometry, roughness values, and the exponent and coefficient of the469

hiding function. Sobol’ quasi-random numbers (using the “gsl” R package;470

(Hankin, 2006)) were used to generate these variables since they provide more471

uniform coverage than simple random numbers (Sobol’ , 1976).472

3.3 North Fork Toutle River473

3.3.1 Study area474

The North Fork Toutle River (NFTR) was a typical gravel bed mountain river475

draining the northern slope of Mount St. Helens. On May 18, 1980, after476

several months of increased volcanic activity, a massive debris avalanche trig-477

gered an eruption. This deposited about 2.8 km3 of sediment across the upper478

part of the NFTR, with depths averaging 45 m but reaching 140 m in some479

areas (Simon et al., 1999). This massive sediment deposit buried the channel480
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Table 1: Model inputs for the Colorado River.

Variable Single Run Value Monte Carlo Range Source

Width [m] 220 170 – 270 Aerial Imagery

Floodplain width [m] 1,000 500 – 1,500 Aerial Imagery

Floodplain angle [degrees] 0 0 – 2 Assumed

Channel roughness (n) 0.04 0.03 - 0.05 Assumed

Floodplain roughness (n) 0.06 0.05 – 0.07 Assumed

Hiding function coefficient (ωc∗) 0.1
lognormal;

mean = -2.3, sd = 0.4

Lammers and
Bledsoe (2018)

Hiding function exponent (b) 0.8 0.3 – 1.2
Supplementary

Material

Bank height [m] 4 – Assumed

Bank angle [degrees] 90 – Assumed

network of the upper NFTR. Over the following months and years, channels481

reformed from surface runoff, pumping from Spirit Lake, and multiple lahars482

(volcanic debris or mudflows) (Simon et al., 1999). To prevent sedimenta-483

tion in the downstream Cowlitz and Columbia Rivers, two sediment retention484

structures where built on the NFTR. The first (N1) was built in summer 1980485

and operated until it was breached in 1982. A second, more permanent sed-486

iment retention structure (the “SRS”), was built in 1987 and was essentially487

filled by 1998 (Simon et al., 1999; Zheng et al., 2014). To prevent overtopping488

of Spirit Lake, water was released into a NFTR tributary (see TR065 and489

TR070 in Figure 2) at a constant rate of 5.1 m3 s−1 from November 1982 to490

August 1983, causing extreme incision (up to 34 m) (Paine, 1984). For more491

details on the eruption and its effects, see Simon et al. (1999), Lipman and492

Mullineaux (1981), and Major et al. (2018).493
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Figure 2: North Fork Toutle River watershed upstream of the SRS. Shaded
relief from 2009 LiDAR data (Mosbrucker , 2014). Modeled cross sections are
differentiated into “upstream” and “downstream” which will be referenced in
certain result figures. Flow is from right to left.

3.3.2 Data collection and modeling494

We modeled evolution of the upper NFTR and its tributaries from September495

1983 – August 2011. We started the model 3.5 years after the eruption because496

there were more cross section data and this avoided several lahars and pump-497

ing from Spirit Lake which had complicated effects on channel adjustment.498

Following the eruption, the USGS and Army Corps of Engineers established499

several permanent cross sections which have been surveyed at irregular inter-500

vals since 1980. We used these data (Mosbrucker et al., 2015) for 19 cross501

sections on the NFTR and its tributaries to estimate initial channel and flood-502

plain geometry (Figure 2). Each of these cross sections defined a model reach503

with unique inputs. Initial bed grain size distributions were estimated from504

field data (U.S. Army Corps of Engineers , 1988; Paine, 1984). We used the505

23



  

daily discharge series at the SRS constructed by Simon and Klimetz (2012)506

from several nearby USGS gages. These values were scaled by drainage area507

to give discharge in each reach. We also used bank sediment properties (τc,508

k, cohesion, unit weight, and φ′) and Manning’s n values estimated by Simon509

and Klimetz (2012). We assumed no hillslope sediment supply since upland510

erosion peaked soon after the eruption and remained negligible compared to511

in-stream sediment sources (Simon et al., 1999).512

We used a model cross section spacing of 500 m, a time step of 2,400 sec-513

onds, and the bedload sediment transport equation. Sediment specific gravity514

was adjusted to account for lighter volcanic material (Simon and Klimetz ,515

2012, Eq. 24). Finally, we assumed that 100% of the eroded bank material516

consisted of bed material load. Non-cohesive bed erosion, fluvial bank ero-517

sion, and bank failure were modeled but no meander migration or knickpoint518

erosion was included. We ran 5,000 Monte Carlo simulations to quantify un-519

certainty, varying initial grain size, channel width, channel roughness, hiding520

function parameters, and bank soil properties. Model accuracy was assessed521

by comparing modeled bed elevations to observations (from survey data and522

a 1 m DEM from 2009 (Mosbrucker , 2014)). Other parameters (e.g. D50 and523

width) were not used because only sparse grain size data were available and524

the simplified model cross sections could not adequately represent the complex525

observed channel geometries.526

3.4 Sensitivity analysis527

For both case studies, we performed sensitivity analyses to determine which528

variables most influence model output. We used a density-based method that529

estimates parameter sensitivity based on differences between conditional and530

unconditional probability density functions of model output (Plischke et al.,531
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Table 2: Model inputs for the North Fork Toutle River. Each of the 19 cross
sections have unique inputs so the median and range of the single model run
and range of the Monte Carlo runs are shown.

Variable
Single Run
Median

Single Run Range Monte Carlo Range
Monte Carlo

Method

Width [m]a 11.6 4.0 – 263.1 2.0 – 394.6 ±50% initial

D50 [mm]b 2.26 0.79 – 2.95 0.24 – 7.20
25th – 75th %tile

of all GSD

σg [mm]b 7 6.4 – 10.1 6.0 – 9.3
25th – 75th %tile

of all GSD

Bank τc [Pa]c 12 5.5 – 32.1 2.8 – 48.1 ±50% initial

Bank Erodibility
[m3 N−1 s−1]c

2.0e-07 9.1e-08 – 3.9e-07 4.6e-08 – 5.8e-07 ±50% initial

Bank Cohesion
[kPa]c

0 0.0 – 0.0 0.0 – 1.0 0 – 1

Bank φ′ [degrees]c 30 25.2 – 34.0 12.6 – 51.0 ±50% initial

Bank Soil unit weight
[kN m−3]c

19.1 18.1 – 19.8 9.1 – 29.7 ±50% initial

Channel
roughness (n)c

0.04 0.030 – 0.065 0.015 – 0.065
50 – 100%

initial

Hiding function coef-
ficient (ωc∗)

d
0.1 – 0.025 – 0.4

lognormal; mean
= -2.3, sd = 0.4

Hiding function ex-
ponent (b)e

0.8 – 0.3 – 1.2 Uniform

aXS Data (Mosbrucker et al., 2015)
bFull grain size distribution. TR065 – NF120: Paine (1984); others: U.S. Army Corps of Engineers (1988)
cSimon and Klimetz (2012)
dLammers and Bledsoe (2018)
eSupplementary Material

2013). Variables with a greater effect have bigger differences in these density532

functions. This method has two advantages over other approaches: it requires533

no unique input parameter sampling design (e.g. Saltelli et al., 2010) and it534

requires much fewer model runs (e.g. Pianosi and Wagener , 2015). We there-535

fore used the output from Monte Carlo simulations to compute the sensitivity536

indices. Bootstrapping with 1,000 replicates was used to correct for bias and537

calculate uncertainty in sensitivity indices. Finally, we incorporated a dummy538

variable to determine the threshold for influential variables. This dummy vari-539

able is a simple set of random numbers that has no influence on the model and540

accounts for noise in the sensitivity analysis (Plischke et al., 2013; Khorashadi541
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Zadeh et al., 2017).542

These sensitivity analyses are only applicable for each individual case study543

because each system has unique boundary conditions and relevant processes.544

Because of this, it is necessary to perform a sensitivity analysis separately for545

every model application to understand what variables are most influential in546

each case.547

For the Colorado River, we quantified sensitivity for two model outputs:548

bed elevation and bed D50. For the NFTR, channel width was also included.549

To give a single output value for each model run, we summed the absolute550

value of the total change in the variable (e.g. bed elevation) for all cross551

sections. For the NFTR, a separate sensitivity analysis was performed for each552

reach. For comparison among reaches, we standardized the sensitivity indices553

by taking the difference between the index for each input and the “dummy”554

variable, divided by the dummy variable index. The variables included in each555

sensitivity analysis are shown in Tables 1 and 2. All analyses of model outputs556

were done using R version 3.4.1 (R Core Team, 2018).557

4 Results558

4.1 Generic model test559

Figure 3 shows changes in bed elevation, channel width, and width-depth560

ratio for the modeled test case. The zone of disturbance migrated upstream561

through time, with changes in channel width lagging slightly behind changes562

in bed elevation. The greatest channel changes were at the far downstream563

end — the area with greatest disturbance.564

Figure 4 shows changes in stream power, bed elevation, and channel width565

at two locations (indicated in Figure 3(a)). For both areas, stream power566
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was relatively constant until the knickpoint passed, after which stream power567

spiked before slowly decreasing. Bed elevation and width show similar trends,568

with abrupt changes following passage of the knickpoint. After the initial569

drop in channel elevation, both cross sections showed a period of aggradation570

followed by renewed incision. Sediment export from the watershed peaked571

early in the simulation and then decreased exponentially.572

Figure 3: Modeled change in bed elevation (a–e), channel width (f–j), and
width-depth ratio (k–o) throughout the generic channel network for five of the
simulation years. Each point represents one cross section.

4.2 Colorado River573

Figure 5 shows the error in predicted bed elevation and bed D50. The median574

of the Monte Carlo simulations generally has lower error than the single model575
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Figure 4: Changes over time in specific stream power (ω), bed elevation (z),
and channel width (w) for two locations (A & B, see Figure 3(a)). Sediment
discharge at the watershed outlet is also shown (c). All variables are scaled
to their starting value (horizontal lines). In (a) and (b), ω increases because
slope increases slightly later in the simulation, despite the channel incising.

run. For the bed elevation results (Figure 5(a-c)), model error decreases over576

the course of the simulation, although the uncertainty increases. For the bed577

D50 results (Figure 5(e-g)), uncertainty is high for all sites but error generally578

decreases moving downstream.579

Figure 6 shows the results of the sensitivity analysis for bed elevation and580

bed D50 outputs. Initial D50, geometric standard deviation of the grain size581

distribution (σg), and channel width have the largest influence on predicted582

bed elevation changes. Initial D50 and σg have a significant effect on the final583

D50 while channel width and the hiding function parameters (ωc and b) have584

only a small effect. Floodplain angle has a moderate effect on both outputs.585

4.3 North Fork Toutle River586

Figure 7 shows modeled and observed bed elevations for the NFTR. The model587

predicted channel change well at the majority of sites, mostly in the upper half588

of the watershed (CW280 – NF130, NF350, and NF405). These cross sections589
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Figure 5: Top row: error in modeled bed elevation along the Colorado River for
three simulation years (a–c) for the single model run and Monte Carlo results
(median, inter-quartile range (IQR) and 90% confidence interval). Bottom
row: error in modeled bed D50 over the course of the simulation for three
cross sections (e–g). Parts (d) and (h) show the RMSE for the single model
result and the median of the Monte Carlo simulations. For XS 130 (h), the
RMSE points overlap.
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Figure 6: Sensitivity results for the Colorado River for modeled bed elevation
(a) and bed D50 (b). Points at or to the left of the vertical dashed line had no
influence on model output. Points are bias corrected sensitivity indices with
ranges estimated from bootstrapping.

have generally low error in predicted final bed elevations normalized to the590

magnitude of total bed elevation change (Figure 8). Median normalized error591

is 43%, but is only 22% for reaches CW280 – NF130. For the remainder of592

the cross sections, the model did a relatively poor job of predicting changes in593

bed elevation.594

There is substantial uncertainty for all sites, especially in the upper half of595

the watershed (e.g. > 20 m wide 90% confidence interval). The magnitude of596

uncertainty is generally less in the lower portion of the watershed where the597

magnitude of aggradation and incision was smaller.598

The sensitivity results for the NFTR model runs are summarized in Figure599

Figure 7 (following page): Observed and modeled bed elevations for 19 cross
sections in the NFTR (generally shown in order of upstream to downstream).
Modeled results are shown for the single model run and median, IQR, and 90%
CI for the Monte Carlo simulations. Model results start to diverge significantly
from observations at NF300.
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Figure 8: Valley width and error in modeled bed elevation for each cross section
in the NFTR (generally shown in order of upstream to downstream). Errors
are generally higher where the valley becomes significantly wider.

9. Modeled bed elevation was influenced most by bank τc, bank cohesion, and600

hiding function parameters (ωc and b). Channel width and initial bed grain601

size (D50 and σg) also had a minor effect. Modeled D50 was influenced by602

similar variables, but the hiding function parameters, initial grain size, and603

bank cohesion had a much larger effect. For modeled channel width, bank τc604

was by far the most influential but initial width and ωc also contributed to605

some observed model uncertainty.606

5 Discussion607

5.1 REM predicts realistic channel change608

The generic test case and field applications show that REM can realistically609

and accurately simulate channel evolution — in the absence of avulsions and610

extensive lateral migration. First, the model test case matches physical un-611

derstanding of channel evolution in response to disturbance (in this case, base612
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Figure 9: Sensitivity results for the NFTR modeling for: (a) bed elevation,
(b) D50, and (c) channel width. Boxplots summarize sensitivity indices for
each of the 19 reaches, separated by the upstream (upstream of NF130), and
downstream channel (NF300 through NF405). This is the same division as
the vertical line in Figure 8. Cohesion, phi, and weight results are shown for
the higher value of either the bank or bank toe. Vertical dashed line is a
normalized sensitivity index of zero (i.e. no influence on model output).
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level drop). The greatest channel change is observed nearest the disturbance,613

and rates and magnitudes of erosion decline nonlinearly with time and dis-614

tance upstream (Figure 3). This is consistent with conceptual models of chan-615

nel evolution (Schumm et al., 1984; Simon, 1989), and experimental (Begin616

et al., 1981), numerical (Simon and Darby , 1997), and field studies (Simon617

and Rinaldi , 2006). In general, the channel incises which destabilizes the618

banks, leading to rapid widening (Figure 4). As the upstream channel be-619

gins to erode, large amounts of sediment are delivered downstream, causing620

aggradation. After this upstream sediment supply is cut off (i.e. upstream621

channel erosion has slowed or stopped), channel incision begins again. This622

shift between degradation and aggradation depending on sediment delivery623

from upstream is an important control on channel evolution, as demonstrated624

in both numerical modeling (Simon and Darby , 1997) and field studies (Simon625

and Hupp, 1992). Downstream aggradation can help stabilize these reaches626

and allows the channel to more rapidly attain a new stable slope (Doyle and627

Harbor , 2003). Disrupting this downstream sediment delivery, for example628

by installing grade control structures, can induce a second round of incision629

downstream (Simon and Darby , 2002), similar to what the modeling showed630

(Figure 4).631

Following a disturbance, the channel is expected to adjust rapidly, with the632

rate of change slowing until the channel reaches some new stable state. This633

results in an exponential decay in channel variables to some asymptote. These634

variables may include stream power (Bull , 1979; Bledsoe et al., 2002), sediment635

discharge (Simon, 1999; Bledsoe et al., 2002), or bed elevation (Begin et al.,636

1981), but all describe a reduction in the rate of energy dissipation (Simon,637

1992). Modeling shows these exponential reductions in specific stream power638

and sediment discharge, and an exponential increase in channel width (Figure639
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4). Bed elevation follows a more complex trajectory, but does decrease towards640

an asymptote during the second round of incision.641

Modeling from the NFTR also shows this exponential decrease (or increase)642

in bed elevation (Figure 7), consistent with physical understanding of channel643

evolution. In the Colorado River modeling, the greatest incision and bed644

coarsening were seen closest to the dam (the disturbance), with less channel645

change downstream (data not shown). Furthermore, REM accurately predicts646

the magnitude of channel incision in this system (bed elevation RMSE 0.7647

– 1.5 m for all years). Bed material coarsening is also accurately predicted,648

although errors are more variable (D50 RMSE 0.1 – 5 mm). In the NFTR, REM649

accurately predicts channel incision in the upper half of the watershed (CW280650

– NF130). This portion of the channel is single thread, while the downstream651

portion (where the model error is higher) is braided or avulsing — features652

that were deliberately not incorporated into REM. Taken together, these three653

model tests suggest that REM can predict channel evolution across decadal654

time scales in single-thread systems with reasonable accuracy, matching both655

physical understanding of channel change and adequately predicting evolution656

in real-world, dynamic fluvial systems. Further testing, however, is required657

in the smaller watersheds for which REM will most likely be applied. While658

the physical processes are generally the same in these systems (e.g. sediment659

transport, bank erosion and failure), it is possible that scale differences or other660

issues will be discovered during application to these smaller channel networks.661

5.2 Model strengths and weaknesses662

REM’s main strength is its parsimony and utility in simulating watershed scale663

channel evolution processes. Watershed scale assessment is essential because664

channel evolution is not limited to local disturbances or dynamics. Changes665
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in both upstream and downstream channel form and sediment delivery affect666

local channel response (e.g. Schumm et al., 1984; Simon, 1992; Simon and667

Darby , 2002). Both bed and bank erosion processes are especially important668

in smaller urban watersheds (Booth, 1990). Furthermore, channel hardpoints669

(i.e. bed and bank armoring) can significantly influence local channel evolu-670

tion and adjustment in other parts of the watershed (Booth and Fischenich,671

2015). REM accounts for these processes — enabling users to specify non-672

erodible cross sections — and may be an important tool for understanding673

urban channel network evolution. Other numerical models have been devel-674

oped that include both bed and bank erosion, but these are typically designed675

for reach-scale application. For example, the CONCEPTS model (Langen-676

doen and Simon, 2008; Langendoen and Alonso, 2008) and Darby and Thorne677

(1996a) model both include more detailed modeling than REM, but cannot678

be easily applied at the watershed scale. Alternatively, the watershed scale679

Soil and Water Assessment Tool (SWAT) (Allen et al., 1999; Mittelstet et al.,680

2016; Arnold et al., 1998) has erosion processes for cohesive channels; however,681

REM incorporates cohesive and non-cohesive erosion and bank failure. REM682

includes the most important mechanisms to realistically simulate channel evo-683

lution while still keeping data requirements to a minimum.684

Another important strength of REM is its capacity to explicitly account for685

input variable uncertainty. It automates the use of Monte Carlo simulations,686

allowing users to easily quantify model uncertainty and produce probabilistic687

estimates of channel change. Quantifying uncertainty can be useful for deci-688

sion making and assessing reliability of model outputs (e.g. Pappenberger and689

Beven, 2006). Model field tests illustrate this. In most cases, it appears the690

median of the Monte Carlo simulations predicts river behavior as well or better691

than the single model run (with the exception of NF130 and NF300 from the692
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NFTR, Figure 7). This suggests that accounting for uncertainty in the inputs693

can actually improve model accuracy.694

How much uncertainty is too much must be determined by the model user695

because it depends on the question(s) being asked. The model test cases show696

large uncertainty bounds. This may seem discouraging, but is an inescapable697

consequence of simulating complex and uncertain geomorphic systems (Shreve,698

1975). By quantifying this uncertainty, we can at least be candid about con-699

fidence in the model’s predictions. The widths of the simulated uncertainty700

bounds are proportional to the magnitude of modeled bed elevation (Figures701

5 and 7) and grain size (Figure 5). This is expected — the larger the change,702

the greater uncertainty.703

REM is only applicable for single-thread rivers. It is therefore unsurprising704

that it could not adequately predict channel evolution in the downstream half705

of the NFTR. This section of the river migrates across a wide valley bottom706

and — in the lower reaches — the channel braids (Zheng et al., 2017). In707

reality, much of the channel is 15 – 20 m wide, but may be within a several708

hundred meter wide valley. The model cannot simulate the aggressive channel709

migration observed in the lower portion of the watershed and instead spreads710

the water out over an unrealistically wide modeled channel bottom. Figure711

8 illustrates this issue, showing how error in modeled bed elevation increases712

substantially where the valley widens (just downstream of NF130). REM does713

include a meandering algorithm, but this is not entirely mechanistic and is714

incorporated to allow single thread meandering channels an additional mode715

of slope adjustment. This meandering algorithm was not incorporated into716

the NFTR modeling.717

Other limitations are a consequence of REM’s relative simplicity. The718

model assumes uniform flow (So = Sf ) to calculate specific stream power and719
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relies on new empirical equations to convert stream power to shear stress for720

cohesive erosion modeling. This facilitates network scale analysis without de-721

tailed hydraulic modeling but may be a source of error. This also neglects722

local, complex flow hydraulics which can have an impact on channel change —723

making it unsuitable for small scale analyses, like bridge scour. Still, REM has724

a strong physical basis, integrating novel stream power based sediment trans-725

port models (Lammers and Bledsoe, 2018) with a well tested bank erosion726

algorithm (BSTEM; (Simon et al., 2000, 2011)) that underwent systematic727

sensitivity and uncertainty analyses to identify the most parsimonious repre-728

sentation of essential physical processes (Lammers et al., 2017).729

Finally, due to a lack of available data, REM was not tested against field730

data sets on network-scale channel response in smaller watersheds with cohe-731

sive banks. While the generic model test case gives some indication of REM’s732

applicability to these types of systems, further testing is needed to determine733

how well REM can simulate channel response in these watersheds. Additional734

testing of the cohesive bed erosion, meander migration, and knickpoint retreat735

sub-routines is also needed.736

5.3 Model sensitivity737

Sensitivity is a function of (1) how much an input influences model output738

and (2) how much the input varies. Sensitivity analyses can therefore reveal739

information about model structure and suggest which variables should be most740

accurately quantified to obtain the most reliable results. REM sensitivity741

analyses largely confirm the validity of the model as important parameters are742

known to be linked to important channel evolution processes and are consistent743

with results reported in the literature.744

Bed elevation is most controlled by D50, σg, width, and floodplain an-745
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gle (Colorado River, Figure 6) plus hiding function parameters and bank τc746

and cohesion (NFTR, Figure 9). The size and erodibility of the bed material747

directly influences the extent of incision. Bank erodibility has a secondary748

effect by either allowing the channel to widen and reducing incision, or lim-749

iting widening and forcing the channel to incise more (Simon, 1992). Other750

numerical models have shown that bed D50 has a significant effect on modeled751

channel profiles (El Kadi Abderrezzak et al., 2008; El Kadi Abderrezzak and752

Paquier , 2009); however, Darby and Thorne (1996b) found that D50 had a753

minimal effect compared to discharge.754

Predicted bed D50 was most influenced by initial grain size distribution755

in the Colorado River case study (Figure 6), but hiding function parameters756

were equally or more influential for the NFTR (Figure 9). Others have also757

shown that hiding function parameters (in their case, critical shear stress and758

the hiding factor) control modeled grain sizes (Ruark et al., 2011; Hoey and759

Ferguson, 1994). The NFTR results also show that bank τc and cohesion had760

an influence on modeled D50. Sediment from bank erosion has the same grain761

size distribution as the initial bed sediment. As the bed coarsens, bank erosion762

therefore becomes a source of finer grains.763

Channel width was controlled most by bank τc (Figure 9). This suggests764

that fluvial erosion, not mass failure, was the dominant bank erosion process in765

the NFTR. Darby and Thorne (1996b) also found that τc had a much greater766

influence on channel widening than bank cohesion. The three variables control-767

ling bank failure (cohesion, φ′, and weight) all had similar relative importance,768

unlike other sensitivity analyses of bank erosion models that found cohesion769

was the dominant control on bank stability (Lammers et al., 2017; Van de770

Wiel and Darby , 2007; Parker et al., 2008; Samadi et al., 2009). These studies771

also did not show that τc was important, possibly because they did not model772
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cumulative bank erosion and therefore did not incorporate the threshold effect773

of τc determining when erosion occurs.774

Despite its relative simplicity, REM is dependent on field data which may775

be difficult to collect at a network scale; however, the sensitivity results provide776

guidance on which variables should be most accurately quantified to yield the777

best model results. This is especially important for bank τc which has a strong778

influence on the model, is subject to considerable uncertainty, and is difficult779

to measure in the field (Wynn et al., 2008; Konsoer et al., 2016; Daly et al.,780

2015b). Bank τc may need to be estimated through model calibration to781

provide more reliable model inputs than field measurements.782

5.4 Future improvements and applications783

There are a number of modifications that could improve model predictions.784

Coupling REM with an upland erosion model would provide more realistic785

estimates of sediment inputs and channel response (e.g. Stryker et al., 2017).786

Furthermore, floodplains can be significant sediment sinks (Kronvang et al.,787

2007; Fryirs and Brierley , 2001); although, floodplain sedimentation likely788

has a larger effect on fine sediment delivery (e.g. Walling et al., 1998) than789

the bed material load that controls channel incision and aggradation. Adding790

these processes may improve model predictions, but this extra complexity791

also increases data requirements and uncertainty. It is important to balance792

the need to incorporate relevant processes while retaining the simplicity that793

makes REM applicable at the watershed scale.794

REM has a number of potential applications, both in river management795

and research. For example, channel erosion can be a significant — but difficult796

to quantify — source of fine sediment and phosphorus pollution in watersheds797

(Fox et al., 2016). REM could be used to estimate loading of these pollutants798
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at watershed scales. Urban stormwater management (or mismanagement) is799

a leading cause of channel degradation (Walsh et al., 2016, 2005). While800

certain stormwater design standards can help mitigate channel degradation801

(e.g. Tillinghast et al., 2011), REM may allow a more comprehensive analysis802

of channel stability when coupled with a stormwater management model. REM803

also has a number of research applications. The search for an “optimal” or804

“equilibrium” channel form has intrigued scientists for decades (e.g. Langbein805

and Leopold , 1964; Yang et al., 1981; Millar , 2005; Huang et al., 2014). Tools806

like REM can be used to explore this concept in more detail, looking beyond807

the “optimal” channel cross section and examining interactions between parts808

of a network and their influence on watershed scale channel evolution.809

6 Conclusions810

We present a new model for simulating channel evolution at the watershed811

scale. This model is based on specific stream power and does not require de-812

tailed hydraulic modeling. Results from a generic test case of channel response813

to base level lowering match physical understanding of channel evolution. The814

model also accurately predicts channel incision and bed coarsening for a reach815

of the lower Colorado River below Parker Dam. In the North Fork Toutle816

River, the model accurately predicted channel incision and widening in the817

upper portion of the watershed where the channel remained single thread.818

Model predictions were poor in the lower watershed where the river migrated819

significantly across the valley floor — a behavior that REM is not designed to820

simulate. Results from these case studies suggest the model can provide useful821

predictions of watershed-scale channel erosion, while recognizing it is limited822

to single thread channels. Importantly, the model can also account for uncer-823
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tainty in input variables — allowing for a probabilistic assessment of channel824

change. More model testing is required to fully understand its capabilities and825

limitations. For example, REM’s ability to simulate cohesive incision, knick-826

point migration, or meandering was not tested because of a lack of sufficient827

field data. Further testing is also warranted on the smaller watersheds (i.e. 10828

– 100 km2) for which REM was designed.829

Understanding how and how much rivers may change under future climate830

and land use variability is an essential question for sustainable river manage-831

ment. Other tools have been developed to estimate watershed sediment dy-832

namics (Czuba et al., 2017; Schmitt et al., 2016; Czuba and Foufoula-Georgiou,833

2014) and erosion and deposition potential (Soar et al., 2017; Parker et al.,834

2015). In smaller, urbanizing watersheds, however, channel changes are driven835

by both bed and bank erosion processes (Booth, 1990) and strongly influ-836

enced by channel armoring and other channel “improvements” (Booth and837

Fischenich, 2015). By accounting for these processes, REM can provide in-838

sight into urban stream evolution. Additionally, the model can be used to test839

different mitigation strategies; for example, by simulating how the river erodes840

under different stormwater and/or stream restoration scenarios to support cost841

effective and successful solutions to address excessive channel erosion.842
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Highlights 

 We created an intermediate complexity model for simulating channel evolution at 

watershed scales 

 The model matches physical understanding of channel change  

 It can also predict erosion processes in accordance with field data sets 

 The model is useful for predicting channel evolution and answering relevant 

management questions 



  


