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Highlights

 Catchment model experiments assessed performance shifts under climatic change.

 We tested parameter transferability, model weighting and dynamic parameters.

 Transferability depended more on validation than calibration conditions.

 Approaches tested improved average validation performance, but results varied.

Abstract

It has been repeatedly shown that conceptual hydrologic model performance degrades 

under conditions that deviate from those of the calibration period. In this study, we describe 

three experiments that aim to understand and address this problem using the conceptual 

model GR4J over 164 Australian catchments. The first is an investigation of model 

transferability, where parameters calibrated under certain conditions are applied to 

simulate both similar and contrasting conditions. We find that model performance 
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degradation is more dependent on the conditions under which the model is tested than the 

conditions under which it is calibrated. Because dry periods are typically more difficult to 

simulate than wet periods, this means that transferring dry-calibrated parameters to wet 

periods is more successful than transferring wet-calibrated parameters to dry periods. For 

both wet and dry periods the best results were obtained when climatically similar 

calibration periods were used, suggesting that targeted use of climatically similar calibration 

data could improve predictive capacity. To this end, a second experiment was designed that 

preferentially weights modeled series calibrated under different conditions, with series 

associated with more climatically similar calibration periods weighted more heavily. While 

this improved model performance in most cases, the success was variable across the 

different catchments. Given that the model weighting scheme could not easily be 

generalized to all catchments in the sample, a third experiment was conducted where each 

model parameter was defined dynamically as a function of climate. The dynamic parameters 

were calibrated separately for each model, so the individual sensitivities of each catchment 

to climate conditions could be captured. While this also gave performance improvements, 

especially under drier testing conditions, the results continued to vary between catchments 

and there was no clear pattern in the parameter variation. This suggests that 

nonstationarity can be captured in different parameters for models of different catchments. 

While both model weighting and dynamic parameters can benefit overall conceptual model 

performance, it seems that reliable improvements across large samples of catchments may 

be difficult to achieve without more physically realistic model structures.
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1 Introduction
Hydrologic models are used for a wide range of purposes including flood risk 

management, water resource planning and environmental flow assessments. 

They typically require calibration to observed streamflow to determine 

parameter values that reflect the runoff behavior of the catchment. This 

means the model effectively projects past behavior forward, assuming 

stationarity over the long term. However, there is now overwhelming evidence 

that the Earth’s climate is undergoing substantial change due to anthropogenic 

activities [ IPCC, 2013]. It follows that changes in catchment characteristics and 

hence response may also occur, threatening the assumption of stationarity and 

the validity of models calibrated to past streamflow observations [Milly et al.,  

2008]. Uncertainty in future climate drivers and associated catchment property 

shifts presents a key challenge for developing improved modelling 
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A number of studies have shown that the performance of conceptual 

hydrologic models tends to degrade when climatic conditions become 

increasingly different to those of the calibration period [Brigode et al., 2013; 

Coron et al., 2014; Coron et al., 2012; Merz et al., 2011; Osuch et al., 2015; Vaze et al.,  

2010]. Vaze et al. [2010] defined eight calibration periods based on average 

rainfall (wet versus dry), then evaluated how calibrated parameters 

transferred to time periods with different climatic conditions. They found that 

model skill decreased as the contrast between the calibration and testing 

periods increased, with the effect being more pronounced for drier testing 

periods. This result was supported by several subsequent studies [Coron et al.,  

2014; Coron et al., 2012; Dakhlaoui et al., 2017]. Merz et al. [2011] calibrated 

models of 273 Austrian catchments over six consecutive five-year periods and 

found significant trends in parameters related to snow and soil moisture. 

These trends were associated with changes in climate observed in the study 

area, indicating that the parameters (being conceptual without a precise 

physical interpretation) do relate to environmental conditions in the 
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catchment. These findings were supported by further work in the same region 

by Sleziak et al. [2018].

Other studies have addressed non-stationarity in climatic conditions by 

investigating the utility of non-stationary parameterizations. Westra et al. 

[2014]  evaluated time-varying parameters in the common conceptual model 

GR4J [Perrin et al., 2003] that were nominally representative of antecedent 

conditions, climatic cycles and long-term trends. The model’s predictive 

capacity improved when the parameter representing storage capacity was 

allowed to vary over time, with particular improvement under dry conditions. 

This suggests that there may be potential to enhance future predictions by 

including time-varying parameters in hydrologic models. Later studies have 

used data assimilation to automatically update parameters based on climate 

variability [Xiong et al., 2019] or land cover change [Pathiraja et al., 2016]. Grigg 

and Hughes [2018] tested two model structural changes in GR4J aiming to 

reproduce the effects of catchment memory and vegetation cover shifts. The 

updated model was better able to capture hydrologic dynamics associated 

with groundwater declines and clearing followed by revegetation [Grigg and 

Hughes, 2018].
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Another recommendation that has been put forward to improve model 

performance under nonstationary conditions is improving calibration methods 

to identify more widely-applicable parameters [Fowler et al., 2016]. We put 

forward an additional idea: using the available observations such that 

climatically similar calibration data is preferenced to simulate a projected 

future climate state with particular hydrologic statistics. Given that optimal 

model calibration parameters have been shown to correlate with climatic 

conditions [Merz et al., 2011], we hypothesize that targeted use of the available 

data for model calibration could improve performance under climatic 

conditions outside the existing record. To this end, we use data from 164 

Australian catchments to conduct an exploratory analysis of a model weighting 

strategy that preferences data from climatically similar calibration subsets. We 

also test an updated model structure where parameters are defined 

dynamically based on climate conditions at a given time. The ultimate goal of 

this study was to test whether model robustness in a future climate could be 

targeted through improved calibration strategies with available current climate 

data.

2 Data and Methods
The initial steps for this study involved identifying catchments and obtaining 

data; selecting a hydrologic model; calculating a statistic to describe climate 

conditions, and calibrating the model over climatically distinct subsets of the 
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observations. The Australian Bureau of Meteorology (BoM) provides high 

quality streamflow data at 222 Hydrologic Reference Stations (HRS) around 

Australia. We identified catchments with data available over 40 water years 

commencing in 1974 and whose catchment areas were between 25 km2 and 

10,000 km2, totaling 164 catchments (Figure 1). Note that the definition of the 

water year (by month) is provided by the BoM for each HRS, so the data period 

begins in different months for catchments in different regions. Rainfall and 

temperature data were obtained from the Australian Water Availability Project 

daily grids at 0.05 degree resolution [Raupach et al., 2009; Raupach et al., 2012]. 

Potential evaporation (PET) was estimated using the McGuinness Bordne 

method [McGuinness and Bordne, 1972] in the R package Evapotranspiration [Guo 

et al., 2016], which requires only temperature data as an input and has been 

identified as a suitable PET formulation for conceptual hydrologic modeling 

[Oudin et al., 2005].

The streamflow, rainfall and PET data were used to calibrate the conceptual 

hydrologic model GR4J [Perrin et al., 2003] for each catchment. GR4J is 

parsimonious, appropriate for a range of climate conditions [Anshuman et al.,  

2018; Perrin et al., 2003] and commonly used in Australia [Grigg and Hughes, 2018; 

Guo et al., 2017; Humphrey et al., 2016; Stephens et al., 2018; Zhou et al., 2015]. It 

contains a production store (or soil moisture accounting store, controlled by 
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parameter X1), a non-linear routing store (controlled by parameter X3) and an 

inter-catchment water exchange allowance (controlled by parameter X2). The 

fourth parameter (X4) controls the time bases of two unit hydrographs. Of the 

water that either bypasses or percolates through the production store, 90% is 

routed through the first unit hydrograph (with time base X4) and into the 

routing store, where it contributes to the routed flow component. The 

remaining 10% is routed through the second unit hydrograph (with time base 

2X4) and contributes to the direct flow component. Further detail on the model 

components and equations is provided by Perrin et al. [2003].

The experiments conducted in this study involved calibrating models over 

climatically distinctive subsets of the available observations. In order to specify 

calibration subsets, it was necessary to select an appropriate climate indicator. 

The Reconnaissance Drought Index (RDI) [Tsakiris and Vangelis, 2005] was chosen 

because it considers both precipitation and PET, and it has been shown that 

this will become increasingly important for classifying climate states in a 

warming world [Zarch et al., 2015]. Calculated on a monthly basis, the RDI is 

based on the ratio between precipitation and potential evaporation summed 

for the months of the water year so far (i.e. the calculation resets at the 

beginning of a new water year). It can be calculated over past periods using 

observations, or over future climate series by inputting data produced through 
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perturbation methods or downscaling of General Circulation Model results 

[Maraun et al., 2010]. The RDI is defined as:

 (1)1,

1

j k
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j k
ijj
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
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Where RDIi,k is the RDI for the kth month of the ith water year. Pij and PETij are 

the total monthly rainfall and potential evaporation for the jth month of the ith 

year. Normalized RDI (RDIn) is usually calculated with reference to the average 

conditions for each month in order to identify drought conditions [Tsakiris and 

Vangelis, 2005], but for this study it was necessary to have a consistent measure 

of catchment wetness across time. It would not be suitable to have different 

RDIn values for equivalent catchment wetness depending on time of year. 

Therefore, RDI was normalized as follows:

 (2)
,

,  1
( )

i k
i k
n

RDIRDI
mean RDI

 

In Equation (2), each value is normalized based on the overall mean RDI for the 

catchment rather than the mean RDI calculated for the kth month, which is 

standard. The value of RDIn increases with climatic wetness, with negative 

values indicating dry conditions and positive values indicating wet conditions.

For each catchment, subsets for model calibration were selected from the first 

35 water years of observations (note the last five years were kept aside for use 

as unseen testing data). A monthly RDIn series was calculated and the periods 
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with the lowest and highest mean RDIn, starting at the beginning of any month, 

were selected as the driest (dry1) and wettest (wet1) subsets. The second and 

third driest / wettest subsets were then identified as well (dry2, wet2, dry3 and 

wet3) ensuring there was no overlap (Figure 2a). This was repeated for subset 

periods of different lengths (discussed in detail in Section 0) to explore the 

trade-off between subset length and climate specificity. Shorter subsets allow 

for more climatic variation between periods (i.e. the driest period over one 

year will be more extreme than the driest period over two years). For longer 

subsets there may not be sufficient distinction between different climatic 

states. However, a sufficient amount of information is necessary to properly 

identify hydrologic parameters and ensure the catchment response is modeled 

realistically [Perrin et al., 2007; Sorooshian et al., 1983]. For this experiment, period 

lengths from 1 year to five years were tested.

A limitation to this approach is that the conditions of preceding water years 

are not considered when defining subsets. In some catchments, soil moisture 

and groundwater stores can impact runoff behavior over multi-year periods 

[Saft et al., 2015]. However, given the large number and wide variety of 

catchments considered in this study, it was not feasible to define a universal 

period over which long-term antecedent conditions should be taken into 

account. Therefore, we do not account for conditions prior to the water year in 
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which each subset begins, and this is a source of uncertainty for the methods 

we examine.

Note that short gaps left between defined periods may not be long enough to 

define subsequent periods without overlapping. Gaps shorter than the period 

length are therefore excluded from the process. This means that the length of 

data required to define six independent subsets can be up to twice the 

minimum necessary length (i.e. to define six two-year periods, at least 12 and 

at most 24 years of data will be required). If the maximum length of data 

necessary is not available, the timing of wet and dry periods will determine 

whether six independent subsets can be defined. In cases where six periods 

couldn’t be defined without overlap, the catchment was excluded from the 

analysis for that length of subset (see Section 0). For this reason, two 

catchments were excluded from the four-year subset experiment and 98 

catchments were excluded from the five-year analysis.

For each catchment, the six climatically distinct subsets were used to calibrate 

six sets of GR4J parameters using the Shuffled Complex Evolution (SCE-UA) 

method [Duan et al., 1992]. Each of the six parameter sets was then used to 

simulate the full 35-year calibration period. This gave an ensemble of six series 

covering the full 35-year calibration period, each representing a possible mode 

of catchment response. Figure 2b shows an example of an ensemble, with flow 
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on a log scale so that low flows are visible. The red series are generated with 

parameters calibrated over dry subsets, while the blue series are generated 

with parameters calibrated over wet subsets. These ensembles were used in 

the model weighting procedure described in Section 0.

Conceptually, the ensemble shown in Figure 2b might align with our general 

expectations based on theoretical catchment behavior. The observations tend 

to be closer to the wet-calibrated series during periods of high flow and closer 

to the dry-calibrated series during periods of low flow. If the modeled 

ensembles follow this general pattern, it is likely that a series weighting 

technique will be effective in matching appropriate parameters with climate 

conditions.

Three experiments were conducted as part of this investigation. Starting with 

the parameter sets calibrated under wet and dry conditions for each 

catchment, an experiment was performed to investigate:

1 The general ability of hydrologic model parameters to transfer across distinct 

climate states.

A second experiment utilized the final five years of available data (kept aside 

for model testing) to explore:
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2 The potential for improved simulation under specified future climate 

conditions through preferentially applying parameters calibrated under similar 

past conditions.

The results of the first two investigations led to a third experiment where the 

four GR4J parameters were defined dynamically as a function of climate 

conditions. The updated model structure is described in Section 0. This final 

experiment investigated:

3 The potential for improved simulation through allowing the model 

parameters to vary based on climatic conditions.

Each experiment is discussed in a dedicated section (Sections 0, 0 and 0 

respectively), with an outline of the overall process shown in Figure 3. Because 

the justification and methods for each experiment are influenced by the results 

of the experiment before, discussion of the specific steps taken are outlined in 

the individual sections.

3 Parameter Transferability Between Periods
It has been shown that wet periods are generally easier to model 

hydrologically than dry periods, and that model performance degrades less 

when parameters are transferred between climatically similar periods than 

climatically contrasting periods [Vaze et al., 2010]. The concept of skillful 

parameter ‘donors’ and ‘acceptors’ was introduced by Smith et al. [2018]  in the 
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context of parameter transfer between different catchments. They found that 

some catchments acted as good donors (i.e. calibration parameters could be 

generalized to other catchments) while others acted as good acceptors (i.e. the 

catchment could be skillfully simulated with a broad range of parameter 

values). Here, we consider this concept when transferring parameters over 

time rather than space. This section describes testing undertaken with the 164 

study catchments to understand:

 The calibration performance of GR4J under dry and wet conditions for the study 

catchments

 The performance degradation when parameters from a given period are 

‘donated’ to climatically similar periods

 The performance degradation when parameters from similar periods are 

‘accepted’ by a given period

 The performance degradation when parameters from a given period are 

‘donated’ to climatically contrasting periods

 The performance degradation when parameters from contrasting periods are 

‘accepted’ by a given period

The objective function used for calibration was the widely-used Nash-Sutcliffe 

Efficiency (NSE) [Nash and Sutcliffe, 1970]. The results presented are based on 

four-year climatic periods; similar results were obtained when periods were 

defined over other timeframes. 

SPS:refid::bib21


 shows the distribution of calibration NSE values for dry and wet periods in 164 

catchments (where dry1 is the driest period, dry2 is the second driest, etc.). All 

calibrations have high median performance (NSE ~0.8) indicating that four-year 

periods are generally adequate for model calibration. However, there are 

catchments where calibration performance is poor, particularly during the dry 

periods. Many catchments in Australia (including some used in this study) are 

intermittent and there may be many zero flow days in the drier periods, which 

can reduce the information available for calibration. It seems that the higher 

information content of the wetter periods is providing an advantage for 

calibration of the more difficult catchments.

When parameters from climatically similar periods were transferred (i.e. a dry 

calibrated parameter set to another dry period and similarly for wet calibrated 

parameters), the performance of wet and dry periods contrasted more 

strongly (Figure 5a and Figure 5b). Wet periods both donated and accepted 

parameters between themselves substantially more effectively than dry 

periods. Interestingly, of the three dry periods, the most extreme (dry1) was 

the best donor but the worst acceptor. This indicates that the transferability of 

parameters is more dependent on the nature of the period being modeled 

than the calibration period. Specifically, the driest period (hence most difficult 

to simulate) experienced the most performance degradation when calibration 



parameters from other periods were applied, but its own calibration 

parameters still appear to have been reasonably specified (otherwise dry1 

would have been a very poor donor).

The same finding was reinforced when parameters were transferred between 

climatically contrasting periods (i.e. a dry calibrated parameter set to a wet 

period and a wet calibrated parameter set to a dry period) (Figure 5c and 

Figure 5d). Wet periods, being easy to model and with well-specified 

parameters, appeared to be poor donors because they were donating 

parameters to dry periods, being difficult to model. Despite the fact that dry 

period parameters may not be as well specified (evidenced by lower 

calibration NSEs, Figure 1), the dry parameters appeared to be better donors 

because the target wet periods were easier to model accurately and hence 

good acceptors (Figure 5c). The key finding here is that the conditions of the 

accepting period are more important than the conditions of the donating 

period. Of the three dry subsets (with dry1 being the driest and dry3 the least 

dry), more extreme dry periods experienced more performance degradation 

when wet-period calibration parameters were applied (Figure 5d). This is in 

line with previous findings [Coron et al., 2012; Vaze et al., 2010] and suggests that 

areas where climate change leads to drier conditions could be particularly 

difficult to model accurately using only historical data for model set-up.
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For both the dry and wet periods, parameter acceptance was better when the 

donor period was climatically similar than when it was contrasting (Figure 5b 

and Figure 5d). This is both intuitive and in line with previous findings [Vaze et 

al., 2010]. It also indicates that, when modeling a future period under specified 

climatic conditions, parameters calibrated during similar past climatic periods 

will be most informative. This observation underpins the model weighting 

scheme that aims to improve simulation of an unseen validation period, 

detailed in the following section.

4 Weighting Modeled Series With Wet/Dry Calibration Parameters
Given that parameters can be most readily transferred between climatically 

similar periods (Section 0), it follows that simulation of an unseen future 

period could be best represented by parameters calibrated to a similar past 

period. This suggests that, to simulate drier future conditions (for example), it 

may be advantageous to only use dry historical periods in model calibration. 

However, this would require discarding much of the recorded data that could 

still contain relevant information about catchment function. In this section, we 

propose a model weighting scheme that uses both wet and dry calibration 

parameters to generate a number of series representing possible catchment 

behavior (as described in Section 0). The series are then weighted based on 

climatic similarity to a target simulation period. The subsections describing this 

process are structured as follows:
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 Section 4.1 describes a testing framework that was implemented to inform decisions 

that could impact the model weighting strategy. Here, the length of distinct subsets 

for GR4J calibration is examined, but the same framework could be used to aid other 

decisions (e.g. choice of climate indicator).

 Section 4.2. describes the method for applying weights to the ensemble of series. 

This includes a strategy for defining how strongly the calibration climate similarity to 

the target period should impact series weights.

 Section 4.3. presents the application of the weighting strategy over an unseen 

validation period and reports on its performance.

4.1 Calibration testing framework

One important trade-off that needs to be considered in developing a model 

weighting method is the length of climatically distinct subsets for calibration. 

Naturally, shorter calibration subsets will show greater distinction between 

wet and dry conditions. However, if the subsets are too short, parameters may 

be poorly defined and therefore less useful for simulating catchment behavior 

outside the calibration period. It was necessary to develop a framework that 

could predict the likely performance of the method with calibration subsets of 

different lengths, without referring to the final validation data (which needs to 

remain unseen for testing the weighting strategy). This framework is described 

below for an example in which the subsets are one year long:

1. Calibrate the model over the three driest (dry1, dry2, dry3) and three wettest (wet1, 

wet2, wet3) one-year subsets of the calibration period (water years 1974-2009).



2. Produce six modeled series that cover the full calibration period using each of the six 

parameter sets obtained in (1).

3. For each series, calculate the difference between the modeled flows and the 

observations for every day of the calibration period, then take the one-year moving 

average of this difference. This gives a measure of how different the series is from 

the observations at a one-year timescale, calculated starting at the first day, second 

day, etc. through to one year before the final day. The inverse of this measure 

quantifies similarity of the series to the observations (i.e. how well the series 

matches the observations for every possible one-year period). The similarity values 

are then normalized so that their sum is one.

4. For every possible one-year period (i.e. starting at the first day, second day, etc. 

through to one year before the final day), multiply the series by the similarity value 

for that period calculated in (3). This gives a theoretical ‘optimized weighting’ based 

on true distance from the observed flow.

5. Calculate the correlation between the optimized weights and the average RDIn over 

the corresponding one-year period. If there is a strong correlation between the true 

climate conditions and the weights assigned (i.e. during a dry one-year period the 

series calibrated over dry subsets are favored), this indicates that the climatic 

conditions are a good predictor of appropriate model parameters and the model 

weighting scheme is likely to perform well under validation.

6. Repeat this for all 164 catchments and calculate the average correlations. Negative 

correlations are expected between the dry series weights and RDIn, and positive 

correlations are expected between the wet series weights and RDIn.
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This framework was applied to test the prediction strength of RDIn in 

determining appropriate model parameters for one, two, three, four and five 

year subsets. In each case, six subsets were defined (hence six different series 

produced in step (2)) and the similarity was calculated at a timescale matching 

the subset length (e.g. a two-year moving average was used in step (3)  when 

the subsets were two years long). The correlations obtained are shown in 

Table 1, averaged over all 164 catchments. Note that the issue of defining non-

overlapping subsets (discussed in Section 2) affected some catchments in the 

four and five-year subset tests, so some catchments were discarded. This is 

based on the timing of the three wettest and three driest periods only and not 

on other climatic features, so the specific catchments removed should be 

somewhat random and not lead to overall bias in the results. This was 

confirmed by rerunning with only catchments for which six independent 

subsets could be defined in every case (not shown here), and this gave similar 

overall results. Based on the average correlations between climate conditions 

and optimized weights (see step 5), it seems that the best calibration subsets 

were defined over four-year periods.

4.2 Defining the weighting algorithm

The weighting strategy should preference information from climatically similar 

calibration periods without entirely discarding information from climatically 
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different calibration periods. Equation (3)  was developed to define calibration 

period (cal.per) similarity (sim) to the target period (tar.per):

 (3)      

ω

1.  
.  .n n

sim cal per
RDI cal per RDI tar per

 
 

  

The weighting parameter (ω) determines how strongly the difference between 

calibration subset RDIn and the target period RDIn influences a series’ weight. If 

ω equals zero, the series are simply averaged. A relatively large value of ω 

indicates heavy weighting on the most climatically similar calibration periods, 

with the remaining series having limited influence. Positive but smaller values 

of ω represent a preference for series calibrated under more similar 

conditions, but with substantial information also extracted from series 

calibrated under contrasting conditions. We aim to define a generalized value 

of ω across all study catchments in order to understand the typical importance 

of climate in determining model parameters. This strategy avoids excessive 

dependence on the particular conditions under which ω is calibrated, since a 

large number of sites will represent a variety of conditions without requiring 

lengthy data records. Additionally, if a widely applicable value of ω can be 

determined, the strategy can be applied to new catchments without 

recalibration.
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As noted in Section 0, the last five years of data were kept aside from the initial 

selection of calibration subsets (see Error! Reference source not found.a). The 

first two water years of this unseen data starting in 2009 (herein referred to as 

the ‘ω calibration period’) were used to calibrate ω, with the last two water 

years saved for validation. The third water year was discarded to minimize 

dependence between the two two-year periods. Two stations (G0050115 and 

G0060005) recorded zero flow over one of these two-year periods so they 

were removed from both this step and the application step described in 

Section 0. Calibration of ω was undertaken through the following steps:

1 Select a ω value based on the SCE-UA algorithm (initially random).

2. For the first catchment, calculate the similarity between each calibration 

subset RDIn and the ω calibration period RDIn (the target in this case) as per 

Equation (3). The greater the value of ω, the more strongly RDIn difference will 

influence this measure.

3. Standardize the similarity measures to sum to one (as in a weighted average 

procedure), giving fractional weights for each series based on climatic 

similarity to the ω calibration period. Equation (4)  shows an example 

calculation for the series calibrated over the driest subset, dry1.

 (4)   
           

1
1  

1 2 3 1 2 3
sim dry

weight dry
sim dry sim dry sim dry sim wet sim wet sim wet


    
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4. Take the six series modelled over the ω calibration period (each with 

parameters from one of the calibration subsets) and multiply the by the 

calculated weight, then sum them to give an overall weighted prediction.

5. Compare the weighted prediction with the observed flow to calculate C2M, a 

bounded formulation that has been proposed as an alternative to NSE for 

averaging results across large samples of catchments, described by Mathevet et 

al. [2006]  and reproduced in Equation (5).

 (5)2 2  M
NSEC

NSE




6 Repeat steps (2) to (6) for all catchments and calculate the average C2M.

These steps were repeated using the SCE-UA method until the ω value that 

optimized average C2M was identified, with ω allowed to vary between -10 and 

10. Note that C2M was used as the objective function in this process instead of 

NSE to keep the possible range between -1 and 1, preventing poorly 

performing catchments from having a disproportionate impact on the average 

calculated in step 6 and hence the calibrated value for ω. Aggregated 

performance results (e.g. mean performance across all catchments) are herein 

reported in C2M for the same reason. Time series calibrations (Sections 0, 0 and 

0) were undertaken using the more widely-applied NSE criterion, but since Commented [A25]:  This citaion is not found in Section 
Title.Please check if it is citation or not and proceed further
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there is a monotonic relationship between NSE and C2M, use of either function 

would give the same parameter sets in these cases.

The following parameters were obtained for the five GR4J calibration subset 

lengths (Error! Reference source not found.):

In all five cases, values above zero but below 10 (the user specified upper limit 

for calibration) were selected, indicating that the weighting scheme tends to 

preference series calibrated under similar climatic conditions, but also extracts 

information from series representing contrasting conditions. For the four-year 

calibration subsets, the value of ω was particularly small (0.07), which means 

that all six series tend to be weighted relatively evenly (for most catchments, 

proportional weightings tended to vary between about 0.14 and 0.20 for the 

six different series). In contrast, the series associated with shorter calibration 

subsets gave optimal performance with heavier weighting on more similar 

conditions. This could indicate that calibration under more extreme conditions 

(i.e. the driest or wettest single year in the entire record) does not provide 

much useful information for the model when simulating more average 

conditions.

The exercise was repeated excluding the catchments for which independent 

four and five-year calibration subsets could not be defined (so all five tests 

used the same subset of catchments). In this test, larger values of ω were 



obtained in every case (Error! Reference source not found.). This highlights 

that the ω parameter is dependent on the combination of catchments used. 

Therefore, ω calibration was repeated using different catchment groupings, 

based on four-year subsets (since these performed best in the testing 

framework described in Section 0). The groupings were defined based on 

hydrological, physical and climatic characteristics of the watersheds, with 

thresholds set such that the number of catchments in each group was fairly 

consistent.

The calibrated values for ω are shown in Error! Reference source not found.. 

Consistent trends in ω across a grouping are highlighted in shading (e.g. 

consistently increasing ω relative to the proportion of rainy days), where the 

largest ω value is shown in the darkest shade. While there is potential for 

overlap in groups (for example, catchments with a high proportion of zero flow 

days may also have a small area), criteria sets that could be expected to give 

overlaps were identified and checked. If there were less than 20 catchments 

that were different between the two groups, one of the criteria sets was 

discarded. As such, the catchment groupings shown in Error! Reference source 

not found. are all distinctly different.

For some catchment groupings, no discernible pattern exists in the calibrated 

values of ω. However, in other cases there does seem to be a trend. The value 
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for ω tended to increase with decreasing dryness (indicated by zero rain days) 

and increasing latitude. This suggests that wet catchments with strong rainfall 

seasonality (as in the more northern parts of Australia) may benefit particularly 

from the use of the model weighting technique, since the ω parameter 

indicates fairly strong preference for series calculated under similar conditions 

to the ω calibration period. It is also interesting that the value for ω tended to 

increase with increasing flow variance (relative to average flow). This suggests 

that catchments with more variable flow regimes have higher parameter 

dependence on climate, indicating that a single set of parameters may not 

appropriately capture the different catchment states. Negative parameter 

values indicate that the group of catchments is not benefiting from the 

weighting procedure as intended – rather, the best results are obtained from 

series calibrated under the conditions that deviate most from the ω calibration 

period (i.e. in the extreme, an average period would be modeled by taking the 

mean of the series associated with the driest and wettest calibration periods). 

A preference for negative ω values in certain catchments was associated with 

three main patterns:

1. All six models of the catchment performed very poorly in the ω calibration period. In 

these cases, it was not meaningful to weight the series and unexpected values of ω 

often optimized results.



2. There was no meaningful relationship between calibration subset conditions and 

modeled flow behavior. For example, dry-calibrated series sometimes matched high 

flows more accurately than wet-calibrated series. This was fairly common in the 

results and suggests that the GR4J models may not be reflecting catchment response 

realistically.

3. One series gave very bad results. The ω calibration algorithm would tend to 

‘distance’ this series by choosing a value of ω that minimized its contribution. If the 

series had a similar calibration RDIn to the ω calibration period, this would be a large 

negative value of ω.

The overall efficacy of the weighting method for the full set of catchments, as 

well as groupings based on different properties, is investigated in Section 0.

4.3 Application of the weighting strategy

For each calibration time period and in each catchment, the six series (Section 

0) were weighted and aggregated over the test period (two water years 

starting in 2012). The steps are outlined as follows:

1. Take the appropriate ω value (depending on calibration subset length) from Error! 

Reference source not found..

2. For the first catchment, calculate RDIn similarity between each calibration subset and 

the unseen test period (Equation (3)).

3. Standardize similarity values to sum to one, giving weights for each associated series 

(Equation (4)).

Commented [A27]:  This citaion is not found in Section 
Title.Please check if it is citation or not and proceed further

Commented [A28]:  This citaion is not found in Section 
Title.Please check if it is citation or not and proceed further

SPS:refid::e3
SPS:refid::e4


4. Multiply the test-period modelled series associated with each calibration subset by 

the appropriate weight and sum to give a weighted prediction.

The results of the weighting strategy application were benchmarked against a 

traditional calibration approach, where data over the full calibration period (35 

years) was used to calibrate one set of parameters under the assumption of 

stationarity. The performance indicators were:

 The mean difference in C2M between the weighting strategy and the traditional 

calibration approach.

 The median difference in C2M between the weighting strategy and the traditional 

calibration approach.

 The percentage of catchments for which the weighting strategy improved prediction.

Based on all three indicators, the best performance was achieved with four-

year calibration subsets (Error! Reference source not found.). This was 

predicted by the testing framework described in Section 0, indicating that the 

framework is appropriate for assessing decisions that influence the weighting 

strategy.

The results presented here suggest that extracting past information in a 

targeted way based on climatic conditions may improve simulation of a 

climatically distinct future period. When the optimum length of calibration 

subset (four years) was used in the weighting strategy, predictions improved in 

66% of catchments, although the mean and median improvements in C2M were 
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fairly small. It is possible that the strategy would provide more benefit in a 

climate change assessment, where the testing period would likely be more 

different to the average past conditions, since model weighting is unlikely to 

provide significant benefit if the testing period is not climatically distinct from 

the full calibration period. The four-year-subset results for catchments where 

the test period conditions deviated from the average are shown in Error! 

Reference source not found.. For wet validation periods (RDIn > 0.1), the 

weighting scheme improved results for 74% of catchments, compared to 66% 

over the full set of catchments, and the median improvement was also higher 

(Error! Reference source not found.). For dry validation periods (RDIn < -0.1), 

the mean and median NSE improvements were both higher than for the full set 

of catchments. This indicates that the scheme tends to give the greatest 

improvements under dry conditions, but that improvements are more 

consistent under wet conditions. As expected, model weighting appears to be 

more advantageous under conditions that deviate notably from the average 

climate at a catchment.

The process was repeated for the different catchment groupings outlined in 

Section Error! Reference source not found., using the ω parameter values 

given in Error! Reference source not found.. The model test results are shown 

in Error! Reference source not found.. Consistent trends in performance 



across a criterion (i.e. all three indicators moving in the same direction) are 

highlighted in shading, where the greatest improvement is shown in the 

darkest shade.

Unexpectedly, the results indicate that the calibrated value of ω does not 

necessarily predict the validation performance of the model weighting strategy 

under unseen conditions. In the cases of both flow variance and latitude, the 

groupings with negative and very small ω values (respectively) in Error! 

Reference source not found. had the best validation performance. 

Performance improved especially strongly as runoff ratio decreased, perhaps 

indicating that dry, intermittent catchments (generally considered difficult to 

model) may benefit particularly from model weighting. However, overall it 

seems that the strategy is highly dependent on the specific set of catchments 

used, and it is not necessarily straightforward to predict how ω is likely to vary 

under different conditions. It follows that a more flexible approach where 

parameter changes are specifically calibrated for each catchment might be 

worth investigating. This finding provided the motivation for the work 

described in Section 0.

5 Climate-Dependent Dynamic Model Parameters
The results discussed in Section 0, particularly those shown in Error! Reference 

source not found. and Error! Reference source not found., demonstrate that it 

is not straightforward to generalize the weighting strategy across different 
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catchments. It is unlikely that a universal weighting strategy could be defined 

such that all catchments experienced improved performance consistently 

under future conditions. Therefore, for the third experiment, a more flexible 

approach was adopted in which all four GR4J parameters were allowed to vary 

based on RDIn. This dynamic version of the model was calibrated individually 

for each catchment, meaning that model parameters’ dependence on climate 

did not need to be generalized across multiple catchments with different 

sensitivities.

In the dynamic version of GR4J, each of the four standard GR4J parameters (X1, 

X2, X3 and X4) is defined as a 3-parameter sigmoidal function. This form was 

selected because it is substantially more flexible than a simple linear function, 

but still requires that the parameter change somewhat consistently with RDIn 

(i.e. the value cannot increase with RDIn up to a certain point, then decrease). 

This increases the likelihood of parameter shifts being physically interpretable 

and decreases the extent of equifinality expected in the flexible model. The 

functions defining the four GR4J parameters are as follows (Equation (6)):

 (6)

1

1

2

2

3

3

4

4

1 0_1 1_1

2 0_ 2 1_ 2

3 0_ 3 1_ 3
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RDIn is defined on a monthly basis, so the parameters vary at a monthly 

timestep based on the overall conditions of that month. The sigmoidal function 

parameters (e.g. t0_1, t1_1 and a1 to define X1) are calibrated to give a function 

specifying the four original parameters, meaning that the number of 

calibration parameters is 12 for the dynamic model. Naturally, this leads to a 

substantial reduction in calibration efficiency, which could only be justified if 

the method significantly outperformed both traditional calibration and the 

model weighting strategy. The original static model is one possible realization 

of the dynamic model (i.e. if t1_1, t1_2, t1_3 and t1_4 all calibrate to zero), so the 

option of one or more parameters remaining static is inherently available if this 

provides the best calibration.

Because catchment behavior under very wet or dry climate conditions could be 

more extreme than overall catchment behavior, we decided to add flexibility 

by allowing greater variation in parameter values than is generally applied for 

GR4J (Error! Reference source not found.). For comparison, the standard four-

parameter version of GR4J was also run with the expanded parameter ranges.

The models were calibrated based on NSE over the same 35 year period (water 

years 1974-2009) used in the model weighting strategy calibration step. Again, 

the final five water years were kept aside for validation. In this case, no second 

calibration period was required (as in ω calibration for the experiment 



described in Section 0), so the full five year period was used for validation. The 

12 calibrated parameters were used to define the four parameters in the 

standard version of GR4J dynamically with respect to RDIn. An example of how 

the parameters may vary with climate is shown in Error! Reference source not 

found..

The static and dynamic models were compared over the calibration and 

validation periods. As would be expected from a more flexible model, the 

dynamic model outperformed the static model over the calibration period in 

91% of cases, indicating that the dynamic calibration was mostly successful. 

Theoretically, the dynamic model should always give equal or better 

calibrations than the static model, since the static model is nested within the 

dynamic model. In cases where the dynamic calibration NSE was lower, it 

indicates that the calibration algorithm located a local peak in the objective 

function rather than the true optimum, but this is difficult to avoid entirely for 

a model with a large number of parameters. The dynamic model also 

outperformed the static model over the validation period in 59% of 

catchments. Results aggregated across catchments are reported in terms of 

C2M, as discussed in Section Error! Reference source not found., because this 

avoids excessive influence from individual catchments with very poor 

performance. The mean and median C2M values were higher for the dynamic 
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model in both the calibration and validation periods (Error! Reference source 

not found.). Interestingly, the variance in validation performance was 

substantially smaller for the dynamic model, indicating that the performance 

was more consistent across the 164 catchments. This suggests that the 

dynamic model may be particularly useful when simulating catchments that 

the static model represents poorly.

Further investigation revealed that the dynamic model offered far greater 

performance improvements for dry validation periods. Most of the catchments 

tested were relatively wet over the water years from 2009 to 2014, but 29 

catchments had average RDIn values less than zero for the validation period. 

For these catchments, the dynamic model outperformed the static model in 

76% of cases (versus 56% of the models where average validation period RDIn 

was greater than zero). It is well established that existing conceptual models 

achieve better validation results over wet periods than dry periods [Vaze et al.,  

2010], so the dynamic model may not offer a significant advantage during wet 

periods. When only the 29 simulations with dry validation periods were 

considered (Error! Reference source not found.), the validation performance 

improvement was more substantial than for the full suite of models (Error! 

Reference source not found.).
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These results suggest that there may be promise in updating existing 

conceptual models by using climate-dependent parameter values, especially 

for drier future climate scenarios. There was no clear difference in 

performance between catchments with different areas or latitudes. Intuitively, 

it seems that the utility of climate-varying model parameters should depend 

on how they relate to physical processes in the catchment. This can be difficult 

to ascertain in conceptual models, but different conceptual models inherently 

account for physical processes in widely varying ways. Therefore, future work 

should test the potential of climate-varying parameters in other conceptual 

models.

In this study, we found that dynamic calibration resulted in widely varying 

effects in different catchments. For some catchments, the optimal values for 

three parameters remained static with climate and just one parameter varied 

notably. This suggests that, for some catchments, it may be possible to reduce 

the total number of calibration parameters by representing three GR4J 

parameters as static and one as dynamic. However, for other catchments 

several parameters varied together to give the optimal dynamic model. This is 

evident in the results for station 304497 shown in Error! Reference source not 

found., where X1 remains stable with climatic conditions but X2, X3 and X4 all 

vary substantially. There were some patterns identified across catchments (e.g. 



X2 tended to increase with increasing RDIn), but these were not sufficiently 

consistent to inform potential model structural changes.

While the results presented here show potential for model improvement 

through accounting for parameter dependence on climate, they certainly don’t 

solve the problem of model nonstationarity entirely. Efficacy varied across 

catchments, and poor performance often seemed to be associated with 

models where the parameters did not seem to represent catchment behavior 

as expected (for example, when wet-period calibration parameters performed 

best under dry testing conditions). This implies that some minimum level of 

reasonable process representation may be required to reliably relate model 

parameters to climate conditions and ultimately to improve model 

performance under nonstationarity. Deb et al. [2019]  recently showed that 

better representing surface water / ground water interactions improved 

hydrologic simulation under change. These sorts of processes are notoriously 

difficult to model in some highly intermittent Australian catchments with 

complex spatially and temporally varying runoff mechanisms [Dean et al., 2016], 

so it is likely to be some time before hydrologists can rely entirely on physical 

process representation rather than calibrated conceptual parameters. 

However, lumped conceptual models like GR4J make no attempt to represent 
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any of these physical complexities and may not be suitable for continued use in 

a changing climate.

5 Conclusion
Our results, along with much prior work, indicate that transferring conceptual 

hydrologic models to unseen future climate states will result in performance 

degradation. The experiments presented in this paper show that increased 

reliability may be achievable through preferential use of climatically similar 

calibration data, while still extracting some information from contrasting 

periods as well. However, there is high variability in performance 

improvements between catchments. In many cases, this seems to relate to the 

conceptual model failing to reflect realistic catchment behavior changes under 

different climate states. It also seems that the importance of climate 

conditions in determining model parameters cannot be easily generalized 

across numerous catchments. An alternative approach, defining climate-

dependent dynamic parameters, was also tested. The dynamic model gave 

improved validation performance, especially under dry conditions. In 

combination, these experiments show that the performance of conceptual 

models under altered climate conditions can be improved through both 

targeted use of calibration data and model structural adjustments. Since 

previous studies have demonstrated parameter dependence on climate for a 

wide range of hydrologic models [Guo et al., 2018; Merz et al., 2011; Vaze et al.,  
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2010], it is likely that models other than GR4J could also see some prediction 

improvement through application of the methods outlined here. However, 

these sorts of strategies are unlikely to offer a ‘silver bullet’ that reliably 

improves model predictions in all catchments, and so it is important to 

continue improving representation of physical dynamics that contribute to 

nonstationarity in conceptual hydrologic models.
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Figure 1. Streamflow gauge locations
Figure 2. Demonstration of concept: (a) targeted calibration to produce parameters 
representing catchment behavior under different climate conditions and (b) 
ensemble representing possible catchment flow series (observed flow in black).
Figure 3. Experiments and the key questions they aim to address
Figure 4. Calibration performance of models representing 164 catchments under 
different climatic conditions. Note the number of outliers presented above the x-axis 
for each case.
Figure 5. Mean reduction in NSE (compared to calibration NSE) when (a) parameters 
from the given period are donated to the two other climatically similar periods, (b) 
the given period accepts parameters from the two other climatically similar periods, 
(c) parameters from the given period are donated to the three climatically different 
periods and (d) the given period accepts parameters from the three climatically 
different periods. Note the number of outliers not shown due to plot limits 
presented above the x-axis for each case.
Figure 6. Example of dynamically defined GR4J parameters (station 304497)

Table 1. Correlations (indicating predictive strength) between climate indicator (RDIn) 
and optimal weights

*Two catchments 
excluded here due 
to timing of wet/dry 
periods 
necessitating subset 
overlap

Subset 
length 
(years)

Mean dry series 
weight correlation 
with RDIn

Mean wet series 
weight correlation 
with RDIn

1 -0.25 0.33
2 -0.28 0.40
3 -0.35 0.46
4* -0.38 0.48
5** -0.35 0.43
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** 98 catchments excluded here due to timing of wet/dry periods 
necessitating subset overlap

Table 2. Optimized values of ω based on GR4J calibration subsets with different time 
periods

*Two catchments excluded here 
due to timing of wet/dry periods 
necessitating subset overlap for 
4y subsets – note that the 3y 
subset length case was tested 
with these two catchments 
removed and results did not 

change notably, indicating that their impact is minimal
**97 catchments excluded due to timing of wet/dry periods necessitating 
subset overlap for 5y (note that the two catchments removed in the 4y 
case were also removed here). One station (G0050115) for which 
independent 5y subsets could not be defined was already removed in a 
previous step due to zero flow in a relevant period.

Table 3. Values for ω calibrated with catchments grouped according to climatic, 
hydrologic and physical characteristics

Subset 
length 
(years)

ω

ω calibrated 
with 
reduced 
catchments

1 0.48 0.55**
2 0.27 0.56**
3 0.26 0.43**
4 *0.07 0.41**
5 n/a 0.46**

Catchment criteria
Number of 
catchments in 
group

ω

Zero flow days > 8% 51 0.09
1% < Zero flow days < 8% 45 0.29
Zero flow days < 1% 64 0.02
Zero rain days > 45% 55 -0.07
35% < Zero rain days < 45% 48 -0.06
Zero rain days < 35% 57 0.17
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Table 4. Performance of the weighting strategy compared to traditional calibration 
for different calibration subset lengths

*Two catchments excluded here due to timing of wet/dry periods 
necessitating subset overlap for 4y subsets
**97 catchments excluded due to timing of wet/dry periods necessitating 
subset overlap for 5y

Table 5. Validation performance under non-average climate conditions

Runoff ratio > 0.3 48 -0.09
0.15 < Runoff ratio < 0.3 55 0.23
Runoff ratio < 0.15 57 0.17
[flow variance]/[average flow] > 
4500 50 0.31
1000 < [flow variance]/[average 
flow] < 4500 60 0.22
[flow variance] / [average flow] < 
1000 50 -0.55
Area > 600 km2 49 0.44
200 km2 < Area < 600 km2 55 0.23
Area < 200km2 56 -0.18
Latitude > -25° 35 0.29
-30o < Latitude < -25° 27 0.20
Latitude < -30° 98 0.05

Subset length 
(years)

Mean C2M 
improvement

Median C2M 
improvement

Catchments that 
improved (%)

1 0.040 0.003 51.9
2 0.055 0.015 54.3
3 0.051 0.022 60.5
4* 0.062 0.027 66.3
5** 0.021 0.021 56.9

Conditions
Number of 
catchments Mean C2M 

improvement
Median C2M 
improvement

Catchments 
that improved 
(%)

Wet (RDIn > 46 0.042 0.045 73.9
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Table 6. Validation performance with catchments grouped according to climatic, 
hydrologic and physical characteristics

Table 7. Typical [Team City, 2015] and expanded parameter ranges for GR4J 
calibration

0.1)
Dry (RDIn < -
0.1)

45 0.076 0.046 66.7

Catchment criteria Mean NSE 
improvement

Median NSE 
improvement

Catchments 
that 
improved 
(%)

Zero flow days > 8% 0.086 0.051 66.7
1% < Zero flow days < 8% 0.065 0.033 62.2
Zero flow days < 1% 0.044 0.015 67.2
Zero rain days > 45% 0.077 0.062 67.3
35% < Zero rain days < 45% 0.082 0.047 64.6
Zero rain days < 35% 0.024 0.015 64.9
Runoff ratio > 0.3 0.012 0.007 56.3
0.15 < Runoff ratio < 0.3 0.056 0.028 65.5
Runoff ratio < 0.15 0.108 0.074 73.7
[flow variance]/[average flow] > 
4500 0.007 0.010 56.0
1000 < [flow variance]/[average 
flow] < 4500 0.076 0.029 66.7
[flow variance] / [average flow] < 
1000 0.106 0.037 70.0
Area > 600 km2 0.032 0.017 59.2
200 km2 < Area < 600 km2 0.068 0.026 67.3
Area < 200km2 0.072 0.016 62.5
Latitude > -25° 0.012 0.013 54.3
-30o < Latitude < -25° 0.028 0.016 59.3
Latitude < -30° 0.088 0.037 72.4

GR4J 
parameter Parameter description

Typical 
calibration 
range

Expanded 
calibration 
range

Commented [A34]:  AUTHOR: Ref(s). 'Team City, 2015' is/are 
cited in the text but not provided in the reference list. Please 
provide it/them in the reference list or delete these citations from 
the text.
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Table 8. Overall static and dynamic model statistics for calibration and validation

Table 9. Static and dynamic model statistics for validation during a dry period

X1 Capacity of the production soil store 
(mm)

1 – 1500 1 – 4000

X2 Water exchange coefficient (mm) -10 – 5 -80 – 40
X3 Capacity of the routing store (mm) 1 – 500 1 – 1300

X4 Time parameter for unit 
hydrographs (days)

0.5 – 4 0.5 – 12

Statistic Static 
calibration

Dynamic 
calibration

Static 
validation

Dynamic 
validation

Validation 
performance 
difference

Mean C2M 0.602 0.634 0.496 0.524 0.028
Median 
C2M 0.605 0.631 0.548 0.555 0.007
C2M 
variance 0.018 0.014 0.062 0.040 -0.022

Statistic Static 
validation

Dynamic 
validation

Validation 
performance 
difference

Mean NSE 0.300 0.403 0.103
Median NSE 0.445 0.465 0.020
NSE variance 0.126 0.067 -0.059
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