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Abstract 

A zero-dimension hydrological model has been developed to simulate the 

discharge (Q) from watershed groundwater storage(S). The model is a modified 

version of the original model developed by Kirchner in 2009 which uses a unique 

sensitivity function,      to represent the relation between rate of flow recession and 

the instantaneous flow rate. The modified dynamic model instead uses a normalized 

sensitivity function          which provides the model the flexibility to encompass 

the hysteretic effect of initial water storage on flow during recession periods. The 

sensitivity function is normalized based on a correlation function      which 

implicitly quantifies the influence of initial storage conditions on recession flow 

dynamics. For periods of either positive or negative net recharge to groundwater the 

model applies a term similar in form to an analytical solution based on solution to the 

linearized Boussinesq equation. The combination of these two streamflow 
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components, the recession component and the net recharge response, provides the 

model with the flexibility to realistically mimic the hysteresis in the Q vs. S relations 

for a watershed. The model is applied to the Sagehen Creek watershed, a hilly 

watershed located in the Sierra Mountains of California. The results show that the 

modified model has an improved performance to simulate the discharge dynamic 

encompassing a wide range of water storage (degree of wetness) representing an 

almost ten-fold variation in annual streamflow.  

Keywords 

Storage - discharge relationship; streamflow recession; zero-dimension dynamic 

model; subsurface flow 

1. Introduction 

. Recession flow analysis is a robust method to reveal possible Q vs. S 

relationships (Smakhtin, 2001; Tallaksen, 1995; Troch et al., 2013). One well-known 

recession flow analysis method for obtaining this relationship from streamflow data, 

first proposed by Brutsaert and Nieber (1977), is generally expressed as: 

                                            (1) 

where K and   are two parameters obtained from a recession flow analysis. Coupled 

with a water balance equation,  

                                            (2) 

where R is recharge to and ET is evapotranspiration/water extraction from watershed 

subsurface storage, equation (1) has been widely used in the analysis of watershed 

storage and related hydrologic dynamic flux analysis.  

As identified by Ewen (1997), it is known that a unique Q vs. S relationship is 

inadequate to represent the dynamics of watershed discharge and storage. The two 

parameters in equation (1) have been found to vary significantly among recession 
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events, even within the same watershed. In attempts to overcome this issue, parallel or 

series simple models have been applied broadly in some previous recession flow 

analyses. Moore (1997) compared the performance of five model structures by 

application to the streamflow for a small forested watershed. Majone et al. (2010) 

presented a linear and nonlinear model to mimic the discharge from small Alpine 

watersheds. Bart and Hope (2014) used a parsimonious storage-discharge model 

consisting of two parallel stores to reveal the role of storage on streamflow recession. 

Rusjan and Mikoš (2015) divided streamflow into two components, a fast flow 

component and a slow flow component, and constructed the Q vs. S relationship 

separately for each. Stoelzle et al. (2015) examined the application of nine conceptual 

model structures to 25 watersheds to determine the best association with a particular 

watershed type. Shaw (2016) presented a conceptual model consisting of three 

parallel linear models and evaluated them for multiple wetting and drying periods. 

Based on the results of all these efforts it would seem that the storage-discharge 

relationship might be simulated better with a merging of multi-simple models. 

However, as suggested by Melsen et al. (2014), the merging of a number of simple 

models will tend to introduce more parameters and initial conditions to be specified a 

priori, and thus increase the uncertainty of model structure.  

 Hydrological models may be able to satisfactorily simulate observed flow 

processes just by providing “effective parameters”, even when the structure of the 

model does not correspond well with the conceptual structure of a watershed 

(Adamovic et al., 2015; Kirchner, 2006). However, such effective models will not 

generally perform well when tested outside the range of the data used for calibration 

of the effective parameters. Models that have structures compatible with the 

conceived structure of the watershed will instead be able to consistently outperform 
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these effective parameter models.  

So the question arises regarding how to identify or develop the correct 

hydrologic structure of a watershed. Sivapalan et al. (2003) suggested that observed 

time series such as streamflow have been shown to provide the information necessary 

for derivation of appropriate model structures, rather than only being used just for 

model parameter calibration for less than appropriate models. Consistent with this 

idea, Kirchner (2009) constructed the Q vs. S relationship by a sensitivity function, 

    , i.e., 

                                            (3) 

The function      has an advantage of not requiring a fixed form a priori, but rather 

it can be directly inferred from observed recession flow dynamics and thus has a 

flexible form in different watersheds, which may themselves have distinct hydrologic 

process structure. By combining the sensitivity function (3) and water balance 

equation (2), Kirchner constructed a simple model (hereinafter referred to as Kirchner 

model) for streamflow simulation. Following Kirchner, Teuling et al. (2010), Krier et 

al. (2012), Brauer et al. (2013), Melsen et al. (2014), and Adamovic et al. (2015) have 

applied the Kirchner model in a wide range of watersheds types and environments. As 

might be expected, it was also found that a unique      had a limited ability to 

simulate hydrographs for a given watershed, especially for variable wetness 

conditions. Teuling et al. (2010) concluded the examined watershed behaved as a 

simple dynamic watershed only under wet conditions and did less so under dry 

conditions. Krier et al. (2012) tested the Kirchner model in 24 watersheds and found 

model performance much better systematically at higher soil moisture levels. Brauer 

et al. (2013) applied the Kirchner model in a less humid lowland watershed and also 

found poor performance during dry summer periods. Melsen et al. (2014) concluded 
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the Kirchner model was not able to describe both the high and low flows with a single 

set of parameters after applying it to a small watershed. Adamovic et al. (2015) also 

found the Kirchner model worked especially well in wet conditions, and showed a 

poorer performance associated with dry initial conditions. These results confirmed 

that the wetness condition in a watershed has a significant influence on the watershed 

Q vs. S relationship. 

Although efforts to define and quantify the Q vs. S relationship analysis has been 

ongoing for decades, many questions persist, including whether a superior model 

structure for baseflow simulation exists (Stoelzle et al., 2015),  and whether the 

hydrologic characteristics of watersheds can really be drafted from streamflow 

recession flows (Stoelzle et al., 2013). The starting point of our current work is to 

develop a new model similar in structure to the Kirchner model in that the model 

consists of a single conceptual reservoir. The focus of this new model is that it needed 

to have the ability to account for differences in varied conditions of initial storage. 

Consistent with many other watersheds mentioned above, our recent research (Li and 

Nieber, 2016, unpublished report) into the streamflow for Sagehen Creek, located in 

the Sierra Mountains of California, has demonstrated the strong effect of initial 

storage distribution on baseflow recession. We also found a clear relationship between 

antecedent storage and the recession low flow associated with the recession event. In 

the present study, we introduce a new variable, “recession low flow” as a basis for 

modifying the Kirchner model. We do this in contrast to the approach of  

constructing a model composed of multiple series or parallel conceptual reservoirs 

(e.g., Bart and Hope, 2014; Rusjan and Mikoš, 2015; Shaw, 2016). Introducing a new 

variable to represent the whole system is an approach suggested by Ewen (1997) for 

improving the performance of hydrologic models. 



  

6 
 

Overall, there are two objectives for this paper. First to derive a model similar to 

the model of Kirchner (2009) but modified to improve the model performance for 

both wet and dry watershed conditions. Here we will refer to the model as a modified 

simple dynamic model (hereinafter referred to as MSD model). As with the Kirchner 

model, the MSD model simulates only the groundwater contribution to streamflow. 

The second objective is to test the MSD model performance by comparing model 

predictions with the groundwater component of flow derived from a 

well-parameterized model, GSFLOW, for the Sagehen Creek watershed (Markstrom 

et al., 2008).  

2. Description of the study watershed and associated data  

Sagehen Creek is located on the east side of the northern Sierra Nevada (Figure 

1). The drainage area of the watershed is approximately 29.3 km
2
. The land surface 

elevation in the watershed ranges from 1935 to 2653 m, and the average slope of 

surface is about 15.8%. Sagehen has been described as having a Mediterranean-type 

climate with cold, wet winters and warm dry summers (Manning et al., 2012). Mean 

annual temperature from 1980 to 2002 was 4℃ at an altitude of 2,545 m. Mean 

annual precipitation from 1960 to 1991 was 970 mm. Approximately 80% of 

precipitation falls as snow. Daily mean streamflow data are available for the gage 

located near the outlet of the watershed (gaging station number: 10343500). While 

most of the precipitation falls as snow, the streamflow is continuous throughout the 

year, supported by baseflow derived from rainfall and snowmelt infiltration, and 

surface runoff from snowmelt. Mean daily streamflow was approximately 0.33 m
3
/s 

during the 16-year period of record (Markstrom et al., 2008).  

Geology of the Sagehen Creek watershed consists of granodiorite bedrock 

overlain by volcanic deposits, which are overlain by till and alluvium. Although very 
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little is known regarding the depths of different geologic formations, the volcanic 

deposits are estimated to range in thickness between 50 and 300m, while alluvium is 

estimated to range in thickness between 0 and 10m (Markstrom et al., 2008). The 

Sagehen Creek watershed is entirely forested except for scattered meadows along the 

stream. The tree species present in Sagehen Creek watershed are dominated by 

conifers including lodgepole pine, Jeffrey pine, sugar pine, western white pine, white 

fir, red fir, and mountain hemlock, but there is also a significant fraction of the 

deciduous species, quaking aspen (Faïn et al., 2011). A period of 16 water years, 01 

October 1980 to 30 September 1996 was utilized in this research, because the 16 

years encompass a wide range of wetness conditions. As is shown in Figure 2, the 

annual streamflow varied between 98 mm/year（1991 water year）and 974 mm/year 

(1982 water year). The study period was separated into two groups: 8 years 

calibration period (the gray bars illustrated in Figure 2, 1980, 1981, 1985, 1988, 1989, 

1991, 1993, 1995) and 8 years validation period (the white bars illustrated in Figure 2, 

1982, 1983, 1984, 1986, 1987, 1990, 1992, 1994).  

The 16-year time period was previously evaluated as a documented example 

application of the GSFLOW model in the Sagehen Creek watershed (Markstrom et al., 

2008). The GSFLOW model is composed of a surface water model, PRMS 

(Leavesley et al., 2005) coupled with MODFLOW (Harbaugh, 2005), a groundwater 

flow model. The PRMS model simulates the terrestrial components of the hydrologic 

cycle including interception, snowmelt, infiltration, deep percolation, interflow, 

evapotranspiration, surface runoff, and streamflow routing. The model imposes a 

distributed parameter approach by defining landscape hydrologic response units based 

on local soil, vegetation, and topography conditions. The deep percolation calculated 

by PRMS is then given as recharge input to the upper grid cells of the MODFLOW 
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model. In the Markstrom et al. study the GSFLOW model was calibrated to simulate 

the observed daily streamflow given the observed meteorological data collected for 

the watershed, resulting with NSE (Nash and Sutcliffe, 1970) values of about 0.81. As 

such, the MSD model presented in this paper can be tested in detail by comparing 

with the groundwater component of flow synthesized by the GSFLOW model. 

Recession analysis was carried out based on the observed streamflow in the 

calibration period. The variable, dQ/dt (=(Qt-△ t - Qt)/△t) was calculated with 

consecutive daily flows, and plotted against the arithmetic mean ((Qt-△t+Qt)/2) of the 

corresponding flows (Brutsaert and Nieber, 1977). Recession streamflows were 

selected by the following criteria originally suggested by Kirchner (2009), Shaw and 

Riha (2012) and  Stoelzle et al.(2013). Accept only data points associated with, 1)   

positive values of dQ /dt, and 2) values of the ratio  
        

 
, less than 0.1, where AI 

is the infiltration into the soil and AET is the actual daily evapotranspiration. These 

two criteria attempt to eliminate recession data affected by groundwater recharge 

and/or direct groundwater extraction by evapotranspiration. While we could have 

used a number of different methods to derive values of AI and AET, we decided to use 

simulated values from the GSFLOW model as it was calibrated for the Sagehen Creek 

watershed for the period of our study. In addition to the above two criteria, we also 

removed the data for the first day of each recession to avoid the possible influence of 

surface runoff on recessions. As a result, 15 individual recessions with at least 

continuous 4 days length were derived from the (8-year) calibration period daily data 

series. These individual recessions were then used to derive the model structure 

presented in section 4.  

3. Simulation methods 

3.1 Recession discharge normalization 
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Employing numerical solutions of groundwater flow in a vertical slice of sloping 

aquifers Rupp and Selker (2006) and Pauritsch et al. (2015) illustrated that at large 

times during baseflow recessions the plot of        vs.   on a log-log scale, there 

exists a transition point at which the plotted line is nearly vertical and   is a 

minimum value. We have also been able to demonstrate this within the GSFLOW 

model for the Sagehen Creek watershed (Li and Nieber, 2016, unpublished report). 

Illustration of this flow behavior during recession is presented in Figures 4a and 10 to 

be discussed later. The flow at this transition point we will call 
minQ . The minimum 

discharge is hypothesized to be a function of the initial storage in the aquifer at the 

start of the recession, and here this discharge will be treated as being a characteristic 

discharge, related to the watershed static properties and the initial storage. The effect 

of the spatial distribution of storage is not taken into account because the model is not 

spatially distributed. 

Following the approach of Biswal and Marani (2014) we normalize the discharge 

in the sensitivity function, g(Q) so that the function will be sensitive to initial storage 

and thereby able to represent the range of Q vs. S relations that exist due to variations 

in antecedent storage conditions. The normalized discharge is then given by  

     
       

   
                        (4) 

where          is the variable discharge in  th recession event,    
    is the 

minimum discharge in  th recession event , and      
  is the normalized discharge 

based in the  th recession event.  

3.2 Discharge simulation with R=0 and ET=0 

Based on the watershed water balance, during a recession event when R and ET 

can be neglected in equation (2), the watershed storage variation is described by 

  

  
                                      (5) 



  

10 
 

As suggested by Kirchner (2009), the recession rate of discharge is calculated from 

equation (3) and (5) 

      
  

  

  

  
                                         (6) 

Rather than use the discharge Q within the sensitivity function g(Q), we propose to 

use the normalized discharge from equation (4) to formulate a normalized sensitivity 

function,                                         

so that equation (6) becomes  

                                                   (7) 

The sensitivity function is a function of the normalized discharge, which itself is a 

function of initial storage, making the sensitivity function related to the initial storage.  

Equation (7) can be solved by numerical integration, e.g., the Runge-Kutta 

method. To perform this solution,   
     related to the current recession event 

should be predicted a priori, and then       is calculated with equation (4). Since 

the discharge at the transition point is a function of the initial saturated thickness of an 

aquifer, and thereby related to the discharge at the start of the recession, it would 

make sense that      should be predictable from the discharge,    , at the start of 

the recession. We therefore now assume there is some function, to represent this 

relationship   

                                           (8) 

where      is some yet to be defined function of the discharge sequence leading up 

to the individual recession event.  

3.3 Discharge simulation with R ≠0 and ET ≠0 

Generally,          would be used to simulate discharge with the influence of 

R and ET, by using 

                                                ( ) 
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However, our initial application revealed that this MSD model is poor in simulating 

the hydrograph under conditions of active hydrologic fluxes (recharge R, 

evapotranspiration ET), even though we found the same model was able to simulate 

recession flows appropriately in the case of R=ET=0. This result might be expected 

because it makes sense that the recession sensitivity function should not apply to a 

rising hydrograph due to hysteresis in the Q vs. S relation. We thus expanded the 

model to improve the ability to simulate the streamflow under conditions of active 

hydrologic fluxes. We propose to perform discharge simulation during periods of 

nonzero R and ET using a simple transform for net recharge flux. The approach 

adopted was inspired by the analytical solution to the linearized Boussinesq equation 

presented by Huyck et al. (2005), which accounts for recession and recharge events. 

The resulting equation is composed of a recession component and a component 

for net recharge-discharge response, and is expressed as, 

        ′                           (10) 

where, Nm is the net recharge directly to the groundwater storage,   ′ converts the 

net recharge into a groundwater discharge response, and      is the recession flow 

influenced by past recharge events and is computed by solution to equation (7) The 

parameter  ′  will be dependent on aquifer geometry and aquifer hydraulic 

properties. 

  The net recharge, Nm should be smaller than the net infiltration to the soil, because 

of the influence of the vadose zone storage capacity. The magnitude of Nm is related to 

the storage in the aquifer; the higher the storage, the smaller is the vadose zone 

storage, and the higher the value of Nm. Also, the higher the storage, the higher the 

value of     . So Nm is further assumed to be related to Qmin,, i.e.,        . In 

the present research, the net infiltration flux (AI-AET) was calculated by the 
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GSFLOW model and is used as input to the dynamic model. As a result, we assume 

that    in equation (10) can be expressed as  

     ′′                                           (11) 

This then yields for equation (10), 

                                            (12) 

where in the present study the parameter   (equal to  ′ ′′  is obtained based 

on calibration. As mentioned above, the parameter   ′  is related to aquifer 

characteristics, while the parameter   ′′ should be related to water storage (field 

capacity) and transmission (saturated hydraulic conductivity) properties of the vadose 

zone.  

The resulting set of equations to simulate streamflow with and without net 

infiltration is presented by coupling equations (4), (7), (8) and (12). Figure 3 

illustrates a computational sequence for the simulation process as represented by the 

solution to these equations. The sequence starts with a long recession period (time 

period t0 to tj), followed by two periods (time period tj and tj+2) of positive net 

recharge, a short recession period (time period tj+2 and tj+3), and then two periods of 

negative net recharge (time period tj+3 and tj+5). For this sequence the first step 

involves the calculation of discharge recession based on equation (7) from t0 to tj a 

period with net infiltration equal to zero. Second, the increased discharge, caused by 

positive AI-AET, is calculated based on equation (12) for the periods t j to tj+1, and tj+1 

to tj+2. The recession during these two periods, both     
   

and     
   

, are calculated 

from equation (7) with appropriate initial conditions for each. Third, the discharge is 

calculated based on equation (7) from tj+2 to tj+3 during a period of net infiltration 

equal to zero. Fourth, the decreased discharge, caused by negative AI-AET, is 

calculated based on equation (12) over the periods tj+3 to tj+4 and tj+4 to tj+5. Again, 
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both     
   

and     
   

 are calculated from equation (7). Last, the discharge is 

calculated from equation (7) after tj+5 where the net infiltration is zero. Note that 

during this simulation process, before using equation (7) to calculate recession 

discharge, the     of each recession is calculated with equation (8), and then is used 

to calculate       with equation (4).  

Up to this point the MSD model requires the specification of     , the function 

         and the constant c to fully characterize the system. It will be shown in 

section 4.1 that      is determined from a regression analysis yielding three 

independent parameters, and that          requires a regression analysis yielding 

an additional three independent parameters. The total number of parameters required 

then will be found to be seven.  

Three details should be considered when implementing the simulation. One is the 

time lag in the catchment. As suggested by Kirchner (2009), the observed discharge at 

the gauge of watershed outlet should lag behind the discharge from the watershed 

storage to the channel network, since the streamflow requires time to travel along the 

channel. There is also another time lag, which is between the infiltration into the soil 

and recharge to the groundwater table. Thus, we assessed the travel time lag by the 

cross-correlation method proposed by Kirchner (2009). However, we didn’t find an 

obvious time lag between daily net infiltration flux (AI-AET) and daily observed 

streamflow, suggesting the time lag does not exceed one day in most cases in Sagehen 

Creek. This is consistent with Kirchner (2009), Teuling et al. (2010), Krier et al. 

(2012), Adamovic et al. (2015) and Rusjan and Mikoš (2015). In their research, the 

time lag was found no more than several hours. Generally, the small time lag reflects 

the small size of the watershed with a shallow active aquifer. As a result, in our 

analysis, the time lag was neglected in the application of equation (12).  
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A second detail is that a minimum threshold value for discharge simulation is 

needed to avoid negative discharge values. It is noticed in equation (12) that if the 

AET is large enough compared to AI, the second term on the right can become 

negative, and this could lead to calculated negative discharges. To account for this a 

minimum discharge of 0.11 mm/day was set. This minimum value was selected 

because it is the minimum daily streamflow value for the 16-year streamflow record 

of Sagehen Creek.  

The third detail relates to the fate of the net infiltration that does not become net 

recharge. The net infiltration is (AI-AET), and when (AI-AET)>0 on any particular 

day, only a portion of that net will become recharge, meaning that  ′′    <1. The 

remainder of the net recharge will remain stored in the soil profile. The current 

version of the MSD model does not account for this residual net infiltration. In a 

model that accounts for all fluxes and not just the groundwater discharge this portion 

of net infiltration would be stored in the unsaturated zone and potentially could later 

contribute to groundwater recharge, evapotranspiration, interflow, return flow, or it 

could contribute to saturating the soil profile and thereby promoting surface runoff. 

Since the present model only accounts for the groundwater contribution to streamflow 

the contributions of this residual net infiltration to other hydrologic flows was not 

taken into account.   

4. Results 

4.1 Construction of          and      

When the magnitude of discharge is smaller than the precision of the stream gage, 

the calculated recession rate from observed data may lead to errors (Rupp and Selker, 

2006). Following the method proposed by Rupp and Selker (2006), any unreasonable 

stream flow data in the selected 15 events were removed by using a variable    to 
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make sure    exceeded a precision threshold. These individual recession curves are 

plotted on a log-log scale, shown in Figure 4a. The normalized data derived using the 

minimum stream flow for each recession are shown in Figure 4b（gray points）.  

Following Kirchner (2009) and Krakauer and Temimi (2011), a binning 

procedure was conducted as described below. Beginning with the top 1% of the 

logarithmic      , calculate the corresponding mean and standard error for 

          in the range, and if the number of points in the range is less than 5 or the 

standard error is larger than the half of its mean, expand the range within the next 1% 

of the logarithmic range. Otherwise, keep the mean             and mean       

for this bin and continue on to the next bin. This procedure resulted in 14 bins, each 

with mean             and mean       (the solid black dots in Figure 4b). A 

nonlinear least squares method was employed to fit these points, generating 

         as 

                                                     )         (13) 

A power law relationship between antecedent streamflow and recession flow 

characteristic has been found in some prior research (Bart and Hope, 2014; Biswal 

and Nagesh Kumar, 2014). Our prior unpublished research (Li and Nieber, 2016, 

unpublished report) also shows a power law relationship between antecedent 

streamflow and     . Thus, in our first try at conducting regression analysis, a power 

expression of      was derived between the initial recession flow    and     . 

The expression for      is shown in Figure 5 and is of the form, 

 

         
                                         (14) 

with r1, r2, and r3 are obtained by nonlinear least squares regression, and   
     is the 

mean daily discharge for n days prior to the beginning of the recession. For the case 
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of n=0, the values of   ,    and    are 0.714, 0.852, and -0.001 respectively, and the 

R
2
 for the regression was 0.95.   

 

4.2 Parameter calibration and discharge simulation; MSD model vs. observed 

streamflow 

The parameter    in equation (12) was calibrated by a trial-and-error procedure with 

the 8 years calibration period. The “best” value, 0.042 was selected with maximum 

NSE, a value of 0.558, a relatively mediocre performance. Then the discharge was 

simulated during the 8 years validation period, and the value of NSE was -0.201, 

indicating a very poor performance. We therefore tried different values of   for the 

function, equation (14), and we discovered the value of     (  =0.805,    

      , and          ) provided the best fit for both calibration (NSE=0.692) and 

validation (NSE=0.769). The R
2
 for the      model is 0.78. The value of the 

parameter   for this case was 0.16.  

The calibration and validation hydrographs for this case are shown in Figure 6a. 

The simulations generally reproduce the shape of the observed streamflow 

hydrographs both in the calibration and validation periods. As mentioned above the 

best model performance is obtained when   equals 5 instead of 0, even though      

has a better relationship with   
    than   

   . Possible reasons for this unexpected result 

are outlined in the discussion section. 

Although the model using   
    for the      model provides a better fit for the 

hydrograph, there still remains an obvious defect in that the model is unable to 

quantify the peak flows that occur. Missing the peak flows is a result of the MSD 

model not having a surface runoff component, since the equations account for aquifer 

discharge only.  
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In addition, as viewed in Figure 6b, a zoomed-in segment of Figure 6a, there is 

also some deficiency in the correspondence between the times for rises in 

hydrographs of the observed streamflow and the times of the positive net recharges 

associated with positive net infiltration flux. The net infiltration flux plotted in Figure 

6b are derived from the GSFLOW model simulation and it is seen that the response of 

the observed streamflow hydrograph is not in sync with the net infiltration fluxes 

computed by GSFLOW. The MSD model used the net infiltration flux computed by 

GSFLOW and therefore one would not expect to see a correspondence between the 

MSD model simulated flows and the observed streamflows. Rather than use the 

observed streamflow for the comparison to the MSD model, we will in the next 

section use the groundwater flow component simulated by GSFLOW 

4.3 Reevaluation of model performance; MSD model vs. GSFLOW simulated 

streamflow 

To avoid the influence of surface runoff and net infiltration time series that are 

inconsistent with the observed streamflow, we used the subsurface flow simulated by 

GSFLOW as the ‘observed streamflow’ for comparison against the flow simulated by 

the MSD model. As before, the net infiltration calculated by GSFLOW was used as 

input to the MSD model.  

The model calibration and validation were repeated by testing different   
     in 

equation (14). The results of this test are summarized in Table 1. The best NSE values 

obtained were 0.925 for calibration and 0.933 for validation for a value of n=3 and 

c=0.151 (hereinafter referred to as simulation S1). Figure 7a shows the simulated 

hydrograph both in the calibration and the validation period. It is clear that the 

simulation performance is considerably improved compared to the results shown in 

Figure 6a. The zoomed-in plot of the hydrograph presented in Figure 7b also shows a 
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net infiltration time series that is consistent with the streamflow series simulated both 

by the MSD model and GSFLOW. 

4.4 Comparison of the MSD model to the Kirchner model 

We conducted another two simulations to test the model performance. One is a 

similar cross-validation proposed by Kirchner (2009). We exchanged calibration and 

validation period (hereinafter referred to as simulation S2). This test prevents a 

circular simulation (Kirchner, 2009). Another is a whole period calibration, in which 

we used all 16 years of streamflow data to generate the         ,      and 

parameter c (hereinafter referred to as simulation S3). This third test demonstrates the 

influence of data series length on model performance. All three simulations (S1, S2 

and S3) are compared with the Kirchner model.  

The results of the comparison are summarized in Table 2. The MSD model has a 

stable satisfactory performance for both the cross-validation and the whole period 

calibration. The results indicate that the increase of data length has little influence on 

improvement of model performance. This suggests that the MSD model may be 

useful even in those watersheds not having long-duration observed time series. 

Consistent with prior research (Teuling et al., 2010), Krier et al. (2012), Brauer et al. 

(2013), Melsen et al. (2014), Adamovic et al. (2015) , the Kirchner model produces a 

good performance especially in wet water years, while a poorer performance in dry 

water years. The MSD model had higher simulation accuracy in dry water years when 

annual streamflow was less than 400 mm and also is shown to be superior for wet 

water years (as shown in Figure 8). We hypothesize that the reason for the improved 

performance with the MSD model is the non-unique (albeit implicit) 

storage-discharge relation embedded in the model, which provides for flexibility in 

the model to handle the wide range of initial conditions. This feature is missing from 
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the Kirchner model (Xu et al., 2012).    

In the original research of Kirchner (2009), thousands of hourly streamflow data 

were taken to generate the model parameters. Melsen et al. (2014) examined the 

length and timing of discharge data to obtain reliable parameters in Kirchner model 

and found a five-month hourly data series, approximately 3,600 values, was sufficient. 

The length of data source in these previous research efforts is much larger than the 

streamflow time series taken in the present research, approximately 150 values. Thus, 

it is possible to increase the performance of the Kirchner model with a much longer 

observed streamflow time series. However, as pointed out in Kirchner (2009), the 

Kirchner model is an average description of the behavior of the watershed, thus 

cannot be expected to achieve the ability to simulate both wet and dry watershed 

condition only by increasing the length of data series. 

As shown in Table 2 and labeled on Figure 8, there are still two water years (1989 

and 1991) with relatively small NSEs among the three simulations by the MSD model. 

This illustrates that although the performance of the dynamic model was improved 

over and above the original Kirchner model, some inaccuracy of the MSD model still 

exists. The simulated discharges for the 1989 water year are shown in Figure 9. It is 

apparent that the MSD model misses some high flows and low flows. It is expected 

that for a similar magnitude net infiltration (AI-AET) for conditions of different 

antecedent storage condition should lead to different discharge response. As is shown 

in Figure 9, comparing two infiltration segments with similar magnitude, the event 

labeled as I1 occurs under a higher antecedent storage than the event labeled as I2. 

For these GSFLOW appropriately simulated a higher peak discharge in response to 

the I1 event than for event I2. In contrast, the MSD model didn’t provide similar 

responses, but instead produced a higher response to event I2. On the other hand, the 
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MSD model underestimated some recession flows, for example, from January to 

March in 1990 as shown in Figure 9. For this specific time series it is apparent that the 

     as determined by equation (14) with     was underestimated. However, as 

large as the disagreement is for that time period, in general the MSD model is found 

to accurately simulate recession dynamics for most events. Even with these 

deficiencies, the NSE calculated with the MSD model was still higher than 0.5 for 

both these water years. 

5. Discussion 

5.1 Evaluation of the      recession flow parameter 

It is curious why the use of   
    to calculate      in the MSD model is better 

than the use of   
    since the      vs.   

    regression equation has higher R
2
 than 

the      vs.   
    regression equation. An explanation of this seeming inconsistency 

is presented in the following. Note that this explanation also applies to the comparison 

of the      (  
    ) equation to the      (  

   ) equation. 

Among the simulation results it was observed that when using the      (  
    ) 

equation the recessions are simulated quite well but the peak flows are over-predicted, 

while in contrast when using the   
    equation to predict      (  

   ) the recessions 

are under-predicted and the peak flows are better predicted. The reasons for this are 

apparent when one views the two graphs shown in Figure 5. The     (  
    ) equation 

will generally estimate a larger value of      than the     (  
   ) equation. Since 

     is best predicted by   
     (R

2
=0.95) one then expects the baseflow recessions 

will fit the observed values more closely, while since     (  
   ) predicts a lower 

     the simulation using this      will under-predict the recessions.  

While the   
    equation is more accurate at predicting the recession period, it 

appears not to be as accurate at predicting the net recharge and therefore the rising 
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limb of the hydrograph. While it would be tempting to immediately use the   
    

equation in the recession limb, and the   
    equation for prediction of net recharge, it 

is probably advisable to leave this issue for a follow-up study to determine a more 

appropriate way to predict net recharge.  

5.2 Parameters required for the MSD model 

As stated previously the MSD model presented here requires the specification of 

seven independent parameters. These parameters are the three parameters in the 

         function, the parameter c, and the parameters r1, r2 and r3 in the F(Q) 

function for     . We should compare this parameter requirement to what is 

reportedly required for the original Kirchner model. For that model there were three 

parameters required for the      function, and then one parameter for the estimation 

of evapotranspiration. Thus, our model requires three parameters in addition to the 

parameters required for the original simple dynamic model (Kirchner, 2009).  

We might also compare the parameters required for the MSD model to that 

required for the approach using multiple linear reservoirs, an alternative formulation 

to the one proposed herein. The specification of a linear reservoir requires in general 

two independent parameters. As shown by others (Moore (1997), Shaw (2016)), the 

combination of linear reservoirs in series and/or in parallel can be used to represent 

more complex nonlinear response systems. While this alternative approach was not 

used here, it would require at least one parameter to estimate the groundwater 

recharge process, and then at least two parameters for each of the linear reservoirs. 

Thus after combining two or three reservoirs the number of parameters would already 

exceed the number of parameters required of the MSD model presented here.  

It is certainly possible that the MSD model could be made even more attractive 

by eliminating the parameters required for the estimation of     . This could be 
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accomplished by relating      to watershed and aquifer characteristics, and to the 

dynamics of initial condition for recessions. Such relations could be regionalized and 

then one could use a regional curve to arrive at the estimate of      rather than 

deriving the F(Q) for each and every watershed of interest. Also, as mentioned already 

the parameter c should be related to the aquifer geometric and hydraulic properties, 

and also to the water withholding and transmission properties of the unsaturated zone. 

Thus it is recommended that future work involve dimensional analysis to formulate 

the parameter c based on watershed soil hydraulic properties and to aquifer geometric 

characteristics and hydraulic characteristics.  

5.3 Hysteresis in the Q vs. S relation 

For the simulation of flow recessions the MSD model solved equation (7) with 

the         function. Since       is determined by      for any given initial 

recession condition, this leads to a family of multivalued (non-unique) recession 

curves as illustrated in Figure 10. Thus, the Q vs. S relation for the recession in the 

MSD model will not be unique. In contrast, the Kirchner model, the      function is 

single-valued and as such the Q vs. S relation will be single-valued.  

For conditions of positive or negative net recharge to the groundwater storage the 

Kirchner model solves the equation 

 

                                            (15) 

which with a unique function      also yields a unique relation between Q vs. S 

regardless of the magnitudes and trends of (R–ET). For the MSD model equation the 

case of positive or negative net recharge was simulated using the Huyck et al. (2005) 

model (equation (12)) coupled with the solution to equation (9). This approach leads 

to a non-unique Q vs. S relation.  

So for periods of zero net recharge and for periods of nonzero net recharge the 
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MSD model will yield hysteretic relations between discharge and storage, while the 

Kirchner model yields a unique Q vs. S relation. Although the hysteresis in 

watersheds has been simulated with different approaches (Ewen and Birkinshaw, 2007; 

Camporese, et al., 2014; Tritz et al., 2011), as far as we know, only one paper 

accounting for hysteresis with the Kirchner model has appeared in the literature (Xu 

et al., 2012). In that paper Xu et al. (2012) represented the hysteresis in the 

storage-discharge relation by three piecewise simple linear sensitivity functions. 

Rather than using that approach, we instead expanded the Kirchner model to account 

for the hysteresis process by a normalized g(     ) and an analytical solution 

presented by Huyck et al. (2005). The advantage of the hysteretic Q vs. S relation is 

that it provides the additional nonlinearity to the model to facilitate the flexibility 

needed to be able to handle the wide range of storage conditions. This is our 

qualification of why the MSD model is more adapt than the original Kirchner model 

in simulating the streamflows for the Sagehen Creek across a wide range of water 

storage conditions.  

5.4 Limitations and prospects of the MSD model 

In this study, the net infiltration flux (AI-AET) calculated by GSFLOW is used as 

input to the MSD model. However the hydrologic fluxes are generally not known, but 

would be determined from measurements or calculated using some acceptable method. 

Inaccuracy in the estimation of these hydrologic fluxes will introduce more 

uncertainty in the model application. Thus before the application of the MSD model 

in a given watershed, the hydrologic fluxes, such as actual evapotranspiration, 

infiltration of precipitation/snowmelt, and deep percolation to groundwater should be 

estimated based on some acceptable methods expressing a clear dependency on the 

state of the system. 
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A second limitation of the model is that it does not include an explicit soil water 

balance component. The current model calculates groundwater recharge implicitly, 

not accounting for possible carryover moisture between infiltration events. If the 

MSD model is eventually to be used for surface runoff computations in addition to the 

current ability to simulate groundwater discharge, it will be necessary to include a soil 

water balance component. An example of such a model is presented by Zhuo and Han 

(2016).  

A third limitation is inherent in the simple form of the MSD model structure. 

Although the MSD model outlined shows some progress in simulating the hysteretic 

discharge behavior of the watershed, especially comparing with the original Kirchner 

model, as is stated in Section 4.4, there are still several water years with only fair 

model performance. In its present state of development the MSD model cannot be 

expected to have an ability of completely simulating the complex physical conditions 

in a real watershed. One example of the complex physical condition is the observation 

that the spatial distribution of storage in the Sagehen Creek watershed varies and this 

variation affects the storage-discharge relation. This observation was made using the 

simulations of the GSFLOW model (Li and Nieber, 2016, unpublished report). It 

seems that without a model that treats spatial variability it will not be possible to 

capture explicitly the spatial effect. Using different conceptual reservoirs to represent 

different spatial locations in the watershed could treat this spatial effect more 

explicitly. Whether such treatment can improve the simulation performance will need 

to be tested in a different study. 

 6. Conclusions 

A modified Kirchner model, the Modified Simple Dynamic (MSD) model has 

been presented to simulate the streamflow discharge for the Sagehen Creek watershed, 
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a watershed located in eastern California having a mean slope of 15.8%. As with the 

original Kirchner model the MSD model is composed of a single conceptual reservoir, 

except in the case of the MSD model the conceptual reservoir has a nonlinear Q vs. S 

relation. The three main features of the MSD model are: a sensitivity function 

(        ) to represent the simple unique normalized discharge storage relationship, 

a simple correlation function (F(Q)) to represent the influence of different initial 

condition on recession flow dynamics, and a simple streamflow component 

proportional to net infiltration to represent the effect of active hydrologic fluxes. As a 

result, the MSD model has an ability to account for the hysteresis of the Q vs. S 

relation in a watershed. 

After an application to Sagehen Creek and comparisons with a well 

parameterized model GSFLOW, also with Kirchner model, the following conclusions 

can be stated. First, the MSD model has a better performance than the original 

Kirchner model to simulate the discharge dynamic encompassing a wide range of 

wetness with almost a tenfold variability in annual streamflow. Second, two core 

governing equations (         and F(Q)) in the MSD model can be derived from a 

few observed streamflow data directly by regression analysis, and then a parameter c  

associated with the transformation of groundwater recharge with streamflow response, 

needing calibration by fitting of streamflow data. Thus, we suggest the MSD model 

may be applicable easily to other watersheds. Third, the streamflow simulation is 

dependent on initial conditions, but also very sensitive to the magnitude of 

hydrological fluxes and therefore it is essential to have adequate estimates of these 

fluxes.  

While the model does have an improved performance compared to the Kirchner 

model for the Sagehen Creek watershed, especially for drier years, it still appears to 
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have some inaccuracies in the very driest years. This could be due to the non-unique 

spatial distribution of water storage having an effect on the watershed discharge. It is 

suggested that while employing multiple conceptual reservoirs to represent the 

watershed storage spatial distribution in this case might resolve the issue, the 

simplicity of a single nonlinear reservoir to represent the whole watershed response is 

arguably appealing.   
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Figure 1. Map of the Sagehen Creek catchment 

Figure 2. The annual streamflow, precipitation and actual evapotranspiration for Sagehen 

Creek, ranked by the streamflow magnitude from smallest to largest. The annual streamflow for 

the eight year calibration period is illustrated by gray bars and the eight year validation period is 

illustrated by white bars. Annual precipitation is shown as solid line. Annual actual 

evapotranspiration is shown as dash bars. 

Figure 3.  Simulation process of the modified dynamic model. The calculated discharge is 

illustrated with bold black line. Four bold dash lines illustrate the recession flow from previous 

discharge. The positive and negative AI-AET are shown as gray bars. In this illustration theyboth 

last for two consecutive time steps. 

Figure 4. dQ/dt vs. Q plot for selected individual recessions. (a) The individual curves before 

normalization. The different colors illustrate designate distinct recessions. (b) The individual 

curves after normalization (gray dots), the binned means (black dots), and the best fit line 

calculated by nonlinear least squares method. 

Figure 5. Plots of      vs.   
    , with the best fit lines. The solid gray points are related to 

  
     , with a dashed fit line, whilethe solid black points are related to   

     , with a solid fit line. 

Figure 6. Simulated discharge time series by the modified model (dotted black curve), 

compared with observed streamflow (solid black curve). (a) a 16-year time period including both 

calibration and validation; (b) zoomed view of one segment, with daily GSFLOW-calculated net 

infiltration flux (AI-AET)(gray bars). 

Figure 7. Simulated discharge time series by modified model (dotted black curve), compared 

with simulated subsurface flow discharge by GSFLOW (solid black curve). (a) a 16-year time 

period including both calibration and validation. (b) zoomed view of one segment, with daily net 

infiltration flux (AI-AET) (gray bars).  

Figure 8. NSE vs. annual streamflow plots for the comparison of modified model and 

Kirchner model, a, b and c is the results of simulation S1, S2, S3 respectively.  Two black points 

labeled on the plots are related to 1989 and 1991 water years with much smaller NSEs. 
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Figure 9. Simulated discharge time series for 1989 water year by modified model (dotted 

black curve), compared with simulated subsurface flow discharge by GSFLOW (solid black 

curve), with daily net infiltration flux (AI-AET) (gray bars). 

Figure 10. Plots of the g(Q) function for the modified dynamics model and the Kirchner 

model (broken line). Data are derived from the simulation S1 flows, considering only those flows 

corresponding to periods without significant AI and AET. The g(Q) function for the modified 

model is based on a normalized function that then provides for a family of functions each of which 

corresponds to a different antecedent storage condition. The Kirchner model is a single function 

that represents average conditions for the period of calibration. 
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Table 1. Parameters values and NSE with different   
     in function F(Q) 

  
     r1 r2 r3 c 

NSE 

calibration validation 

  
    0.714 0.852 -0.001 0.039 0.664 -0.560 

  
    0.771 0.717 -0.092 0.066 0.763 0.549 

  
    0.691 0.590 -0.069 0.128 0.924 0.914 

  
    0.757 0.515 -0.136 0.151 0.925 0.933 

  
    0.725 0.565 -0.104 0.143 0.921 0.885 

  
    0.805 0.552 -0.174 0.140 0.885 0.809 

  
    0.635 0.685 -0.023 0.130 0.870 0.570 

  
    0.480 0.854 0.101 0.123 0.795 -0.749 

  
    0.330 1.092 0.223 0.111 0.642 -50.277 

  
    0.196 1.430 0.319 0.080 0.297 -1.246 

   
      0.089 1.970 0.388 0.091 0.257 0.252 

 

  



  

45 
 

Table 2. NSE of three sets of simulations for individual water years* 

water year 

annual 

streamflow 

(mm) 

Simulation S1 Simulation S2 Simulation S3 

MSD 

model 

Kirchner 

model 

MSD 

model 

Kirchner 

model 

MSD 

model 

Kirchner 

model 

1980 156.8 0.854 0.714 0.797 0.685 0.749 0.696 

1981 934.3 0.909 0.796 0.904 0.824 0.900 0.828 

1982 973.7 0.928 0.890 0.927 0.907 0.909 0.909 

1983 664.0 0.886 0.806 0.843 0.796 0.826 0.805 

1984 285.7 0.889 0.464 0.831 0.433 0.796 0.446 

1985 686.2 0.939 0.895 0.921 0.901 0.924 0.906 

1986 163.4 0.833 0.659 0.797 0.634 0.781 0.646 

1987 105.0 0.801 0.763 0.860 0.761 0.897 0.762 

1988 321.8 0.955 0.821 0.960 0.892 0.972 0.878 

1989 164.7 0.545 0.558 0.602 0.491 0.616 0.507 

1990 141.5 0.801 0.686 0.857 0.709 0.820 0.702 

1991 97.6 0.609 0.566 0.612 0.628 0.676 0.602 

1992 479.2 0.909 0.902 0.958 0.946 0.944 0.942 

1993 106.1 0.893 0.783 0.887 0.771 0.850 0.778 

1994 748.4 0.951 0.919 0.971 0.938 0.960 0.946 

1995 577.8 0.904 0.803 0.905 0.815 0.883 0.839 

calibration - 0.925 0.847 0.941 0.907 0.923 0.894 

validation - 0.933 0.892 0.920 0.864 - - 

* S1 refers to the simulation results in section 4.3, S2 refers to the cross-validation 

simulation results, and S3 refers to the whole period calibration result. 
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(1) Normalized relation for rate of change of recession flow versus recession flow. 

(2) Regression model relating minimum recession flow and antecedent flow.  

3) Propose simple streamflow generation component proportional to net infiltration.  

 


