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Abstract 1 

Weather and climatic characterization of rainfall extremes is both of scientific and societal 2 

value for hydrometeorogical risk management, yet discrimination of local and large-scale 3 

forcing remains challenging in data-scarce environments. Here, we present an analysis 4 

framework that separates weather regime and climate controls using data-driven process 5 

identification. The approach is based on signal-to-noise separation methods and explanatory 6 

extreme value (EV) modeling of multisite rainfall extremes. The EV models integrate the 7 

temporal component of the weather/climate driver using semi-automatic parameter 8 

identification.  At weather scale, the EV models are combined with a state-based Markov 9 

model to represent the spatiotemporal structure of rainfall as weather states. At climate scale, 10 

the EV models are used to search for drivers leading to the shift of weather patterns. The 11 

drivers are brought out in a climate-to-weather signal subspace, built via dimension reduction 12 

of climate model reconstructions.   13 

We apply the framework to a complex terrain region: the Western Andean Ridge in Ecuador 14 

and Peru (0-6ºS) using ground data from the second half of the 20
th

 century. Overall, we show 15 

that the framework, which does not make any prior assumption on the explanatory power of 16 

the weather and climate drivers, allows identification of well-known and new features of the 17 

regional climate in a purely data-driven fashion. Thus, the approach shows potential to 18 

identify weather controls on precipitation extremes in data-scarce and orographically complex 19 

regions in which model reconstructions are the only climate proxies. 20 

 21 

  22 
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1. Introduction 1 

Discrimination between climatic and weather drivers of heavy precipitation events is 2 

both of scientific and societal value, particularly for hydro-meteorological risk management. 3 

For example, improved prediction of extreme precipitation events in operational seasonal 4 

forecasting by means of dynamical climate models requires to understand whether a specific 5 

extreme event can be attributed to a specific weather regime or mode of climate variability 6 

[WMO, 2013]. Also, the cost-effective design of storm drainage facilities and financial 7 

compensating mechanisms (e.g. rainfall-based index insurance) that build within the seasonal 8 

to interannual time range requires this scientific understanding.  9 

 In mountainous regions, heavy precipitation events are often influenced by synoptic to 10 

meso scale conditions and orographic effects [Rotunno and Houze, 2007; Neiman et al., 2002; 11 

Piaget et al., 2015]. The Western Andean ridge (WAR) in the tropical Andes of Ecuador and 12 

Peru is a core of mixed climate influences as is both part of the climate divide and the 13 

gateway for Pacific and Amazonian influences [Emck, 2007; Rollenbeck and Bendix, 2011]. 14 

There, rainfall extremes are response to the cross-season weather regime variability, which is 15 

disrupted by climate anomalies such as El Niño Southern Oscillation (ENSO). The WAR is 16 

suspected to modulate the year-roundly weather mechanisms governing the distribution of 17 

rainfall intensities but their underlying physical ground is not yet understood due to a paucity 18 

of detailed studies and lack of long-term meteo data, a recurrent problem in many regions in 19 

the global South. Accordingly, the discrimination of the weather and climate drivers of 20 

rainfall extremes over such data-scarce orographic barrier remains rather evasive from both 21 

physical and data analysis perspectives.  22 

Present theories describing the regional climate patterns associated to heavy rainfall 23 

occurrence in the WAR and neighboring regions emerged from event-based analysis during 24 

http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2011.00546.x/full#b18
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the El Niño (EN) episodes of the last decades. For example, Horel and Cornejo-Garrido 1 

[1986], Goldberg et al. [1987] and Bendix and Bendix [1998] discriminated two mechanisms 2 

that may generate convective systems: i) a local circulation driven by the differential land 3 

heating; and, ii) extended instability. Regarding the ocean-atmospheric setting linked to 4 

spatial differences in heavy rainfall during the EN events, Bendix and Bendix [2006] extracted 5 

6 EN-like weather types. All these theories are merely EN snapshots of the regional climate. 6 

In fact, every EN event is different and its diversity, currently hotly debated, arises from the 7 

interplay between ocean and atmospheric circulation [Chen et al., 2015]. This implies that the 8 

weather variability characterizing each event depends on the specific pattern of each EN 9 

disturbance. In the WAR, a test of the climatological forcing hypothesis of extreme weather 10 

occurrences requires a statistical analysis framework that recognises in-year and interannual 11 

oscillations, and isolates abnormal extremes. 12 

Several statistical methods are found in literature for exploring relationships between 13 

climate forcing and hydrometeorological variables. At the forefront, multivariate techniques 14 

have been proven useful for analyzing covariance and isolating linear relationships between 15 

explanatory and response variables. Two well-established methods are canonical correlation 16 

analysis [CCA; Hotelling, 1936] and maximum covariance analysis [MCA; Wilks, 2006]. 17 

These methods tend to use dimension-reduction techniques such as the singular value 18 

decomposition to isolate the leading spatial and temporal patterns and use those patterns to 19 

generate pairs of stationary spatial patterns whose temporal covariation produces the highest 20 

correlation (CCA) and covariance (MCA), in a least-square-error sense. Such approaches are 21 

appropriate for diagnosis and prediction of hydrometeorological variables aiming at the bulk 22 

statistical properties of normally-Gaussian distributed variables, but are not ideally suited for 23 

exploring extremal properties in the tails of the joint distribution of the response variables.  24 



  

 7 

Extreme value (EV) theory provides the theoretical framework to investigate the 1 

extreme behavior of large geophysical extreme events. Since the seminal work by Coles 2 

[2001] and Katz et al. [2002], many have used time-varying EV models to analyze the natural 3 

variability of rainfall extremes across time scales. In the spatial setting, EV models whose 4 

parameters are common to all locations or are related to site-covariates have shown to yield 5 

more robust estimates than single-site models [e.g. Buishand 1991; Sveinsson et al., 2001]. 6 

Tye and Cooley [2015] show that borrowing strength across multi-site data improves the 7 

generalized EV parameter estimates. Also, spatial models based on max-stable processes 8 

allow characterization of spatial dependence of rainfall extremes [e.g. Shang et al., 2011; 9 

Thibaud et al., 2013].  10 

When time-varying EV models make use of covariates, e.g. harmonic functions to 11 

represent cyclical effects and/or a prescribed climate index to represent climate effects, two 12 

conflating problems are commonly found in model development: i) they need prescription of 13 

a number of harmonic functions to allow making inferences from a simplified model, ii) they 14 

require automatic parameter estimation algorithms to explore complex parameterizations that 15 

might arise from a large pool of explanatory variables. The prescription of the number of 16 

harmonic functions might over-simplify the underlying seasonal process and the use of 17 

climate indexes might not provide explanatory power as they do not necessarily represent the 18 

climatic influence over a specific region [Renard and Lall, 2014]. The second problem, 19 

optimal parameter estimation suitable for non-stationary generalized EV models (NGEV), has 20 

been addressed by using step-wise algorithms that combines forward selection and backward 21 

elimination procedures [Menéndez et al., 2009]; and automatic selection algorithms that 22 

identify only one parameter at a time based on a score perturbation criterion [Mínguez et al., 23 

2010]. This automatic selection method enables to explore a large number of model 24 
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parameterizations to discriminate weather and climate precursors of extremes. However, the 1 

issue on how to constrain the automatic parameter selection to yield statistical information on 2 

the process of interest is an important step in advancing the exploitation of this semi-assisted 3 

modeling approach, particularly on the face of mixed weather and climate influences.   4 

 Here, we present a statistical analysis framework to mine climate data and separate 5 

weather and climate controls using data-driven process identification. The framework 6 

integrates the temporal component of the weather/climate driver into an explanatory NGEV 7 

model. This model enables to investigate the climatological forcing hypothesis leading to 8 

anomalous rainfall extremes. The approach is applied to a latitudinal transect of the Tropical 9 

Andes in Ecuador-Peru, a region of mixed climatological influences, but aims to be applicable 10 

in other regions. These include data-scarce settings, where the climatological forcing can be 11 

inferred from climate model reconstructions.   12 

2. Data  13 

2.1 Rainfall data 14 

 Daily time series (68 stations) available for January 1964-December 2010 (24 h totals 15 

starting at 19:00 Local Standard Time, LST) were provided by the Ecuadorian and Peruvian 16 

Meteo-Hydrological National Services (INAMHI and SENAMHI), and quality controlled by 17 

Ochoa et al. [2014]. From this dataset, 16 stations (> 200–2830 masl), placed on the 18 

innermost plateaus in each catchment (Table 1, Figure 1b-c) were chosen. These stations 19 

record year-roundly synoptic activity due to their altitude and latitudinal distribution. In this 20 

subset, monthly maxima of daily precipitation (Pmax) were extracted at each station. Figure 2 21 

shows Pmax series of representative stations. The climate forcing, e.g. driven by Sea Surface 22 

Temperature (SST) anomalies, is not conspicuous, masked by seasonality at every location.   23 
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2.2 Climate data 1 

 Gridded monthly time series (1964-2010) of Extended Reconstructed SST  version 3 2 

[Smith et al., 2008] were taken from NOAA’s Climate Prediction Center. This is a global 3 

dataset of merged land, air, and SST reconstruction with 2º latitude/longitude resolution based 4 

on historical observations available since 1960. Optimum Interpolation  analysis blended with 5 

Advanced Very High Resolution Radiometer  SST version 2 [Reynolds et al., 2007], with a 6 

0.25º spatial and daily resolution, available since September 1981, was also examined for 7 

comparative purposes. 8 

NCEP/NCAR reanalyses wind field data [Kalnay et al., 1996] were used for synoptic 9 

investigation. Monthly aggregated wind fields with a horizontal grid spacing of 2.5º were 10 

extracted at two pressure levels: 850 and 300 hPa. The limitation of the reanalyses data is 11 

obvious and statements at the edge of the synoptic scale should be made carefully. 12 

Nevertheless, combined with in situ measurements, reanalyses data are invaluable in placing 13 

the local weather in the synoptic context, especially in regions lacking synoptic long-term 14 

meteorological observations.  15 

3. Methods 16 

The overall workflow is presented in Figure 3. The analysis framework builds on 17 

signal-to-noise separation methods [Hermus et al., 2007] and involves two modeling levels: 18 

seasonal and interannual variability of rainfall extremes. The rainfall extremes are modelled 19 

by means of NGEV distributions that separate weather/climate drivers using a semi-automatic 20 

parameter identification (SPI) algorithm [Mínguez et al., 2010]. At weather seasonal level, the 21 

strategy relies on modeling quasi-stationary weather regimes using a finite set of harmonic 22 

functions. This way, the seasonal NGEV models represent low-pass filter models for high-23 
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frequency variability, isolating climate modes, and can also be regarded as a spatial 1 

smoothing for local weather phenomena. They further enable a cross-season regimen 2 

diagnosis based on an existing weather state characterization [Pineda and Willems, 2016].  3 

The second level uses the full discriminatory power of the SPI algorithm to search for 4 

climatic drivers of low-frequency variability into a common climate-to-weather signal 5 

subspace. To constrain model identification as means to yield information on the process of 6 

interest, we search for ocean-atmospheric counterpart drivers into an enhanced signal 7 

subspace built onto an ensemble of explanatory variables. The climate-to-weather signal 8 

enhancement is obtained by projecting the filter seasonal models onto a subspace of signals 9 

that resembles the observational sample subspace in dimensionality. The dimension and basis 10 

vectors of the signal subspace are derived by eigen/singular value decomposition (EVD/SVD) 11 

[Wilks, 2006] of the noisy multisite Pmax and climate observation matrices, respectively.  12 

3.1 Climate-to-weather signal separation method  13 

Subspace-based signal-to-noise separation methods assume that every enhanced signal 14 

vector s can be written as a linear combination of p< q linearly independent basis functions 15 

mi, i=1,…, p,   16 

s=M y       (1) 17 

where M is a (q × p) matrix containing the basis functions and y is a length-p column 18 

vector containing only the weights. Under these assumptions, the D-dimensional 19 

observational space can be split into two subspaces, a p-dimensional (signal+noise) and a (q-20 

p)-dimensional subspace that contains only noise. The orthogonal decomposition into signal 21 

and noise subspaces can be performed by an EVD, more generally, by an SVD of the noisy 22 

observation matrix [Hermus et al., 2007].  23 
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Let Ps+n = [Pmax1 (1),Pmax2 (t),…,Pmaxn (t)],
 
n=1, …, n stations and t=1,…, t 1 

observations, be a multivariate vector of multisite monthly maxima of daily precipitation 2 

Pmax samples representing the noisy observation matrix, e.g. n=16 and t=552 months over 3 

the WAR, and Ps the multivariate vector containing the clean climate signal, and Pn the zero-4 

mean white noise that is assumed to be uncorrelated with the clean climate signal. Then, the 5 

observational noisy sample can be expressed as 6 

Ps+n= Ps + Pn (2) 7 

Further, let R be the autocorrelation matrix of Ps+n; the EVD of Ps+n  is then given by 8 

Ps+n= VV 
T
  (3) 9 

with a diagonal matrix containing the eigenvalues j and V an orthonormal matrix 10 

containing the eigenvectors v. Then, the order of the p-dimension might be assumed being 11 

equal to the number of positive eigenvalues of R, or to a value such that the energy of the 12 

enhanced signal is as close as possible to an estimate of the clean signal energy, see Section 13 

3.1 in Hermus et al. [2007]. The order of the q-dimension is more difficult to setup a priori 14 

due to limitations for making an estimate of the noise variance. However, in general, it should 15 

be greater than the order of p, such that the separation into signal and noise subspaces is 16 

possible. Depending on the nature of embedded noise a conservative choice is to set q equal 17 

to 2*p or 3/2*p [Van Huffel, 1993; Hermus et al., 2007]. Figure 4 shows the scree plot for the 18 

EVD of Ps+n. The spectrum of noisy eigenvalues j (exponential decay of ) stretches out up 19 

to the 15th dimension, empirical orthogonal function (EOF). Accordingly, the enhanced 20 

climate-to-weather signal will be contained in a high-dimensional signal-to-noise vector 21 

subspace, spanned by linear combinations of the basis functions contained in the matrix M, 22 

Eq. (1).  23 
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The assumption of a low-rank linear model for the enhanced signal and the availability 1 

of an estimate of the noise correlation matrix enable to perform a filtering operation by which 2 

the clean signal is obtained. Several optimization criteria exist to perform the signal 3 

enhancement [see Hermus et al., 2007]. Of particular relevance for the signal enhancement of 4 

the matrix Ps+n is the SVD-based method [Van Huffel, 1993] in which the p dominant singular 5 

values of Ps+n, are mapped onto the original clean singular values of Ps. In the proposed 6 

framework, such SVD-based noise reduction operation is analogous to the SPI learning 7 

process in a prescribed parameter subspace (see Section 3.3) whose dimension is estimated 8 

using information of the Ps+n matrix.    9 

3.2 Non-stationary GEV model 10 

We propose a nested NGEV model that encompasses traditional EV models for non-11 

stationary variables [Coles 2001]. The Pmax series observed in month t follow a GEV 12 

distribution with time-varying GEV location μ(t), scale  (t)>0  and shape ξ(t) parameters. The 13 

cumulative distribution function (CDF) of Pmax  is given by 14 

                        

 
 

              
         

    
  

 

 
 

    
            

           
         

    
                            

           (4)  15 

 The GEV distribution includes three families; the Gumbel family ( =0); the Fréchet 16 

family ( >0); and the Weibull family ( <0). The NGEV model, fit at each site, includes only 17 

seasonal   
 and interannual   

  effects in the time-varying location and scale parameters ((5), 18 

(6)). The shape parameter is constrained to represent only seasonal effects (7); it is well 19 

established that this parameter shows large scales of variability. Hence, long-term 20 

increasing/decreasing trends are not considered. Thus, 21 
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   (7) 3 

3.2.1 Weather seasonal NGEV model 4 

The seasonal NGEV model formulation by Mínguez et al. [2010] is used to summarize 5 

the spectrum of high-frequency weather regimes in terms of harmonic models of slowly-6 

varying amplitude. The formulations in equations (8)-(10) allow the SPI algorithm to identify 7 

the optimal number of harmonic functions to be included in the time-dependent parameters. 8 

Mathematically, the model is expressed as follows: 9 
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      (10) 12 

where t is given in years;  β0, α0 and γ0 are the mean values of the GEV parameters β, α and γ; 13 

βi, αi and γi (i > 0) are the amplitudes of the harmonics; ω=2π year
−1

; Pμ, P , and Pξ determine 14 

the number of optimal sinusoidal harmonics in a year.  15 

3.2.2 Climate interannual NGEV model 16 

In general terms, the climate-to-weather subspace can be constructed by (i) inferring 17 

the subspace’s order from the noisy observation matrix (Eq.3), and (ii) setting up its basis 18 

vectors as to capture the spectrum of energized basis vectors representing climate drivers. 19 

This will ultimately shape the properties of the desired underlying climate signals.  20 
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In the WAR, nearby SSTs variability is a natural proxy-candidate for moist 1 

convection, while winds of the lower and upper troposphere represent large-scale atmospheric 2 

moisture import (section 4.3). Thus, the basis vectors of the climate-to-weather (signal-to-3 

noise) subspace (q-dimensional order) are derived via a SVD of observed ocean and 4 

atmospheric anomalies as follows: 5 

(1)  Yearly anomaly composites (Sep-Aug) are constructed for the Sep 1964-Aug 2010 6 

period for SSTs, and wind fields: zonal (u) and meridional (v) components 7 

interpolated to 0.25º resolution at two pressure levels 300hPa and 850hpa representing 8 

the upper and lower circulations, respectively. To construct these composites the Sep-9 

Aug climatology is firstly subtracted from each monthly SST/u/v field, n=552 months 10 

for each grid point and then standardized yielding yearly SST, u, v anomalies (SSTA, 11 

uA and vA). In this way, these SSTA, uA and vA composites represent interannual 12 

deviations from the in-year cycle.  13 

(2) SVD is performed separately for each SSTA, uA and vA composite, we conduct the 14 

SVD analysis based on the covariance matrix of the re-gridded anomaly fields. Let 15 

X(t)=[x1(t),x2(t),…,xp(t)] be a n×p data matrix, where {xi(t); i=1,...,p; t=1,…,n} is a 16 

vector containing n (monthly anomalies) of the i-th centered predictor, and p is the 17 

number of predictors. For example for SSTA,  p=162 grid points cover the region 6°N–18 

14°S, 106°W-coastal line. The EOFs are then obtained by 19 

                                      
 
      (11) 20 

where zj are the EOF score series and e  is the j-th eigenvector of the covariance matrix 21 

  
 

   
     (12) 22 
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A crucial assumption here is that yearly ocean/atmosphere anomalies can be linearly 1 

decoupled into signal and noise. This hold for SSTA, few interpretable EOFs, but it is 2 

not straightforward for the atmospheric circulation (see Appendix B.2), which needs 3 

to be supported by a truncation criterion (see, North et al. [1982]). Figure 5 shows the 4 

probability density function of the SSTA-EOF scores. The energy of the EOF scores 5 

dissipates from the clean climate signal to zero-mean weather-like white noise. The 6 

EOF scores were truncated to EOFmax= 7, being the maximum number of EOFs 7 

containing non-random signal. This yields an assembled M (q × q) matrix, 8 

q=5*EOFmax, containing the basis vectors for the climate-to-weather signal subspace. 9 

In this reduced subspace, we let the SPI algorithm to separate climate from weather 10 

parameters by restricting the climate signal to occupy only the signal subspace, while nulling 11 

its components in the noise subspace. Note that we only make assumptions on the nature of 12 

the climate drivers, any noise filtering technique requires assumptions on the interfering 13 

signals. But, we do not make any prior assumption on their power as explanatory covariates.  14 

 Based on the above considerations and under the assumption of a low-rank linear 15 

model for climate signal and weather white-noise, we propose the following nested 16 

explanatory NGEV model parameterization:  17 

       
                                           

      
     (13) 18 

             
                                           

      
     (14) 19 

where t is given in year. The parameters βEOFj and αEOFj represent the influence on the 20 

location and scale parameters per unit of standardized SSTAj, zonal uAj and meridional vAj 21 

components of the lower and upper circulation on a particular instant t.  22 



  

 16 

For any NGEV model including Pμ, P , Pξ harmonic functions, i=1,…, Pμ/P /Pξ , and  1 

EOFj time-coefficients of the SVD,  j=1,…, EOFmax, the parameter vector can be represented 2 

by: 3 

  4 

            
          

           
           

           
                 

          
           

           
           

              5 

(15) 6 

The instantaneous quantile Pq associated with the return period 1/q can be calculated using: 7 

                   
     

    

    
                                   

                                       

           (16) 8 

where the probability q is given by Ft(P)=1-q. Approximate standard error for the estimators 9 

and confidence intervals for parameters are obtained using standard likelihood theory [Coles, 10 

2001] (see Appendix A) 11 

3.3 Climate to weather separation algorithm  12 

The SPI algorithm by Mínguez et al. [2010] selects the parameters which minimize the 13 

Akaike information criterion (AIC) using the maximum likelihood method within an iterative 14 

scheme. The selection is based on sensitivity analysis which makes use of local derivative 15 

information to identify the parameter producing the largest perturbation at each iteration. We 16 

use the SPI algorithm to learn weather/climate parameters because of the following reasons: 17 

(i) At weather scale, it fits the best harmonic NGEV model to data by adding to the 18 

stationary null model one harmonic (two parameters) per iteration until no further 19 

decrease of the AIC is achieved, the upper cut-off for parameterization being score test 20 

http://www.sciencedirect.com/science/article/pii/S146350031200131X#b0120


  

 17 

statistics. This defines a pseudo only-noise model subspace orthogonal to the clean 1 

signal subspace. 2 

(ii) At climate scale, the construction of the perturbation criteria allows selecting the 3 

parameter that potentially produce the greater decrement of the AIC per iteration and 4 

corresponds to the one with maximum score test statistics. This selection is possible 5 

because an optimal solution of the log-likelihood function can be derived and different 6 

sets of possible parameters                scrutinized, see section 3.1 in Mínguez et al. 7 

[2010]. Thus, the SPI algorithm is well posed to bring out model parameters in a 8 

multivariate vector subspace of covariates, which, more in general, can be seen as the  9 

SVD-based noise reduction operation [Van Huffel, 1993] to enhance damped 10 

exponential signals embedded in white noise of the Ps+n matrix. 11 

3.4   Performance  12 

We assess both at-site NGEV models using criteria for explanatory modeling [Shmueli, 13 

2010], and its performance as SVD-filter models; while the former can be deemed as an at-14 

site assessment, the latter enables to identify model structures and make inference from their 15 

coefficients, which in turn allows to explore the interfering signals in the tail of the join 16 

distribution of Ps+n. Model validation and selection proceeds as follows:  17 

(i) Validation of NGEV model: To assess model fitting we use adapted probability and 18 

quantile goodness-of-fit diagnostic plots [Méndez et al., 2007; Coles, 2001]. We also 19 

asses the generalization power (i.e. predictive qualities) of the explanatory NGEV 20 

models using leave-one-year-out cross-validation metrics. This is carried out in the 21 

following manner: (1) the first response (   ) and covariates (SSTA1, uA1 and vA1) are 22 

removed from the observed datasets, (2) the NGEV model is fitted to the remaining 23 

http://www.sciencedirect.com/science/article/pii/S146350031200131X#b0120
http://www.sciencedirect.com/science/article/pii/S146350031200131X#b0120
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(N − 1) responses and covariates, (3) the covariates (SSTA1, uA1 and vA1) are used to 1 

estimate the first quantile response from the model developed in (2), and (4) the 2 

process is repeated for each of the remaining paired responses and covariates. The 3 

cross-validation was constructed for each saturated ith-order climate model.  4 

(ii) Empirical validation of SVD-filter models: In practice, the assessment of signal 5 

enhancement methods assumes that both clean and noise observation matrices are 6 

observable, this allows derivation of theoretical estimators to quantify the efficiency of 7 

any noise-reduction filter against an upper bound of performance. In our 8 

implementation, it would be ideal to derive such a theoretical estimator and 9 

benchmark the SVD noise filtering operation against a metric of optimal performance.  10 

This is, however, not possible without the possibility of observing, in real-world data, 11 

the clean-climate signal, the Ps matrix. We therefore assess the amount of noise 12 

removal by computing empirical signal-to-noise (SNR) ratios using the ensemble of 13 

instantaneous quantile Pq responses yield by the weather and climate models. 14 

Empirical SNRs are calculated using: 15 

    
       
 

      
          (17) 16 

 where        
  and         

  are computed from the multivariate vectors of Pq seasonal 17 

and interannual responses generated by the saturated weather models (white-noise 18 

assumption) and the ith-order climate-filter  models, respectively. 19 

 20 

(iii) Selection: We use an adapted likelihood ratio test [Towler et al., 2010] to discern 21 

model structures among competing nested models.  Let us consider a model   
   

, i = 22 
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1,…n, a sub-model of the saturated ith seasonal/interannual      
   

; and llhi (  
   

) and 1 

llhi+1(    
   

) are the maximized values of the log-likelihood for the sub- and saturated 2 

models, respectively. The deviance D statistic can be calculated as:  3 

               
          

     (18) 4 

If D > cwhere cis thequantile of the   
  distribution, then   

   
 can be 5 

rejected in favor of     
   

. Here,  is the level of significance,   
  is as large-sample 6 

approximation, and k are the degrees of freedom associated with the test. Nested 7 

models are tested at the  = 0.05 significance level against the corresponding sub-8 

models. For each test, the degrees of freedom for the climate and seasonal models are 9 

k=1 and 2, with cvalues of 3.84 and 5.99, respectively. Also, the climate model’s 10 

performance was evaluated against corresponding null models, e.g.  model including 11 

SSTs vs. seasonal only model (see Table 2),  to assess how well the coupling of ocean 12 

and atmospheric covariates captures the extremes.  13 

3.5 Weather and climate characterization  14 

 The interannual variation in the time-dependent quantile δPq can be calculated as:  15 

δPq=Pqc-Pqs        (19) 16 

where Pqc is the climate and Pqs the seasonal dependent quantile calculated using only the 17 

seasonal parameterization. Both Pqc and Pqs are simulated from strictly hindcast models, that 18 

is using the parameterization withheld from the saturated models in (8)-(10) and (13)-(14) 19 

which represent the time-dependent quantile response to the spectrum of weather and climate 20 

drivers.  21 
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Next, we use the seasonal dependent quantile Pqs in conjunction with a weather state 1 

characterization, derived by calibrating a hidden Markov Model (HMM) to a network of daily 2 

rainfall observations including those in the WAR [Pineda and Willems, 2016], to elucidate in-3 

season regime fluctuations. The HMM decomposes the observed spatio-temporal rainfall 4 

variability over a network of observations via a discrete set of ‘hidden’ states. Each state 5 

comprises a set of rainfall probabilities and wet-day distribution functions for all locations in 6 

the network; the states proceed on a daily time step following a first-order Markov process. 7 

These characteristics enable the HMM to represent both spatial covariance over the network 8 

and persistence of large-scale weather patterns, which can be associated with the states. It is 9 

thus well-suited for the representation of daily rainfall in climate regimes that can be 10 

characterized in terms of variably persistent large-scale weather patterns. The use of weather 11 

states, which implicitly account for spatial covariance in the form of the rainfall patterns 12 

associated with each state, is consistent with a nonlinear-dynamical view of the weather-13 

within-climate, in which the states represent basins of attraction toward which trajectories in 14 

the climate phase space are drawn [Lorenz, 1963; Palmer, 1999]. 15 

Pineda and Willems, 2016 argue the existence of four hidden hygrothermal moisture 16 

states in the WAR, hereafter called weather types (WTs), which capture the in-season rainfall 17 

spatiotemporal structure. They reported these moisture states as the number of days falling in 18 

each WT. Here, to quantify WT fluctuations, the number of days was normalized to Pqs and 19 

split into sub-seasons. To characterize climate drivers leading to the amplification/dampening 20 

of WTs, we assess statistical significant SPI-identified parameters in terms of effect sizes and 21 

spatial consistence. This latter is done by normalizing the parameters by their corresponding 22 

EOF standard deviation; then, they are mapped and linked with their corresponding EOF 23 

structures to allow interpretation of the synoptic driver.   24 

http://onlinelibrary.wiley.com/doi/10.1002/qj.788/full#bib21
http://onlinelibrary.wiley.com/doi/10.1002/qj.788/full#bib28
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4. Case study  1 

4.1 The Western Andean Ridge (WAR) and the regional climate setting  2 

The WAR (0-6
o
S) is a transect of the Tropical Andes of unique characteristics. The two 3 

meridional oriented ranges merge into one mass of rugged lower-elevation peaks at ~4
o
S, the 4 

so-called “Andean depression” (Figure 1c). The ridges down to the coast branches a series of 5 

heterogeneously oriented catchments. We apply the framework on 11 west facing catchments 6 

along the WAR, each one representative for a catchment-weather regime. The WAR is lower-7 

bounded by the region which recorded the greatest annual rainfall anomalies during EN 8 

episodes (Figure 1a-b) [Rossel and Cadier, 2009]. 9 

4.2 Weather regimes  10 

In the WAR, weather regimes might be differently accentuated during normal years 11 

and episodes of surplus/deficit of oceanic moisture driven by SST anomalies in the eastern 12 

equatorial Pacific [Bendix, 2000]. Pineda and Willems [2016] propose the following WTs: (i) 13 

excess/(ii) deficit of moisture offshore of the WAR, the wet/dry states (WT1/WT2); (iii) 14 

advection embedded in easterlies emanating  from the Amazonia, the transitional wet-dry 15 

state (WT3); and (iv) moisture export from the Inter Tropical Converge Zone (ITCZ) 16 

displacement and eastward expansion of the South American Monsoon,  the dynamically–17 

noise state (WT4) 18 

4.3 Regional Climate  19 

Large-scale moist convection is primarily organized by the ITCZ which varies 20 

approximately in synchrony with the nearby SSTs. The spatial domain in which SSTs 21 

variability influence heavy rainfall events spans from 6ºN-14ºS and 106ºW-coastal line [e.g. 22 

Bendix 2000; Bendix and Bendix, 2006; Pineda et al., 2013]. This domain embraces the 23 
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eastern equatorial Pacific where the EN and Humbolt currents meet, the EN 1.2 and a great 1 

portion of the EN 3 regions [Bendix et al. 2011; Trenberth, 1997]. To obtain a synoptic scale 2 

perspective for the atmospheric circulation, the domain 8ºN-15ºS and 65-105ºW was selected. 3 

Takahashi [2004] and Douglas et al. [2009] showed that heavy rainfall in the WAR’s coastal 4 

area had a strong westerly wind component whose anomalies extended 3500-1000 km off the 5 

coast. A description of the regional climatology is presented in Emck [2007], and more 6 

generally for the tropical atmospheric circulation in Peters and Richter [2014]. 7 

Table 3 summarizes results of the SVD analysis on composite anomalies of the 8 

Extended Reconstructed SST and NCEP-NCAR reanalyses of horizontal wind fields of the 9 

lower (850 hPa) and upper (300 hPa) troposphere. We rank the spatial patterns (Figure 17) of 10 

the most conspicuous EOFs emerging from the SVD analysis of SSTs, lower and upper wind 11 

anomalies as: (i) Weak/moderate the El Niño (EN) type, (ii) Strong the EN type, (iii) Normal-12 

rainy season, and (iv) Cold upwelling-like SSTAs. For example, the EOF3 score series of 13 

SSTA (Figure 6) shows that the highest amplitudes and their persistence correspond to the 14 

1997-98 and 1982-83 ENs. A greater description and interpretation of the major climate 15 

patterns influencing the WAR is presented in Appendix B.  16 

5. Results and discussion 17 

 5.1 NGEV model validation  18 

 Figure 7 shows the fitted NGEV models to the monthly maxima of daily precipitation 19 

(Pmax) on a key high altitude station, SUS, highlighting unusual rainfall extremes during 14 20 

EN events. After the inclusion of covariates (SSTA, uA and vA) into the saturated best 21 

interannual model, the estimation of high rainfall intensities (e.g. EN outliers) improves. 22 

Clearly, confidence bands are wider for the best interannual model, against the more 23 
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parsimonious best seasonal model. Quantile plots for the best seasonal and interannual models 1 

(Figures 8) shows that both weather and climate models perform well with respect to the 2 

given data; there is improvement for most of the models incorporating climate covariates, 3 

especially for high rainfall intensities.  4 

Figure 9 shows the SPI parameter identification sequence and results of the leave-one-5 

year-out cross-validation for the ith-order increasing climate models. Pearson’s correlations 6 

between the cross-validated quantiles, Pq, and observations are lower than their cross-7 

validated counterparts computed from the null-weather model Mi
seas: 0.694, 0.691, 0.588, 8 

0.719, 0.66, 0.672, 0.619 and 0.612 for PTO, SMA, COR, CAL, CHI, PAL, SUS and GIR 9 

respectively. Thus, correlations decrease with model order implying some degree of 10 

overfitting. This is not surprising when assessing predictive power of explanatory models 11 

since a parsimonious but less true model can have a higher predictive validity than truer but 12 

less parsimonious model. This is because, the former seeks to minimize the combination of 13 

bias and variance errors, occasionally sacrificing theoretical accuracy, see section 1.5 in 14 

Shmueli [2010]. By definition, explanatory models are intended to fit data for theory building 15 

rather than to describe data structure parsimoniously as it would be awaited from predictive 16 

models. Nevertheless, even in the presence of high order saturated or ‘overfitted' models, 17 

Pearson’s correlation computed on the holdout datasets remains above 0.50 showing that 18 

explanatory models hold also some  predictive qualities.  19 

Figure 10 shows estimates of the percentage of SNR removal after application of the 20 

ith-order increasing climate-filter model models. Empirical SNRs values larger than 100 show 21 

the gain on signal detachment with respect to the weather-noise models, M0. The SST-filter 22 

model shows a large SNR value because the ensemble of instantaneous quantile Pq responses 23 
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yielded by SST-only filter models accounts for much of variability (energy), see Figure 5, of 1 

the embedded signal in the Ps+n .Thus, we consider such SNR as the ‘optimal’ estimator to 2 

benchmark the efficiency of noise-reduction yielded by SST plus wind filter models. For the 3 

ensemble of quantile responses generated by the coupled SST plus wind models the 4 

percentage of detached signal is lower due to the noise added for the models incorporating 5 

winds. We note that the percentage of SNR removal reaches an inflection point at about M10, 6 

then after the gain in signal detachment is minimal. In any case, at the highest order model, 7 

M25, the gain on signal detachment is about half of the one obtained for the SST-only filter 8 

model, which we consider as a proxy for optimal signal detachment.   9 

5.2 Selection of covariates 10 

 Figure 11 and 12 shows the SPI parameter identification sequence and the significance 11 

(p-values) of seasonal and interannual parameters against model order obtained from the 12 

likelihood ratio test for nested models, e.g. single-harmonic model M1 vs. null stationary 13 

model M0 for the seasonal models; and single-climatic term M1 vs. null weather model M0 for 14 

the climate models. The number of parameters increases by two per added-sinusoidal 15 

harmonic and one per added-climatic term for the weather and climate models, respectively. 16 

In general terms, likelihood ratio test statistics (p-values) provides the basis to include/trim 17 

covariates in nested models. In the proposed framework, however, the selection of meaningful 18 

variables is performed in a constrained manner, guided by the statistical significance of causal 19 

covariates and also by the size and spatial consistence of their coefficients. This renders the 20 

theoretical justification for analysing covariates effects on the tails of the joint distribution of 21 

Ps+n (Section 5.3). 22 
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Table 2 shows the performance of different nested NGEV model levels and the 1 

likelihood ratio test between saturated and null sub-models. Models including SS                             2 

T and wind parameters are found significant and outperform sub- models. However, for PAL 3 

and SUS, the inclusion of both sets of covariates yields models with the same number of 4 

parameters as those obtained by models including only winds. Thus, the latter models show 5 

overfitting effects when SSTs are disregarded. In most cases, sub-models show the highest 6 

Pearson’s correlation between the hindcasted time-dependent 50-year return period quantile 7 

(Pmax50) and observations.  8 

By construction the NGEV models result in complex parameterizations, harmonic 9 

terms for seasonality and mixed climatic terms for interannual variability. While the first one 10 

accounts for the stochastic nature of weather, the second one represents the deterministic sea 11 

and/or wind signal hidden in the tail of the distributions of Ps+n. Namely, climate covariates 12 

identified this way result from a regression fitting into a high-dimensional orthogonal to the 13 

weather subspace. Note that some might argue such climate-to-weather subspace for 14 

parameter learning is over-specified and prone to overfit models when exploring the pool of 15 

causal covariates. As mentioned above, overfitting is indeed plausible in this modeling 16 

approach as it arises from the methodological assumptions, the existence of low-rank linear 17 

model for climate signal. This has, however, not damming effects for the modeling 18 

framework since the goal is to test all causal hypothesis upon theoretical constructs. Besides, 19 

the SPI algorithm attempts to minimize overfitting effects by selecting the parameter that 20 

potentially produce the greater decrement of the AIC, the  most influent one in each fitting 21 

iteration. And, at the end it provides with t-statistics, standard errors and the log-likelihood 22 

function for each parameter estimate, from which one can compute likelihood ratio tests to 23 

justify inclusion/exclusion of covariates and so infer the ‘true’ structure of the models.   24 
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5.3 Weather drivers of seasonal variability  1 

Figure 13a-c and 14 illustrate the Dec-May weather-type characterization in terms of 2 

the thermally-driven (WT1), transitional wet-dry (WT3) and dynamically-noise (WT4) wet 3 

states, and the dry state (WT2) at Dec-Jan, Feb-Mar and Apr-May sub-seasons. Table A1 4 

shows the parameters of the saturated seasonal models for Pmax. Below, we discuss model 5 

structural differences (Figure 15 left-panels) in terms of i) the seasonal Pmax50, ii) the mean 6 

intensity of Pmax, seasonal location parameter, and iii) the dispersion of the underlying 7 

process, seasonal scale parameter. The seasonal shape parameter, reflecting the strength of the 8 

in-year variability, is presented only for information on the tail behaviour.  9 

Northern WAR (~0-1.5ºS): The mean intensity of Pmax50 fluctuates in the range of 10 

about 120-170 mm within Jan-Apr e.g. in PTO. This inter-month variability is captured by 11 

complex parameterizations for (t) at PTO and (t) at SMA, the (t) shows a bounded tail ( <0) 12 

during the entire rainy season. Terrain elevation only attenuates the mean intensity ((t)), e.g. 13 

CHI, whereas the in-year variability ((t)) remains similar to that seen in lowlands. This 14 

reveals a Dec-May season-lasting distribution of rainfall extremes. We argue that i) this is due 15 

to deep convection embedded in the ITCZ (WT4) and high-frequency re-evaporation cycles 16 

driving wet-dry spells (WT3) over the WAR’s top, e.g. SMA in Figure 14; and ii) this 17 

mechanism holds in the northern valleys (0-1.5ºS) where north and south catchment 18 

boundaries are less pronounced (Figure 1).  19 

Central WAR (~2-2.5ºS): Mean rainfall extremes are lower (Pmax50 peaks of about 20 

75 mm) with the largest amplitude centred within Feb-Mar. The parameter (t) describes a 21 

prominent Feb-Mar sub-season at PAL; the parameters (t) and (t) represent early fluctuations 22 

in Sep-Oct and light tail behaviour, respectively. The simplest model is encountered for SUS 23 
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with only 1 harmonic for the (t) and a near zero value for the (t), describing a smooth annual 1 

cycle. Note that SUS lies in a uniquely west-east oriented catchment. We will later show, 2 

when unveiling the synoptic drivers, that in this particular catchment rainfall extreme 3 

anomalies are driven by year-round mixed wind circulation patterns.   4 

Southern WAR (~3.15-5ºS): Highland stations on the inner-WAR axis are described 5 

by the model structure at GIR. The parameters (t), (t) and (t), shifting to negative values 6 

within Nov-Dec, show a quasi-bimodal distribution, featuring the occurrence of 7 

thunderstorms at the beginning of the rainy season and likely triggered by overhead sun in 8 

end of Sep-Oct [Emck, 2007]. The (t) at GIR (Figure 13d) shows that mountain valleys in 9 

Jubones catchment are spots of low rainfall intensities. Conversely, west of the inner-WAR 10 

axis at ~3.5-5ºS, deep convective regimes weaken because the high concentration of peaks 11 

branching V-shaped valleys inhibits large-scale organized convection, e.g. contraction of the 12 

WT4 in PTE (Figure 14). Hence, ZAR, ALA and STO exhibit symmetric and enhanced peaks 13 

in Feb-Mar which are attenuated in the “Andean depression”, e.g. ZAR and STO. Emck 14 

[2007] reported a high concentration of convective showers nearby ALA within Feb–Apr, 15 

which we prove being more local and thermally driven (WT1) rather than of oceanic or large-16 

scale organized genesis.  17 

5.4 Climate drivers of interannual variability  18 

 In principle, the climate forcing should emerge from a subspace of highly correlated 19 

signals which in our implementation are EOF time coefficients of ocean-atmospheric 20 

circulation anomalies, retrieved by the SPI algorithm by preserving the climate signal, sea 21 

and/or wind component, on low order models while nulling weather terms on high-order 22 
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models. Table A2 shows the absolute values of the identified location and scale parameters 1 

for SSTA, u/vA 850 hPa and u/vA 300 hPa.  2 

Figure 16 shows normalized parameter coefficients for the interannual Pmax50. They 3 

represent the contribution of each standardized EOF score to the location and scale 4 

parameters, and are visualized as absolute values for SSTA, and vectors for u/vA 850 hPa and 5 

u/vA 300 hPa. Below, we describe statistical significant and spatial coherent parameters 6 

together with the time-dependent 50-year return period quantile’s interannual variation, 7 

δPmax50, (Figure 15 right-panel) to illustrate conspicuous drivers identified by the framework 8 

as well as to formulate statistically-informed hypothesizes on the climate forcing .  9 

Northern WAR (~0-1.5ºS): PTO in Vinces catchment shows the largest interannual 10 

variation (δPmax50) driven by low-level southerly winds crossing the equator (beta-EOF7), 11 

typical for weak EN situations [Bendix and Bendix, 2006; Bendix et al., 2011]. These winds 12 

would convey moisture of the weak/moderate EN-SSTA type (beta-EOF1) towards the 13 

northern WAR. At SMA, the largest anomaly originates from the low-level meridional wind 14 

component of the normal-rainy season (beta-EOF3), whereas the strong and weak/moderate 15 

EN-SSTA type (alpha-EOF3 and -EOF1) contributes marginally. Thus, moist instability 16 

originated from strong SSTA gradients off the WAR’s coast appears dimly along the low 17 

ridge-valley line, it lacks of advection wind driver.   Most importantly, the NS oriented 18 

cordillera (>2500 masl) becomes a veritable barrier because it channels (parallel to the WAR) 19 

south-easterlies from the South-Pacific high, and deflects to the north weakened equatorial 20 

monsoonal westerlies that appear during Dec-Jan.  21 

COR, in Babahoyo-Pallatanga catchments, shows positive δPmax50 in November each 22 

~1-4 years which strengthens with altitude, e.g. PAL and CHI. In these stations, a mixture of 23 
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upper-level wind situations emerges in the dispersion parameters, the most consistent being 1 

the zonal component of the normal rainy-season (alpha-EOF7). While the weak/moderate EN-2 

SSTA (beta-EOF1 in COR and alpha-EOF1 in CHI) fuels positive anomalies, the normal-3 

rainy season SSTA (beta-EOF4) appears as the second driver in COR. By contrast, at the 4 

lowland station CAL, the strong EN-SSTA (beta-EOF3) becomes the major driver of positive 5 

anomalies followed by the normal-rainy season SSTA (beta-EOF4); and, the low-level 6 

circulation identifies the meridional component of north-westerlies (beta-EOF6), a normal-7 

rainy season like subtype. We hypothesize this latter is a weakly reversed low-level 8 

circulation  indicating either land-sea breeze phenomena [Goldberg et al., 1987; Bendix and 9 

Bendix, 1998], or a local circulation nearby the Gulf of Guayaquil transporting moisture to the 10 

central WAR. In any case, the surplus of oceanic moisture unique for the strong ENs seems 11 

primarily advected at the lowlands, bounded by the ridges at CAL.      12 

Central WAR (~2-2.5ºS): The δPmax50 in SUS and GIR (Cañar and Jubones 13 

catchments) reveals year-round wind-driven forcing. At SUS, the largest exogenous influence 14 

occurs at the beginning of Nov-Dec. We find the zonal component of a strong EN-like wind 15 

situation (beta-EOF1) being the major driver of positive anomalies. Superimposed on this, 16 

equatorial convergent trades of the normal-rainy season (beta-EOF3) also contribute, 17 

followed by the EN-like south-westerlies (beta-EOF7). The SSTA shows only a minor 18 

contribution from the weak/moderate EN type (alpha-EOF1). We suggest it co-exists only 19 

with well-developed westerlies, e.g. EOF1 low-level flow, when the unique catchment 20 

orientation, almost perpendicular to the WAR, boosts this ocean-wind channeled forcing. All 21 

these concurrent low-level wind drivers explain the in-year extreme rainfall anomalies (Figure 22 

7). The abundance of mixed winds both equatorial monsoonal westerlies in DJF and EN-like 23 

winds help to explain why such enhancement strengths at the beginning of the rainy season.   24 
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Southern WAR (~3.15-5ºS): The situation radically changes in the “Andean 1 

depression”, the variability is explained by seasonal forcing, e.g. ZAR in Puyango-Tumbes, 2 

ALA in Alamor and STO in Piura. Despite being exposed to Amazonian circulation, no single 3 

interannual variation, ascribed to our hypothetical regional climate forcing, was identified. 4 

We hypothesize the high density of low protruding peaks (~1500-2000 masl) in the  “Andean 5 

depression” detaches local regimes from regional SSTs patterns and dampen meridionally 6 

low-level airflows, leaving local hygrothermal gradients as the only control of the high in-7 

season rainfall intensities and their anomalies. 8 

6. Summary and conclusions 9 

The increasing volume of climate data from observations and analysis products presents 10 

the end-user community in data-sparse regions with unprecedented data analysis challenges 11 

and opportunities. In this paper, a statistical framework to mine climate data for the study of 12 

climate/weather drivers of multisite rainfall extremes is presented. The unique feature of this 13 

framework is that no assumption on the explanatory power of the climate covariates is made a 14 

priori. They instead are brought out in a reduced climate-to-weather signal subspace. The 15 

framework builds on NGEV models which characterizes in-season variability by means of 16 

harmonic models and weather-type partitioning. The climate forcing is decoded into a 17 

common signal subspace built via singular value decomposition of the underlying drivers 18 

using semi-automatic parameter identification (SPI) algorithm. The proposed NGEV models 19 

performs well with respect to the given data individually, and also as an SVD filter-bank  20 

model because it yields a signal detachment of  about half of the one that could obtained from 21 

a pseudo optimal filter model.   22 
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In a case study application over the Western Andean Ridge (WAR), the framework 1 

unveils extremal properties in the tails of the joint distribution of multisite rainfall extremes 2 

by discriminating meaningful local and large-scale climatic drivers, which otherwise would 3 

have been overlooked by existing Gaussian-based multivariate regression techniques. As 4 

result, conspicuous drivers of rainfall extremes emerge as well as novel insights which add to 5 

event based studies available in literature e.g. Bendix [2000] and Bendix and Bendix [2006].  6 

North of 2.5º, catchments are found more influenced by large-scale organized 7 

convection, in which oceanic moist given by the EN development is primary distributed by 8 

terrain-blocked low-level flows. The advection drivers are essentially southerlies which 9 

convey weak/moderate EN-SSTA moist to the WAR’s northernmost edges. Strong EN-SST 10 

anomalies signals only appear in the central WAR (~1.5-2ºS); their associated moisture seems 11 

locally advected at lowlands. This somehow redefines the long-standing idea that strong SST 12 

anomalies influence is topographically bounded by the WAR’s relief, e.g. Bendix [2000] and 13 

Rossel and Cadier [2009]. South of ~2.5ºS, the WAR seems detached of regional ocean-14 

atmospheric patterns. There, local-to-meso-scale forcing dominates and shows a twofold 15 

pattern. Overall, we show that the meridional component of the tropical airflow is what 16 

matters for moist convection distribution leading to high rainfall intensities alongside the 17 

WAR, and that the zonal wind component of the EN types (e.g. the reversal of the Walker 18 

circulation), which has been traditionally stressed in several EN event based studies, is not 19 

evidenced in the inland continent. Moreover, by contrast to mid-latitude western coastal 20 

mountain ranges [Neiman et al., 2002] the southern WAR seems to dampen meridional 21 

airflows rather than favouring pathways for zonal large-scale moisture transport, leaving local 22 

hygrothermal gradients to control rainfall extremes anomalies. More importantly, the 23 
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detection of these climatic drivers in a purely data-driven manner renders validity to the 1 

approach here presented.  2 

Since our approach is based on signal-to-noise separation methods, it inherits its core 3 

assumptions: the existence of a low-rank linear model for climate signals and uncorrelated 4 

noise for the weather-like forcing, and the choice of the parameter optimization criteria to 5 

perform the separation. In the former, a crucial assumption is that atmospheric circulation can 6 

be linearly decomposed. This holds for the tropical atmosphere under study in which air 7 

masses are fairly homogenous, but in general this is not the case. In reality, atmospheric 8 

dynamics is mostly nonlinear; then the use of statistical linear decomposition might yield 9 

patterns that do not have necessary physical meaning, their merit is mostly descriptive. In the 10 

latter, the SPI, a likelihood-based optimization algorithm, assumes that components of the 11 

climate signal can be nulled into a white-noise subspace. This fundamental assumption 12 

requires special consideration on case-by-case applications. However, the intelligibility and 13 

transparency of a regression-type method such as the SPI algorithm plus a minimal criterion 14 

for validating parameter consistence against current understanding of the climate forcing are 15 

the instrumental tools. They should turn the present approach an appropriate framework to 16 

mine climate data and characterize rainfall extremes in other geographic regions.     17 

  18 
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Appendix A. Confidence intervals 9 

For a large sample size n and assuming that the proposed model is valid. Let l (.) and    denote 10 

the log-likelihood and the maximum likelihood (ML) estimator, respectively. Then, the 11 

distribution of    is approximately multivariate normal with mean  (the true parameter 12 

values) and covariance matrix given by the inverse of the observed information matrix I, 13 

defined by  14 

      
      

      
                                 (18) 15 

Evaluated at        If an arbitrary term in the inverse of      is sij, the square root of the 16 

diagonal entry sii is approximately the standard error,         , of the ML estimator    . 17 

Therefore confidence intervals for i can be obtained in the form              ),     18 

        )], where z0.95 = 1.96 gives a 95% confidence interval. 19 

  20 
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Appendix B. Climate drivers interpretation  1 

B.1 SSTA patterns 2 

 The EOF1 structures show a warm water tongue over the EN 1.2 and 3 regions and its 3 

score shows a Pearson’s correlation equals to 0.78 with EN 1.2 index. Thus, this situation 4 

shows the climatological source of oceanic moisture for the WAR given by SSTA 5 

development of the weak/moderate EN type. The EOF3 and EOF5 illustrate contrasting 6 

SSTA patterns. The EOF3 shows the warmest anomalies off the continent, e.g. the southward 7 

shift of the highest isotherm (SST> 28ºC) from the equator to 10ºS [Bendix, 2000]; and its 8 

score confirms that the highest amplitudes and their persistence correspond to the 1997-98 9 

and 1982-83 ENs, in which a great amount of sensible and latent heating was available for 10 

convection. The EOF5 structures show zonal SSTA gradients with a warm tongue 11 

approaching the coastal line bounded by cold water emerging from the upwelling region off 12 

the Peruvian coast. While the temporal score for this EOF5 provides weak evidence of La 13 

Niña (LN) conditions, their structures resemble LN patterns over the central Pacific [Larkin 14 

and Harrison, 2002]. For the sake of classification, we regard the EOF5 as cold upwelling-15 

like waters. The EOF4 resembles SST latitudinal gradients which occur during the normal-16 

rainy season of Ecuador when poor positive SSTs development still cause intensification of 17 

precipitation [Bendix and Bendix, 2006; Emck, 2007], but also during weak ENs as shown in 18 

1992 by Bendix [2000]. However, we consider the EOF4 as the normal-rainy season type. A 19 

comparison with a SVD analysis conducted on NOAA Optimum Interpolated SST Advanced 20 

Very High Resolution Radiometer  yields similar EOFs up to the EOF5.     21 

B.2 Atmosphere circulation  22 

B.2.1 Lower troposphere (850 hPa) 23 



  

 35 

 The EOF1 scores of the zonal and meridional anomalies (uA/vA) reveal an EN-like 1 

flavour. Its structures show westerly anomalies (0-6ºS) that extends over the continent. 2 

Takahashi [2004] and Douglas et al. [2009] reported this flow-type over the WAR’s vicinity, 3 

and Schwing et al. [2002] described similar circulation over the equatorial Pacific during the 4 

1997-98 EN. Thus, this situation represents a strong EN lower-level circulation type. The 5 

EOF3 of uA/vA show a low-level flow situation matching the normal-rainy season circulation. 6 

Bendix and Laurer [1992] explain that during the normal-rainy season the NE trade winds can 7 

be deflected to NW by the Andes and the change in the Coriolis parameters. Superimposed on 8 

this wind field direction shift, warmer equatorial SSTs interacting with weakened NE trades 9 

may allow monsoonal currents to reach the Ecuadorian coast. These landward, north of the 10 

Equator, westerly winds appear in the EOF3 structures. Such currents let local westerlies 11 

transporting moisture eastward [Emck, 2007], by which the WAR receives larger quantities. 12 

The EOF7 structures show low-level trades along the Peruvian and Ecuadorian coast likely 13 

originating in the South Pacific anticyclone. Southerly winds crossing the Equator have been 14 

described to characterize the EN lower circulation type [Bendix and Bendix, 2006] but they 15 

also may occur during the normal-rainy season. The highest structures that appear almost 16 

parallel to the Peruvian coast (4-12ºS) suggest that this circulation-type is funnelled by the 17 

Peruvian Andes.     18 

B.2.2 Upper troposphere (300 hPa)  19 

 The EOF1 of the zonal and meridional anomalies show well-developed easterlies. 20 

Together with its low-level EOF1 counterpart both situations represent the reversal of the 21 

Walker circulation which has been traditionally argued to be a distinctive feature during 22 

several moderate and strong EN, e.g. Wyrtki, 1975. The EOF7 depicts a circulation pattern 23 
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consistent with the normal-rainy season. This is an upper divergence over the Amazon region 1 

with well-developed easterlies over the Ecuadorian and Colombian borders that extend off-2 

shore the northern Ecuadorian coast. The south-easterly upper flow over the EN 1.2 region 3 

and the WAR will result from the bend of the warm anticyclone suppressed likely by the large 4 

action ratio of the sub-tropical jet [Bendix and Laurer, 1992]. Similar situation is shown for 5 

the upper level flow by Bendix and Bendix [2006] for the normal-rainy season.  6 

 The remaining EOFs could not be associated with documented atmospheric 7 

circulation situations. Time-lagged correlation analysis showed that one-month lagged EOFs 8 

for SSTAs, and contemporaneous EOFs for the uA and vA synchronize the best with Pmax at 9 

the WAR’s gateway. Even though, we could not document most of the EOFs of uA/vA850 10 

and uA/vA300, we used all one-month lagged EOFs for SSTAs and contemporaneous ones for 11 

winds to build the enhanced climate-to-weather signal subspace as they explain a substantial 12 

fraction of the energy in the surrounding climate forcing. 13 

 14 

15 
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Figure 1. (a) The Western Andean Ridge (WAR) in Ecuador and Peru with the limits of 1 

strong and significant ENSO influence. (b) Rain gauge stations in the WAR and coastal plain. 2 

Region with the greatest annual rainfall anomalies (1964-1993) (dark gray shaded area) and 3 

limits of ENSO influence (black dashed lines), and catchments (grey dashed line). (c) WAR’s 4 

terrain relief. The elevation exaggeration factor is 8. 5 

Figure 2. Time series of monthly maxima of daily precipitation (Pmax) at Puerto Ila, 6 

Suscalpamba and Santo Domingo (dashed lines) and SSTA (grey bars) in the EN 1.2 region. 7 

Figure 3. Flowchart of the present analysis framework. Interannual level adapted from 8 

Mínguez et al. [2010], AIC stands for Akaike’s information criterion and v for optimal 9 

number of parameters.  10 

Figure 4. Scree plot for the eigen value decomposition (EVD) of multisite Pmax over the 11 

WAR. Eigenvalue spectrum (broken-dotted line) and cumulative explained variance (solid 12 

line).    13 

Figure 5. Probability density function (PDF) for SSTA-EOF scores 1-5.  14 

Figure 6. Score series of the EOF1 (solid line), EOF3 (dashed line) of the ERSSTA and 3-15 

month running means of positive SSTA in the EN 1.2 and 3 region (grey area). 16 

Figure 7. 50-year return period seasonal dependent quantile (dark solid line) with 95% 17 

confidence bands (dark grey area) and interannual dependent quantile (grey dashed line) with 18 

95% confidence band (light grey area). Pmax (grey dots) and Pmax values during 14 EN 19 

events (black-triangles).  20 

Figure 8. Quantile plots for the saturated best seasonal model and for the saturated best 21 

interannual models for PTO, SMA, COR, CAL, CHI, PAL, SUS, GIR, ZAR, ALA and STO. 22 

Figure 9. Interannual NGEV model parameterizations at 8 stations in the WAR (Table A2). 23 

Graded colours show Pearson’s correlation of leave-one-year-out cross-validated models. 24 

Parameter codification: beta (b) and alpha (a) for the location and scale EOF terms, 25 

respectively. Number of parameters increases by one in upper line. Lower line: index i=1-7 26 

represents the EOF; st stands for SSTA, u8,v8 for uA and vA at 850 hPa and  u3,v3 for uA 27 

and vA at 300hPa. Model order ranges from the null (best-seasonal model) M0 to the saturated 28 

best-interannual NGEV model Mn-1.  29 

Figure 10. Signal-to-noise ratios computed after application of the ith-order increasing 30 

climate-filter models including SST and SST+winds, Models M0 -M25 31 

Figure 11. Seasonal NGEV model parameterizations at 10 stations in the WAR (Table A1). 32 

Graded colours show significance level (p-value) of parameters: beta (b), alpha (a) and 33 

gamma (g) for the location, scale and shape harmonic functions, respectively. Number of 34 

parameters increases by two. Model order increases from the null M0 to saturated best-35 

seasonal NGEV model Mn-1. 36 

Figure 12. Interannual NGEV model parameterizations at 8 stations in the WAR (Table A2). 37 

Graded colours show significance level (p-value) of parameters. Parameter codification same 38 

as in Figure 9.  39 
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Figure 13. Weather-type characterization during the core rainy season. (a) Dec-Jan, (b) Feb-1 

Mar, and (c) Apr-May in terms of thermally driven (WT1), transitional wet-dry (WT3) and 2 

dynamically-noise (WT4) wet-states. Radiuses of circles are normalized to absolute values of 3 

the seasonal-dependent 50-year return period quantile (harmonic amplitudes). (d) Seasonal-4 

dependent location parameter  (harmonic amplitudes).  5 

Figure 14. Weather-type characterization during the core rainy season. (top) San Juan La 6 

Mana (SMA), (middle) Giron (GIR), and (botton) Puente (PTE) in terms of thermally driven 7 

(WT1), transitional wet-dry (WT3), dynamically-noise wet-states (WT4) and dry-state 8 

(WT2). The frequency of days is normalized to absolute values of the seasonal-dependent 50-9 

year return period quantile (Pmax50). 10 

Figure 15. Left panels: Monthly maxima of  daily precipitation (Pmax), seasonal dependent 11 

location (grey line) and scale (dashed grey line) parameters and 50-year return period quantile 12 

(black line). Right panels: Anomaly series of the time-dependent 50-year return period 13 

quantile (Pmax50).  14 

Figure 16. Normalized parameter coefficients for the interannual dependent 50-year return 15 

period quantile. Coefficients are normalized to represent the related contribution to the 16 

location (beta) and scale (alpha) parameters of each standardized EOF score for SSTAs (a-b), 17 

u/vAs at 850 hPa (c-d) and u/vAs at 300(e-f) . Hillshade of catchments Vinces (1), Babahoyo 18 

(2), Yaguachi (3), Cañar (4), and Jubones (5). 19 

Figure 17. Major ocean-atmospheric synoptic pattern (using EOFs of ERSST and 20 

NCEP/NCAR wind fields between 1964-2010) influencing stations/catchments in the WAR: 21 

a) Pto Ila/Vinces b) San Juan La Mana/Vinces, c) Corazon/Babahoyo, d) Chillanes/Babahoyo, 22 

e-f) Caluma/Babahoyo, g,h,j) Suscalpamba/Cañar and i) Pallatanga/Yaguachi. Catchments are 23 

shaded in red. Grey shaded area represents the region with the greatest rainfall anomalies 24 

(1964-1993).                                      25 

 26 

 27 

 28 

 29 
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Table 1. Rain gauges information and catchment related attributes. 1 

Code  Station  Period  

Lat. 

(
o
S) 

Long. 

(
o
W) 

Altitude 

[masl] 

No. 

Pmax 

Upslope  

Aspect 
Catchment 

Mountain barrier  

> 2000 masl [%] 

PTO Puerto Ila
*
 1964-2010 0,48 79,34 319 548 NW 

Vinces 16 

SMA San Juan La Mana
*
 1964-2010 0,92 79,25 215 506 NW 

COR Corazon
*
 1964-2010 1,13 79,08 1471 547 NW   

CAL Caluma
*
 1966-2006 1,62 79,29 350 354 NW Babahoyo 21 

CHI Chillanes
*
 1964-2010 1,98 79,06 2330 537 SE   

PAL Pallatanga
*
 1967-2010 2,00 78,96 1500 469 W 

Yaguachi 84 

MIL Milagro
 

1964-2010 2,12 79,60 13 552 - 

SUS Suscalpamba
*
 1964-2009 2,46 79,06 2620 492 N 

Cañar 66 

INC Puerto Inca
 

1966-2009 2,53 79.54 50 436 - 

GIR Giron
*
 1964-2009 3,15 79,15 2130 507 SE 

Jubones 66 

PAS Pasaje
 

1964-2009 3,31 79,77 40 487 - 

ZAR Zaruma
*
 1964-2009 3,69 79,61 1100 503 SE Puyango-

Tumbes 
20 

TIG Tigre
 

1964-2010 3,77 80,45 61 474 - 

ALA Alamor
*
 1964-2010 4,02 80,02 1250 504 S 

Alamor 5 

SAU Saucillo
*
 1968-2010 4,25 80,20 328 488 SE 

CAR Cariamanga
*
 1964-2009 4,33 79,56 1950 512 NW Catamayo 31 

PTE 
Puente 

Internacional
*
 

1972-2007 4,39 79,96 415 416 FLAT Macara 24 

AYA Ayabaca
*
 1964-2009 4,63 79,71 2830 537 E 

Quiroz 6 

PAR Paraje Grande
*
 1972-2007 4,64 79,72 1060 466 SW 

STO Santo Domingo
*
 1970-2008 5,03 79,88 1704 454 SE 

Piura 16 

MOR Morropon
 

1964-2007 5,18 79,98 109 513 - 

 2 

* Stations located in the Western Andean Ridge. 3 

 4 

  5 
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Table 2. Performance of different nested NGEV model levels and likelihood ratio test 1 

between saturated against null sub- models. 2 

Code 

 

Mi
seas Mi

SST Mi
wind Mi

SST+wind Code Mi
seas Mi

SST Mi
wind Mi

SST+wind 

PTO llh -2420 -2395 -2391 -2367 CHI -590 -567 -554 -539 

 

K 17 4 13 18 

 

19 4 9 15 

 

AIC 4873 4832 4843 4805 

 

1219 1184 1164 1146 

 

p-value 3.84E-10
a
 2.02E-07

b
 9.50E-07

c
 3.68E-09

d
 

 

1.78E-09
a
 4.37E-12

b
 4.03E-08

c
 3.2E-05

d
 

 

e
 0.7014

 a
 0.7029 0.7025

 c
 0.7026

 d
 

 

0.6719
 a
 0.6726

 b
 0.6749 0.6792

 d
 

SMA llh -2193 -2166 -2174 -2154 PAL -1651 -1635 -1610 -1597 

 

K 21 5 7 11 

 

17 7 18 18 

 

AIC 4428 4383 4405 4371 

 

3337 3318 3291 3264 

 

p-value 1.70E-10
 a
 4.32E-06

 b
 0.0005

 c
 2.09E-08

d
 

 

2.95E-05
 a
 3.65E-10

 b
 1.1E-11

 c
 -

 
 

 

e
 0.7009

 a
 0.7189

 b
 0.6877

 c
 0.7094

 d
 

 

0.6894
 a
 0.6979

 b
 0.6968

 c
 0.6984

 d
 

COR llh -2310 -2277 -2272 -2247 SUS -698 -664 -623 -610 

 

K 15 7 14 17 

 

9 7 24 24 

 

AIC 4650 4598 4601 4558 

 

1413 1359 1312 1286 

 

p-value 8.37E-12
 a
 1.06E-10

 b
 3.20E-09

 c
 9.42E-11

 d
 

 

3.35E-12
 a
 4.93E-20

 b
 4.76E-15

 c
 - 

 

e
 0.5981

 a
 0.5978

 b
 0.5976

 c
 0.5954

 d
 

 

0.6376
 a
 0.638

 b
 0.6381

 c
 0.6378

 d
 

CAL llh -1475 -1444 -1451 -1430 GIR -1708 -1703 -1684 -1679 

 

K 21 9 8 14 

 

15 2 7 9 

 

AIC 2991
 
 2948 2960 2930 

 

3447 3440 3413 3405 

 

p-value 6.87E-10
 a
 1.35E-07

 b
 3.71E-05

 c
 1.70E-07

 d
 

 

0.0035
 a
 0.0000

b
 0.0000

 c
 0.0033

 d
 

 

e
 0.7331

 a
 0.7446

 b
 0.71

 c
 0.7165

 d
 

 

0.638
 a
 0.6362

 b
 0.6384

 c
 0.6371

 d
 

seas
 Seasonal only model, 

SST
model including SSTs, 

wind
 model including winds, 

SST+wind
 model 3 

including SSTs plus winds. 4 

p-value of likelihood ratio test: 
a 

Mi
SSTvs. Mi

seas, 
b 

Mi
wind vs. Mi

seas , 
c
 Mi

SST+wind vs. Mi
SST, and 

d
 5 

Mi
SST+wind vs. Mi

wind . For c and  d the corresponding submodels include Mi
seas.  6 

e
 Pearson’s correlation between Pmax50 and Pmax for the same a-d pairs. 7 

 8 
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Table 3. SVD analysis for the composited anomalies of ERSST (SSTA) and NCEP-NCAR 1 

horizontal wind fields: zonal (uA) and meridional (vA) components at 850 and 300 hPa. 2 

 3 

EOF 

No. 

Variance (%) 
Rank 

EOF 

No. 

Variance (%) 
Rank 

EOF 

No. 

Variance (%) 
Rank 

Explained  Cumulative  Explained  Cumulative  Explained  Cumulative  

          SSTA           

1 86 86 w/mEN
a
 3 3 95 sEN

b
 5 1 98 cUW

d
 

2 6 92 

 

4 2 97 nRS
c
   

   

          

uA/vA 850 

           

1 38/29 38/29 sEN 3 10/10 66/54 nRS 5 5/6 78/67 

 
2 18/15 56/44 

 

4 7/7 73/61 

 

6 3/6 81/73 

 

    

  

   

7 3/4 84/77 w/mEN 

          

uA/vA 300 

           

1 60/30 60/30 sEN 3 11/13 86/64 

 

5 2/8 93/84 

 
2 15/21 75/51 

 

4 5/12 91/76 

 

6 2/4 95/88 

 
                7 1/3 96/91 nRS 

 4 
a 
Weak/moderate the El Niño (EN) type 5 

b 
Strong the EN type 6 

c
 Normal-rainy season 7 

d
 Cold upwelling-like SSTAs  8 

 9 

  10 
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Table A1. Parameter selection for the saturated best seasonal models of the stations in the 1 

WAR and their standard errors (s.e).  Units of and are expressed in mm. 2 

 3 

Station 
Location (t) Scale(t) Shape (t) 

o   (s.e) i i    (s.e) i i    (s.e)  (s.e) i  (s.e) i  (s.e)  (s.e) i  (s.e) 

PTO 33,23 1,01 1 -36,43 1,53 6 -0,62 1,24 2,67 0,04 1 -1,04 0,06 
   

0,22 0,04 1 0,37 0,06 

 
 

 
2 -4,02 1,15 7 -3,90 1,05   

 
2 -0,17 0,06 

   
  

 
2 0,13 0,06 

 
 

 
3 10,53 1,26 8 0,38 1,16   

       
  

  
 

 

 
 

 
4 2,97 1,21 9 1,64 0,67   

       
  

  
 

 

   
5 2,47 1,20 10 -0,63 0,70   

       
  

  
 

 

SMA 30,44 0,90 1 -36,39 1,25 
   

2,49 0,05 1 -1,16 0,07 7 0,12 0,06 0,28 0,05 1 0,43 0,07 

   
2 -1,33 1,11 

   
  

 
2 -0,03 0,07 8 0,06 0,06   

 
2 0,09 0,08 

   
3 11,39 0,69 

   
  

 
3 -0,22 0,07 9 0,12 0,05   

  
 

 

   
4 2,68 0,77 

   
  

 
4 0,14 0,07 10 0,01 0,05   

  
 

 

 
        

  
 

5 0,20 0,06 11 0,05 0,05   
  

 
 

 
        

  
 

6 0,12 0,06 12 -0,02 0,05   
  

 
 

COR 23,39 0,65 1 -23,88 0,94 
   

2,35 0,04 1 -0,94 0,06 5 0,14 0,06 0,26 0,04 1 0,13 0,06 

   
2 1,10 0,80 

   
  

 
2 0,11 0,06 6 0,15 0,06   

 
2 0,00 0,06 

   
3 6,86 0,61 

   
  

 
3 -0,13 0,06 

   
  

  
 

 

   
4 1,69 0,66 

   
  

 
4 0,20 0,06 

   
  

  
 

 

CHI 10,41 0,36 1 -11,66 0,55 5 0,11 0,44 -5,89 0,80 1 -10.4 0,61 5 1,35 0,56 1,89 0,45 1 2,75 0,63 

   
2 -0,36 0,46 6 -0,90 0,45   

 
2 1,80 0,61 6 1,07 0,59   

 
2 0,73 0,62 

   
3 3,85 0,45 7 -0,58 0,27   

 
3 -0,28 0,60 

   
  

    

   
4 1,67 0,50 8 0,53 0,28   

 
4 2,77 0,59 

   
  

    

PAL 13,89 0,51 1 -13,63 0,60 
   

1,76 0,05 1 -0,96 0,06 5 0,19 0,06 0,11 0,05 1 0,21 0,07 

   
2 1,62 0,49 

   
  

 
2 0,31 0,07 6 0,12 0,06   

 
2 -0,04 0,07 

   
3 4,35 0,37 

   
  

 
3 0,05 0,06 7 0,09 0,06   

    

   
4 1,10 0,37 

   
  

 
4 0,35 0,06 8 0,11 0,06   

  
 

 

SUS 18,05 1,11 1 -11,29 0,58 
   

-1,65 1,02 1 -5,25 0,55 
   

0,00 0,38 
 

 
 

   
2 1,29 0,49 

   
  

 
2 0,38 0,55 

   
  

  
 

 

   
3 2,80 0,44 

   
  

       
  

  
 

 

   
4 1,60 0,47 

   
  

       
  

  
 

 

GIR 11,14 0,41 1 -9,19 0,44 5 -1,08 0,29 1,62 0,04 1 -0,63 0,06 
   

0,20 0,04 1 0 0,05 

 
  

2 1,50 0,40 6 -1,29 0,29   
 

2 0,22 0,06 
   

  
 

2 0 0,06 

   
3 2,31 0,41 

   
  

 
3 -0,03 0,06 

   
  

  
 

 

   
4 2,77 0,39 

   
  

 
4 0,27 0,06 

   
  

  
 

 

ZAR 15,69 0,55 1 -20,40 0,86 5 -1,89 0,40 1,90 0,03 1 -1,15 0,04 
   

0,00 0,02 1 0,00 0,02 

   
2 1,76 0,60 6 -0,19 0,45   

 
2 0,19 0,05 

   
  

 
2 -0,15 0,01 

   
3 7,98 0,68 

   
  

       
  

  
 

 

   
4 -0,07 0,64 

   
  

       
  

  
 

 

ALA 10,33 0,34 1 -12,91 0,47 
   

-6,23 0,02 1 -20.8 0,01 
   

-0,01 0,00 1 -0,01 0,00 

   
2 2,13 0,22 

 
 

 
  

 
2 0,64 0,01 

  
 

  
 

2 -0,57 0,00 

   
3 3,61 0,11 

  
 

  
    

  
 

  
    

   
4 -0,50 0,14 

  
 

  
    

  
 

  
    

STO 7,87 0,11 1 -9,52 0,08 

  
 

-7,69 0,01 1 -19.3 0,01 

  
 

-0,03 0,00 1 -0,03 0,00 

  
 

2 1,45 0,13 

  
 

  
 

2 1,42 0,01 

  
   

 

2 -1,16 0,00 

 
 

 

3 3,14 0,01 

  
 

  
 

  
 

  
   

   
 

   

4 -0,25 0,04 

   

  
 

  
 

  
   

   
 

 4 

  5 
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Table A2. Parameter selection for the saturated best interannual models of the stations in the 1 

WAR and their standard errors (s.e). Units of and are expressed in mm. 2 

 3 
Station 

  Location (t)     Scale(t) 

OF SSTA (s.e) uA850 (s.e) vA850(s.e) uA300(s.e) vA300(s.e) OF SSTA(s.e) uA850(s.e)  vA850(s.e) uA300(s.e) vA300(s.e) 

PTO 1 2.97 1.21 - - 1.39 0.52 -0.33 0.10 - - 1 0.33 0.10 - - - - - - - - 

 
2 - - - - - - - - - - 2 -0.37 0.18 -0.21 0.08 -0.18 0.10 -0.08 0.03 - - 

 
3 - - - - - - -0.44 0.24 - - 3 - - - - -0.35 0.17 - - -0.24 0.08 

 
4 - - - - - - - - - - 4 -0.71 0.28 - - - - - - 0.20 0.08 

 
6 - - - - - - - - -1.40 0.81 6 - - - - - - 0.39 0.09 - - 

 
7 - - 2.10 1.43 5.22 1.69 - - - - 7 - - - - - - - - -0.17 0.06 

SMA 1 - - - - - - - - - - 1 0.35 0.05 - - - - - - - - 

 
2 - - - - - - - - 0.92 0.37 2 - - - - - - -0.06 0.03 - - 

 
3 - - - - 1.83 0.73 - - - - 3 0.74 0.24 - - - - - - - - 

 
4 - - - - - - - - - - 4 - - - - - - - - - - 

 
5 -4.02 2.35 - - - - - - - - 5 - - 0.22 0.11 - - - - -0.14 0.07 

 
6 - - - - - - - - - - 6 - - - - - - 0.12 0.08 - - 

 
7 - - - - - - 0.70 0.43 - - 7 - - 0.42 0.17 - - - - - - 

COR 1 2.47 0.45 - - - - - - - - 1 0.12 0.06 - - - - - - - - 

 
2 - - - - - - -0.90 0.23 - - 2 0.52 0.17 - - - - - - 0.12 0.06 

 
3 - - - - - - - - - - 3 -0.60 0.25 - - 0.24 0.17 - - 0.13 0.06 

 
4 4.12 1.96 - - - - - - - - 4 - - - - - - - - - - 

 
5 -20.97 3.98 - - - - - - - - 5 -1.96 0.47 - - 0.67 0.20 - - - - 

 
6 - - - - - - 2.89 0.53 - - 6 - - 0.25 0.15 - - - - - - 

 
7 - - - - - - - - 3.32 0.93 7 - - - - 0.62 0.23 0.26 0.09 - - 

CAL 1 - - - - - - - - - - 1 0.24 0.07 - - - - - - - - 

 
2 - - - - - - - - - - 2 - - - - - - - - - - 

 
3 7.22 2.00 - - - - - - - - 3 1.50 0.39 - - - - - - - - 

 
4 5.38 1.65 - - -2.80 0.58 - - - - 4 - - 0.35 0.15 0.74 0.24 0.14 0.07 - - 

 
5 - - 1.62 0.54 - - -1.12 0.34 - - 5 -1.84 0.62 - - 0.45 0.22 - - - - 

 
6 - - - - -3.50 1.01 - - - - 6 - - - - - - 0.21 0.10 - - 

 
7 - - - - - - - - - - 7 - - - - - - - - - - 

CHI 1 0.60 0.18 - - - - -0.22 0.04 - - 1 1.95 0.63 - - - 
 

- - -0.68 0.38 

 
2 - - - - - - -0.23 0.12 - - 2 - - -1.63 0.77 -1.74 1.11 - - - - 

 
3 1.36 0.75 - - - - -0.41 0.12 - - 3 - - - - - - -0.63 0.35 - - 

 
4 - - - - - - - - - - 4 - - - - - - - - - - 

 
5 -6.01 1.86 - - - - - - - - 5 - - - - - - - - - - 

 
6 - - - - - - - - - - 6 - - - - - - - - -1.34 1.02 

 
7 - - 0.97 0.56 1.70 0.73 - - - - 7 - - - - - - 1.97 0.94 - - 

PAL 1 0.77 0.22 - - - 
 

-0.34 0.06 - - 1 0.02 0.05 - 
 

- 
 

-0.04 0.02 -0.14 0.04 

 
2 - - - - -1.15 0.36 - - 0.57 0.23 2 - 

 
-0.30 0.07 - 

 
- 

 
- - 

 
3 - - - - - - -0.36 0.12 - - 3 - - - - - - - - - - 

 
4 - - - - - - - - - - 4 - - - - -0.35 0.16 0.22 0.05 - - 

 
5 -1.83 2.48 - - - - - - - - 5 -2.07 0.50 - - -0.46 0.19 0.12 0.06 - - 

 
6 - - - - - - -0.89 0.29 - - 6 - - - - - - - - - - 

 
7 - - - - - - - - - - 7 - - - - - - 0.42 0.11 -0.53 0.12 

SUS 1 - - 1.96 0.52 - 
 

-0.35 0.12 - - 1 0.17 0.06 0.17 0.06 - - - - - - 

 
2 - - - - - - - - - - 2 - - - - - - -0.03 0.03 - - 

 
3 - - 0.55 0.82 3.49 1.33 -0.83 0.27 - - 3 - - - - - - -0.08 0.03 - - 

 
4 - - -2.98 1.00 - 

 
1.24 0.40 - - 4 - - - - - - -0.03 0.05 - - 

 
5 -12.74 4.09 - - -2.10 1.76 - - - - 5 - - -0.26 0.12 - - - - - - 

 
6 - - - - - - - - -2.22 1.06 6 - - - - - - 0.05 0.08 -0.29 0.11 

 
7 - - -2.02 1.38 3.61 2.02 0.79 0.84 -1.94 1.13 7 - - - - - - 0.24 0.10 -0.36 0.12 

GIR 1 - 0.00 - 

 

- 

 

- - - - 1 - - - - -0.32 0.09 - - - - 

 

2 - - - - 2.08 0.38 - - - - 2 - 

 

- - - - - - - - 

 

3 - - - - - - - - - - 3 -0.60 0.25 - - - - - - - - 

 

4 2.71 1.02 - - - - - - - - 4 - - - - - - - - - - 

 

5 - - - - - - - - - - 5 - - - - - - - - -0.13 0.07 

 

6 - - -0.99 0.49 - - - - - - 6 - - - - - - - - - - 

  7 - - - - 1.18 0.70 - - 1.46 0.50 7 - - 0.55 0.16 - - - - - - 

 4 

  5 
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Data-driven framework to discriminate climate and weather controls of rainfall extremes 1 

Framework builds on signal-to-noise separation methods and EV modeling 2 

No assumption on the explanatory power of climate covariates is made a priori 3 

Approach discriminates drivers of rainfall extremes in a purely data-driven fashion 4 

 5 


