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Abstract 13 

Despite there being well-established meteorological and hydrometric monitoring networks in 14 

the UK, many smaller catchments remain ungauged. This leaves a challenge for characterisation, 15 

modelling, forecasting and management activities. Here we demonstrate the value of community-16 

based (‘citizen science’) observations for modelling and understanding catchment response as a 17 

contribution to catchment science. The scheme implemented within the 42km2 Haltwhistle Burn 18 

catchment, a tributary of the River Tyne in northeast England, has harvested and used quantitative and 19 

qualitative observations from the public in a novel way to effectively capture spatial and temporal 20 

river response. Community-based rainfall, river level and flood observations have been successfully 21 

collected and quality-checked, and used to build and run a physically-based, spatially-distributed 22 

catchment model, SHETRAN. Model performance using different combinations of observations is 23 

tested against traditionally-derived hydrographs. Our results show how the local network of 24 

community-based observations alongside traditional sources of hydro-information supports 25 

characterisation of catchment response more accurately than using traditional observations alone over 26 
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both spatial and temporal scales. We demonstrate that these community-derived datasets are most 27 

valuable during local flash flood events, particularly towards peak discharge. This information is often 28 

missed or poorly represented by ground-based gauges, or significantly underestimated by rainfall 29 

radar, as this study clearly demonstrates. While community-based observations are less valuable 30 

during prolonged and widespread floods, or over longer hydrological periods of interest, they can still 31 

ground-truth existing traditional sources of catchment data to increase confidence during 32 

characterisation and management activities. Involvement of the public in data collection activities also 33 

encourages wider community engagement, and provides important information for catchment 34 

management. 35 

Key words 36 

Community-based; Citizen Science; Monitoring; Flash Flood; Hydrological Modelling; SHETRAN. 37 

1. Introduction 38 

Under future climate change scenarios, wetter winters and more intense summer storms are 39 

expected to exacerbate already complex catchment management issues throughout the UK and 40 

western Europe (Chan et al., 2015; Forzieri et al., 2016; Kendon et al., 2014). Empirical data is 41 

therefore required to characterise catchment behaviour over time, model floods, improve forecasts and 42 

subsequently enhance community resilience as part of the wider catchment management process. The 43 

importance of data is further emphasised when considering the performance of new flood 44 

management interventions such as ‘natural flood management’ (Nicholson et al., 2012; SEPA, 2015). 45 

The potential benefits of engaging, collaborating and actively involving local communities within 46 

affected catchments is also rapidly being recognised as a vital component of an integrated catchment 47 

management toolkit (Bracken et al., 2014; Large et al., 2017 in press). 48 

Despite the UK having some of the world’s most reliable and dense hydrometric and 49 

meteorological monitoring networks, data remains scarce for many rural catchments (Buytaert et al., 50 

2016; Illingworth et al., 2014; UK Met Office, 2010). A variety of methods are used for observing 51 
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and/or estimating spatial rainfall patterns (Bárdossy and Pegram, 2013; Durkee, 2010; Lanza et al., 52 

2001; Shaw et al., 2011) but data availability and accuracy issues still persist on a local level. There 53 

are a number of issues; catchments are spatially and temporally complex, and flash floods, while of 54 

particular interest and importance to both hydrologists and communities, are hard to characterise 55 

given that they are rare, spatially localised, short lived and often occur in locations without formal 56 

monitoring (Archer and Fowler, 2015; Archer et al., 2016; Perks et al., 2016). 57 

The absence of whole-catchment data can complicate the catchment modelling process 58 

(Seibert and McDonnell, 2015), especially when attempting to replicate or predict extreme events in 59 

unique locations. While workers like Zhu et al. (2013, 2014) describe how rainfall radar observations 60 

are becoming more readily available, providing improved spatial and temporal coverage in 61 

hydrological models, errors relating to timing and magnitude can propagate through the modelling 62 

process (Harrison et al., 2000). Good quality and detailed ground-based observations are therefore 63 

required to create robust models (Beven, 2009; Beven and Westerberg, 2011; Vidon, 2015). Through 64 

incorporation of such observations, the improved predictive power of the model will then play a 65 

significant role in influencing choices made by stakeholders in the catchment characterisation and 66 

management process. 67 

The co-production of ‘indigenous’ knowledge and the activity of community-based 68 

monitoring (and related activities described in the literature using a range of terminology including 69 

citizen science, volunteered geographical information (VGI), crowd-sourcing, citizen observatory and 70 

participatory monitoring) is rapidly expanding (Follett and Strezov, 2015; Pocock et al., 2014; 71 

Wentworth, 2014). The term used depends on the degree of ‘volunteer’ involvement and the specific 72 

techniques adopted, but in general they all refer to the participation of the public (i.e. non-73 

professionals) in the generation of new knowledge about the natural environment (Buytaert et al., 74 

2014; Pocock et al., 2014; Starkey and Parkin, 2015). Regardless of which term is used, encouraging 75 

general engagement, participation and empowerment on a local level means that the public have the 76 

potential to offer timely and low-cost solutions to the data collection phase in catchment science. 77 

Social benefits to the community are also valuable, supporting policies and management frameworks 78 
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which increasingly request an integrated and bottom-up approach to catchment management. A 79 

relevant example includes the emerging ‘Catchment Based Approach’ (CaBA, 2016) which has 80 

surfaced from the EU Water Framework Directive and is managed in the UK by Defra, the 81 

Department of Environment, Food and Rural Affairs. 82 

The growth in more readily available and low-cost technologies, such as smartphones, social 83 

media and the internet itself, is allowing community-based initiatives to grow rapidly. Areas include 84 

biodiversity (Sutherland et al., 2015), weather and climate (Burakowski et al., 2013; Muller et al., 85 

2015) and disaster management (Aulov and Halem, 2012). Across North America the public are 86 

collecting regular rain, hail and snow observations and sharing them with the national CoCoRaHS 87 

network (http://www.cocorahs.org/), and a similar scheme is also active primarily across Europe, 88 

North America and Australia through the UK Met Office ‘Weather Observations Website’ 89 

(http://wow.metoffice.gov.uk/). 90 

It is only recently that this type of data collection activity has started to flourish in hydrology 91 

and hydrogeology, for example, in Ethiopia (Walker et al., 2016). Only a few examples exist in the 92 

UK which specifically collect river and flood observations with some form of public involvement, for 93 

instance the Wesenseit (http://wesenseit.eu/) and Oxford Flood Network (http://flood.network/). Even 94 

fewer studies have explored the potential value of this data to support real hydrological applications, 95 

including catchment modelling, primarily due to data quality concerns or general lack of recognition 96 

(Buytaert et al., 2014, 2016; Muller et al., 2015). Only a small number of studies have made use of 97 

crowd-sourced data to validate their models, but they frequently discarded multiple observations as 98 

location, date and time stamps were absent (Fohringer et al., 2015; Kutija et al., 2014; Mazzoleni et 99 

al., 2015; Smith et al., 2015). In addition, these studies either involved ‘reactive’ data collection 100 

methodologies following large floods or used synthetic data to imitate citizen science, thus did not 101 

actually involve or even engage with the public. Full engagement is essential if ongoing community-102 

based monitoring schemes are to be relied upon by professionals and regularly harnessed as an 103 

additional source of catchment information. Nevertheless, scientists and engineers are still generally 104 

reluctant to integrate this type of data into their work, which Barthel et al. (2016) attributes to 105 
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professionals not being experienced enough to actually carry out the full range of participatory 106 

activities required. This includes engagement, facilitation, training and dissemination activities which 107 

are all prerequisites of successful community-based monitoring schemes. 108 

This paper presents results from a catchment study which demonstrates the value of 109 

community-based observations for understanding and modelling spatial and temporal catchment 110 

response, including the ability to capture the shape, timing and magnitude of flood peaks for a 111 

sequence of flash flood events. Data quality issues are a particular concern with ‘citizen science’ 112 

studies and we take this into account by applying appropriate data quality checks before allowing 113 

further use of the data in the modelling process. The modelling results presented also infer additional 114 

information about the quality of the observations used. Walker et al. (2016) concluded that data 115 

quality from community-based observations can be of high quality if they are properly managed. Our 116 

study takes this approach a step further as it is one of the first assessments which embeds real 117 

community-based observations into a detailed catchment modelling study. To achieve this, work has 118 

been carried out on the Haltwhistle Burn catchment, a tributary of the River Tyne in northeast 119 

England, where a physically-based, spatially-distributed hydrological catchment model, SHETRAN 120 

(Ewen et al., 2000), has been used. The findings will be of interest to catchment managers, 121 

hydrologists, as well as community and environmental groups who have a common interest in holistic 122 

catchment management and who wish to expand their management toolkits. 123 

2. Study area & focus community 124 

Known for being located in the ‘Centre of Britain’, the 42km
2
 steep and low stream order 125 

Haltwhistle Burn catchment responds rapidly to heavy rainfall. This predominantly rural catchment 126 

suffers from multiple pressures (Fig. 1) and in recent years it has experienced a number of floods, 127 

including 2007, 2012, 2014 and winter 2015. Flood risk is exacerbated as the main impact zone (the 128 

town of Haltwhistle) is located at a ‘pinch-point’ close to the outlet, and just downstream of an incised 129 

gorge section. The elongated shape of the catchment and resulting river network have also been 130 

influenced by the igneous Whin Sill outcrop which intersects this area. 131 
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Rivers Trusts exist across the UK, and aim to enhance their local river basin with the help of 132 

volunteers and communities through their charitable objectives. Tyne Rivers Trust (TRT) led an 133 

ambitious multi-partnership restoration project from 2012 to 2015 with the aim of improving the 134 

health of the Haltwhistle Burn and its tributaries, using community engagement from the onset (TRT, 135 

2015). Although the project focused around headwater runoff and pollution, flooding was also 136 

included as an objective given that these issues are closely aligned. While TRT required evidence to 137 

characterise the catchment and assist with designing and implementing a suite of catchment 138 

management measures, no monitoring stations operated within the catchment before the project 139 

started. 140 

 141 

Fig. 1. (i) Location and elevation map of the Haltwhistle Burn catchment, (ii) Haltwhistle Burn at 142 

high flow and (iii) Sediment deposited under a culvert in the town following high intensity rainfall. 143 

 144 

The Haltwhistle Burn catchment and the already engaged ‘Haltwhistle Burn River Watch 145 

Group’ offered a good case study site and focus community to trial a community-based monitoring 146 

and modelling approach. Although findings are location- and community-specific, this case study site 147 

has numerous characteristics and issues which are common to many rural UK catchments. We have 148 

therefore designed, implemented and facilitated a low-cost community-based monitoring programme 149 

within the catchment to support TRT’s existing restoration project (Large et al., 2017 in press), to 150 

further understand flash flooding and to allow appropriate alleviation measures to be designed and 151 

implemented. 152 

3. Methodology 153 

3.1 Overview 154 

The value of quantitative and qualitative observations collected by the local community have 155 

been demonstrated here by using the data alongside a traditional monitoring network to build and run 156 

a physically-based, spatially-distributed (PBSD) catchment model, SHETRAN. The community-based 157 
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data includes rainfall, river level and flood observations, all of which have been used to extract timing 158 

and magnitude information for the April 2014 high intensity rainfall event which occurred in the 159 

catchment. The modelling framework involved calibrating, validating and accepting a ‘baseline’ 160 

model which consists of rainfall data integrated from the best available gauge combination (in this 161 

case, both community-based and traditional ground-based gauges). While keeping all other model 162 

settings and datasets the same, a ‘leave-one-out’ methodology allowed the effect of different 163 

combinations of these rainfall observations to be tested. All modelled outputs were statistically and 164 

visually compared with traditionally-derived hydrographs, as well as to each other. These community-165 

based observations were also compared with the same SHETRAN model using UK Met Office 166 

rainfall radar observations over the same period. 167 

3.2 Community-based monitoring 168 

Participatory projects involving members of the public contain a number of stages, from 169 

initial engagement activities through to feedback and ongoing facilitation. Fig. 2 summarises the 170 

stages involved in initiating the community-based monitoring network in Haltwhistle. Key guidance 171 

documents such as those produced by Pocock et al. (2014), Science Communication Unit (2013) and 172 

Tweddle et al. (2012) were consulted for best practice during this process. 173 

 174 

Fig. 2. Key stages involved during the community-based monitoring process to capture observations 175 

ready for the modelling activities. 176 

 177 

Using TRT as a ‘gatekeeper’, an initial workshop was held by the research team, inviting the 178 

already established River Watch Group, as well as key partners in the wider community (land owners 179 

and residents). Other engagement techniques were adopted, including social media 180 

(@HaltwhistleBurn), local newspaper articles, the project website 181 

(http://research.ncl.ac.uk/haltwhistleburn/) and leafleting. Many authors, including Tweddle et al. 182 

(2012) have argued that ongoing feedback is essential. The project website therefore acted as an 183 

ongoing community-hub and toolkit, where information and observations could be hosted. 184 
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Following these initial (but vital) engagement activities, a variety of simple low-cost citizen 185 

science style monitoring and data submission tools were sourced or developed for use. Maximising 186 

participation levels and ensuring relevant and meaningful parameters were recorded was at the 187 

forefront of the design process. Unlike many projects which strap micro-sensors to volunteers or their 188 

belongings (e.g. Castell et al., 2015; Hut et al., 2014), activities were designed here to encourage 189 

long-term monitoring beyond the lifetime of the project and for citizen scientists to physically observe 190 

and learn about their weather and water environment themselves, rather than simply distributing 191 

automatic sensors. In order to maximise the usefulness of observations and improve their quality, a 192 

‘pro-active’ monitoring approach was adopted. This involved training participants in advance so that 193 

they were confident to participate and collect good quality observations relevant to the management 194 

process. It also meant that they knew what to look out for both during and immediately after flash 195 

floods. Laminated training cards were created to ensure this awareness, and also to standardise 196 

monitoring methods (see examples in the Supplementary Material). 197 

Although a wide range of monitoring activities were trialled, efforts ultimately focussed on 198 

rainfall, river levels and flood-related evidence (Table 1). These were the most popular and frequently 199 

observed parameters across the full monitoring period of October 2013 to February 2016. Depending 200 

on user preference, web forms, Excel spreadsheets and email, paper and face-to-face meetings, 201 

Twitter and an Android ‘River and Weather’ app developed in-house were all used by volunteers to 202 

submit observations.   203 

 204 

Table 1. Examples of community-based monitoring techniques used in Haltwhistle which are relevant 205 

to this modelling study.  206 

 207 

Once observations had been submitted and shared, datasets were anonymised and databases 208 

created. In many cases, the observations were either photographs or videos (river levels and flood 209 

information) which were named and ordered by date and time. A large quantity of flood observations 210 

obtained from multiple members of the community during the events of interest were analysed; they 211 
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were generally found to be self-consistent, confirming their validity as evidence of the intense rainfall 212 

and high flow impacts experienced on the ground. Quantitative observations were manually extracted 213 

from river level photographs by the lead author in order to minimise error. Quality control checks 214 

were also manually carried out on the rainfall datasets to ensure valid observations were available for 215 

use. This involved comparing daily totals against each other, checking for gaps and outliers in the 216 

datasets, only authenticating extreme rainfall values when photographs/videos of impacts aligned, and 217 

comparing observations against average annual rainfall totals.  218 

After establishing a network of manual rain gauges for ongoing 24-hour community 219 

observations, data from both ‘Townfoot’ (data quality accepted, representing the town and lower 220 

catchment) and ‘Cawburn’ (poor quality data sourced from the mid-catchment region) were then used 221 

within this modelling study. These two gauges offer a good comparison between datasets to 222 

emphasise the importance of good quality citizen science observations. They also contain data for the 223 

full modelling period of interest (January 2014 to May 2015). The spatial and temporal availability of 224 

community-based observations used in the SHETRAN modelling study are presented in Fig. 3, along 225 

with statistics which were used to rule out the Cawburn gauge during the quality control process. The 226 

Cawburn gauge was rejected for valid use because rainfall totals were considerably underestimated, 227 

particularly with respect to extreme events; it was, however, used in this modelling study to 228 

demonstrate the effect of a poor quality community dataset on model performance. The Cawburn 229 

observer originally highlighted that their gauge may be invalid due to lack of regular maintenance. 230 

Flood observations provided by the community highlight three interesting high flow (flash 231 

flood) events. This paper explores all three events, focussing mainly on Event 1 (further outputs for 232 

Events 2 and 3 are in the Supplementary Material): 233 

1. 30th April 2014: an intense convective storm (described as a ‘cloud burst’) which was 234 

localised over the town of Haltwhistle;  235 

 236 

2. 8th August 2014: a convective summer storm falling on dry ground and mainly in the upper 237 

catchment; 238 
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 239 

3. 22nd/23rd December 2014: an intense and prolonged period of winter rainfall over a saturated 240 

catchment, causing widespread flooding, and morphological response comprising mass 241 

transportation and deposition of sediment. 242 

 243 

 244 

Fig. 3. Spatial (i) and temporal (ii) availability of community-based observations used to model, along 245 

with a summary of the quality control checks used to accept or reject individual rain gauges (iii). The 246 

Townfoot rain gauge has also been compared with traditional gauges (see Supplementary Material). 247 

Note that Cawburn rainfall totals are significantly lower than expected, hence it was rejected. 248 

 249 

 250 

3.3 Traditional hydrometric monitoring network 251 

Prior to the project, there were no traditional ground-based hydrometric monitoring networks 252 

in operation within the catchment boundary. A traditional hydrometric monitoring network was 253 

therefore set up alongside the community-based scheme to fill the data gaps, capture local response 254 

and offer scientifically robust hydrological data. Rainfall and discharge datasets were necessary to 255 

calibrate and validate SHETRAN, but also to demonstrate the value of community-based input data 256 

(as rainfall influences runoff). 257 

An aerodynamic tipping bucket rain gauge and six pressure transducers for water level 258 

recording were installed between January and May 2014. Flow gauging was required to convert water 259 

level into discharge (Q) using stage-velocity-area derived rating curves (see Supplementary Material 260 

for detail). Data from a nearby UK Met Office daily rain gauge at Blenkinsopp Hall (west of the 261 

catchment boundary) was also sourced from the British Atmospheric Data Centre (BADC). The 262 

spatial and temporal availability of traditional data used in SHETRAN are shown in Fig. 4. A few 263 

gaps exist in the time series because of equipment failure, including battery failure, network issues, 264 

data storage capacities and damage caused by cattle. 265 
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Met Office 1km NIMROD rainfall radar data was also sourced from the BADC and 266 

represents an alternate source of traditional data. It was only feasible to study the three flood events 267 

listed above due to the large the amount of processing required to extract and prepare the data, as well 268 

as run SHETRAN. 269 

 270 

 271 

 272 

Fig. 4. Spatial (i) and temporal (ii) availability of traditional datasets used in this study. Colours 273 

correspond to each individual gauge on the map. 274 

  275 
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3.4 Hydrological modelling using SHETRAN 276 

SHETRAN (Système Hydrologique Européen TRANsport) is a PBSD hydrological model 277 

which is capable of simulating spatially-distributed hydrological processes at a catchment scale 278 

(Newcastle University, 2016). Catchments are represented by a three-dimensional discretised grid and 279 

a simplified river network (known in this model as ‘channel links’), thus the model can represent both 280 

surface and subsurface processes. SHETRAN is well-established and researched in the literature, with 281 

modellers utilising it to obtain discharge information for a variety of applications (Birkinshaw et al., 282 

2011, 2014; Mourato et al., 2015; Parkin et al., 2007). However, SHETRAN has not yet been used to 283 

demonstrate the value of community-based observations. Being a PBSD model, it provides an 284 

opportunity to use observed data from various sources and locations, and integrate them into the 285 

hydrological cycle. 286 

The most recent version of SHETRAN was sourced from Newcastle University (2016). Table 287 

2 summarises the input data sourced and prepared for the Haltwhistle Burn catchment, along with 288 

other relevant model settings required. SHETRAN was set up to run between 26/01/2014 00:00 to 289 

01/06/2015 00:00 GMT, a period of 491 days which makes use of the best available data when both 290 

community-based and traditional datasets overlap. 291 

  292 
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Item / setting 

required 
Data source Preparation for SHETRAN 

Model 

resolution 

100m chosen – maximum resolution feasible (when considering model stability and simulation time). 

Mask Outline derived using EDINA Digimap 5m 

Panorama elevation data. 

Aggregated to 100m (4110 active cells in plan 

view available for simulation). 

Minimum & 

mean filled 

DEM 

50m panorama elevation data supplied by EDINA 

Digimap. Elevation ranges from 101m to 344m 
AOD. 

Resampled to 100m resolution grid using 

minimum and mean aggregation techniques. 

Precipitation 

(P) 

Combination of data from Fig. 3 and 4 and rainfall radar used in the main modelling framework. Refer 
to the Thiessen polygons in Fig. 6 for spatial interpolation and distribution. Gibbs Hill, Blenkinsopp 

Hall and Townfoot gauges were initially used to set up the model. 

Potential 

evaporation 

(PE) 

No automatic weather stations (AWS) available 

within catchment boundary.  

 

Met Office Spadeadam AWS used from the 

BADC (located 10km north west from the 

catchment): 

• Maximum and minimum temperature 

• Wind speed 

• Relative humidity. 
 

Spadeadam did not contain any sunshine data. 

Brampton manual weather station run by a Met 

Office volunteer (located 21km west from the 

catchment) used instead for ‘total sunshine hours’. 

 

No gaps found in datasets used.  

PE calculated using five weather parameters and 

the UN Food and Agriculture Organization 

recommended Penman-Monteith approach 

(Raes, 2012). This approach represents 

evaporation from a vegetated surface with an 

unlimited supply of water, which was considered 

sufficient for this study site and land cover. An 

open source tool described by Raes (2012) was 

used to calculate PE automatically. 

 

Final PE dataset was aggregated to a 24-hour 

resolution and used uniformly across the 

catchment. 

Soil & 

geology 

Peaty (upper catchment) and loamy (mid/lower 

catchment) soils with a moderately productive 

aquifer dominate.  

 

The EU soils database and British Geological 

Survey hydrogeology layers (1km resolution) 
initially used to obtain realistic properties and set 

up the model. 

Resampled to 100m resolution grid. 

 

Calibration activities later refined the soil and 

geology datasets to allow for local variations in 

runoff. 

Land cover 25m Land Cover Map 2007 supplied by EDINA 

Digimap. Catchment is dominated by grassland 

(64%), evergreen forest (18%) and Shrub (11%). 

Land cover codes reclassified to fit SHETRAN 

(arable, bare ground, grass, deciduous forest, 

evergreen forest, shrub and urban). Aggregated 

to 100m grid. 

 

Calibration activities later refined land cover 

properties to allow for local variations in runoff. 

Lakes Ordnance Survey 1:10,000 Master Map shapefiles. 

Includes Greenlee (0.51km2) and Broomlee 

(0.30km
2
) Loughs in the upper catchment. 

Converted to 100m raster grid. 

Max & min 

temperature 

Temperatures are used directly in SHETRAN only for simulating snowpack development and 
snowmelt; there were no snow events during the simulation period. 

Output 

resolution & 

locations 

SHETRAN was set to produce simulated discharge (Qsim) every 5 minutes for the six gauging 

stations which contain observed discharge (Qobs).  

Table 2. Input data sourced and prepared ready for the Haltwhistle Burn SHETRAN model. 293 

Additional information given in the text. 294 
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Based on the input layers, SHETRAN represents the Haltwhistle Burn catchment using the 295 

river network and catchment grid presented in Fig. 5. Output locations (Qsim) corresponding to each 296 

gauging station (Qobs) are also highlighted. The model described in this section is referred to as 297 

‘Model A’. Where changes have been made to input rainfall, a new model name is used. 298 

 299 

Fig. 5. SHETRAN 100m grid and river network used to represent the Haltwhistle Burn catchment. 300 

Coloured dots represent locations where modelled discharge (Qsim) have been extracted. 301 

Watercourse abbreviations are referred to in later sections. 302 

 303 

SHETRAN has been manually calibrated using an iterative approach by systematically 304 

changing the values of input parameters. The parameters are those which are reported to be 305 

hydrologically sensitive in the literature and in SHETRAN (Birkinshaw et al., 2011, 2014; Đukić and 306 

Radić, 2016; Mourato et al., 2015), including the Strickler overland flow (SOF) roughness coefficient, 307 

soil depth (SD), saturated hydraulic conductivity (Ks) and the ratio of actual to potential 308 

evapotranspiration (AE/PE). These parameters can be adjusted within the soil and land cover layers 309 

and therefore allow the model to account for local variability in surface and subsurface properties. 310 

The aim of the calibration phase is to alter the model parameters in order to minimise the error 311 

between Qobs (the benchmark) and Qsim, whilst still being physically acceptable (Beven, 2009). The 312 

validation phase involved running the model for an independent set of data to check that the model 313 

settings still produced an acceptable simulation. A split sample test was used to divide the calibration 314 

and validation periods (see Table 3); both periods contain an adequate range of hydrological 315 

conditions.  316 

 317 

 Simulation period Time period (from – to) (GMT) Number of days 

Calibration 28/09/2014 00:00 to 01/06/2015 00:00 246 

Validation 26/01/2014 00:00 to 27/09/2014 23:55 245 

Table 3. Defining the calibration and validation periods within the full simulation period of interest. 318 
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Alongside graphical and visual inspection, it is good practice to use a combination of 319 

statistical performance indicators to assess model performance (e.g. Hall, 2001; Krause et al., 2005; 320 

Moriasi et al., 2007). The following tests, which are frequently used to assess hydrographs, were used. 321 

The acceptable performance values listed for each were chosen based on limits reported in the 322 

literature as providing reliable modelled outputs (Moriasi et al., 2007; Mourato et al., 2015): 323 

• Coefficient of determination (R
2
), with 0.7 being used as the minimum acceptable value; 324 

• Root mean square error (RMSE), to provide an indication of performance in the same units as Q; 325 

• Percentage bias (PBIAS), with +/-25% being reported as the maximum acceptable error; 326 

• Nash-Sutcliffe Efficiency (NSE) coefficient, with anything above +0.5 reported to provide at least 327 

a ‘good’ fit. 328 

In order to demonstrate the value of community-based observations, a ‘leave-one-out’ 329 

methodology was adopted. The leave-one-out procedure involved re-running the already calibrated, 330 

therefore accepted, SHETRAN model multiple times. On each occasion different elements of 331 

information were excluded from the simulation to test how well the model performs without it. Beven 332 

(2009) and Otieno et al. (2014) advocate leaving observations out of the rainfall interpolation and 333 

modelling process as a way of demonstrating their value. Such an approach has allowed different 334 

sources (therefore combinations) of rainfall data to be used and assessed against the ‘baseline’ (Model 335 

A). This approach was feasible as precipitation is SHETRAN’s main temporal and spatial driving 336 

variable. Making use of a ‘patchwork’ of heterogeneous information, combinations used were dictated 337 

by the spatial and temporal availability of input precipitation data previously described. SHETRAN 338 

was not recalibrated before each combination; other than the rainfall data, all parameters and datasets 339 

remained constant throughout. The performance of Model A was expected to degrade with diminished 340 

rainfall information, offering an opportunity to test model performance in relation to each other. 341 

Point rainfall measurements were spatially interpolated across the catchment to create a 100m 342 

resolution grid using conventional Thiessen polygons (Fig. 6). Although there are many other 343 

interpolation techniques available (e.g. Shaw et al., 2011), Thiessen polygons, which assign areas of 344 

the catchment to the nearest point measurement, are able to represent localised storms well if enough 345 
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rain gauges are present (therefore providing a good test here). Interpolation methods, such as 346 

arithmetic mean, cannot achieve this and more advanced geostatistical techniques were not expected 347 

to yield better results. Alongside catchment-wide rainfall radar data, traditional, community-based and 348 

a combination of both data sources were used to create these spatial maps. It should be noted that the 349 

Cawburn gauge data was also incorporated into some scenarios to demonstrate potential implications 350 

when ‘rejected’ observations are used. Since community-based rainfall observations and the UK Met 351 

Office Blenkinsopp Hall gauge have 24-hour temporal resolutions, these daily data have been 352 

disaggregated into 5-minute timesteps by imposing the same rainfall pattern from a traditional 5-353 

minute resolution rain gauge (Gibbs Hill), in model scenarios where this detail is available (Models A, 354 

B and E). Where this detail is not available (Models C, D, F and G), they have kept their original 24-355 

hour resolution to allow model performance to be evaluated whilst using these temporally coarser 356 

observations. The statistical performance indicators were then utilised to quantitatively assess the 357 

effects of each rainfall combination. 358 

 359 

 360 

Fig. 6. Combination of rain gauges and resulting Thiessen polygons used to spatially estimate 361 

precipitation across the catchment in Models B-G (includes original Model A), as well as a 1km 362 

resolution grid which utilises Met Office rainfall radar data (Model H). Original rainfall datasets have 363 

been directly fed into these models, rather than calculating areal rainfall, in order to capture spatial 364 

variability. 365 

4. Results & discussion 366 

4.1 Enhancing SHETRAN’s inputs using quantitative and qualitative 367 

observations 368 

Analysis of different sources of rainfall has highlighted the importance of spatial and 369 

temporal observations, particularly during the period of intense localised rainfall experienced on the 370 

30
th

 April 2014 (Event 1). Fig. 7 displays a set of 48-hour cumulative rainfall plots which represent 371 

Event 1 for each of the three gauges used to initially build Model A. It is clear that the traditional 372 
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gauges observed much lower rainfall totals (17.6mm and 17.9mm) compared with community-based 373 

(41mm), despite being only a few kilometres apart. If the community-based observations had not been 374 

available, the traditional gauges would have completely missed these larger totals observed over the 375 

lower catchment and the impact zone. However, Fig. 7 also confirms that while rainfall radar totals 376 

were significantly lower than those observed by the community, the radar observations did show the 377 

spatial location and extent of the storm and provided detailed temporal resolution, thus have captured 378 

steeper cumulative trends, hence implying a more intense, short-lived storm. 379 

 380 

Fig. 7. Left: 48-hour cumulative rainfall plots for Event 1 (30/04/2014 00:00 to 02/05/2014 00:00 381 

GMT) for each gauge initially used in Model A, and rainfall radar where each gauge overlaps. Right: 382 

Rainfall radar accumulations for the same period across the catchment. Ground-based gauges are 383 

overlaid onto the radar grid. Plots relating to Events 2 and 3 can be found in the Supplementary 384 

Material. 385 

 386 

One obvious drawback with community-based rainfall observations is that they are usually 387 

reported on a 24-hour basis. If used in isolation at this resolution, only rainfall totals can be extracted. 388 

However, the full range of qualitative and quantitative community-based observations displayed in 389 

Fig. 8 (photographs, videos, tweets and anecdotes) illustrate how the wider community can contribute 390 

to the generation of an ‘event timeline’ which specifically highlights when the storm started and 391 

finished. Together with the quantitative rainfall totals, this simple source of ground-based evidence 392 

allows duration, magnitude and intensity information to be inferred on a local scale. For Event 1, after 393 

observations were captured and shared by the public, it was clear that the event was extremely intense 394 

with 41mm falling in just 30 minutes in the lower Haltwhistle Burn catchment. This was derived by 395 

assessing the timeline of observations presented in Fig. 8, which visually and anecdotally confirms 396 

that heavy rain was experienced locally on the ground between 15:20 and 15:50 (BST). An event as 397 

intense as this would also be required to generate the flood and debris-related impacts witnessed on 398 

the ground by the community. Rainfall totals can thus be disaggregated across the specific time period 399 
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when it was physically observed (in this case, 41mm of rain disaggregated evenly across 30 minutes), 400 

rather than 24-hours, to realistically replicate a high intensity storm. SHETRAN’s precipitation time 401 

series were therefore updated to reflect the nature of Event 1 before Model A was calibrated.  402 

This heterogeneous data integration process has only been possible due to the number of 403 

community-based observations being available and because the rainfall event hit the town where 404 

people live and walk past the Haltwhistle Burn. Event 2 (8
th
 August 2014) provides an example where 405 

the storm was centred higher up in the catchment, meaning the downstream community were unable 406 

to provide information to help interpret quantitative rainfall totals. Event 3 (in December 2014) was 407 

more widespread with saturated antecedent conditions, so observations captured by the community 408 

were useful for highlighting downstream impacts. The value of the community-based rainfall 409 

observations for Event 1 have therefore been enriched as it was possible to extract important hydro-410 

information from the patchwork of informal and heterogenic community-based observations, and 411 

utilise them within SHETRAN to characterise the high intensity storm. These sub-hourly and highly 412 

localised hydrological events, which are still poorly monitored and understood by professionals, 413 

require this level of detail in order to better characterise them and their impacts (Archer and Fowler, 414 

2015; Archer et al., 2016; Perks et al., 2016). 415 
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 416 

Fig. 8. A timeline of Event 1 (30
th

 April 2014) created by harnessing a range of community-based quantitative and qualitative observations collected on the 417 

ground. Note quotes such as “Monsoon alert. Heaviest rain I’ve seen in ages!”, and early warnings submitted and then crowd-sourced using Twitter.  418 



  

20 

 

4.2 Final calibration and validation results (Model A) 419 

Initial calibration simulations for Model A reproduced the overall shape and timing of each 420 

hydrograph reasonably well. In order to improve SHETRAN’s ability to reproduce Qobs at Gibbs 421 

Hill, the SOF values of the actual channel links of the loughs (links which overlapped the lake layer) 422 

needed to be reduced from 3.0 to 0.1. These results have subsequently highlighted the importance of 423 

the two lakes (Greenlee and Broomlee Lough – shallow water and wetland nature reserves) in the 424 

upper catchment and their ability to naturally attenuate high flows during and after rainfall. Final 425 

model settings adopted are listed in the Supplementary Material. 426 

Final calibration and validation results are presented in Table 4. Fig. 9 also contains graphical 427 

comparisons of Qobs and Qsim (using Gibbs Hill, Sheep Dip and Broomshaw as examples) as well as 428 

Qsim for each gauging station. All of the statistics fall within acceptable limits, except for the Pont 429 

Gallon Burn at Sheep Dip during the validation period. This has been attributed to the Pont Gallon 430 

Burn sub-catchment not containing its own rain gauge, which would have been necessary to fully 431 

capture the localised rainfall experienced during Event 2. Despite this, the model’s overall average 432 

(catchment-wide) performance is still well above the acceptance levels across the multiple indicators, 433 

so this SHETRAN model was accepted for its intended use. The multi-location and multi-response 434 

approach has highlighted the importance of sub-catchment information and catchment connectivity to 435 

the calibration process as the Haltwhistle Burn catchment does not respond in a uniform way. 436 

  437 
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Gauge / Output Location R
2

 RMSE (m3/s) PBIAS (%) NSE 

Calibration period: 28/09/2014 00:00 to 01/06/2015 00:00 (where observed data is available) 

CB at Gibbs Hill 0.92 0.26 -5.56 0.85 

PGB at Sheep Dip 0.83 0.04 3.33 0.78 

PGB at Cleughfoot 0.89 0.11 -13.29 0.88 

CB at Cleughfoot 0.92 0.35 -9.31 0.90 

CB at Cawfields 0.84 0.36 -6.71 0.86 

HB at Broomshaw 0.88 0.47 0.48 0.77 

Average 0.88 0.27 -5.18 0.84 

Validation period: 26/01/2014 00:00 to 27/09/2014 23:55 (where observed data is available) 

CB at Gibbs Hill 0.90 0.10 10.47 0.88 

PGB at Sheep Dip 0.52 0.04 -47.63 0.21 

PGB at Cleughfoot 0.77 0.09 -12.20 0.76 

CB at Cleughfoot 0.89 0.19 -8.34 0.86 

CB at Cawfields 0.86 0.24 -4.77 0.85 

HB at Broomshaw 0.87 0.14 14.86 0.72 

Average 0.80 0.13 -7.94 0.71 

Table 4. Final statistical results for the calibration and validation periods. Results relate to Model A 438 

using best available data, including quantitative and qualitative community-based observations 439 

(watercourse acronyms: Caw Burn, CB; Haltwhistle Burn, HB; Pont Gallon Burn, PGB).  440 

.  441 

 442 

Fig. 9. Qobs and Qsim results for the Caw Burn at Gibbs Hill, the Pont Gallon Burn at Sheep Dip and 443 

the Haltwhistle Burn at Broomshaw, plotted (i-iii) for Model A over the calibration and validation 444 

periods. Qsim for all gauging stations are also presented together, which emphasises variation in sub-445 

catchment response (iv). 446 

 447 

4.3 Performance of SHETRAN using different combinations of rainfall data 448 

Models B-G have been assessed across the full modelling period to determine the change in 449 

SHETRAN’s performance in relation to the calibrated and validated (therefore accepted) baseline 450 

model, A.  451 

Table 5 (i) presents the statistical results (averaged across all six gauging stations) for each 452 

model simulated i.e. rain gauge combination tested. The most notable trends exposed are that model 453 

performance progressively deteriorates from Model A to G and, as expected, A continues to be the 454 

most acceptable model for use. These trends are strengthened by the fact that multiple statistical 455 

performance indicators express the same trends, as well as overall discharge error (as PBIAS results, 456 
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which relate to mass balance, illustrate). A more pronounced case for these trends is exemplified in 457 

Table 5 (ii) which present the same set of statistics, but only for the Haltwhistle Burn at Broomshaw, 458 

where the bulk of community-based observations exist. For instance, the NSE coefficient falls by 1.30 459 

when comparing Model G against A, whereas the difference between the same two models is only 460 

1.09 when assessing all six gauging stations at the same time. Note that this trend is still apparent 461 

despite the Broomshaw gauge analysis excluding Event 1 (i.e. missing Qobs). 462 

The following points can also be noted when assessing the full modelling period (rather than 463 

individual peaks): 464 

• The performance of Model A is only marginally better than B, implying both should be 465 

acceptable for wider use. The use of community-based observations has not therefore 466 

degraded SHETRAN’s predictive power, but similar results would have been obtained for the 467 

full modelling period if only two traditional gauges (Model B) were available. Nevertheless, 468 

this comparison emphasises that it is feasible to create an acceptable model containing 469 

community-based observations and achieve statistical results similar to those obtained in 470 

other SHETRAN studies (Birkinshaw et al., 2011, 2014); 471 

 472 

• ‘Rejected’ community-based rainfall observations have significantly affected (degraded) 473 

model performance, particularly the mass balance aspect. Comparisons between Model A and 474 

E show this most clearly; 475 

 476 

• Use of community-based observations alone significantly degrades model performance. 477 

However, the use of one good quality community-based rain gauge (Model D) produces 478 

statistical results which are similar to the outputs obtained when using one traditional rain 479 

gauge (Model C). However, this is not the case for the ‘rejected’ community-based data when 480 

used in isolation (Model G);  481 

 482 
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• Models containing two or three rain gauges, for which it has been possible to disaggregate 483 

time series into 5 minute intervals, have produced reliable outputs. This is also true for 484 

models containing input data which had not been rejected during the quality control process. 485 

Models using only one rain gauge at a 24-hour resolution (Models C and D) would be 486 

rejected here. Nevertheless, some modelling studies regularly use these coarser resolutions. 487 

 488 

Overall, these findings confirm that the resolution of the input data, the data quality and the 489 

total number of rain gauges used override the importance of whether or not community-based 490 

observations are used alongside traditional sources. These are obvious and important factors which 491 

modellers traditionally consider (Beven, 2009; Beven and Westerberg, 2011; Montanari and Di 492 

Baldassarre, 2013). This suggests that there is potential for integrating community-based observations 493 

with traditional sources to fill monitoring gaps, to support the modelling process and to characterise 494 

catchments on a local scale meaningful to resident communities. Findings here also complement 495 

results obtained by Mazzoleni et al. (2015) who found that synthetic intermittent observations 496 

improved model performance for streamflow. It is also important to remember that traditional 497 

observations are not free from error and can still provide incorrect information (Beven and 498 

Westerberg, 2011). 499 

 500 

Model, rain gauge 

combination & total number 

of rain gauges used (brackets) 
R

2

 RMSE (m3/s) PBIAS (%) NSE 

Full modelling period: 26/01/2014 00:00 to 01/06/2015 00:00 (where observed data is available) 

(i) Average results across all six gauging stations: 

A • (3) 0.86 0.22 -5.17 0.83 

B ∗ (2) 0.85 0.23 -4.90 0.82 

C ∗ (1) 0.61 0.33 2.98 0.61 

D ♦ (1) 0.55 0.36 -5.10 0.48 

E •◊ (4) 0.58 0.30 25.09 0.53 

F ♦◊ (2) 0.11 0.63 59.98 -0.23 

G ◊ (1) 0.05 0.64 61.08 -0.26 

Full modelling period: 26/01/2014 00:00 to 01/06/2015 00:00 (where observed data is available) 

(ii) Results for the Haltwhistle Burn at Broomshaw only: 

A • (3) 0.90 0.39 2.42 0.81 

B ∗ (2) 0.89 0.40 2.71 0.80 

C ∗ (1) 0.80 0.42 12.01 0.77 

D ♦ (1) 0.79 0.41 6.56 0.78 
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E •◊ (4) 0.93 0.32 23.48 0.86 

F ♦◊ (2) 0.46 0.99 74.21 -0.26 

G ◊ (1) 0.09 1.07 80.34 -0.49 

Table 5. Average (i) and Broomshaw Hill only (ii) SHETRAN results for Models A-G across the full 501 

modelling period (rain gauge combinations: • traditional and community-based, ∗ traditional only, ♦ 502 

community-based only and ◊ rejected). 503 

4.4 Importance of community-based observations during flood events 504 

Event 1 (30
th

 April 2014) has been isolated here for analysis to determine how SHETRAN 505 

performs during a localised flash flood event when a patchwork of community-based observations are 506 

most abundant, as well as rainfall radar.  507 

Table 6 (i) contains the statistical results relating to Event 1, comprising an analysis covering 508 

four days to capture the rise and recession of a single event-based hydrograph. The dominant pattern 509 

generally involves a degradation in model performance when rain gauges are removed or rainfall 510 

radar is used. Performance diminishes when community-based observations are completely absent or 511 

when the Thiessen polygon over-exaggerates the spatial scale of the convective storm (in this case the 512 

41mm captured by the community). Analysis confirms that the community-based observations have 513 

helped to capture river response following the storm but the spatial extent of the event is not 514 

accurately represented, even by Model A. Table 6 (ii) contains SHETRAN’s response for the Caw 515 

Burn at Cawfields. This gauging station is used to represent river response upstream of the town 516 

because observed water level (therefore discharge) was not recorded at Broomshaw for this period 517 

(see data gap in Fig. 4). Compared to the catchment’s average response, model performance at the 518 

Cawfields gauge is significantly enhanced when community-based observations are incorporated. 519 

  520 
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Model, rain gauge 

combination & total number 

of rain gauges used (brackets) 
R

2
 RMSE (m3/s) PBIAS (%) NSE 

Event 1 (30th April): 29/04/2014 00:00 to 03/05/2014 00:00 (�where observed data is available) 

(i) Average results across five gauging stations: 

A • (3) 0.76 0.44 13.94 0.49 

B ∗ (2) 0.43 0.60 21.55 0.22 

C ∗ (1) 0.32 0.64 36.01 0.03 

D ♦ (1) 0.53 1.55 -189.92 -134.82 

E •◊ (4) 0.80 0.24 -19.10 -4.72 

F ♦◊ (2) 0.65 0.82 -148.71 -50.24 

G ◊ (1) 0.58 0.74 -122.50 -47.17 

H Rainfall radar • 0.52 0.56 13.55 0.09 

Event 1 (30th April): 29/04/2014 00:00 to 03/05/2014 00:00 

(ii) Results for the Cawburn at Cawfields only: 

A • (3) 0.75 1.03 28.67 0.54 

B ∗ (2) 0.09 1.50 42.53 0.02 

C ∗ (1) 0.03 1.57 52.64 -0.08 

D ♦ (1) 0.92 2.46 -82.72 -1.65 

E •◊ (4) 0.96 0.55 18.78 0.87 

F ♦◊ (2) 0.96 1.09 -69.08 0.48 

G ◊ (1) 0.95 0.99 -43.65 0.57 

H Rainfall radar • 0.23 1.40 38.68 0.14 

Table 6. Average (i) and Cawfields only (ii) SHETRAN results for Models A-H across Event 1 (rain 521 

gauge combinations: • traditional and community-based, ∗ traditional only, ♦ community-based only 522 

and ◊ rejected). �Assessment excludes any Broomshaw observations. 523 

 524 

Fig. 10. Hydrograph shape: final simulated discharge obtained from SHETRAN Models A-H for all 525 

relevant gauging stations during the April 2014 event. Includes manual river level gauge board 526 

(RLGB) observations collected by the community which have been converted into discharge. Note 527 

that discharge has been plotted using a logarithmic scale. 528 

 529 

Fig. 10 presents discharge plots for each model at each gauging station, along with observed 530 

data for comparison. Manual river levels observed by the community (subsequently converted to 531 

discharge using the site’s rating curve) have also been added to the Broomshaw comparison. Graphs 532 

help to interpret model performance relating to the shape of the hydrographs, and more specifically, 533 

the rapid rise which is only reproduced when community-based observations are integrated. Use of 534 

rainfall radar appears to improve the response of the model compared with use of only the two 535 

traditional rain gauges, but a flashy response is still absent. Although the community failed to record a 536 
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river level (therefore river level gauge board (RLGB) Qobs, once converted to discharge) as the burn 537 

peaked at Broomshaw, the modelled hydrographs did correlate well with the six spot readings that 538 

they did manage to observe. This is true for all but the ‘traditional only’ models. A variety of 539 

quantitative and qualitative community-based observations have therefore been beneficially 540 

incorporated into SHETRAN and used to validate the model. However, the value of these 541 

observations are governed by a number of factors, for instance, when the peak exactly occurs (time of 542 

day, week and season) and proximity of monitoring sites to residents’ homes. 543 

Fig. 11 quantifies the impacts of each rain gauge combination on timing and magnitude of the 544 

flood peak for the Caw Burn at Cawfields. For this particular case, the following findings are 545 

highlighted when compared with observed peak discharge: 546 

 547 

• Models B and C (traditional only combination) underestimate the flood peak by 84% and 548 

87% respectively. Rainfall radar closely follows with 81%; 549 

 550 

• Model D, which used a uniform grid of community-based observations, overestimates the 551 

flood peak by 156%; 552 

 553 

• The best representation of magnitude comes from Model E, a combination of four gauges 554 

which underestimates the flood peak by 32%. This is better than Model A, and despite 555 

containing the rejected rain gauge, Model E is likely to have created a better representation of 556 

the rainfall extent; 557 

 558 

• All models containing community-based observations produce peaks which arrive within 55 559 

minutes of the observed, with Model E being the closest at 35 minutes. Extra rain gauges 560 

above the town would have captured the extent of this intense storm more precisely, which in 561 

turn would generate a more accurate time lag; 562 

 563 
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• The timing of the traditional only combinations were considerably delayed because the 564 

hydrographs were too attenuated. The peak of the flood was over 9 hours (Model B), 10 hours 565 

(rainfall radar) and even as delayed as 17 hours (Model C). 566 

 567 

 568 

Fig. 11. A comparison between observed Q (Qobs) and modelled discharge (Qsim) for Models A-H at 569 

Cawfields Caw Burn during the 30th April 2014 event: peak discharge (left) and timing of the peak 570 

discharge (right). 571 

 572 

Event 1 has also been compared here against Event 2 (August) and 3 (December) to 573 

determine how far  the value of community-based observations varies depending on the nature and 574 

length of the hydrological event (the same set of statistics and plots as those in this section are 575 

available in the Supplementary Material for these two additional events). Fig. 12 highlights the key 576 

differences between Events 1, 2, and 3, and the full 491 days modelled. The comparison uses NSE 577 

coefficients obtained, on average across the six gauging stations, from Model A and also B and H 578 

(radar) as these models alone present practical combinations which stakeholders would typically use 579 

(i.e. the best combination of traditional ground-based gauges (B) or rainfall radar (H) data which 580 

would normally be available) if the community-based observations did not exist to create Model A. 581 

Based on these plots, it is clear that the inclusion of community-based observations alongside 582 

traditional data (Model A) adds most value (higher NSE) to the localised flash flood event in April. 583 

Very little value is added during the longer modelling period and the prolonged winter storm, 584 

meaning that the traditional gauges alone were sufficient. Little value is also added to Event 2, a 585 

short-lived storm which was concentrated over the upper catchment. Nevertheless, the outcome 586 

obtained from Event 2 was significantly governed by the location of this particular storm and the fact 587 

that there were no community-based rain observations to represent it. Models containing rainfall radar 588 

observations consistently reduced model performance, thus has not been affected by the nature or 589 

length of the storm. 590 
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.   591 

 592 

Fig. 12. NSE coefficients obtained from three key models of interest (Model A, B and Rainfall radar), 593 

each shown for the full modelling period (Jan 2014 – May 2015) and Events 1, 2 and 3. Graphs 594 

display average NSE results across all six gauging stations. 595 

 596 

The patchwork of quantitative and qualitative community-based observations used here were 597 

required to help capture the intense rainfall and flash flood response during Event 1. Smith et al. 598 

(2015) and Kutija et al. (2014) also emphasise the value of community-based observations during 599 

these hydrologically important events given that they are short-lived. Accurate coverage of the rainfall 600 

extent is also required, however, as it can cause significant over- or under-estimation if incorrect. 601 

Timing and magnitude are important factors which affect public response on the ground, response by 602 

organisations responsible for flood forecasting and warning, as well as catchment managers designing 603 

intervention measures to withstand or relieve short-lived floods. Community-based observations can 604 

therefore make a difference; they have the potential to increase the spatial resolution of ground-based 605 

gauges, as well as ground-truth rainfall radar observations which are routinely adjusted using gauge-606 

based factors (Wang et al., 2015). Our findings also compliment Seibert and McDonnell (2015), who 607 

found that a small number of ‘soft’ and ‘fuzzy’ qualitative (knowledge-based) observations are 608 

extremely useful for understanding and modelling how catchments work, particularly under high flow 609 

conditions. Seibert and McDonnell (2015) also suggest combining these informal observations with 610 

the often limited network of traditional gauges. However, such an approach relies on unpaid members 611 

of the public to be physically present, actively monitoring and collecting good quality observations, 612 

which cannot always be guaranteed. 613 

In this case study, seven manual rain gauges were originally distributed within the Haltwhistle 614 

Burn catchment ready for community-based monitoring, but only two of these (Townfoot and 615 

Cawburn) returned data covering the full modelling period. Due to the nature of citizen science and 616 

the practicality of getting volunteers to observe parameters manually over time, it is to be expected 617 
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that datasets may be missing or incomplete from some monitoring sites. If the community were to be 618 

informed that their observations are most useful during localised flash flood events, then they can 619 

prioritise their monitoring efforts and pinpoint these specific occasions. In turn, the most valuable 620 

observations are more likely to be captured for a greater number of monitoring sites and with an 621 

increased temporal resolution. There are obvious health and safety implications for members of the 622 

general public with this regard and the engagement, training and facilitation activities required to 623 

activate community-based monitoring schemes should be prioritised. 624 

5. Conclusions 625 

The Haltwhistle Burn catchment and focus community have been used to demonstrate the 626 

value of real community-based observations using a PBSD catchment model (SHETRAN) under a 627 

range of scenarios. It is clear that the wider public can provide valuable inputs via citizen science style 628 

data collection activities pertinent to catchment characterisation, modelling and management. 629 

Community-based activities are less complicated, significantly cheaper and less demanding (e.g. for 630 

power and processing) than their traditional counterparts, yet results here highlight how effective and 631 

valuable they can be. Examples presented here emphasise the importance of spatial and temporal 632 

information at a sub-catchment scale. Two key conclusions can be drawn from this work: 633 

1. Our modelling results illustrate how a patchwork of quantitative and qualitative community-634 

based observations (which together yield information relating to rainfall totals, timing, 635 

duration, and therefore intensity) are required alongside traditional sources of hydro-636 

information in order to fill spatial and temporal data gaps, and to characterise local catchment 637 

response more accurately than using traditional data alone. This includes the behaviour, 638 

timing and magnitude of river response during and after floods; 639 

 640 

2. Evidence presented here confirms that community-based rainfall observations are most 641 

valuable during local flash flood events. This information would otherwise often be missed, 642 

be under-unrecorded by existing ground-based gauges, or else be significantly underestimated 643 
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by rainfall radar. Community-based observations are less valuable during prolonged and 644 

widespread floods, or over longer hydrological periods of interest. 645 

 646 

Community-based observations have the potential to add spatial detail and to ground-truth 647 

existing traditional sources of catchment data, providing accurate information to support monitoring 648 

applications nationally, including weather and flood forecasting, modelling and longer-term 649 

catchment management initiatives. If community-based monitoring efforts are to be prioritised or 650 

streamlined, then, as with any hydrological monitoring, this potential can only be realised if 651 

appropriate procedures for quality control checking are established and followed. If the public 652 

recognise which of their observations are most valuable, and they are properly trained, then they are 653 

more likely to continue monitoring and providing good quality datasets which can contribute to the 654 

catchment management toolkit in the longer term. 655 

It is acknowledged that the results presented here are location, community, event and 656 

equipment specific. However, this case study provides an early insight into what can be achieved and 657 

the value that is added when public participation is integrated into the catchment characterisation and 658 

management process. Data outcomes will evolve and improve over time given that citizen science is 659 

flourishing in line with technological advances, but will be naturally limited by participation levels. 660 

Overall, we conclude that a citizen science approach offers local communities an exciting way to 661 

learn about their local water environment, engage with professional stakeholders, and be actively part 662 

of the catchment management process.  663 
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Figure captions 822 

 823 

Fig. 1. (i) Location and elevation map of the Haltwhistle Burn catchment, (ii) Haltwhistle Burn at 824 

high flow and (iii) Sediment deposited under a culvert in the town following high intensity rainfall. 825 

 826 

Fig. 2. Key stages involved during the community-based monitoring process to capture observations 827 

ready for the modelling activities. 828 

 829 

Fig. 3. Spatial (i) and temporal (ii) availability of community-based observations used to model, along 830 

with a summary of the quality control checks used to accept or reject individual rain gauges (iii). The 831 

Townfoot rain gauge has also been compared with traditional gauges (see Supplementary Material). 832 

Note that Cawburn rainfall totals are significantly lower than expected, hence it was rejected. 833 

 834 

Fig. 4. Spatial (i) and temporal (ii) availability of traditional datasets used in this study. Colours 835 

correspond to each individual gauge on the map. 836 

 837 

Fig. 5. SHETRAN 100m grid and river network used to represent the Haltwhistle Burn catchment. 838 

Coloured dots represent locations where modelled discharge (Qsim) have been extracted. Watercourse 839 

abbreviations are referred to in later sections. 840 

 841 

Fig. 6. Combination of rain gauges and resulting Thiessen polygons used to spatially estimate 842 

precipitation across the catchment in Models B-G (includes original Model A), as well as a 1km 843 

resolution grid which utilises Met Office rainfall radar data (Model H). Original rainfall datasets have 844 

been directly fed into these models, rather than calculating areal rainfall, in order to capture spatial 845 

variability. 846 

 847 

Fig. 7. Left: 48-hour cumulative rainfall plots for Event 1 (30/04/2014 00:00 to 02/05/2014 00:00 848 

GMT) for each gauge initially used in Model A, and rainfall radar where each gauge overlaps. Right: 849 

Rainfall radar accumulations for the same period across the catchment. Ground-based gauges are 850 

overlaid onto the radar grid. Plots relating to Events 2 and 3 can be found in the Supplementary 851 

Material. 852 

 853 

Fig. 8. A timeline of Event 1 (30th April 2014) created by harnessing a range of community-based 854 

quantitative and qualitative observations collected on the ground. Note quotes such as “Monsoon 855 

alert. Heaviest rain I’ve seen in ages!”, and early warnings submitted and then crowd-sourced using 856 

Twitter.    857 

 858 

Fig. 9. Qobs and Qsim results for the Caw Burn at Gibbs Hill, the Pont Gallon Burn at Sheep Dip and 859 

the Haltwhistle Burn at Broomshaw, plotted (i-iii) for Model A over the calibration and validation 860 

periods. Qsim for all gauging stations are also presented together, which emphasises variation in sub-861 

catchment response (iv). 862 

 863 

Fig. 10. Hydrograph shape: final simulated discharge obtained from SHETRAN Models A-H for all 864 

relevant gauging stations during the April 2014 event. Includes manual river level gauge board 865 

(RLGB) observations collected by the community which have been converted into discharge. Note 866 

that discharge has been plotted using a logarithmic scale. 867 
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 868 

Fig. 11. A comparison between observed Q (Qobs) and modelled discharge (Qsim) for Models A-H at 869 

Cawfields Caw Burn during the 30th April 2014 event: peak discharge (left) and timing of the peak 870 

discharge (right). 871 

 872 

Fig. 12. NSE coefficients obtained from three key models of interest (Model A, B and Rainfall radar), 873 

each shown for the full modelling period (Jan 2014 – May 2015) and Events 1, 2 and 3. Graphs 874 

display average NSE results across all six gauging stations. 875 
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(iii) Quality control checks (*note that the 1961-1990 average annual rainfall is 1000-1500mm, Kay et al., 2013)

Gauge
No. gaps in 

data

Σrainfall (mm) 

492 days

Σrainfall (mm) annual* Extremes 

valid?

Dataset 

accepted?01/03/14 – 01/03/15 01/05/14 – 01/05/15

▲ Townfoot 0 1530 1107 1087 � �

▲ Cawburn 0 857 587 472 x x
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Fig. 5 886 
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Fig. 6 892 
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Fig. 8 899 
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Fig. 11 913 
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 919 

Fig. 12 920 

 921 
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Parameter 24-hour rainfall totals 
River (water) levels 

(sporadic / daily) 

Flood-related 

information 

Method Plastic manual rain gauge 

in back gardens, placed at 

ground level. Graduated 

scale in millimetres for 

quantitative observations 

taken at the same time 

usually every day in the 

same location. 

Manual river level gauge 

boards at key (fixed) 

locations. ‘River Watch 

Photo Posts’ erected to 

provide instructions and 

consistency. Photographs 

or direct quantitative 

measurements taken.   

• Anecdotes / eye-witness 

descriptions 

• Photographs 

• Videos 

• Extra river levels. 

All provided with date, 

time and locational 

information. 

Example 

   
Table 1. Examples of community-based monitoring techniques used in Haltwhistle which are relevant 923 

to this modelling study.  924 

 925 

 926 

 927 

  928 
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Highlights 929 

• Citizen scientists can collect relevant rainfall, river level and flood observations 930 

• Community-based observations add value to the hydrological modelling process 931 

• Their observations are most valuable during local flash flood events 932 

• Traditional ground-based gauges and rainfall radar miss or underestimate flood peaks 933 

• Combination of data sources required to fully characterise local catchment response 934 

 935 

 936 

 937 


