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A B S T R A C T

Evapotranspiration (ET) typically accounts for 60–70% of precipitation in rural basins of the Southeastern
United States. Since 1930, substantial reforestation of former croplands has occurred in the Piedmont and
Appalachian Highlands in this area, leading to an expected increase in ET and reduction in baseflow. This study
examines relationships between basin vegetative cover, abiotic factors, and water-budget partitioning in 45
USGS-gaged rural basins in the Southeastern US. Data are for the 1982–2014 water years with watersheds having
≥40% forest cover, crystalline-rock aquifers, minimal basin water export, and no large reservoirs. Long-term
annual ET is calculated using the water-budget equation (ET = P-Q), which ranges from 641 to 971 mm/yr.
(median 824). Vegetative cover and other basin variables are regressed against ET to quantify the effects of
vegetative and forest types. Budyko analysis is employed to compare the watersheds and to evaluate factors
affecting residuals. Regression analysis indicates that ET behavior is best explained by abiotic factors (i.e.,
precipitation and temperature) but forest-cover type also has some effect. Evergreen forest cover is less common
than deciduous or mixed forest but has a positive relationship with ET, while deciduous and total forest have
negative relationships with ET. Comparison of water-balance and Budyko-estimated ET indicates that deciduous
and total forest are associated with negative residuals while evergreen is not significant. These results show that:
forest cover effects on basin ET are complicated; forest-cover type is important for water-yield management in
this region, and abiotic basin characteristics exert stronger control than forest cover on ET.

1. Introduction

Whether and how to mitigate the hydrologic effects of climate
change are pressing questions for hydrologists requiring better under-
standing of how rural vegetation management affects water budgets
and streamflows. Because of higher leaf area indices, higher intercep-
tion, and somewhat deeper rooting, forest cover increases ET and re-
duces average streamflows relative to croplands, pastures, and lawns in
the same hydroclimatic region according to water budget studies
(Teuling, 2018).

Syntheses of paired watershed experiments shows forests are the
most water-use intensive land-cover type and that afforestation of
grassland reduces water yield by 44–75% (Andréassian, 2004; Farley
et al., 2005; Filoso et al., 2017; Hibbert, 1967; Teuling, 2018). Para-
doxically, global synthesis of eddy-flux estimates of ET suggest an op-
posite relationship between forest and grassland ET; that grassland ET
as a fraction of precipitation is 9% higher that of forests (Williams et al.,
2012). However, lysimeter measurements match the results of water-
budget studies and indicate that eddy flux underestimates latent-heat

flux from forest canopies (Teuling, 2018).
Paired-watershed studies typically focus on first- or second-order

basins with species diversity limited by management, thus ignoring
confounding factors associated with larger scale, mixed-land use wa-
tersheds that cannot independently account for ET variability driven by
abiotic factors such as watershed elevation and latitude.

Regardless, water-budget measurements are subject to substantial
uncertainty, and accurate and precise measurement of ET is difficult
and expensive. A better understanding of the role of forests and forest
type on the variability of water budgets across a region is needed to
develop policies for maintaining hydrologic ecosystem services in the
face of climate change and expanding human populations.

In humid environments, annual evapotranspiration (ET) typically
accounts for half or more of precipitation (P) inputs, and the amount of
ET partly depends on the composition and condition of vegetation types
in a watershed. Watershed responses to afforestation or deforestation
are not linear and are dependent upon watershed specific factors in-
cluding soil depth and water holding capacity, climate factors such as
temperature, precipitation, and vapor-pressure deficit and
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physiological factors such as plant rooting depth and hydraulic traits
(Andréassian, 2004).

Water-budget responsiveness to vegetation change varies with an-
nual precipitation and temperature and these abiotic factors are often
more important than biotic ones (Sahin and Hall, 1996; Stednick, 1996;
Sanford and Selnick, 2013; Teuling et al., 2019). Globally, vegetative
management influences watershed water budgets (Oudin et al., 2008),
but the relative effects of forest types and the scale of vegetative effects
to abiotic effects are less clear.

Forests are the dominant land cover in rural basins of the Piedmont
and Appalachian highlands of the Southeastern United States (Sanford
and Selnick, 2013; Wear and Greis, 2013). These forests are comprised
of two broad functional groups, deciduous and evergreen, of which
deciduous forest area is more than twice that of evergreen (Wear and
Greis, 2013). Southeastern evergreen forests are dominated by several
pine species, most notably loblolly pine (Pinus taeda L.) that are highly
productive and commonly grown for wood products (Washlenberg,
1960; Wear and Greis, 2013). Some high-elevation watersheds in the
Appalachian Highlands also contain eastern white pine (P strobus) and
spruce-fir communities (Wear and Greis, 2013). Southeast deciduous
species are far more numerous than evergreen species and exhibit a
broader range of traits (Wear and Greis, 2013). Some deciduos species,
such as chestnut oak (Quercus montana) and northern red oak (Quercus
rubra), have lower ET than evergreens (Pinus strobus) (Ford et al.,
2010), whearas american sweet gum (Liquidambar styraciflua) have
higher ET than evergreen loblolly pines (Caldwell et al., 2018).

Understanding the relative effects of forest types on water use is
important for forest and stream flow management. Evergreen forests
transpire more water than deciduous forests (Swank and Miner, 1968;
Swank and Douglass, 1974, Bosch and Hewlett, 1982), which is ex-
plained by biological and physiological factors that contribute to dif-
ferent water use behavior (Ford et al., 2010). Evergreens maintain ca-
nopy cover, interception (I), and transpiration (T) throughout the year
while deciduous forests lose their leaves in winter or in dry seasons.

Evergreen and deciduous species also conduct water differently,
evergreens typically have higher stomatal conductance although
hardwoods exhibit a wide range of conductance (Ford et al, 2010;
Carlquist, 2001; Sperry et al., 2006). In the Southeast, deciduous spe-
cies are more dominant in riparian areas that have more available water
than upland areas (Bosch and Hewlett, 1982; Ford et al., 2010). Ever-
green forests have a lower albedo and reflect less incoming solar ra-
diation than deciduous forests, and this increases evergreen ET poten-
tial (Rosenberg, 1986). However, Bosch and Hewlett (1982) found that
watersheds with evergreen forests occurred in more humid environ-
ments than deciduous forested watersheds, thus confounding the re-
lationships between ET, climate, and land cover.

In the Southeastern U.S., streamflow (Q) has been declining
(Gotvald, 2016). Stephens and Bledsoe (2020) found that over the last
25–50 years the majority of Southeast watersheds had decreases in
average annual 7-day low flows of 4–16 mm and understanding the
drivers of these decreases is important. Observed trends of decreasing
total streamflow could be due to recurring droughts (Stephens and
Bledsoe, 2020), changes in precipitation distribution, reforestation,
increasing consumptive use, changes in forest composition, increasing
temperatures and longer growing seasons due to climate change
(Pourmokhtarian et al., 2017; Vadeboncoeur et al., 2018) or a combi-
nation of these factors (Gotvald, 2016). The region has seen an increase
in forest cover since approximately 1940 when a trend of agricultural
land abandonment began (Auch et al., 2015; Jackson et al., 2005a;
Jacksonet al., 2005b; Ramankutty et al., 2010; Trimble et al., 1987).
The Southeast is predicted to see a continued conversion of deciduous
forests to evergreen due to increased demand for softwood timber
production (Wear and Greis, 2013).

Trimble et al. (1987) attempted to determine if water yield de-
creased due to afforestation of cropland from 1919 to 1967 across ten
USGS-gaged watersheds in the piedmont of Alabama, Georgia, and

South Carolina. This small set of watersheds included some with large
reservoirs and some with substantial urbanization, and the analysis
suffered from low-resolution land-cover estimates, data gaps, and
confounding simultaneous increases in urbanization and afforestation
(Auch et al., 2015; Trimble et al., 1987). Nonetheless, Trimble et al.
(1987) determined that increases in forested areas were associated with
decreases in water yield and that watershed land cover modifications
of< 20% could be detected. This is inconsistent with findings by Bosch
and Hewlett (1982), who suggested that changes would need to be
larger to be detectable.

In the Southeast, Lu et al. (2003) calculated water balance ET for 36
watersheds and attempted to determine if forest cover type was im-
portant for predicting ET. They found slight but non-significant model
improvements by considering forest type (Lu et al., 2003). However,
many of the watersheds were in the coastal plain and underlain with
high conductivity aquifers with the potential for leakiness (Fan, 2019)
which can allow water to exit the basins through regional groundwater
flow paths and bias water balance estimates. In a nationwide analysis of
water balance ET, abiotic factors including temperature and precipita-
tion had the most influence on ET, but including total forest cover
provided slight significant improvements to model evaluations (Sanford
and Selnick, 2013), these authors did not report forest type effects.

Our objective in this study is to examine how average annual wa-
tershed ET is influenced by land cover distribution, including forest
type, and other geographic variables including latitude, elevation,
drainage area, population, mean annual air temperature, average vapor
pressure deficit, the dryness index, and available soil water storage.
Specifically, we sought to answer three questions: 1) Does average
annual water balance ET increase as the fraction of forest cover in the
basin increases; 2.) Does the type of forest (evergreen versus deciduous)
affect the answer to the first question; and 3) To what degree do per-
tinent geographic variables influence the variation of ET across these
basins. Our approach was to use a large set (45) of undammed, rural,
Southeastern watersheds underlain by crystalline rock with long-term
USGS streamflow records, available climatic data, and small amounts of
urbanization and irrigation. Confining the watersheds to crystalline
rock aquifers reduces the effects of storage changes and the potential for
significant cross-basin groundwater movement (Fan, 2019;
McGuinness, 1963).

2. Methods

2.1. Watershed selection

We selected all Southeastern watersheds meeting the following
criteria: 1) located over Piedmont and Blue Ridge crystalline rock
aquifers; 2) precipitation (P) and USGS discharge (Q) data available
from Water Years 1982–2014; 3) mean forest cover greater than or
equal to forty percent; 4) reservoir surface area less than one percent of
total watershed area (calculated from the National Inventory of Dams
database (Goteti, 2014)); 5) located outside of metropolitan areas; and
6) no substantial changes in land cover through time (see Mahalanobis
distance details in Section 2.2). The final dataset consisted of 45 wa-
tersheds (Fig. 1, Table S1).

We limited our study to crystalline rock aquifers which have low
conductivity and well productivity (McGuinness, 1963) and thus reduce
the potential for water-balance errors associated with groundwater
pumping, leakage to regional flow paths, or long storage-discharge lags.
We limited the basins to those with ≥40% in order to have enough
forest cover to separate the effects of evergreen, deciduous, and total
forest.

The defined study area (Fig. 1) includes most of the water supply
watersheds for the rapidly growing cities of the developing Interstate 85
megapolitan corridor from Atlanta, GA, to Raleigh, NC (Terando et al.,
2014). Population growth and development in these cities is expected
to adversely affect aquatic health and reduce assimilative capacity for

S.E. Younger, et al. Journal of Hydrology 591 (2020) 125316

2



pollutants (Van Metre et al., 2019).
Watershed population densities (population/km2) range from 35 to

987, averaging 176 with a standard deviation of 160 (Table 2). Basin
drainage areas range from 66 to 4,389 km2, averaging 772 km2, with a
standard deviation of 910 km2. Watershed mean elevations above mean
sea level (amsl) range from 100 to 1,009 m, averaging 315 m, with a
standard deviation of 182 m. Watershed outlet latitudes range from
32.9168 to 37.2085°N, averaging 35.4526°N, with a standard deviation
of 1.1925°.

2.2. Data acquisition

Publicly available land cover, hydrologic, and meteorological da-
tasets were used in this study as listed below. Temporal data were ag-
gregated from daily or monthly timesteps to annual totals that were
averaged for Water Years 1982–2014 (October 1, 1981 through
September 30, 2014). Spatial data were aggregated to the watershed
scale (McManamay et al., 2012). GIS overlays were performed in
ArcGIS, database development and statistical analyses were performed
in R 3.6.1 (Grolemund and Wickham, 2011; Hirsch and De Cicco, 2015;
R Core Team, 2019; Wickham and Francois, 2015).

Mean daily discharges (Q, ft3/s) from the US Geological Survey
were converted to runoff depth (mm/day). Area-weighted averages of
total monthly precipitation (P, mm) and mean monthly temperature (T,
°C) were from the PRISM dataset (4 km resolution) (PRISM, 2012,
Blodgett et al., 2011). Daily maximum and minimum temperature and
relative humidity were from the University of Idaho gridMET dataset
(Abatzoglou, 2013, Blodgett et al., 2011). Watershed boundaries were
from the US Geological Survey (USGS, 2011). Land cover was from 30-
m National Land Cover Datasets (NLCD) for 2001, 2006, and 2011
(Homer et al., 2015).

The 1992 NLCD dataset was not used because of inconsistencies
with subsequent classifications. Land cover types include Water,
Developed, Barren, Deciduous Forest, Evergreen Forest, Mixed Forest,

Shrubland, Herbaceous, Grassland, Pasture, Crops, and Wetlands.
Pasture and grass were grouped together as grass, all other cover types
were combined to ‘Other cover’. Total forest was calculated as the sum
of Deciduous, Evergreen and Mixed forest. Mahalanobis distances were
calculated for each watershed between the three landcover datasets
(2001, 2006, and 2011) for evergreen, deciduous, mixed forest and
grass cover proportions (Mahalanobis, 2015). Watersheds with non-
normal Mahalanobis distances were excluded interactively using qq
plots using the R stats package (R Core Team, 2019).

Land cover from the three datasets was averaged by watershed and
class then logit transformed prior to regression analysis. Average basin
elevation was calculated using 30-m data from the National Elevation
Dataset (NED) (NED, 1999). Populations densities (population/km2)
were estimated using 2010 block-level census data and watershed areas
(Walker, 2018). Potential evapotranspiration (PET, mm) was de-
termined using the Priestley-Taylor formulation and gridMET meteor-
ological variables (Guo et al., 2016; Priestley and Taylor, 1972).

Vapor pressure deficits (VPD, millibars) were calculated using daily
maximum and minimum relative humidity and temperature from the
gridMET dataset (Abatzoglou, 2013; Alien, 1998). Available soil water
storage (AWS) from 0 to 150 cm was extracted from the SSURGO da-
tabase and an area-weighted average was calculated for each watershed
(SSURGO, 2016).

2.3. Screening of land cover and basin Regression variables

VPD was excluded from multivariate models because of strong
covariance with elevation and temperature (correlation coefficient = -
0.85). Population density and drainage area were not significant factors
based on bivariate linear regressions and were excluded from further
analysis.
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Fig. 1. Study area in the Southeastern US that includes 45 USGS-gaged watersheds with daily precipitation and streamflow data from 1982 to 2014, total forest cover
≥40%, and crystalline-rock aquifers.

S.E. Younger, et al. Journal of Hydrology 591 (2020) 125316

3



2.4. Water balance

Direct measurement of ET is difficult and expensive, making in-
direct techniques necessary. The long-term watershed water-balance is
a common indirect method for estimating ET and is calculated for gaged
watersheds with long records of available P and Q. Eq. (1):

= − − ⎛
⎝

⎞
⎠

ET P Q dS
dt (1)

where: changes in storage over a long record ( )dS
dt are assumed to be

negligible.
Long periods reduce the effects of interannual changes in watershed

storage (Bosch and Hewlett, 1982; Rice and Emanuel, 2019) and
memory effects (Nippgen et al., 2016). The water balance does not
allow for separation of canopy interception (I) or soil evaporation (Es)
from total ET. Any biases in the precipitation or runoff measurements
bias ET estimates.

2.5. Temporal changes in water budgets

Because we analyzed water budgets using long-term averages of Q
and P, we wanted to screen each watershed for temporal shifts in hy-
drology. Temporal changes were evaluated by comparing Q to P using
double-mass analysis (Searcy et al., 1960). Cumulative Q was graphed
against cumulative P for each watershed. Temporal changes were
evaluated by visually inspecting each timeseries for an inflection point
when Q increased or decreased relative to P. No significant changes
through time are indicated if the double-mass curve is near-linear.
Minor changes are to be expected due to annual variations in climate
and other conditions (Searcy et al., 1960).

2.6. Budyko analysis

We employed the Budyko framework to compare the influence of
climate on ET. Budyko (1974) hypothesized a functional relationship
between P, ET, and PET based on the assumption that ET is limited
whenever water or energy are insufficient to support PET. The Budyko
framework extends the water-balance method by using both mass- and
energy-balance equations to constrain the physical system (Sposito,
2017). The Budyko method assumes that long-term changes in water
and energy fluxes across the land surface can be neglected; P entering a
watershed exits as Q or ET, and incoming shortwave radiation is ba-
lanced by outgoing longwave radiation plus latent-heat losses due to
evapotranspiration. The Budyko method relies on a nonlinear empirical
relationship between the dryness index (PET/P) and the evaporative
index (AET/P), which has the effect of normalizing by P.

Many alternate non-linear formulations have been developed, some
with parameters to improve the fit for watersheds with varying land
cover or other properties (Zhang et al., 2001; Wang and Tang, 2014).
We first compare different Budyko-type formulations for our watershed
in the complementary space (Budyko, 1974; Zhanget al., 2001) then
calculate residuals between the estimates from Zhang et al., 2001 (with
w = 2.0 for forest and w = 0.5 for non-forest) and water balance
evaporative indices (AET/P) to evaluate forest-cover type. We ac-
knowledge that this linear scaling of w is an approximation which in-
troduces some error. However, we checked the relationships between
empirical and water balance ET with fixed w values (0.5, 1, and 2) and
using the parameter free Budyko (1974) all of which show the same
significance.

Following Oudin et al. (2008), land-cover accounting models were
parameterized to evaluate the influence of land cover on ET. Land-cover
accounting models had no more than five parameters with each tied to
the proportion of a land-cover class in each watershed (Oudin et al.,
2008). The included parameters were Ti = Total forest, Ei = evergreen
forest, Di = deciduous forest, Mi = mixed forest, Gi = grass, and

Oi = all other covers not explicitly represented. As a sensitivity ana-
lysis, one model contained a free parameter (sigma) not tied to a land-
cover variable. Land-cover is not important if sigma performed as well
as the land-cover parameters, (Oudin et al., 2008). Preliminary com-
parisons of common Budyko type models with our watersheds indicated
that the Zhang et al. (2001) method provided the best ET prediction
(Zhang et al., 2001; Oudin et al., 2008). Thus, we used the landcover
accounting Zhang et al. (2001) model from Oudin et al. (2008) to es-
timate the effects of land cover on watershed ET.

2.7. Regression analysis – land cover and basin characteristics

Regression models were constructed to evaluate the effects of land-
cover and non-land-cover variables on watershed ET. Bivariate regres-
sions were fit between ET and every variable of interest. Variables that
were strongly correlated (correlation coefficient > 0.7) were excluded
from further analysis by selecting the variable from correlated pairs
with the highest predictive power (R2). Variables with non-significant
relationships were also excluded from further analysis.

Multivariate models were constructed from the remaining variables
and their interactions, the multivariate models were evaluated using
AIC from the R package stats (R Core Team, 2019). Regression models
were evaluated to ensure that the assumptions were met, including
independence between variables, linear relationships between in-
dependent and dependent variables, as well as independent and nor-
mally distributed residuals (Michael and Patrick, 1971).

3. Results

Within the selected watersheds, deciduous forest is the most
common vegetation type, followed by grass, then evergreen forest, and
then mixed forest. Other land cover includes small amounts of low- and
medium-intensity development (median 6%), shrub (median 2%),
barren, crops, emergent herbaceous wetland, and woody wetland
(medians < 1% each) (Table 1).

Total forest cover ranges from 43 to 95% (median 60%), with de-
ciduous forest cover ranging from 23 to 80% (median 45%), and
evergreen ranging from 3 to 34% (median 10%) (Table 1). Grass cover
ranges from<1 to 40% (median 21%). Other land covers, including
developed, barren, crops, herbaceous wetland, water, and woody wet-
land, range from<1 to 30% (median 4%). Overall, land cover pro-
portions of the entire region, as defined by the crystalline rock aquifer
polygon, have a similar central tendency to the 45 study watersheds but
deciduous forests are more common and evergreen forests are less
common in the study watersheds than regionally (Fig. 2, Table 1).

Mean annual precipitation for the 32-year period range from 1,124
to 1,847 mm across the watersheds, averaging 1,252 mm with a stan-
dard deviation of 136 mm (Table 3, Fig. 3). Mean annual discharges
range from 217 to 998 mm, averaging 434 mm with a standard de-
viation of 147 mm (Table 3, Fig. 3). Water balance ET is less variable
and normally distributed (Shapiro-Wilk p-value = 0.4733), ranging
from 640 to 971 mm, with mean and median of 817 and 824 mm, and a

Table 1
Summary statistics of land-cover characteristics for 45 study watersheds in the
Southeastern US.

Statistic Forest Type Grass Other

Total Deciduous Evergreen Mixed
(%) (%) (%) (%) (%) (%)

Maximum 94.7 80.6 34.2 8.3 39.9 45.5
Mean 62.8 46.4 13.0 3.3 22.7 14.5
Median 60.1 45.1 10.3 3.2 21.5 13.1
Minimum 43.5 22.9 3.3 0.3 0.7 4.6
Std Dev 12.7 14.3 8.2 2.0 10.0 7.9
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standard deviation of 61 mm (Table 3, Fig. 3). Most of the basins’
average ET falls between 725 and 900 mm while three basins (35, 6,
44) have ET above 900 mm, and three basins (25, 10, 27) are below
725 mm. PET ranges from 1,001 mm to 1,167 mm, averaging
1,067 mm, with a standard deviation of 48 mm.

3.1. Temporal variation in hydrologic behavior

Double-mass curve analysis of Q versus P indicates that the large
majority of the 45 watersheds exhibited no changes or very gradual
changes in these relationships through time (Fig. S1). Seven watersheds
(2, 6, 15, 19, 29, 30, 34) had a decrease in Q near the end of the 32-year
period. This decrease was likely due to a recurring drought that

appeared to affect a band of Piedmont watersheds from SC to central
NC (Stephens and Bledsoe, 2020). Given the small number of water-
sheds affected and the limited amount of time, this drought effect
should not alter the interpretation of the overall results, but we report it
here since it may be a source of estimated ET variability.

3.2. Budyko analysis

Most watersheds were tightly clustered in the complementary space
(Fig. 4), reflecting the similarity of the climate, geology, and ET across
the study area. The plurality of basins fall along the Budyko (1958)
curve, with forty-two percent of the studied basins falling between the
Zhang et al. (2001) curves defined by w = 1.15 and w = 1.95, scat-
tering across these lines in the vertical (AET/P) axis. Thus, the differ-
ence between water balance AET/P and Zhang et al. (2001) AET/P for
each watershed reveals differences in AET processes across watersheds
(Fig. 4).

The distance between the water-balance estimated AET/P ratio and
the Zhang et al. (2001) estimated AET/P ratio is negatively related to
the percentage of both total and deciduous forest and unrelated to
evergreen-forest percentage. A 1% increase in deciduous or total forest
cover corresponds to a 0.27% or 0.29% decrease, respectively, in the
difference between the two estimates in AET/P space (Fig. 5). Conse-
quently, many of the water-balance estimates of AET/P fall below the
empirical predictions for watersheds where deciduous and total forest
cover exceeded 50% and 70%, respectively (Figs. 4 and 5).

Including land cover (Zhang et al., 2001) in the model improves the
fit, although different combinations of land-cover parameters produce
similar results (Table 4). Each of the models accounting for forest type
had a slightly better fit (R2 = 0.18) than the total forest model
(R2 = 0.15). The sensitivity analysis with a free parameter not tied to
land cover performed the worst (R2 = 0.09) indicating that land-cover
parameters are significant (Table 4). While forest cover type improved
Budyko type ET estimates, total forest had similar support.

3.3. Regression analysis of ET as a function of land cover and basin
variables

Bivariate, linear-regression analysis indicates ET has significant re-
lationships with both evergreen and deciduous forest cover, but with
opposite signs (Table 5, Fig. 6). An increase in evergreen forest cover is
associated with an increase in ET and an increase in deciduous land
cover is associated with a decrease in ET. Both relationships are noisy
with low correlations (R2 = 0.159 and 0.107, respectively). Mixed
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Table 2
Statistical summary of basin characteristics of 45 study watersheds in the
Southeastern US. AWS = Available Soil-Water storage.

Statistic Population AWS Area Elevation Latitude
(per km2) (mm) (km2) (m amsl) (°N)

Maximum 987 205 4,390 1,009 37.21
Mean 176 166 772 315 35.45
Median 131 167 428 269 35.89
Minimum 35 122 67 100 32.92
Std Dev 160 24 910 182 1.19

Table 3
Statistical summary of annual water-budget components for 45 study water-
sheds in the Southeastern US. P = precipitation, Q = discharge,
ET = evapotranspiration, PET = potential evapotranspiration, VPD = vapor
pressure deficit, T = temperature.

Statistic P Q ET PET VPD Temp
(mm) (mm) (mm) (mm) (mBar) (°C)

Maximum 1,847 998 970 1,167 0.97 13.7
Mean 1,252 434 817 1,066 0.85 11.4
Median 1,224 425 824 1,056 0.85 11.4
Minimum 1,124 217 640 1,000 0.57 8.1
Std Dev 136 147 60 48 0.07 1.2
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Fig. 3. Distribution of median annual precipitation (P), water-budget evapo-
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whiskers at 1.5 * IQR and open circles are outliers.
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forest cover has a significant negative trend with ET (R2 = 0.107).
Interestingly, total forest cover was not significantly related to ET
(Table 5). Regression analysis suggests that the type of forest cover is
more meaningful than total forest cover.

Bivariate linear regression between ET and basin characteristics
indicate that temperature (R2 = 0.402), elevation (R2 = 0.237), lati-
tude (R2 = 0.175), and AWS (R2 = 0.152) each significantly affect
basin water budgets. ET relationships with temperature, elevation, and
latitude were stronger and better supported than any of the vegetative-
cover relationships (Table 5). ET increases with temperature, VPD, and
AWS and decreases with elevation and latitude. Drainage area, pre-
cipitation, and population density were not significant when examined
individually (Table 5, Fig. 7). Temperature, elevation, VPD, AWS, and
latitude explain more of the ET relationship than evergreen, deciduous,
or mixed forest. Correlations between evergreen, deciduous, and mixed
forest types with ET are significant and explain more of the variation
than total forest alone, for which the correlation is not significant.

Multivariate regressions with ET as the response indicate that pre-
cipitation and temperature together offer the best explanatory power,
and together their adjusted R2 is 0.408. These two variables also had
the only significant interactions. For simplicity, non-significant inter-
actions are not shown in Table 6. The best models with three or more
variables all included precipitation and temperature. The addition of
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Fig. 5. Difference between water-balance
and empirically estimated evaporative index
(vertical lines in Fig. 4) using the proportion
of evergreen, deciduous, and total forest in
each watershed. Negative values indicate
that water-balance estimates are less than
empirical estimates. The empirical method
overpredicts ET relative to the water-bal-
ance as deciduous and total forest cover in-
crease beyond 50 and 70%, respectively.
Trend lines, 95% confidence intervals, and
summary statistics are shown for significant
relationships.

Table 4
Model comparison using land-cover to predict the runoff ratio following Oudin
et al. (2008). Land cover parameters are deciduous (Di), evergreen (Ei), other
cover (Oi), grass (Gi), mixed forest (Mi) and total forest (Ti).

Model param. Estimate p value R2 AIC

Oudin-Zhang 3 Di 0.63 0.0055 ** 0.18 −148.2
Oudin-Zhang 3 Ei 2.40 0.0772 *
Oudin-Zhang 3 Oi 2.80 0.0008 ***
Oudin-Zhang 4 Di 0.63 0.0061 ** 0.18 −146.3
Oudin-Zhang 4 Ei 2.36 0.0898 *
Oudin-Zhang 4 Oi 2.99 0.0912 *
Oudin-Zhang 4 Gi 2.68 0.0213 **
Oudin-Zhang 2 Ti 0.90 0.0001 *** 0.18 −145.0
Oudin-Zhang 2 Gi 2.57 0.0240 **
Oudin-Zhang 2 Oi 4.26 0.1256
Oudin-Zhang 1 Ei 2.41 0.1197 0.18 −144.3
Oudin-Zhang 1 Di 0.61 0.0595 *
Oudin-Zhang 1 Mi 3.87 0.7410
Oudin-Zhang 1 Gi 2.70 0.0271 **
Oudin-Zhang 1 Oi 2.90 0.1331
Sensitivity analysis sigma −2.01 0.0000 *** 0.09 −51.0

Note: Significance shown using *(p < 0.1), **(p < 0.05), ***(p < 0.01).
Number of observations = 45. AIC = Akaike Information Criterion.
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land cover variables to the models that include precipitation and tem-
perature did not improve model fits. Although the univariate regres-
sions indicate that forest cover type is important, it is less important
than several abiotic factors, particularly the combination of tempera-
ture and precipitation (Table 6).

4. Discussion

Watershed scale ET in the southeastern U.S. is sensitive to the type
of forest cover (deciduous, evergreen, mixed) and even more sensitive
to abiotic factors, including precipitation, temperature and available
water storage together as well as temperature, elevation, and latitude
individually. Vegetative effects on ET are mediated by climatic and
geologic variation, so that vegetative signals are noisy when viewed
across a broad geographic region (e.g. Freund et al., 2020; Teuling
et al., 2019) and in the small basins (< 50,000 km2) that were included
in our study (Li et al, 2013).

Bosch and Hewlett, (1982) found evidence for higher ET in ever-
green basins but results were confounded by generally higher pre-
cipitation in these basins. Where precipitation was comparable, ever-
green forests transpired more water than deciduous forests.
Vadeboncoeur et al. (2018) examined ET relationships across a larger,
more climatically-variable region, and found that the dominant controls
of ET vary systematically with increasing ET in the most energy limited
part of the region and decreasing ET in the less energy limited parts of
the region. Variations in the abiotic template along with variations in
functional diversity of species affect our ability to detect effects of ve-
getation type.

Here, watershed-scale sensitivity to land cover was detectable at a
lower threshold than the 20% suggested by Bosch and Hewlett (1982)
but was in line with the suggestion of Trimble et al. (1987) that forest
cover changes less than 20% can be detected. In short, vegetation
composition partly controls watershed-scale ET, but variations in
abiotic controls such as elevation, latitude, precipitation, temperature,
lithology, and aspect often matter more (Sanford and Selnick, 2013; Fan
et al., 2019, Metzen et al., 2019; Teuling et al., 2019).

Our analysis indicates that increasing total forest cover does not
necessarily increase basin ET. Forest type matters. In these watersheds,
increasing deciduous and mixed forest cover was associated with lower
ET, while increasing evergreen forest cover was associated with higher
ET. Regression analysis indicated that watersheds with more evergreen
forest had higher ET and those with more deciduous forest had less.
Budyko residuals also suggested that watersheds with more deciduous
cover had less ET, but Budyko residuals did not identify the effects of
evergreen cover as statistically significant. Taken together, the analysis
argues for considering forest type to improve predictions of the effects
of forest cover on ET.

The study region is currently dominated by deciduous forests, but
there is some potential for loblolly pine afforestation by conversion
from marginal agricultural (Wear and Greis, 2013). The data indicate
that conversion of other cover types to fast-growing loblolly pine would
increase ET and reduce stream baseflow. The impact of forestry op-
erations on water budgets is critical to understand, particularly given

Table 5
Bivariate regressions between water-budget estimated evapotranspiration (ET)
and land cover or watershed variables.

Variable Type df Estimate p-value Adj. R2 AIC

Evergreen Landcover 2 35.89 0.004 ** 0.156 493.4
Deciduous Landcover 2 −34.95 0.017 ** 0.105 496.0
Mixed forest Landcover 2 −25.62 0.017 ** 0.104 496.0
Total forest Landcover 2 −16.29 0.243 0.009 500.6
Grass Landcover 2 3.32 0.761 −0.021 501.9
Temperature Watershed 2 32.53 0.000 *** 0.402 477.9
Elevation Watershed 2 −0.17 0.000 *** 0.237 488.8
Latitude Watershed 2 –22.37 0.002 ** 0.175 492.3
AWS 150 cm Watershed 2 1.05 0.005 ** 0.152 493.6
Population Watershed 2 −0.05 0.413 −0.007 501.3
Drainage Watershed 2 −0.01 0.649 −0.018 501.8
Precipitation Watershed 2 0.02 0.801 −0.022 502.0

Note: Significance shown using *(p < 0.1), **(p < 0.05), ***(p < 0.01).
Number of observations = 45. df = degrees of freedom, AIC = Akaike
Information Criterion.
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predictions of increased atmospheric CO2, temperature, growing season
length, and precipitation variability due to climate change (Hwang
et al., 2018; Pourmokhtarian et al., 2017; Vose et al., 2011).

Higher CO2 levels generally increase water-use efficiency (Tyree

and Alexander, 1993; Battipaglia et al., 2013), but Jaramillo et al.
(2018) found that increased forest biomass increased regional ET and
masked any potential reduction in ET due to increase water use effi-
ciency. Additional plot-scale data nested in gauged watersheds should
provide useful insights to help understand the dynamics of watershed-
scale ET where multiple land-cover types and management strategies
may act together to contribute to total ET (Boggs et al., 2015; Caldwell
et al., 2018). In addition, reanalysis of the global datasets for forest type
effects may be of value since the last review evaluating the effects of
forest type was Bosch and Hewlett (1982), which focused on paired-
watershed experiments rather than mixed-use basins.

In this study, we calculate long-term watershed-scale water budgets
to address changing stream flows relative to land cover. The watershed
water balance is prone to errors from land-cover uncertainty, un-
accounted basin water losses or gains, consumptive uses (irrigation),
shifts in forest-management practices, and forest succession. The focus
on large, rural, undammed, crystalline bedrock, and mostly forested
basins helps control for these factors. We could not account for effects
of forest-age distributions, functional diversity among species within
our forest type categories, or tree sizes and ages, although it is likely
that deciduous forests are on average older than evergreen forests in the
region, given that the rotation length of commercial pine plantations is
generally 25–30 years. It is possible that such unaccounted-for effects
contribute to the noisy character of ET relationships presented here.

5. Conclusions

Abiotic landscape variables and vegetative-cover types and abiotic
variables interact to affect the variation in water-balance estimated
evapotranspiration (ET) across 45 rural, mixed land-cover watersheds
in the Southeastern U.S. Water balance ET is highly variable across the
region, ranging from 641 to 971 mm. Results indicate that ET is most
sensitive to abiotic watershed characteristics, primarily the combina-
tion of temperature and precipitation, but also including elevation,
VPD, AWS, and latitude, all of which explain more variation in ET than
any individual vegetative metric. Yet, we can also show that basin-scale
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Table 6
Multivariate regressions between water-budget estimated evapotranspiration
and climate and forest cover variables.

Term df estimate variable p model p Adj. R2 AIC

Precipitation 3 0.06 0.229 0.000 *** 0.408 478.3
Temperature 3 33.67 0.000 ***
Precipitation 4 0.08 0.163 0.000 *** 0.405 479.5
Temperature 4 30.20 0.000 ***
AWS 150 cm 4 0.32 0.396
Precipitation 4 0.08 0.228 0.000 *** 0.396 480.1
Temperature 4 31.68 0.000 ***
Deciduous 4 −7.349 0.682
Precipitation 4 0.063 0.244 0.000 *** 0.396 480.2
Temperature 4 32.15 0.000 ***
Evergreen 4 4.352 0.728
Precipitation 6 0.085 0.255 0.000 *** 0.369 483.9
Temperature 6 32.12 0.001 ***
Evergreen 6 3.46 0.804
Deciduous 6 −7.71 0.707
Mixed forest 6 4.40 0.697
Precip:Temp 2 0.02 0.000 *** 0.000 *** 0.277 486.4
Evergreen 4 21.98 0.146 0.015 ** 0.165 494.7
Deciduous 4 −14.99 0.363
Mixed forest 4 −12.54 0.284
Dryness index 3 81.13 0.456 0.013 ** 0.147 494.8
Evergreen 3 32.97 0.012 **
Dryness index 4 −8.40 0.956 0.026 ** 0.141 496.0
Evergreen 4 27.40 0.062 *
Deciduous 4 −19.15 0.405
Dryness index 3 −46.57 0.766 0.057 * 0.086 497.9
Deciduous 3 −39.50 0.064 *

Note: Significance shown using *(p < 0.1), **(p < 0.05), ***(p < 0.01).
Number of observations = 45. df = degrees of freedom, AIC = Akaike
Information Criterion.
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average ET is sensitive to forest cover and forest type, specifically the
relative mix of deciduous and evergreen forest. The vegetative cover
relationships with ET are noisy and vegetative metrics individually
explain less than a third of the variation explained by average wa-
tershed air temperature. While evergreen forest cover is less common
than deciduous cover, it explains more of ET variability than does total
forest cover alone and is associated with greater ET. While deciduous
and mixed forests are associated with lower ET than evergreen forests.
Thus, increasing evergreen forest cover in the region would decrease
water yields.

Contrary to prior syntheses of global paired-watershed experiments
(Andréassian, 2004; Farley et al., 2005; Filoso et al., 2017; Bosch and
Hewlett, 1982), total forest cover in these watersheds appears to have
little effect on water balances, and residuals from the Zhang curve
suggest that ET decreases with increasing total forest cover, although
this result is likely an effect of forest composition, specifically the re-
lative dominance of deciduous forest. While biotic factors are the most
important for controlling ET and streamflow, forest type influences
water yield; the response to afforestation or deforestation in the
Southeastern US depends upon the type of forest vegetation that is
grown or harvested.

6. Data availability

All raw data are publicly available from the cited sources. Data
generated by this study are available in the supplemental information.
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