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A B S T R A C T   

Accurate water temperature forecasting is essential for understanding thermal regimes of rivers in the context of 
climate change and anthropogenic disturbances, such as dam construction. Machine-learning models proffer an 
empirically based approach to predicting water temperatures with a high degree of accuracy. This study explores 
the potential of long short-term neural network (LSTM), a type of deep learning method, to forecast daily river 
water temperatures and quantify temporal variations in thermal regime induced by changes in climate and by 
dam construction. The performance of LSTM is compared with that of several other models using daily water- 
temperature data for nine river gauges around the world. In a detailed analysis, the models are evaluated for 
the Yichang gauge on the Yangtze River to reconstruct the natural thermal conditions and help to assess daily 
water temperature variations induced by operation of the Three Gorges Reservoir (TGR). The collective results 
show that LSTM outperforms other methods for predicting mean daily water temperature in rivers, capturing 
accurately mean daily variations in thermal regime. The construction of the TGR strongly influenced water 
temperature variations at Yichang, producing the strongest cooling effect from mid-April to mid-May and the 
greatest warming effect in late December and early January. These marked effects are most prominent at the 
highest water levels in the TGR. The enhanced predictive capabilities of the LSTM model provide a powerful tool 
for water temperature forecasting and ecological management of rivers in the Anthropocene.   

1. Introduction 

Because water temperature (WT) strongly affects many physical, 
chemical and biological processes in rivers, it plays a crucial role in 
determining the quality of aquatic ecosystems (Caissie, 2006). Changes 
in WT affect amounts of dissolved oxygen (Marzadria et al., 2013; 
Matthews and Berg, 1997; Vega et al., 1998), the distribution and 
metabolic rate of fish species (Lessard and Hayes, 2003; Buentello et al., 
2000; Durance and Ormerod, 2009) and other aquatic organisms (Ward 
and Stanford, 1982; Cha et al., 2017), the evaporation rate at the water 
surface (Maheu, et al., 2014; Wanders and Wada, 2015) and the for
mation of ice (Wanders et al., 2019). River temperature variations 
mainly depend on the heat flux between air and water at the water 
surface and on temperatures of different runoff components that 
contribute water to the river (e.g. surface runoff, groundwater inputs, 
and snowmelt inputs) (Mohseni and Stefan, 1999; Ficklin et al., 2013). 
Previous studies have shown that river WT is strongly linked to climate 

change (e.g., Kaushal et al., 2010; Isaak et al., 2012; Du et al., 2019) and 
anthropogenic perturbations, such as dams (e.g., Olden and Naiman, 
2010; Poole and Berman, 2001; Cai et al., 2018). Given the importance 
of temperature as a factor influencing the environmental quality of 
rivers as well as the potential for change in thermal regimes related to 
human impacts, a critical need exists to forecast accurately river tem
peratures in an era of increasing human influence now referred to as the 
Anthropocene. 

In the past several decades, two classes of water temperature models, 
physical-based and data-driven models have been developed. Physical- 
based models are based on heat budget equations and require site- 
specific data that are unavailable for many river systems; thus, the 
geographic extent over which such models can be implemented is 
limited (Grabowski et al., 2016; Jackson et al., 2018; Piotrowski and 
Napiorkowski, 2019). Data-driven models mainly use statistical or data- 
mining techniques to model WT as a function of other explanatory 
variables, such as air temperature and discharge. Air temperature (AT) is 
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commonly assumed to be the essential predictor for WT because varia
tions in AT can be viewed as a surrogate for net changes in heat flux at 
the air–water interface (Van Vliet et al., 2013; Ficklin et al., 2013). 
Discharge (Q) acts as an additional explanatory variable that can 
strongly influence WT (Webb et al., 2003; Van Vliet et al., 2011). 

Recent studies have compared and assessed the performances of 
machine-learning methods, a type of data-mining technique, for WT 
forecasting (e.g., Sahoo et al., 2009; St-Hilaire et al., 2012; Hadzima- 
Nyarko et al., 2014; DeWeber and Wagner, 2014; Cole et al., 2014; 
Piotrowski et al., 2015; Sohrabi et al., 2017; Piotrowski and Napior
kowski, 2019; Zhu et al., 2019b). Other work has coupled machine- 
learning models with data-processing techniques (Zhu et al., 2019a; 
Graf et al., 2019) to enhance predictive accuracy. However, data-driven 
methods have not explored fully the extent to which river WT fore
casting can be improved through application of deep learning methods. 
Recently, application of deep learning methods (e.g., long short-term 
memory neural network, LSTM) to other time series forecasting tasks 
has demonstrated the advantages of these methods compared to con
ventional data-driven models (Shen. 2018). 

River temperature has been significantly altered by the constructions 
of large dams, which in turn can influence aquatic ecosystems (Olden 
and Naiman, 2010). The Yangtze River, the longest river in China, has 
attracted considerable attention since the construction of the Three 
Gorge Reservoir (TGR), which is the world’ largest and possibly most 
controversial water conservancy project (Liu et al., 2018). Over the past 
several decades, a large number of studies have examined the impacts of 
TGR on river flow regime, extreme drought events, sediment deposition, 
and habitat suitability of aquatic animals (e.g., Chai et al., 2019; Li et al., 
2011; Yi et al., 2010; Wang et al., 2016, 2018). A few studies have 
explored the impact of the TGR on variations in WT on the annual and 
seasonal using either a linear regression approach (Tao et al., 2020) or a 
semi-physical model (air2stream, Cai et al., 2018). However, little effort 
has been made to daily variations in WT. Whether deep learning models 
can meet the challenge to predict accurately daily variations in thermal 
regime variations under the influence of anthropogenic perturbations 
requires further investigation. 

The goals of this paper are twofold: 1) to evaluate the forecasting 
performance of an LSTM model to predict mean daily river temperatures 
compared to that of several other river-temperature predictive models; 
and 2) to use the LSTM to reconstruct the expected daily natural thermal 
regime of a regulated river that would occur in the absence of a dam and 
to identify factors influencing daily variations in the thermal regime of 
this river. The results improve the proficiency to predict an important 
factor, mean daily WT, related to the environmental quality of river 
systems, and also provide a new tool in evaluating the thermal regime 
variations in rivers regulated by dams. 

2. Data for model calibration and verification 

To assess the performance of LSTM in daily WT forecasting relative 
to other methods, a comparison between LSTM and several benchmark 
models (air2stream, RF, BPNN) was conducted using daily WT data for 

nine gauges on seven rivers in a variety of physiographic settings 
(Table 1). Data for gauges on rivers in Switzerland (Yvonand, Sion, and 
Davos) and the United States (Cedar, Fanno, Irondequoit) were selected 
on the basis that these data were included in previous studies (Pio
trowski and Napiorkowski, 2018; Zhu et al., 2019b). The three gauges 
on the Yangtze River, Cuntan, Yichang, and Datong all have long-term 
daily records of water temperature required for model calibration. 
Daily AT and Q, two important controls of daily WT, were used as input 
variables to predict the WT for the same day (no lag time). For the 
purpose of model calibration and validation, data for each gauge were 
divided chronologically into calibration and validation periods by the 
ratio of 7:3, which is a commonly used ratio for model training and 
testing, although there is no formal guideline (Khosravi et al., 2018) 
(Table 1). 

In addition to providing information for evaluating model perfor
mance, daily data on AT, Q, and WT for the Yichang gauge, located 44 
km downstream from the TGR, provided an opportunity to evaluate the 
capability of the different models to accurately reconstruct daily water 
temperatures that would occur in the absence of a large reservoir. Past 
work has indicated that water temperatures at Yichang are strongly 
affected by the TGR (Liu et al., 2018). To quantify the potential effects of 
TGR on the Yangtze River thermal regime, data on Yichang were divided 
into a pre-TGR calibration period (1983–2002) and a post-TGR valida
tion period (2003–2013). The LSTM and benchmark models were 
compared and used to reconstruct the natural thermal conditions at 
Yichang that would have occurred during the validation period in the 
absence of TGR –a necessary reconstruction for identifying the impacts 
of climate change and the TGR on WT. The TGR began to fill in June 
2003 to raise the water level of the reservoir to 135 m. During the second 
filling stage of TGR, from October 2006 to September 2008, the water 
level reached 156 m. Subsequently, it rose to 173 m in November 2008, 
and by the end of October 2010 (the third filling) the reservoir water 
level was raised to its designed normal pool level of 175 m (Zhang et al., 
2012). Since that time, the water level of TGR has been lowered to 145 m 
for flood control during mid-June to late September and then raised to 
175 m for power generation from January to March (Liu et al., 2015; 
Zheng, 2016). 

3. Methodology 

3.1. Long short-term memory neural network (LSTM) 

LSTM is a special kind of recurrent neural network (RNN) 
(Hochreiter and Schmidhuber, 1997). RNN has a recurrent hidden unit 
to deal with sequential data, and the output of each time step serves as 
the input to the next time step. A single RNN model updates only a single 
past state, and it is trained by the backpropagation-through-time algo
rithm (Mozer, 1989; Werbos, 1990), by which the loss function is 
propagated backward to determine updates to weights. With simple 
recurrent networks, backpropagation encounters the vanishing gradient 
problem in which the training signal becomes exponentially small as it 
propagates into the network, making backpropagation ineffective for 

Table 1 
Brief descriptions of the studied river gauges.  

River name Gauge name Calibration 
period 

Validation 
period 

Meteorological 
station 

Catchment size 
(km2) 

Statistics of daily WTMean/max/ 
min/range (◦C) 

Description 

The Yangtze 
River 

Yichang 1983–2002 2003–2013 Yichang 1.01 × 106 18.47/29.70/7.40/22.30 plain 
Cuntan 1993–2006 2007–2011 Shapingba 0.87 × 106 18.69/28.80/7.60/21.20 mountainous 
Datong 1977–1984 1985–1987 Tongling 1.71 × 106 17.64/30.80/2.00/28.80 plain 

Cedar USGS12119000 2001–2012 2013–2017 USW00024233 477 10.45/20.20/2.10/18.10 mountainous 
Fanno USGS14206950 2003–2012 2013–2017 USW00024229 82 12.77/24.80/0.10/24.70 hilly 
Irondequoit USGS0423205010 2005–2013 2014–2017 USW00014768 368 10.85/24.50/-0.10/24.60 lowland 
Mentue Yvonand 2002–2009 2010–2012 USW00024233 105 9.72/21.70/0.00/21.70 lowland 
Rhône Sion 1984–2004 2005–2013 USW00024229 3373 7.00/12.16/0.31/11.86 valley 
Dischmabach Davos 2004–2009 2010–2012 USW00014768 43.3 4.30/11.02/0.17/10.85 mountainous  
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deep networks (Shen, 2018). The LSTM is a special variation of RNN 
which can effectively avoid the vanishing gradient problem of RNN. 

LSTM consists of an input layer, one or more LSTM layers, one or 
more fully connected layers and an output layer. The key to LSTM is the 
hidden neurons in the LSTM layer called memory cells (LSTM cells), 
which not only receive information from the input layer, but also 
perceive the information at the previous moment (Olah, 2015). The 
LSTM layer consists of two kinds of state, the hidden state and the cell 
state. At each time step, the hidden state contains the output of the LSTM 
layer for this time step, and the cell state contains the information 
learned from the previous time steps. The LSTM cells use three gates, the 
forget gate ft , the input gate it ,and the output gate ot , to control the level 
of cell state reset (forget), the level of cell state update, and the level of 
cell state added to the hidden state, respectively (Fig. 1 (a)). The LSTM 
layer uses the tanh as the activation function to update the cell and 
hidden state, and the sigmoid function are used in the calculations for 
the gates. The working mechanism of LSTM layer can be expressed as 
following (Olah, 2015; Xiao et al., 2019): 

ft = σ
(
Wf ,xxt + Wf ,hht− 1 + bf

)
(1)  

it = σ
(
Wi,xxt + Wi,hht− 1 + bi

)
(2)  

ot = σ
(
Wo,xxt + Wo,hht− 1 + bo

)
(3)  

c̃t = tanh
(
W̃c,xxt + W̃c,hht− 1 + b c̃

)
(4)  

ct = ft ⊙ ct− 1 + it ⊙ c̃t (5)  

ht = tanh(ct) ⊙ ot (6) 

where xt is the input; ht− 1 is the hidden state at time t-1; Wf ,x, 
Wf ,h,Wi,x, Wi,h, Wo,x, Wo,h, Wc̃,x, and Wc̃,h are corresponding weight 
matrices of the three gates and the candidate value; bf , bi, bo, and b c̃ 
denote corresponding bias vectors; ⊙ represents the element-wise 
multiplication between two vectors; σ(⋅) is the logistic sigmoid activa
tion function; tanh(⋅) is the hyperbolic tangent function; and ht is the 
output of LSTM layer at time step t. 
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(a) Data flow at time step t

(b) Data flow in the LSTM model using time series of AT and Q as the inputs to predict WT

Fig. 1. Architecture of LSTM for WT forecasting*. Note*: Times series of AT and Q 
(

x11 x12 ⋅⋅⋅ x1N
x21 x22 ⋅⋅⋅ x2N

)

were used as the input variables to predict the WT (y1 y2 ⋅⋅⋅ yN)

for the same period (no lag time), where N denotes the length of time series. (h1t h2t ⋅⋅⋅ hMt) represents the output of LSTM layer at time step t, where M denotes the 
number of LSTM cells (hidden units) in the LSTM layer. 
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The working mechanism and data flows of LSTM (Fig. 1) involve 
several steps. First, the input data xt at time step t and the hidden state of 
the previous moment ht− 1 flow to the forget gate to determine how much 
previous information should be removed from the cell state. The data are 
transformed to a range from 0 to 1 by the sigmoid activation function 
σ(⋅) with a value of one indicating “completely keep it” and a value of 
zero signaling “completely remove it”. The retained information in the 
hidden state flows to the input gate, where it serves as new input in
formation to the memory cell for updating the cell state. Then the new 
candidate value c̃t is generated, which is stored in the cell state ct. 
Finally, the updated cell state (ct) flows to the output gate, which con
trols the information within the cell state that is propagated to the 
hidden variable state at the next time step. 

Based on the LSTM, a 4-layer deep neural network model is con
structed for WT forecasting. This model consists of an input layer, a 
LSTM layer, a fully connected layer, and an output layer (Fig. 1(b)). The 
number of LSTM cells is set to a range of 30 to 50 by the trial and error 
method (Table S1), and a dropout value of 0.5 is applied empirically to 
help prevent overfitting (Yan et al., 2020; Zhang et al., 2018). 

3.2. Benchmark models 

3.2.1. Air2stream model 
The air2stream model is based on lumped heat budget exchange 

between an unknown water volume, tributaries and atmosphere in the 
river (Toffolon and Piccolroaz, 2015). It has a high degree of accuracy 
for WT forecasting (Cai et al., 2018; Piotrowski and Napiorkowski, 
2018). In the model, AT is assumed to be the main proxy for the heat flux 
exchange at the air–water interface, and Q is introduced to account for 
the water inflows and river thermal inertia. In this study, the most 
complete eight parameter a1-a8 formulation was used, namely the a2s-8 
model. The equations for the simple form of the air2stream model with 
eight parameters version can be expressed as follows: 

dTw

dt
=

1
θa4

(

a1 + a2Ta − a3Tw + θ
(

a5 + a6cos
(

2π
(

t
ty
− a7

))

− a8Tw

))

(7)  

θ =
Q
Q
=

Q
(t2 − t1)

− 1 ∫ t2
t1

Q(t)dt
(8) 

where Tw is the water temperature; Ta is the air temperature; ty de
notes the duration of one year in the units used for time, θis the 
dimensionless discharge, and Q represents a reference value averaged 
over the time series from t1 to t2. More details about the air2stream 
model are reported in Toffolon and Piccolroaz (2015), and Piotrowski 
and Napiorkowski (2018). 

3.2.2. Random forest (RF) 
Random forest (RF) (Breiman, 2001) is one of the most successful 

predictors based on bagging, a type of ensemble method applied to de
cision trees. RF integrates a series of independently selected and iden
tically distributed decision trees, and obtains the final single prediction 
by averaging the outputs of all decision trees in the forest (Svetnik et al., 
2003). In RF, each node has d features of the base decision tree, 

̅̅̅
d

√

features are selected randomly from the feature set (d features), and then 
the optimal feature is chosen by the Gini impurity index (IG) for the best 
split threshold (Strobl et al., 2008). The IG can be expressed as follows 
(Breiman, 2001; Heddam et al., 2020): 

IG( f ) = 1 −
∑m

i=1
f 2
i (9) 

where fi denotes the probability of class i at node m, and the best split 
threshold is indicated by the lowest value of IG. The number of decision 
trees in the RF model in this study was determined from trial and error 
by varying the volume of trees from 100 to 300 (Table S2). 

3.2.3. Back propagation neural network (BPNN) 
Back propagation neural network (BPNN) is a kind of multilayer 

feedforward neural network (Rumelhart et al., 1988), which consists of 
an input layer, one or more hidden layers, and an output layer. A three- 
layer BPNN was used in this study. The main characteristics of BPNN are 
forward transmission of signals and back propagation of errors. The data 
transmit layer by layer in the forward transmission process, and the 
errors generated by the comparisons between the predicted and 
observed values are back propagated to each layer, thereby adjusting the 
weights and thresholds of the neurons until the error meets the termi
nation condition. The number of hidden neurons is the primary 
requirement for the design of BPNN. If there are too many hidden 
neurons, there is too much flexibility, which usually leads to an over- 
fitting phenomenon, in which a neural network is good at dealing 
with one dataset at the expense of being very bad at assessing other 
datasets (Tetko et al., 1995). However, too few hidden neurons restrict 
the learning capability of the model (Haykin, 1998). Thus, the number 
of neurons in the hidden layer were determined by the trial and error 
approach in the range of [1,16] (Yan et al., 2020). The BPNN model was 
trained over this range at an interval of one, and the number of hidden 
layer neurons in the hidden layer that had the highest performance 
(validation period) was retained for the calibrated model (Table S3). 
Considering both the prediction accuracy and the running time of 
model, when the prediction accuracy can be achieved with fewer neu
rons as well as with more neurons, the value of fewer neurons is used. 

3.3. Data pre-processing 

Because differences in absolute values of the training/testing time- 
series have a negative effect on the model learning ability, the data on 
AT, Q, and WT were standardized before training as: 

xnorm =
xraw − x

σx
(10) 

where xraw is the original data; xnorm is the standardized value of 
variable x; x and σx are the average value and standard deviation of × , 
respectively. 

3.4. Model performance indicators 

Model performance is evaluated using four different and widely 
employed metrics for water temperature forecasting (Graf et al., 2019; 
Piotrowski and Napiorkowski, 2018; Moriasi et al., 2015): the mean 
absolute error (MAE), the root mean square error (RMSE), Nash-Sutcliffe 
efficiency coefficient (NSE), the coefficient of determination (R2), and 
they are given by: 

MAE =
1
n
∑n

i=1
|yp − yo| (11)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yp − yo

)2
√

(12)  

NSE = 1 −
∑n

i=1

(
yp − yo

)2

∑n
i=1(yo − yo)

2 (13)  

R2 =

⎡

⎢
⎢
⎢
⎢
⎣

1
n

∑n
i=1(yo − yo)(yp − yp)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(yo − yo)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑n
i=1

(
yp − yp

)2
√

⎤

⎥
⎥
⎥
⎥
⎦

2

(14) 

where n is the number of samples, and yp and yoyO are the predicted 
and observed values, respectively. The smallest values of MAE and 
RMSE and values of NSE and R2 closest to 1 indicate the highest pre
diction accuracy. 
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4. Results 

4.1. Model performance for daily WT forecasting 

Comparison of the performances of the four models in predicting the 
mean annual daily WT for the calibration and validation periods for the 
nine gauges indicates that LSTM outperformed the other models for both 
periods (Table 2). In particular, for the validation periods for all gauges 
but Yichang, which is influenced strongly by the TGR, the LSTM model 
has values of MAE ≤ 0.83 ◦C, values of RMSE ≤ 1.00 ◦C, and values of 
NSE and R2 ≥ 0.90. These results are clearly better than those obtained 
from the a2s-8 (air2stream in 8-parameter version), RF and BPNN 
models (Fig. 2), which have lower NSE and R2 values, and higher MAE 
and RMSE values than the LSTM model. Averaged for the eight gauges 
(excluding Yichang), the LSTM model lowered mean MAE and RMSE 
values for the validation period by 13.96% and 13.68%, respectively, 
compared to a2s-8, by 44.52% and 44.46%, respectively, compared to 
RF and by 42.66% and 42.32%, respectively, compared to BPNN. 
Noticeably, the LSTM model performed much better than the a2s-8 
model at the Datong, Irondequoit, and Davos stations, and performed 
slightly better than all other models for the Cedar and Sion stations 
(Table 2). With regard to the three benchmark models, the a2s-8 model 
produced higher accuracy with substantially lower values of mean MAE 
and RMSE during the validation period than the RF model (36.03% and 
36.53%, respectively) and the BPNN model (33.81% and 33.94%, 
respectively). Furthermore, the performance of the RF model was 
slightly worse than the BPNN model, although mean values of the four 
metrics showed no significant differences, given the wide distributions 

of the metrics for these two models (Fig. 2). 
For Yichang, the MAE, RMSE, NSE and R2 of the LSTM for the cali

bration period (pre-TGR period 1983–2002) were 0.61 ◦C, 0.78 ◦C, 0.98, 
and 0.98, respectively (Table 2), indicating the LSTM had a superior 
training effect compared to the other three models. Compared to the 
other eight gauges with no reservoir effects, the performances of all four 
models deteriorated substantially for the Yichang gauge in the valida
tion period (post-TGR 2003–2013). This result is not surprising given the 
strong influence of the TGR on water temperatures in the post-TGR 
period. The average annual WT at Yichang in post-TGR period 
increased by 0.67 ◦C relative to pre-TGR period. This change was 
accompanied by changes in AT and Q. The average annual AT in the pre- 
TGR period (1983–2002) was 17.00 ◦C, and increased to 17.50 ◦C in the 
post-TGR period (2003–2013), whereas the average annual Q in the 
post-TGR decreased by 8.83% compared to the pre-TGR value. These 
changes challenge the capacity of the calibrated models to forecast 
conditions following reservoir construction. Nevertheless, the LSTM 
model still performed better than the other three models in the valida
tion period. Overall, the forecasting performances for all nine gauges are 
ranked as LSTM > a2s-8 > BPNN > RF. 

4.2. Determining impacts of climate and dam construction on WT at 
Yichang 

Because the LSTM model performed best for predicting mean daily 
water temperatures in the post-TGR (validation period) for the Yichang 
gauge, this model was used to determine the impacts of climate, as re
flected in changes in air temperature and discharge, and dam 

Table 2 
Performances of LSTM, a2s-8 (air2stream in 8-parameter version), RF and BPNN models in the calibration and validation periods*.  

River station Model version Calibration (Training) Validation (Testing) 
MAE(◦C) RMSE(◦C) NSE R2 MAE(◦C) RMSE(◦C) NSE R2 

Cuntan LSTM  0.59  0.80  0.98  0.98  0.51  0.66  0.98  0.98 
a2s-8  0.69  0.90  0.97  0.97  0.58  0.75  0.98  0.98 
RF  0.91  1.17  0.95  0.95  1.23  1.59  0.90  0.90 
BPNN  1.29  1.63  0.90  0.89  1.19  1.55  0.91  0.91 

Datong LSTM  0.49  0.63  0.99  0.99  0.57  0.79  0.99  0.99 
a2s-8  0.71  0.88  0.99  0.99  0.79  1.03  0.98  0.98 
RF  1.16  1.52  0.96  0.96  1.84  2.38  0.91  0.91 
BPNN  1.62  2.07  0.93  0.93  1.71  2.22  0.92  0.92 

Cedar LSTM  0.43  0.55  0.98  0.98  0.59  0.74  0.97  0.98 
a2s-8  0.52  0.66  0.97  0.97  0.60  0.75  0.96  0.97 
RF  0.60  0.78  0.95  0.95  0.82  1.04  0.93  0.94 
BPNN  0.76  0.98  0.92  0.93  0.80  1.01  0.94  0.94 

Fanno LSTM  0.46  0.59  0.99  0.99  0.83  1.00  0.97  0.98 
a2s-8  0.65  0.83  0.97  0.97  0.91  1.13  0.96  0.97 
RF  0.90  1.16  0.95  0.95  1.36  1.71  0.90  0.93 
BPNN  1.16  1.46  0.92  0.91  1.24  1.51  0.93  0.94 

Irondequoit LSTM  0.52  0.67  0.99  0.99  0.62  0.78  0.99  0.99 
a2s-8  0.65  0.85  0.99  0.99  0.77  1.01  0.98  0.99 
RF  1.14  1.53  0.95  0.95  1.60  2.16  0.91  0.92 
BPNN  1.47  1.95  0.93  0.92  1.46  1.98  0.92  0.93 

Yvonand LSTM  0.39  0.51  0.99  0.99  0.50  0.69  0.99  0.99 
a2s-8  0.50  0.66  0.99  0.99  0.56  0.80  0.98  0.98 
RF  0.66  0.89  0.98  0.98  1.01  1.33  0.95  0.95 
BPNN  0.93  1.21  0.96  0.96  1.00  1.32  0.95  0.95 

Sion LSTM  0.43  0.56  0.93  0.93  0.51  0.73  0.90  0.90 
a2s-8  0.45  0.58  0.93  0.93  0.54  0.75  0.89  0.90 
RF  0.42  0.55  0.93  0.93  0.60  0.82  0.87  0.87 
BPNN  0.56  0.73  0.88  0.88  0.62  0.84  0.87  0.88 

Davos LSTM  0.33  0.42  0.98  0.98  0.39  0.50  0.97  0.97 
a2s-8  0.51  0.63  0.95  0.95  0.53  0.65  0.95  0.95 
RF  0.41  0.55  0.96  0.96  0.59  0.80  0.92  0.92 
BPNN  0.58  0.77  0.93  0.93  0.58  0.78  0.93  0.93 

Yichang LSTM  0.61  0.78  0.98  0.98  1.64  2.04  0.85  0.86 
a2s-8  0.72  0.90  0.97  0.97  1.76  2.21  0.82  0.85 
RF  0.89  1.15  0.96  0.96  2.15  2.70  0.74  0.77 
BPNN  1.23  1.57  0.92  0.93  2.15  2.69  0.74  0.77 

Note*: The best performances for each gauge are in bold; Yichang station were selected for assessing the performance of LSTM to detect WT variations by climate 
change and the TGR based on the actual observations. 
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construction on the mean daily thermal regime at this location. To 
conduct this analysis, the post-TGR period was divided into three sub
periods (SP): SP1, 135 m impoundment (Jun. 2003-Sep. 2006), SP2, 
156 m impoundment (Oct. 2006-Sep. 2008) and SP3, 175 m impound
ment (Oct. 2008-Dec. 2013). For all three subperiods, the annual pattern 
of mean daily AT fluctuated around the pattern of mean daily AT for the 
pre-TGR period (Fig. 3(a)-(c)) with mean fluctuations of 0.59 ◦C in SP1, 
0.74 ◦C in SP2, and 0.39 ◦C in SP3. Observed mean daily Q values for the 
three post-dam subperiods (Qpost-TGR, red lines) decreased in the flood 
season (June to October) and increased in the dry season (January- 
March) relative to the pre-TGR period (Qpre-TGR, green lines), with the 
most pronounced differences occurring for SP3 (Fig. 3 (d)-(f)). For WT, 
the annual pattern of mean daily values following the closure of the TGR 
reservoir shows that WT relative to the pre-TGR period increased from 
September-February and decreased from March through June (Fig. 3 
(g)-(i)). 

To reconstruct WT in the absence of the reservoir, which mainly 
affects discharge of the Yangtze River, measured values of Q at Yichang 
gauge were replaced in the calibrated LSTM model with the daily inflow 
discharge to the TGR (Qpost-TGR (non-TGR)), the Q that would have 
occurred at Yichang in the absence of the TGR. These inflow values of Q, 
reported by the China Three Gorges Operation, are derived from infor
mation on the change in water storage in the TGR, a storage-capacity 
curve for the reservoir, and the outflow of the TGR. The reconstructed 
natural discharge (Qpost-TGR (non-TGR), blue lines) for SP1 did not show 
obvious differences compared with the observed values of Q (Qpost-TGR, 
red lines) for this period (Fig. 3 (d)). The Qpost-TGR (non-TGR) for SP2 
exhibited an increase in October, but the rest of the period was similar to 
Qpost-TGR (Fig. 3 (e)). Notably, the reconstructed discharges (Qpost-TGR 

(non-TGR)) for SP3 are greater than observed Qpost-TGR for the flood season 
(June-October) and lower than the observed Qpost-TGR in the dry season 
(January-March) (Fig. 3 (f)). This increase in the range of mean daily 
discharge over the year for the reconstructed inflow Qpost-TGR (non-TGR) 
compared to the observed Qpost-TGR reflects the influence of the TGR on 
flow extremes as it is operated for flood control and power generation. 

The reconstructed discharges (Qpost-TGR (non-TGR)) along with 

measured values of AT were used to predict the WT for the 2003–2013 
period that would have occurred in the absence of the TGR. Based on 
these predictions the impacts of the TGR (ΔTGR) and climate change 
(ΔCLI) on mean daily WT at Yichang were quantified as: 

ΔTOT = WTobs,post− TGR − WTobs,pre− TGR (15)  

ΔCLI = WTsim,post− TGR − WTsim,pre− TGR (16)  

ΔTGR = WTobs,post− TGR − WTsim,post− TGR (17)  

ε = WTsim,pre− TGR − WTobs,pre− TGR (18) 

where ΔTOT represents the total change of WT before and after dam; 
ΔCLI is the contribution of changes in AT and natural discharge to change 
in WT; ΔTGR is the change in WT ascribed to the construction of TGR 
(assuming no other human perturbations except for the TGR); ε is the 
bias of model (i.e., mean error); WTobs,post− TGR and WTobs,pre− TGR are 
observed values of WT in the post-TGR and pre-TGR periods, respec
tively; WTsim,post− TGR is the simulated WT in the absence of the TGR, using 
the LSTM model with the reconstructed discharge Qpost-TGR (non-TGR) and 
the observed AT as the inputs; WTsim,pre− TGRis the simulated WT in the 
pre-TGR period based on the observed Q and AT; and ΔTOT = ΔCLI +

ΔTGR + ε. With regard to determining the influence of the TGR on WT, 
the model can be considered reliable if |ε|≪|ΔTGR|. Under these condi
tions, the error associated with model bias is much smaller than the 
predicted impact of the TGR on WT. 

The results are presented in a compact form by the climatological 
reference year, in which the value of a variable for each day of the year is 
the average of all available observed values for that day over the period 
of record (29 February of leap year was not included) (Cai et al., 2018). 
Simulations using the LSTM model reveal that the absolute value of ε 
(0.02 ◦C) is small compared to absolute values of ΔTGR, indicating that 
the model is reliable for determining the influence of the TGR on WT. 
The largest absolute values of ε for particular months occur in August 
and September, but generally |ε| < |0.5ΔTGR|(Table 3). 

A comparison between the observed WT in the post-TGR period, the 
predicted WT after TGR, and the predicted WT in the assumed case 

(a) MAE (b) RMSE

(c) NSE (d) R2

Fig. 2. Boxplots of the MAE, RMSE, NSE, and R2 for the LSTM, a2s-8, RF and BPNN models during the validation period.  
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Fig. 3. Seasonal dynamics (climatological year) of (a-c) AT, (d-f) Q, and (g-i) WT at Yichang station during pre-TGR and three subperiods (SP1, SP2, SP3) in the post- 
TGR periods*. Note*: Plots (j-l) show the WT changes between the pre-TGR and three subperiods, respectively, indicating the forcing by climate change (green lines) 
and TGR (blue lines). The blue lines in (d-f) (Qpost-TGR (non-TGR)) represent the reconstructed Q in the post-TGR, which are assumed to be the daily inflow to TGR. The 
blue lines in (g-i) (WTpost-TGR (non-TGR)) represent the reconstructed WT using the LSTM model, with the reconstructed Q and observed AT as input variables. The green 
lines (WTpre-TGR) and the red lines (WTpost-TGR) in (g-i) denote the observed WT in the pre-TGR and post-TGR periods, respectively. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Changes of WT at Yichang station in the post-TGR period (135 m, 156 m and 175 m impoundments) relative to the pre-TGR period (1983–2002) caused by changes in 
AT (ΔCLI) and by the construction of the TGR (ΔTGR) *.  

Period WT 
change 

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Annual 

SP1(135 m impoundment, 
Jun.2003-Sep.2006) 

ΔTOT  1.35  0.10 − 0.89 ¡1.20 − 0.27 − 0.49  0.42  0.73  0.99  0.90  1.32  1.93  0.41 
ΔCLI  − 0.43  − 0.43 0.33 1.12 0.59 − 0.05  0.34  − 0.12  ¡0.57  − 0.46  0.17  0.03  0.05 
ΔTGR  1.70  0.34 − 1.06 ¡2.19 − 0.72 − 0.42  0.19  1.13  1.26  1.25  1.05  1.98  0.38 
ε  0.07  0.19 − 0.16 − 0.13 − 0.15 − 0.03  − 0.10  − 0.28  0.30  0.11  0.09  − 0.09  − 0.02 

SP2(156 m impoundment, 
Oct.2006-Sep.2008) 

ΔTOT  3.39  1.26 − 1.19 ¡2.71 − 1.30 − 0.21  0.11  − 0.33  0.29  2.44  2.71  3.89  0.70 
ΔCLI  − 0.01  − 0.07 0.67 0.74 0.96 0.12  − 0.27  − 0.70  ¡0.86  0.69  0.52  − 0.01  0.15 
ΔTGR  3.33  1.14 − 1.69 ¡3.32 − 2.12 − 0.30  0.49  0.64  0.84  1.64  2.09  3.99  0.56 
ε  0.07  0.19 − 0.16 − 0.13 − 0.15 − 0.03  − 0.10  − 0.28  0.30  0.11  0.09  − 0.09  − 0.02 

SP3(175 m impoundment, 
Oct.2008-Dec.2013) 

ΔTOT  3.80  1.75 − 1.33 ¡3.46 − 2.91 − 0.96  0.37  − 0.01  1.62  2.35  2.98  4.15  0.69 
ΔCLI  − 0.52  − 0.37 − 0.08 0.05 − 0.12 0.01  0.34  0.01  ¡0.60  − 0.01  − 0.11  − 0.03  − 0.12 
ΔTGR  4.24  1.93 − 1.09 ¡3.38 − 2.64 − 0.94  0.13  0.26  1.92  2.24  3.00  4.27  0.83 
ε  0.07  0.19 − 0.16 − 0.13 − 0.15 − 0.03  − 0.10  − 0.28  0.30  0.11  0.09  − 0.09  − 0.02 

*Note: ΔTOT is the total change of WT before and after the operation of TGR; ε denotes the model bias; the maximum contributions in each category are in bold; and all 
values are in ◦C. 
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without TGR was shown in Fig. 4. It can be clearly seen that the pre
dicted WT in the post-TGR (WTpost-TGR (sim), green lines) are not close to 
the observed values after TGR (WTpost-TGR, red lines), and the green lines 
are also significant substantially different from the blue lines (the pre
dicted WT in the assumed case without TGR). The LSTM was trained 
based on the statistical relationships for the observed WT-observed Q 
and the observed WT-observed AT in the pre-TGR period. Although the 
observed Q did not show significant alterations to the reconstructed Q in 
the SP1 and SP2, but they are significantly different in the SP3, the 
period of strong forcing by meaning the forcing by TGR. Furthermore, 
the statistical relationships between WT-Q was clearly disturbed in the 
post-TGR (Liu et al., 2018). Thus, the WTpost-TGR (sim) (green lines) pre
dicted by the LSTM model which was trained by the pre-TGR data 
showed obvious differences both to the WTpost-TGR (red lines) and the 
WTpost-TGR (non-TGR) (blue lines). This indicated the importance of 
reconstructing the natural discharges that have occurred without TGR 
before predicting the WT in the absence of the dam. 

The operation of TGR (ΔTGR) is the major factor contributing to 
change in mean annual water temperature before and after the con
struction of the reservoir, accounting for 93% of the increase in WT 
(ΔTOT) for SP1, 81% of the increase for SP2, and 119% of the increase for 
SP3 (Table 3). By contrast changes in WT related to AT and natural 
discharge (climate) range from 11% (SP1) to 22% (SP2). Thus, most 
change in WT at Yichang before and after the construction of the TGR 
can be attributed to the influence of the reservoir, rather than to changes 
in climate. 

Reservoir construction also is the major factor contributing to change 
in seasonal variation of WT before and after reservoir construction. 
Cooling in warm seasons (March-June) and warming in cold seasons 
(September-February) are mainly attributable to the operation of TGR, 
consistent with the results of Cai et al (2018). The largest effects of 
forcing by the TGR occur in April and December during the 175 m 
impoundment (Table 3). In April values of ΔTGR of − 2.19 ◦C (SP1), 
− 3.32 ◦C (SP2), and − 3.38 ◦C (SP3) accounted for 183% (SP1), 123% 
(SP2) and 98% (SP3) of total cooling, whereas in December values of 
ΔTGR of 1.98 ◦C (SP1), 3.99 ◦C (SP2), and 4.27 ◦C (SP3) accounted for 
103% of total warming in all three post-TGR subperiods. 

Variations in mean daily WT induced by climate change (Fig. 3 (j)- 
(l)) (ΔCLI, green lines) fluctuate above and below the value of zero 
throughout the year, resulting in small average annual ΔCLI values of 
0.05 ◦C (SP1), 0.15 ◦C (SP2), and − 0.12 ◦C (SP3) (Table 3). Climate- 
induced change is most distinct in April (averageΔCLI = 0.64 ◦C for 
the three subperiods) and September (average ΔCLI= − 0.68 ◦C for the 
three subperiods). In general, climate change had its largest impact on 
WT at Yichang during SP2 with a range of − 1.67 ◦C <ΔCLI < 2.04 ◦C. The 
smallest effect was for SP3, where − 1.18 ◦C <ΔCLI < 1.15 ◦C. 

The annual pattern of changes in WT induced by the TGR (ΔTGR, blue 
lines) matches the total WT changes (ΔTOT, red lines) (Fig. 3(j)-(l)) for all 
three subperiods, confirming the major role of the TGR in producing 
changes in water temperature. Patterns of ΔTGR by day for each month 

and each subperiod (Fig. 5) illuminate in greater detail the monthly 
patterns (Table 3). These patterns confirm that the TGR acted as a cold 
source from the beginning of March to early July and a warm source 
from mid-July to late February. This pattern reflects the large thermal 
inertia of the TGR, which delays the seasonal circle of WT (Toffolon 
et al., 2010; Cai et al., 2018). More precisely, the TGR effects can be 
roughly divided into four stages: increasing cooling from March through 
mid-May, decreasing cooling from mid-May through early July, 
increasing warming from mid-July to December, and decreasing 
warming during January and February. The largest cooling effects 
occurred in early April to early May and the most substantial warming 
happened in late December and early January. The effect of increasing 
the water level, or volume of water, in the TGR is evident for cooling in 
that the amount of maximum cooling increases between SP1 and the two 
later subperiods by about 1.5 ◦C. Moreover, between SP2 and SP3 the 
timing of maximum cooling shifts from the beginning of April to the 
beginning of May. The duration of maximum cooling also increases from 
SP2 to SP3. In general, warming from mid-July to late February in
creases as reservoir level increases (SP1 to SP3) with this effect most 
pronounced in January and February when temperature increases for 
SP3 clearly exceed those for SP1 and SP2. These patterns generally 
reflect an increase in thermal inertia as the volume of the reservoir in
creases (Toffolon et al., 2010). 

5. Discussion 

A comparison between the deep learning method (LSTM) and three 
benchmark models (air2stream, RF and BPNN) at nine gauges on seven 
different rivers in different physiographic settings demonstrates the 
improved forecasting accuracy of LSTM for predicting mean daily water 
temperatures based on air temperature and discharge. Previous studies 
using data for six of the nine gauges (three Swiss and three USA gauges) 
(Zhu et al., 2019b; Piotrowski and Napiorkowski, 2018) examined in the 
present study revealed that the air2stream model outperformed con
ventional data-driven methods (feedforward neural network, Gaussian 
process regression, decision tree, the Mohseni et al. (1998) model, the 
van Vliet et al. (2006) model, linear regression). The present study 
compared the air2stream model (8-parameter version) to Random For
est (RF) and Back Propagation Neural Network (BPNN). The a2s-8 model 
outperformed than the RF and BPNN at the same studied gauges, but did 
not perform as well as the LSTM. In contrast, although the improvements 
by LSTM for the MAE and RMSE relative to the a2s-8 were relatively 
small at two of the gauges (1.7%-5.6% and 1.2–2.7%, respectively), the 
LSTM decreased the MAE and RMSE at four of the gauges by 8.8%- 
26.4% and 11.5%–23.1%, respectively. The reason why the LSTM out
performs than the benchmark models is the input and output of LSTM 
are considered as a two-time-series sequence. The LSTM is deep in time, 
which not only updates the past state, but also can learn when to forget 
and how long to keep the state information (Shen, 2018). 

The calibrated LSTM model successfully reconstructed the daily 
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water temperatures at Yichang on the Yangtze River that would occur in 
the absence of TGR, which helped to quantify the influence of changes in 
air temperature and discharge, surrogates for the influence of climate, 
versus the influence of the TGR, on changes in mean daily water tem
peratures at Yichang. Past studies have revealed that TGR has changed 
the thermal regime of the Yangtze River on the annual and seasonal 
scale using the air2stream model and non-reconstructed Q (Cai et al., 
2018), or using the linear regression model and reconstructed Q from a 
conventional artificial neural network model (Tao et al., 2020). The 
differences between the observed WT in the post-TGR, the predicted WT 
after TGR, and the predicted WT in the assumed case without TGR 
demonstrated it’s necessary to reconstruct the natural discharge Q that 
would occur in the absence of TGR before reconstructing the WT without 
the dam (Fig. 4). In addition, the results of the present study confirm the 
efficiency of LSTM to reconstruct natural thermal conditions in the 
absence of a large reservoir. These results also indicate that that climate 
change has had a small impact on mean daily WT change at Yichang 
(Fig. 3) – a finding consistent with previous efforts to unravel the effects 
of climate-related and dam-related effects on WT at Yichang (Tao et al., 
2020). The daily timescale resolution of the analysis shows that the in
ertial effects of the reservoir affect the thermal regime of the Yangtze 

river under its present operational stage (175 m) by producing periods of 
increasing cooling in the spring, decreasing cooling in early summer, 
increasing warming from mid-summer to early winter, and decreasing 
warming in mid-late winter. The greatest cooling occurs in mid-April to 
mid-May (cooling) and the greatest warming in late December and early 
January. In short, LSTM acts as a useful new tool to predict the daily 
water temperatures and to detect at high temporal resolution the im
pacts of climate change and reservoirs on the thermal regime of rivers. 

The analysis in the present study assumes that the construction of 
TGR is the main significant anthropogenic perturbation during the post- 
TGR period. Previous work that has attempted to decompose the 
changes in the thermal regime of the Yangtze River at Yichang suggests 
that other factors such as land use change or sewage discharges may 
have impacts on WT (Cai et al., 2018; Tao et al., 2020). The effect of 
sewage discharge has been estimated as<0.1 ◦C (Cai et al., 2018), which 
is small compared to the total WT change before and after dam. The 
effect of other factors, such as land use, are difficult to quantify. Ac
cording to the Tao et al. (2020) model, warming in WT at Yichiang 
related to the TGR occurred only from December through February in 
SP3; otherwise, the TGR produced cooling during all seasons in SP1, 
SP2, and SP3. These results differ from those of the LSTM model, which 
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indicate that the TGR has produced warming in WT over a substantial 
portion of the year (July through February), especially in SP3. The Tao 
et al. (2020) model attributed impacts related to factors other than AT, 
Q, and the TGR, including other human impacts, to a factor Δβ0, which 
contributed substantially to WT variations. However, the extent to 
which the factor Δβ0 isolates non-reservoir related effects, specifically 
other human-related effects, such as land-use changes, remains uncer
tain and is in need of further investigation. Differences between the 
predictions of the Tao et al. (2020) model and LSTM model may also 
partly reflect modelling uncertainty (e.g., the selection of prediction 
model, the scenario reconstruction in the absence of TGR, the model 
bias) and the time scale used for analysis (monthly versus daily). Full 
consideration of the impacts of other factors, such as land use change, on 
water temperature regimes requires comprehensive data on this change, 
which is beyond the scope of the present study, but which can be 
considered in future research. Although land use effects could be 
important, the close association of the pattern of total change in WT with 
the pattern of change associated with the TGR (Fig. 3 (j)-(l)) implies that 
the total change is associated mainly with the effect of the reservoir. 

6. Conclusions 

This study has verified that a deep learning model, LSTM, is a 
powerful tool for accurately forecasting river water temperatures and 
for reconstructing natural thermal regimes at a daily timescale that 
would occur in the absence of a large dam. Major conclusions include:  

• LSTM outperformed three benchmark models (air2stream, RF, 
BPNN) based on metrics of predictive accuracy for nine gauges on 
seven rivers in China, the United States, and Switzerland.  

• LSTM predictions of river water temperatures in the absence of the 
Three Gorges Reservoir indicate that the reservoir has had a much 
larger impact on changes in temperature than have changes in 
climate.  

• The influence of the dam on water temperatures has been greatest in 
the spring (mid-April to mid-May) when it has produced cooling of 
about 4 ◦C, and in early winter (late December to early January), 
when it has produced warming of about the same amount. 

Additional testing and evaluation of the deep learning approach to 
forecasting river water temperatures is needed to determine the extent 
to which this approach can be generalized. As with all data-driven ap
proaches, the capability of the model to predict accurately beyond the 
domain of the data used in model calibration remains unclear. Never
theless, the present study indicates that in cases where forecasting is a 
primary aim, the method provides accurate predictions when calibrated 
using historical river data for on water temperature, discharge and air 
temperature. It also shows that the method is useful for deciphering how 
human-related disturbances, such as reservoir construction, have influ
enced thermal regimes of rivers. In this sense, the deep learning model 
not only is a powerful forecasting tool, but also is capable of providing 
explanatory insight into causes in changes in river water temperature. 
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Data on daily discharge and water temperature at Yichang, Cuntan 
and Datong hydrological stations were provided by the Ministry of 
Water Conservancy of China (CWRC) (http://www.cjw.gov.cn/). The 
daily inflow of discharge to the TGR from 2003-2013 were obtained 
from the China Three Gorges Corporation (https://www.ctg.com.cn/). 
Daily air temperature for Yichang, Cuntan and Datong gauges chosen 
from the nearest national meteorological stations were provided by 
Meteorological Data Services Center, China (https://data.cma.cn/). 

Daily water temperature and discharge for three Swiss rivers (Men
tue, Rhône, Dischmabach) were provided by Swiss Federal Office of the 
Environment (FOEN) (http://www.bafu.admin.ch/wasser/13465/ 
13483/14087/index.html?lang = en). Daily air temperature for these 
three Swiss rivers were provide by the Swiss Meteorological Institute 
(MeteoSwiss) (http://www.meteoswiss.admin.ch/home/measurement- 
and-forecasting-systems/land-based-stations/automatisches-messnetz. 
html) 

Data of daily water temperature and discharge of the three rivers in 
USA (Cedar, Fanno and Irondequoit) are available from the United 
States Geological Survey (USGS) (https://waterdata.usgs.gov/nwis/in
ventory), and daily meteorological data of the three rivers are available 
from National Centers for Environmental Information, National Oceanic 
and Atmospheric Administration (NOAA) (https://www.ncdc.noaa. 
gov/cdo-web/datasets). 
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