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A B S T R A C T   

Mitigating water contamination, improving water security, and increasing sustainability involve environmental 
awareness and conscientious decision-making by denizens and stakeholders. Achieving such awareness requires 
visually compelling geospatial decision-making tools that take into account the probabilistic and spatially 
distributed nature of water contamination. Inspired by the success of weather maps, this paper presents a novel 
STochastic Reliability-based Risk Evaluation And Mapping for watershed Systems and Sustainability (STREAMS) 
tool that produces and effectively communicates the risk of water contamination as maps. STREAMS is integrated 
with ArcGIS geoprocessing tools and uses physics-based reliability theory to compute the spatial distribution of 
risk, which is defined as the probability of exceeding a safety threshold of water contamination within a 
watershed. A quantitative analysis of the efficacy of mitigation strategies is conducted by estimating risk 
reduction from best management practices throughout the entire watershed. Two case studies at different spatial 
scales are presented, demonstrating STREAMS application to watersheds with varied properties.   

1. Introduction 

Humans have been contributing to the deterioration of surface water 
quality for many decades – one decision, one action at a time. As the 
world population is projected to grow to 9 billion by 2050 (Gerland 
et al., 2014; Raftery et al., 2014), the collective negative impact of our 
decisions is expected to further degrade environmental quality (Goudie, 
2018). Mitigating water contamination, improving water security, and 
increasing sustainability require environmental awareness and consci
entious decision-making by denizens and stakeholders. A good analogy 
(and a goal to work towards) is weather awareness and decision-making 
based on weather forecasts. Indeed, checking online weather maps has 
become a part of our everyday lives, as we make decisions on what to 
wear and where to go based on weather forecasts. To achieve the same 
level of environmental and water quality awareness, we need the same 
level of adoption of appropriate geospatial decision-making tools. Our 
goal in this paper is to demonstrate a geospatial, physics- and 
probability-based decision-making tool that can be used by water re
sources professionals for watershed management, and by the general 

public for recreational decisions. With foundations in reliability theory, 
this is the first spatially distributed application of the load/capacity 
reliability-based approach to water quality management. 

Weather maps and forecasts have familiarized society with the 
concept of risk: the question “What is the chance of rain?” has become a 
common household phrase. Risk is a measure that reflects the inherently 
stochastic nature of environmental drivers (VanSickle et al., 2009). Like 
the weather, surface water quality is stochastic because it is driven by 
random natural factors such as weather and discharge, as well as 
anthropogenic activities that result in spatially distributed, non-point 
sources of contamination (Ahn and Merwade, 2014; Dey and Mishra, 
2017; Shanhu et al., 2011; Yongfang et al., 2011). For example, non- 
point sources like agriculture contribute nutrients and fecal microor
ganisms into the stream networks and are particularly difficult to 
quantify due to their diffuse nature (Daniel et al., 2011; Yeghiazarian, 
2006). Hence, methodologies addressing the probabilistic and spatially 
distributed nature of surface water quality and security are much needed 
(Ahmadisharaf and Benham, 2020; Ahmadisharaf et al., 2019; Camacho 
et al., 2018; Dilks and Feedman, 2004; Langseth and Brown, 2010). This 
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paper focusing on nutrients (nitrogen), and its companion focusing on 
microbes and sustainability in the context of water quality (Teklitz et al., 
2020) present the first spatially distributed applications of the proba
bilistic, reliability-based approach to water quality management that 
addresses these needs. This framework, abbreviated as STREAMS 
(STochastic Reliability-based Risk Evaluation and Mapping for water
shed Systems and Sustainability), facilitates information accessibility 
and spatial decision-making. 

Nitrogen is a primary pollutant of aquatic environments and a focus 
of multiple efforts for mitigation by the U.S. Environmental Protection 
Agency, with many states developing nutrient criteria (Chambers et al., 
2012; EPA, 1999; Evans-White et al., 2013; Huo et al., 2018; Miltner, 
2010; Suplee et al., 2007). Nitrogen contamination is spatially distrib
uted, but standard methods to analyze the risk of contamination and 
mitigation of impaired waters such as the total maximum daily load 
(TMDL) process, have been focused on implementation at single points 
of interest (Borsuk et al., 2002; Camacho et al., 2018; Chin, 2009; Dilks 
and Feedman, 2004; Franceschini and Tsai, 2008; Langseth and Brown, 
2010; Riasi et al., 2018). Expanding risk analysis beyond individual 
interest points to entire watersheds requires the integration of risk 
computations into watershed-scale contaminant transport models. The 
Soil & Water Assessment Tool (SWAT) (Zhang and Zhang, 2011) and 
Hydrologic Simulation Program – Fortran (HSPF) (Brosch, 2010) are 
examples of watershed-scale contaminant transport models and can be 
used to estimate the potential effect of best management practices 
(BMPs) (Cools et al., 2011; Francesconi et al., 2016; Nelson et al., 2009). 
Both SWAT and HSPF are physics-based and can inform our under
standing of mechanisms and causes of contamination. However, they 
take a long time to set up and calibrate and do not explicitly consider risk 
(Bicknell et al., 1997; Neitsch et al., 2011). Data-driven models, on the 
other hand, while less time-consuming and amenable to probabilistic 
analysis (Hoque et al., 2012), do not enable mechanistic understanding. 
Therefore, physics-based, watershed-scale geospatial tools that incor
porate probabilistic risk assessments and enable rapid analysis and 
testing of management scenarios are much needed. 

The probability- and physics-based reliability theory that is at the 
core of STREAMS meets this need. This approach is straightforward to 
implement and is better suited for decision making than rule-based, 
deterministic, or arbitrary treatments of uncertainty (Ahmadisharaf 
and Benham, 2020; Camacho et al., 2018; Langseth and Brown, 2010; 
Yeonjeong et al., 2007). Reliability theory has been used for risk 
assessment of various engineered and natural systems, for example see 
(Abrishamchi et al., 2005; Franceschini and Tsai, 2008; Hamed and El- 
Beshry, 2004; Maier et al., 2001; Ng and Eheart, 2005; Park et al., 2008; 
Riasi et al., 2018; Sitar et al., 1987; Thorndahl et al., 2008; Wagner and 
Gorelick, 1987). In reliability theory, risk is defined as the probability of 
an unsatisfactory performance under a stressing load, or the probability 
that the load exceeds the capacity of the system. This probability is also 
called the probability of failure, with failure defined as any event where 
the load exceeds the capacity (Haldar and Mahadevan, 2000). In refer
ence to water quality, failure can be, and often is, defined as the event of 
water contamination exceeding a safety threshold, which could be 
mandated by regulatory agencies. Despite the geospatial nature of water 
quality, reliability theory has been applied in water resources manage
ment to evaluate risk at single points of interest (Dilks and Feedman, 
2004; Franceschini and Tsai, 2008; Riasi et al., 2018; Tung and Mays, 
1980). STREAMS presents the first spatially distributed application of 
reliability theory to water quality management. 

STREAMS produces the predicted consequence of decisions, thereby 
allowing scenario analysis. It is designed to answer two types of ques
tions: (1) “what is the probability of exceeding the water quality crite
rion anywhere in the watershed”, and (2) “how much would this 
probability change if we implement strategy X, and where will this 
change be the largest?”. The efficacy of mitigation strategies is also 
assessed. To build STREAMS, we expand the existing modeling and 
computational capabilities of ArcGIS, specifically the geoprocessing tool 

called the Schematic Processor (SP), which has been developed to 
simulate the physics of contaminant transport in flow networks 
(Whiteaker (2006)). We use the analytical solutions of transport equa
tions and the first-order approximation method to derive the first and 
second moments of the capacity and loading. We account for covariance 
between the load and capacity in the transport equations, and consider 
uncertainty both in the system capacity and the load on the system, as 
opposed to incorporating uncertainty in loading only (Yang et al., 2014). 
This information is then used to compute the probability of water 
contamination using the First Order Reliability Method. Because GIS 
serves as a platform to integrate a watershed-scale nitrogen transport 
model with reliability-based risk assessment, the outcome is an intuitive 
and visually compelling decision-making tool that can generate easily 
comprehensible visualizations of water quality and of watershed man
agement strategy efficacy. The resulting map products allow watershed 
managers to make decisions based on risk assessment at the watershed 
scale, as well as enable virtual experimentation of the impact of various 
decisions on water quality. 

This paper is structured as follows. Section 2 covers the STREAMS 
methodology developed in this paper. First, we review the characteris
tics of the ArcGIS SP and its use in modeling environmental processes 
(Section 2.1). How the SP is used to model nitrogen sources is described 
in Section 2.2. The techniques used for streamflow estimation are 
covered in Section 2.3. Nitrogen fate and transport are described in 
Section 2.4 followed by model calibration in Section 2.5. Load vari
ability is modeled using the first-order approximation method (Section 
2.6). STREAMS uses the computed nitrogen dynamics and the variability 
in load and capacity to calculate the probability of contaminants 
exceeding a safety threshold (risk), Section 2.7. The results are visual
ized as a risk map, which is the STREAMS output. STREAMS is 
demonstrated in application to two watersheds in southwestern Ohio - 
the Shepherd Creek watershed (Section 3) and the Upper East Fork 
Watershed (UEFW) of the Little Miami River (Section 4). The effects of 
BMP implementation are examined throughout each watershed in their 
respective sections. STREAMS results and maps illustrate the projected 
risk reductions and can be used to support watershed management 
decisions. 

2. STREAMS modeling framework 

2.1. Schematic Processor (SP) in ArcGIS 

The STREAMS modeling framework builds on the ArcGIS SP 

Fig. 1. The Schematic Processor passes loads from the catchments into the 
streams (modified from Whiteaker (2006)). Green links represent streams and 
purple the overland runoff. Purple nodes are placed at the centroid of respective 
sub-catchments. Upstream contributions are summed at green nodes. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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developed by Whiteaker (2006). The SP is a suite of geoprocessing tools 
for ArcGIS that uses a link-and-node schematic representation (sche
matic network) of hydrologic flows. The schematic network of a 
watershed is generated by placing a node at the centroid of every 
catchment, and at the beginning and the end of every reach. Links 
connect nodes and represent streams, as well as any surface runoff from 
sub-catchments (Fig. 1). In other words, nodes and links symbolize 
landscape features such as hillslopes, lakes, streams, and surface runoff 
paths. The National Hydrologic Dataset (NHDPlus) can be used to 
generate the schematic network of a given watershed automatically, as it 
provides the stream network and catchments (NHDPlus High 
Resolution at https://www.usgs. 
gov/core-science-systems/ngp/national-hydrography/nhdplus-high- 
resolution; and http://www.horizon-systems. 
com/NHDPlus/NHDPlusV2_home.php where the high resolution is not 
available) (see for example Tavakoly Zadeh (2014) and Johnson et al. 
(2013)). For areas smaller than a single NHD catchment, streams and 
sub-catchments can be delineated from the digital elevation model, 
which produces a local-scale, highly detailed schematic network. We use 
both approaches in this paper: the UEFW was processed using NHD, 
while the schematic network of the smaller Shepherd Creek watershed 
was obtained from the digital elevation model. 

Each SP feature (link or node) can perform different processing op
erations such as receiving, passing, and executing various mathematical 
calculations. The inputs for each SP feature are processed and the result 
becomes its output, which is then used as the input for downstream 
features. Because of this design, different transport models can be 
implemented within the SP. Our interest in this paper is surface water 
contamination with inorganic nitrogen; hence a nitrogen transport 
model is implemented in the SP (see Section 2.3). Point sources of water 
contamination can be represented by placing a node at the location of 
the source; then using a link to connect it to respective downstream 
nodes in the schematic network. Non-point sources are represented by a 
node placed at the centroid of each catchment and are connected to its 
outlet node by a link. 

2.2. Nitrogen sources 

STREAMS accounts for all nitrogen sources and inputs at any node: 

Ltotal = LNPS +LPS +Lu (1)  

where Ltotal is the total input load at a given node, LNPS and LPS are the 
non-point and point-source contributions respectively; and Lu is the 
computed incoming load from upstream features of the network. All 
parameters are listed in the appendix. 

Annual point-source contributions are calculated from the National 
Pollutant Discharge Elimination System (NPDES) permits or values from 
the literature. Non-point source contributions are computed based on 
export coefficients that represent the loss of contaminant mass per unit 
area per unit of time (usually a year), categorized by land use. They are 
typically estimated using regression equations, field monitoring, or 
mechanistic modeling (Beaulac and Reckhow, 1982; Lin, 2004; Rob
ertson and Saad, 2011; Shrestha et al., 2008; U.S.EPA, 2001). In 
STREAMS, non-point source contaminant loading is calculated as: 

LNPS =
∑m

i=1
∊iAi (2)  

where ∊i is the export coefficient for the respective land use of areaAi for 
m different land uses. This paper uses land uses reported in the National 
Land Cover Database (NLCD) (Alarcon et al., 2010). 

2.3. Streamflow estimation in ungauged locations 

Flow is estimated for every stream in the network. There are many 
methods to model streamflow, including models based on the unit 

hydrograph (Jakeman et al., 1990), rainfall-runoff (Young, 2006), and 
data-driven approaches (Besaw et al., 2010; Wang et al., 2008) that 
allow computing streamflow statistics (Koltun and Whitehead, 2002; 
Martin and Arihood, 2010; Stuckey et al., 2012; Vogel et al., 1999). 
STREAMS uses the best-fit regression equation for the average flow from 
Koltun and Whitehead, 2002 that can be readily applied to the entire 
watershed. As this equation estimates the mean flows, the output for 
each modeled year is scaled based on the average flow at available 
monitoring stations. Regression equations are applied in every catch
ment; upstream loads are added at nodes and passed downstream. 

2.4. Nitrogen transport 

The 1D nitrogen transport model is based on the concept of spiraling 
length, which represents the distance a dissolved nutrient molecule 
travels in the water column before it is removed by a biotic process. The 
model is directly related to the first order decay model that can be used 
with many contaminants. The mathematical basis of spiraling length has 
the following form (Runkel, 2007; Stream Solute Workshop, 1990): 

Cy

(
Qy

Q0

)

= C0e−
y
S (3)  

where C0 and Q0 are respectively the initial concentration and flow, y is 
the travel distance, Cy and Qy are respectively the concentration and 
flow at distance y, and S is the spiraling length. Flow is assumed uniform 
within each link of the schematic network (i.e Q0 = Qy = Q). This 
assumption is imposed by the SP, which calculates the additional flow at 
the nodes, and not at links. For an area that has mostly full-flowing 
channels, it is reasonable to assume that dispersion is negligible, that 
temporary storage areas are negligible, and that uptake occurs only in 
the main channel (Gandolfi et al., 2001). Nitrification of ammonia from 
both point and non-point sources is assumed to happen instantly. This 
leads to the following relation between the spiraling length and uptake 
rate (Runkel, 2007; Stream Solute Workshop, 1990): 

S =
V
λ

(4)  

where V is the flow velocity and λ the first order uptake rate. Throughout 
the schematic network, each streamflow regime has a specific spiraling 
length (Ensign and Doyle, 2006; Schwarz et al., 2009); and in this study, 
nitrate is of concern as the nitrogen species predominant in rivers (Hall 
et al., 2009; Taylor et al., 2005). 

Load is calculated in every reach by multiplying both sides of Eq. (3) 
by flow and applying the same assumptions as for Eq. (4): 

Lr =

⎡

⎣L0e− V
S t

⎤

⎦

r

(5)  

where for every reach r, Lr is the contaminant load at distance y, t is the 
travel time (i.e. the time it takes to travel distance y at velocity V such 
that t = V/y), and L0 is the initial load. As loads are passed through the 
schematic network, the value of Ltotal (Eq. (1)) at the upstream node of 
the subsequent stream link becomes the initial load L0 (Eq. (5)) for that 
link. Thus, STREAMS uses Eq. (5) to compute the nitrate fate and 
transport at every link throughout the network, while incorporating the 
physical features of individual streams (length y, velocity V, and travel 
time t). This produces the spatial load distribution throughout the 
watershed. 

2.5. Calibration 

The Nash-Sutcliffe Efficiency (NSE) coefficient (Nash and Sutcliffe, 
1970) is used to evaluate model performance. The NSE indicates how 
well the observed data and model results fit a 1:1 line; the closer the NSE 
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is to 1, the more accurate the model is (Moriasi et al., 2007). The cali
bration parameters are the export coefficients that modulate the NPS 
load input throughout the system for both case study watersheds. For the 
UEFW, the spiraling length at various flows is also used as a calibration 
parameter. Given the reported ranges for spiraling length and export 
coefficients, Excel’s optimization functionality is used to calibrate the 
model by maximizing the NSE for the first year of data (the rest of the 
data are used for validation). The resulting spiraling lengths and export 
coefficients are then used in modeling load variability and in calculating 
risk, as described in sections 2.6 and 2.7, respectively. 

2.6. Modeling load variability 

There are many ways to calculate variability, ranging from compu
tationally intensive methods such as Monte Carlo simulations to 
approximation methods (Beck, 2013; Mishra et al., 2019; Shirmo
hammadi, 2006; Tsai and Franceschini, 2005). STREAMS uses first- 
order approximation to calculate the mean and coefficient of variation 
(CV) of the response variable (the load). For highly non-linear problems, 
modifications of the first-order approximation can be employed (Krie
gesmann, 2012; Maskey and Guinot, 2003). 

Generally, in the first-order approximation method, 

Z = g(X1,X2,⋯,Xn) (6)  

where Z is a function of random variables X1,X2,⋯,Xn. The mean of Z is 
approximated as: 

μZ ≈ g(μX1
, μX2

,⋯, μXn
) (7)  

where μXi 
is the mean of Xi, i = 1,…,n. In general, the variance of Z is: 

Var(Z) ≈
∑n

j=1

∑n

k=1

∂g
∂Xj

∂g
∂Xk

Cov(Xj,Xk) (8)  

where Cov() is the covariance. If variables X1,X2,⋯,Xn are independent, 
Eq. (8) simplifies to: 

Var(Z) ≈
∑n

j=1

(
∂g
∂Xj

)2

Var(Xj) (9) 

Note that all derivatives in (8) and (9) are evaluated at the mean 
values. For each link, the mean contaminant load is obtained by 
applying Eq. (7) to the transport Eq. (5): 

μLr = μL0
e−

μV
μS

μt (10)  

where μLr is the mean load at the end of reach r, μL0 
is the mean initial 

load for the reach, μV is the mean flow velocity, μS is the mean spiraling 
length, and μtis the mean travel time. STREAMS applies this at the links. 
Here, remembering that the total load of the upstream node is used as 
the initial load for the stream link, μL0 

is obtained by applying Eq. (7) to 
Eqs. (1) and (2): 

μL0
=

∑m

i=1
μ∊i

Ai +
∑ℵ

ι=1
μLPS ι +

∑η

i=1
μLu i

(11)  

where μ∊i 
is the mean export coefficient in area Ai, μLPS ιis the ιth mean 

point-source input of ℵ point-sources, and μLu i 
is the mean upstream load 

for the i th upstream branch, and η is the number of upstream input 
branches. It then follows that Var(L0) is calculated from Eqs. (1) and (9). 

Var(L0) = Var(LNPS)+Var(LPS)+Var(Lu) (12) 

STREAMS applies Eqs. (11) and (12) at the nodes. Note that in the SP 
design, LNPS are symbolized by nodes placed at catchment centroids, 
which do not receive input from upstream since there are no upstream 
links, i.e. Cov(LNPS,Lu) = 0. Further, point source inputs are assumed to 

be independent from LNPS and Lu, i.e. Cov(LNPS, LPS) = 0 and Cov(LPS,Lu)

= 0. 
The variance of loads from non-point sources Var(LNPS) can be 

computed at catchment nodes based on Eqs. (2) and (8). It is assumed 
that areas Ai are independent of one another (i.e. Cov

(
Aj,Ak

)
= 0 for 

j|j ∈ Zand1 ≤ j ≤ m, k|k ∈ Zand1 ≤ k ≤ m where Z is the set of all in
tegers), and of export coefficients ∊i (i.e. Cov(Ai, ∊i) = 0 for 
i|i ∈ Zand1 ≤ i ≤ m) . Note that the export coefficients are not assumed 
independent of one another. Then, 

Var(LNPS) =
∑m

j=1

∑m

k=1

∂LNPS

∂∊j

∂LNPS

∂∊k
Cov(∊j,∊k) (13) 

To calculate the variance of loads from point sources Var(LPS), re
ported concentrations (CPS) and flows (QPS) are used where available. 
Since LPS = QPSCPS, Eq. (9) can estimate Var(LPS) as: 

Var(LPS) = Var(QPS)μCPS
2 + μQPS

2Var(CPS) (14)  

where μCPS 
and μQPS 

are the mean of the measured concentration and 
flow data respectively and Var(CPS) and Var(QPS) is the variance in the 
measured concentration and flow data respectively. 

To calculate the variance of loads from upstream links Var(Lu) at any 
node, while keeping in mind that Lu =

∑η
i=1Lu i , Eq. (8) is applied: 

Var(Lu) =
∑η

j=1

∑η

k=1

∂Lu

∂Luj

∂Lu

∂Luk
Cov(Luj, Luk) (15) 

Note that in Eq. (15), Cov
(
Luj, Luk

)
= Var(Luj) for j = k. 

The variance in the load at the end of each stream link r is obtained 
from Eqs. (8) and (5): 

Var(Lr) =
e−

2μt μV
μS

μS
4

[
− 2Cov(L0,V)μL0

μS
3μt − 2Cov(L0, t)μL0

μS
3μV 

+2Cov(L0, S)μL0
μS

2μtμV + 2Cov(V, t)μL0
2μS

2μtμV 

− 2Cov(V, S)μL0
2μSμt

2μV − 2Cov(S, t)μL0
2μSμtμV

2

+ μ4
SVar(L0)+ μL0

2μt
2μV

2Var(S) + μL0
2μS

2μt
2Var(V)

+ μL0
2μS

2μV
2Var(t)

]
(16)  

where Var(L0) is the variance at the stream link’s upstream node ob
tained from Eq. (12). Finally, the coefficient of variation (CVLr

) of the 
load in stream link r is calculated as: 

CVLr
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Lr)

√

μLr

(17) 

Note that the load mean and variance are calculated and passed 
through every feature in the schematic network. The accuracy of first- 
order approximation method was verified using Monte Carlo simula
tions; and results for each case study are reported in sections 3.2 and 4.2. 
In the next section, we describe the use of CVLr 

in risk calculations. 

2.7. Calculating risk 

As mentioned in the introduction, risk is defined as the probability pf 

that contaminants in water exceed a safety threshold. It can be 
computed for every link in the schematic network as: 

pf r
= P(Rr < Lr) (18)  

where pf r 
is the probability of failure for link (reach) r, Rr is the capacity 

or resistance in reach r, which describes the load that a stream repre
sented by the respective link can support and remain safe, and Lr is the 
contaminant load in that stream link. Fig. 2A illustrates this concept for 
the case when both capacity R and load L are random variables (here, R 
and L are generalized). The overlap between the two probability 
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distributions is the failure region where R < L. Below we describe how 
pf is calculated in two cases: when R and L are independent of each 
other, and when they are dependent. For both cases we first need to 
determine their moments. 

Stream capacity is defined as Rr = QCT , where CT is the safety 
concentration threshold that should not be exceeded. This paper usesCT 
= 1.1 mg/L for total dissolved inorganic nitrogen (TIN) (Miltner 
(2010)). TIN is the sum of ammonia, nitrate, and nitrite nitrogen (in 
flowing natural waters that are downstream of point source mixing 
zones, nitrate dominates the TIN speciation). Then the mean stream 
capacity μRr for a given reach r is: 

μRr = μQr
CT (19)  

where μQr 
is the mean flow in reach r. To calculate the coefficient of 

variation in capacity CVR, the linear relationship in Eq. (19) can be used 
to first determine the variance (Haldar and Mahadevan, 2000): 

Var(Rr) = Var(Qr)CT
2 (20)  

which can then be used similarly to Eq. (17) to calculate CVRr. 
Nitrogen loads can be approximated by the lognormal distribution 

(Cowan et al., 2019; Levy et al., 2017; Limpert et al., 2001). Data 
available from the case studies used in this paper passed the Kolmo
gorov–Smirnov test for lognormality at 5% significance at every moni
toring location. Assuming that R and L are lognormal and independent 
from each other, pf can be calculated analytically as (Haldar and 
Mahadevan, 2000): 

pf = 1 − Φ
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(21)  

where Φ(.) is the cumulative distribution function of the standard 
normal variate. 

The independence assumption may be appropriate in some cases, for 
example in single flow processes within individual streams. Generally, 
including when the independence assumption does not hold, pf can be 
computed using techniques such as the First- or Second-Order Reliability 
Methods (FORM/SORM) or Monte-Carlo simulations (Sitar et al., 1987). 

Here we employ FORM, which uses the Taylor expansion of the so-called 
performance function Z = R-L to approximate pf (Fig. 2B) (Sitar et al., 
1987; Bourinet et al., 2009). A detailed description can be found in 
Haldar and Mahadevan (2000) and Riasi et al. (2018). Briefly, the al
gorithm transforms the random variables into standard normal variates 
and minimizes the distance between the performance function and the 
origin to determine the most likely failure point. Probability of failure is 
then approximated as: 

pf = 1 − Φ(β) (22)  

where β is the shortest distance between the origin and the graph of the 
performance function (Fig. 2B). We performed FORM using the Finite 
Element Reliability Using Matlab (FERUM) software developed by 
Bourinet et al. (2009). The required inputs for each stream link r are 
mean load (μLr), mean capacity (μRr), CV of load (CVLr), CV of capacity 
(CVRr), the correlation matrix and the distribution type (lognormal). 

3. Case study 1 – Shepherd Creek 

Our first case study is the Shepherd Creek watershed in Southwest 
Ohio. Using STREAMS, the probability of exceeding the TIN standard is 
computed and mapped for the entire drainage network. The mapped 
results are useful for visualizing the spatial distribution of risk and for 
identifying areas that can be targeted for remediation. BMP imple
mentation is simulated and potential reduction in risk is computed to 
evaluate BMP efficacy. 

3.1. Study area 

The Shepherd Creek watershed is located in Cincinnati, Ohio. The 
watershed spans 1.85 km2 (457 acres) and is about one-third mature 
deciduous forest within a city park, two-thirds residential, and has horse 
pastures. There are six stations that monitor TIN in the watershed; 
sampled on a monthly basis from 2005 to 2010 by the USEPA (Roy et al., 
2006; Roy and Shuster, 2009). The sampling program included more 
frequent sampling targeting several storm events. The water quality 
monitoring data can be accessed using http://data.cuahsi.org, by spec
ifying an area, chemical species of interest, and a date range (Ames et al., 
2012; Tarboton et al., 2009) (Safwat, 2014; Yeghiazarian et al., 2013). 
The watershed and monitoring stations are shown in Fig. 3. 

Fig. 2. (A) Load and capacity are both random variables. The shaded area where L > R is the failure region. (B) Concept behind the First Order Reliability Method 
(FORM) based on Sitar et al. (1987). L and R are transformed into standard normal variates L’ and R’. In the standard normal space, the most probable point of failure 
(y*) is the point on the graph of the performance function (Z = R-L) that is closest to the origin. (β) is the minimum distance between the origin and the performance 
function. The shaded space is the failure region, and the un-shaded space is the safe region. 
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3.2. Model parameters and calibration 

The monitoring stations have 6 years of data. Daily averages were 
available for flow; nitrogen sampling occurred monthly. Several storms 
were sampled additionally, which lead to the full flow distribution curve 
being well represented (Teklitz, 2016). To calculate loads from various 
land uses, the export coefficients from Table 1 are used in Eq. (10). These 
values (which fall within the published range of nitrogen export co
efficients (Lin, 2004; Saad et al., 2011; Schwarz et al., 2009) were 
produced by calibrating the model with the 2005 data and using export 
coefficients as calibration parameters. 

The value of spiraling length is the mean estimate taken from Ensign 
and Doyle (2006), where the spiraling length is 478 m for first-order 
streams. Velocities from the NHDplus dataset (McKay et al., 2012) 
were used, which are estimated using the methodology from Jobson 
(1996). Fig. 4 demonstrates nitrogen fate and transport model perfor
mance for years 2005–2010, which are based on the modeled load 
output compared to the measured load that was estimated from the daily 
flow data and measurement samples. The natural logarithm of the load 
was chosen as the model uses lognormal distributions in the estimation 

of risk. The NSE for all years is satisfactory, as shown in Fig. 4. For the 
flow, as discussed in section 2.3, the weighting factors for 2005–2010 
were derived from NLDAS Station X323-Y113 (located 500 m East of the 
watershed boundary, using all data starting from 1979) hourly surface 
runoff data and were equal to 1.1, 1.2, 0.96, 1.6, 0.90, and 1.0 for each 
respective year. These values are for the annual average and applied to 
the results from the Koltun and Whitehead, 2002 regression equations. 
The estimated flows at all 6 stations for all years were also satisfactory 
with NSE of 0.55. 

The estimated coefficients of variation (CV) for parameters needed to 
calculate risk are presented in Table 2a and 2b. To estimate CV of flow 
(Q), the average CV of flows at the monitoring stations was used as 
available. If measurement data are not available, the standard error is 
often reported and can be used to estimate the CV (i.e. the equation this 
paper uses is from Koltun and Whitehead, 2002 and reports a standard 
error of 11.4 for 215 observations). For stream velocity V there were no 
measurement data available in or near the study areas, so the velocity 
estimate was obtained from the NHDPlus means stream velocity esti
mate which is based on Jobson (1996) which reports a Root Mean 
Square Error (RMSE) (which can be related to the variance at the mean) 
between 0.157 m/s and 0.21 m/s. For the spiraling length, the mean 
(727 m for NO3), median (236 m for NO3), and interquartile range 
(102–758 m for NO3) is reported in Ensign and Doyle (2006). From these 
values, the coefficients of variation based on a lognormal distribution 
can be estimated (Table 2a). The model uses an annual time step (re
flected in Tables 2a and 2b). Similarly, to determine the CV for export 
coefficients from the various land uses, the reported mean, median, and 
interquartile range is used where available (see Table 2b). Wherever 
only the range is available (e.g., developed, low intensity; and devel
oped, high intensity), the minimum and maximum of the range is 
assumed to be the fifth and ninety-fifth quartile respectively on a 
lognormal distribution, from which the CV can be estimated. 

To compute Eqs. (11), (14), and (15), covariances between various 
factors are also needed. This paper uses estimates of the correlation 
between factors to compute covariances (Table 3). The FORM algorithm 
also needs the correlation between the capacity and load to compute Eq. 
(18). Covariance is related to correlation (ρ) by ρX,Y = Cov(X,

Fig. 3. Shepherd Creek Watershed (Reprinted from Riasi et al. (2018) with permission). There are six monitoring stations within the watershed monitoring the outlet 
and the various branches. 

Table 1 
Export coefficients of nitrogen used for various land use types in Shepherd 
Creek.  

Land Use (Based on 
NLCD2006) 

Mean Export Coefficient μ∊i
(kg of TIN/ha/year)   

Reported Range in 
Literature 

Used in this Study 

Forested 1 – 15  3.2 
Row Crops 2 – 80  14.9 
Mixed Agriculture 2 – 41  10.0 
Developed, Open 0.1 – 7  4.8 
Developed, Low Intensity 1.9–11  4.8 
Developed, High Intensity 1.9 – 14  2.1  
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Y)/(Stdev(X)Stdev(Y)), where Stdev() is the standard deviation. Due to 
the lack of relevant data to directly calculate several of these values for 
this watershed, this paper employs several conservative assumptions 
and estimates. The in-stream velocity is a function of streambed geom
etry (slope, hydraulic radius) and conditions, so is assumed to have no 
covariance with initial loading. Travel time in stream is a function of the 
velocity and stream length so this paper conservatively selects a corre
lation of 1 for velocity and travel time. The travel time is not related to 
the initial load or spiraling length, therefore respective covariance 
values are set to zero. Through Eq. (4), S and V are directly related, so 

this paper conservatively assumes complete correlation between them. 
As spiraling length S is related to stream parameters instead of loading 
factors, L0 and S are assumed to be independent. 

To determine the correlation between incoming upstream loads at 
any node, the flow and concentration that define load calculations need 
to be considered. The correlation between upstream flows is often high 
(a range of 0.5 to nearly 1 is reported in Messinger and Paybins (2014)), 
however concentrations can have mixed relationships but are often 
negatively correlated (Arheimer et al., 1996; Arheimer and Liden, 
2000). In Shepherd creek, some of the sampling was performed where 
samples were taken from all stations within a short time frame (how
ever, this sort of data are not available in the UEFW). We use the mean 
correlation between loads at Sub2, Sub3, and Sub5 to estimate the 
correlation between upstream loads and for export coefficients, 
assuming they have the same value. The obtained value of 0.17 (Table 3) 
falls between the positive flow correlation and negative concentration 
correlation. This is also the value we use for different land uses in a 
catchment. The correlation between the capacity R and loading L across 
Shepherd Creek was computed directly from available data. 

To validate the accuracy of the first-order assumptions for variance 
across the network, we use a Monte Carlo simulation using the same 
processing network and input parameters. The computed variance from 
the Monte Carlo simulation is then compared at every link to the output 
of the first-order model. This produced a NSE of 0.57 across all links for 
variance. 

3.3. Results and discussion 

3.3.1. Risk maps 
The risk map for Shepherd Creek, produced by STREAMS for years 

2005–2010, is presented in Fig. 5. It shows the probability that the TIN 
in the individual streams is greater than the stream capacity. 

The STREAMS risk map draws attention to reaches that have the 
greatest probability of exceeding the safety threshold. As expected, there 
is both spatial and temporal variation in the distribution of risk. First, 
considering the spatial distribution of risk in 2005, there is an 

Fig. 4. Model performance across all years based on the natural logarithm of the measured and modeled DIN loads. Calibration was done with the year 2005 data 
using the comparison of the natural logarithm of the loads; the same model was implemented using the remaining years for validation. Models for all years have 
satisfactory performance. 

Table 2b 
Estimated coefficients of variation for various land uses for yearly time step.  

Land Use (Based 
on NLCD2006) 

Mean, Median, Interquartile Range of 
Export Coefficients (kg/ha/yr) from  
Reckhow et al. (1980) 

Estimated 
Coefficient of 
Variation (CV)  

Forested 2.86, 2.46, 1.19  0.59 
Row Crops 16.09, 9.0, 18.05  1.5 
Mixed Agriculture 1.13, 0.91, 0.88  0.74 
Developed, Open 9.97, 5.5, 7.36  1.5  

Range of Export (kg/ha/yr) from ( 
Loehr, 1989) in (Lin, 2004)  

Developed, Low 
Intensity 

1.9–11  0.57 

Developed, High 
Intensity 

1.9–14  0.67  

Table 2a 
Estimated coefficients of variation for yearly time step.  

Parameter Estimated Coefficient of Variation (CV)  

Flow(Q) 2 
Stream Velocity(V) 0.45 
Spiraling Length(S) 2.9  
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attenuation of risk as water flows from the outer reaches to the outlet. 
Depending on the use of the waterways, a water resources manager may 
decide to change nothing if the outlet meets an acceptable risk level, or 
implement BMPs only to the high-risk areas. For example, high-risk 
areas where human contact is more likely to occur might be targeted 
first. 

Note also a difference in risk distribution between the east (park 
area) and the west (residential). Flows from the western area that have a 
higher risk of exceedance mix with flows from the eastern area, which 
can be seen to have a diluting effect, as the outlet risk is lower than in the 
western areas. Across the years, the park generally has a lower risk, 
while the residential areas are at higher risk. There is uniformly lower 
risk in 2006–2008, and uniformly higher risk in 2009 and 2010. From 
2005 to 2008, the outlet remains at low risk, while in 2009–2010 the 
outlet has a moderate risk of exceedance, however the attenuation is still 
visible. 

Risk maps are a useful geospatial tool for water resources managers 
that provide the spatial context for implementing BMPs for nitrogen 
management in the watershed. It can help inform decisions about the 
acceptable risk, as well as the location of higher risk areas. Information 
about land use in areas with the highest risk helps determine the range of 

feasible management strategies such as buffer strips and other water 
runoff reduction measures in both suburban and agricultural areas. The 
relative importance of locations in terms of use and potential human 
exposure can be weighed in the decision-making process. 

The temporal variation in risk distribution can be seen in maps 
representing different years. One of the two primary factors in risk 
assessment is the capacity, which is driven by the flow. The cumulative 
discharge at the outlet along with the average risk across the watershed 
and at the outlet for 2005–2010 is displayed in Table 4: 

In Table 4, there is strong correlation (ρ = 0.995, p < .001) between 
the average risk across the watershed and risk at the outlet, however, 
there is non-significant negative correlation between the discharge and 
the risk (average risk and discharge ρ = -0.52; p > .05, outlet risk and 
discharge ρ = -0.51; p > .05). The attenuation of risk which is visualized 
in Fig. 5 can also be observed here as the risk at the outlet is consistently 
lower than the average risk in the watershed. The wide range of flows 
partially explains the yearly variation in risk. First, the years with lowest 
discharges (2005, 2009, and 2010) have the highest risks. The lower 
discharge lowers the capacity which will increase risk without a 
commensurate reduction in contaminant loading. In 2005, which has 
the lowest discharge of the studied years, the loading was reduced likely 
by a decrease in runoff events so the overall risk was not as high as 2009 
or 2010. Years 2006–2008 have the lowest average risk, while having 
increasing discharge. Each subsequent year (2006–2008) has a higher 
discharge with 2008 having the highest discharge of studied years while 
having the lowest risk. As discharge increases, capacity increases, which 
leads to a lowering of risk when the contaminant loading does not 
commensurately increase. Also, beyond certain discharges the contam
inant runoff decreases (Te Chow et al., 2010), and concentration tends to 
be negatively correlated with the flow (Arheimer et al., 1996; Arheimer 
and Liden, 2000). Focusing mitigation on initial runoff and washout 
events may then have a significant impact on the watershed. 

3.3.2. Risk reduction maps 
The effects of different BMP scenarios to decrease risk can also be 

investigated using STREAMS. For instance, BMP implementation may be 
effective in decreasing nitrogen loading (Alvarez et al., 2016). BMPs for 
an area such as Shepherd Creek include buffer strips, rain gardens, 
proper use of fertilizer, and runoff reduction measures (see for example 
(Roy et al. (2006); Roy and Shuster (2009))). BMPs can be implemented 
at specific locations, and resulting changes in risk can be quantified. The 
effects of some BMPs on nutrient export from land are known (Cho et al., 
2010a, 2010b). Then, using the estimated reduction, the respective 
changes in risk can be quantified. Here, a 15% reduction in TIN runoff 
from all areas is investigated. 

To simulate the application of BMPs, Eq. (2) is modified as: 

LNPS =
∑

i
Bi∊iAi (23)  

where Bi is the percent exported after BMP implementation. This allows 
STREAMS to apply the BMPs in whatever configuration the user spec
ifies. In this use case, we used Bi = 0.85 for a reduction of 15%, which 
illustrates the maximum attainable effect of BMP implementation in the 
watershed if a 15% load reduction is achieved across all land uses. Both 
the mean values and the variability will be affected by the change, which 
in turn will affect the risk. 

The resulting risk reduction maps draw attention to areas that have 
the greatest potential reduction in risk from a given BMP. The year 2005 
shows the highest potential risk reduction; across all years the greater 
potential for risk reduction falls in the outer reaches in both the resi
dential and park areas. As 2005 had the lowest capacity initially, it 
makes sense that a change in the watershed would have the largest effect 
on risk outcomes. The reduction is also greatest in areas that initially had 
a higher risk, which is of special interest for making decisions about 
BMPs. By implementing possible BMPs in the areas with high risk and 

Fig. 5. STREAMS model output - risk maps for TIN in the Shepherd Creek 
watershed, showing the probability of exceeding a target standard in individual 
streams represented by the schematic network. Red reaches have a high risk of 
exceeding the criterion, yellow moderate risk, and green low risk of exceed
ance. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 3 
Estimated correlation between parameters.  

Covariates Estimated Correlation 

L0,V  0 
L0,S  0 
L0, t  0 
V,S  1 
t,S  0 
V, t  1 
Lui,Luj  0.17 
∊i,∊j  0.17 
L,R  0.35  
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high potential for risk reduction, the impacts on the watershed are 
maximized. BMP implementation is also subject to feasibility. For 
example, if runoff areas were accessible for mitigation in the residential 
area, but not in the park, an optional scenario would be to only place 
BMPs in the residential area. Further, placing a monitoring station at 
these locations could be considered to monitor progress. 

The years 2009–2010 showed little potential for risk reduction. As 
discussed earlier, these years have a higher load without proportionately 
higher capacity. This is the reason behind greater reductions in the 
higher flow years as seen in 2006–2008 where the load is reduced while 
the capacity remains high. To reduce risk, especially in years such as 
2009–2010, the factors that contribute to it must be addressed. 
Considering Eqs. (18) and (21), these factors are the mean load and 
capacity, the variability in the load and the capacity, and the covariance 
between the capacity and load. Potential ways to reduce loading are 
discussed above, so here we examine potential reduction in variances. 
While the variability in the load and capacity are the hardest to influence 
directly, they scale approximately proportionately with the square of the 
mean (Haldar and Mahadevan, 2000). This may point to flow reduction 
measures as a potentially beneficial measure for risk reduction, as higher 
flows are associated with higher variability and higher loads. Detention 

and retention ponds, rain gardens, water barrels, reduction in imper
vious surfaces, and planting of trees may reduce the variability of the 
flows and loads on small scales which will lead to reduced risk. 

The information gained from analyzing the model results illustrates 
the maximum attainable effect of BMP implementation, with potential 
importance for the regional economy (Asci et al., 2012; Cools et al., 
2011; Xu et al., 2020; Zimmerman et al., 2019). STREAMS can compute 
changes from this implementation in a single catchment; however, to see 
the cumulative effects of BMP implementation, watershed-wide evalu
ation is necessary. STREAMS enables visualization of the difference in 
nitrogen loads brought about by implementing BMPs, as shown in Fig. 6. 
This information can be used to target specific areas in the watershed for 
focused BMP implementation and can contribute to planning for 
reducing nitrogen loading at the watershed scale. 

4. Case study 2 – Upper East Fork watershed 

4.1. Study area 

The Upper East Fork Watershed (UEFW) is a mixed-use watershed in 
southwest Ohio. It measures approximately 775 km2 and drains into a 
reservoir built in the 1970 s for flood control. The reservoir also serves as 
a source of drinking water and is a regional recreational resource. Water 
quality was monitored at 6 sites in 2009 and at 4 additional sites in 2010 
on a weekly basis for parameters including nitrogen species, phos
phorus, and organic carbon. A flow monitoring station is located on the 
main stem at ELI leading up to the lake (Fig. 7). This monitoring station 
has been operational from 2014-present, and for 1980–2013 the esti
mated flow is available from the USACE-Louisville District’s website 
(https://www.lrl-wc.usace.army.mil/reports/yearly/W.%20H.%20Har 
sha%20Lake_2009.html). 

A large portion of the watershed is used for agriculture that con
tributes to non-point source nitrogen loading. Additionally, there are 8 
major point sources for nitrogen including wastewater treatment plants 
(WWTPs), which report their contribution to nitrogen loading under 
National Pollutant Discharge Elimination System (NPDES) permits (data 
obtained from https://echo.epa.gov/). The reported discharge and 
ammonia loading is shown in Table 5. Only one WWTPS (site code 1 
PB0034) has nitrate-nitrite at the effluent recorded (average of 5.4 mg/ 

Fig. 6. STREAMS model output - risk reduction maps showing the expected 
difference in probability of nitrogen load exceedance due to BMP imple
mentation in the entire Shepherd Creek watershed. Red branches show the 
greatest reduction in risk, yellow - moderate reduction, and blue - low reduction 
in risk. This information can be used to select the areas where BMPs are likely to 
make the greatest impact. 

Table 4 
Yearly discharge at the outlet of Shepherd Creek.  

Year Cumulative Discharge at 
Outlet (104 ft3) 

Average Risk across 
Watershed 

Risk at Watershed 
Outlet 

2005 13  0.51  0.35 
2006 52  0.49  0.33 
2007 65  0.49  0.33 
2008 84  0.46  0.32 
2009 36  0.66  0.54 
2010 42  0.67  0.56  

Fig. 7. Upper East Fork Watershed with land uses, monitoring stations, reser
voir outlet, and point sources. 
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l), so in this paper we use 20 mg/L as an estimate of nitrate for the other 
stations based on Tchobanoglous et al. (2004). Water quality monitoring 
data used in this example can be accessed using the WaterOneFlow web 
services developed by CUAHSI HIS in the same manner as the Shepherd 
Creek data. The years 2009 and 2010 were selected based on availability 
of monitored water quality data. 

4.2. Model parameters and calibration 

The difference between modeled and observed concentrations was 
minimized during calibration. Here, flow data were not available at 
most of the observation stations, and concentrations were estimated by 
dividing modeled loads by modeled flows. The minimization was done 
using the optimization functionality within Excel, using the export co
efficients and the spiraling lengths at various flow rates as optimization 
parameters. The fit of the calibrated concentrations was satisfactory 
(Fig. 8). 

This calibration and validation procedure for the UEFW produced 
values for both export coefficients from the various land uses and 
spiraling lengths for different flows. The export coefficients presented in 
Table 6 are used in conjunction with Eq. (11). These values fall within 
published ranges of nitrogen export coefficients (Lin, 2004; Saad et al., 
2011; Schwarz et al., 2009), and are further used in Eq. (11) to calculate 
mean loading. 

Calibrated spiraling length values for Eq. (10) are presented in 
Table 7, and are also consistent with reported values (Ensign and Doyle, 
2006; Runkel, 2007). 

The estimated coefficients of variation and the covariances are the 
same as Tables 2a, 2b, and 3 from Shepherd Creek. The covariances 
needed for Var(LPS) were calculated directly from the data available 
from WWTPs using Eq. (14). As with the previous case study, we verify 
the accuracy of the first order approximation by comparing its output to 
the output of the Monte Carlo simulation using the same input param
eters as the first-order approximation. This produces a NSE of 0.52 
across all links. The ELI station flow data was used for determining the 
weighting factors: 2009 was 1.03 times the average, and 2010 was 0.86 
times the average. The estimated flows at ELI had a RMSE of 3.53 cfs. 

4.3. Results and discussion 

4.3.1. Risk maps 
Fig. 9 shows the STREAMS output as a risk map for the UEFW pro

duced for 2009. 
The STREAMS risk map of the UEFW shows many of the headwater 

areas having higher risk; however the forested area near the reservoir is 
generally at lower risk. The lower risk is due to the lower amount of 
loading in those areas as the forested areas have the lowest export co
efficient while the agricultural areas have the highest. There are areas of 
the main stem that have a higher risk, but it attenuates before reaching 
the reservoir. Natural uptake and dilution can both lead to risk decrease. 
A watershed manager would need to decide if and where having a higher 
risk is acceptable. If maintaining high quality of water in the reservoir is 
the main objective, then higher risk in the upper areas of the main stem 
could be acceptable. However, if a uniform risk criterion is applied 

Fig. 8. Calibration and validation performance for the UEFW. Calibration was performed on 2009 for the concentration data.  

Table 5 
Point source loading data. Data obtained from echo.epa.gov.  

Site Code Site Name Facility Actual Average Flow (MGD) Reported Ammonia Discharge (Kg/year) 
2009 2010 2009 2010 

1PA00005 New Vienna WWTP  0.2732  0.3607 2882 3108 
1 PB00034 Williamsburg WWTP  0.2703  0.2484 220 528 
1 PB00105 Lynchburg WWTP  0.2019  0.1678 51 118 
1PD00024 Fayetteville Perry Twp WWTP  0.1774  0.1185 277 224 
1PG00100 Rolling Acres Municipal WWTP  0.0094  0.0104 0 5 
1PV00002 Holly Towne MHP  0.0398  0.0352 3 11 
1PV00034 Forest Creek MHP  0.0187  0.0163 28 1 
1PX00059 Locust Ridge Sewage System  0.0047  0.0038 16 13  
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across the watershed, then the higher risk areas will need to be 
addressed. There are also differences across years to consider, as 2010 
has higher risk, especially in the agricultural areas. The lower stream
flow for 2010 seems to be the main factor that leads to these higher risks. 

Many of the first-order reaches in the agricultural areas have high 
probabilities of exceeding the target. These are the areas where the 
contaminant load initially gets delivered into the network, with no op
portunity for dilution or removal. These areas have some of the highest 
loads relative to the capacity, which is due to the high amount exported 
while having a lower flow. The main stem of the UEFW accumulates 
loads throughout the watershed such that the highest load in the 
watershed is at the outlet to the reservoir. The main stem segment 
leading up to the reservoir has a lower risk of exceedance even though it 
has the highest load. This is due to the capacity being higher than the 
loading. As water travels through the reaches, uptake and dilution occur, 
which lowers the probability of exceedance. 

So, although the highest amount of nitrogen is delivered through the 
main stem into the reservoir, the highest risk occurs elsewhere, as the 
risk map illustrates. Here, risk maps highlight areas that not just have 

the highest load, but also the highest probability of exceeding the safety 
threshold. 

Another area of interest includes the regions of the main stem that 
change from high risk into low risk (i.e. upstream of the main stem of 
station EFG, as well as between EFB and ELI). These dynamics would not 
be seen in model results that only show load. The watershed manager 
can decide from these findings if having high-risk reaches is acceptable, 
or that the naturally occurring attenuation is sufficient for downstream 
purposes. 

4.3.2. Risk reduction maps 
The methodology demonstrated with the Shepherd Creek watershed 

is applied here as well. Possible BMPs that could be used in this area 
include buffer strips, optimal fertilizer practices, and ensuring manure 
and waste system detention. A 15% reduction is applied only to agri
cultural areas, and the prospective effects of BMP practices and the re
sults are displayed in Fig. 10. 

The implementation of BMPs has a visibly large impact primarily on 
the upper parts of the main stem, as the dark red regions show a 35% 
reduction in risk in both 2009 and 2010. Some of the first-order streams 
in the agricultural area only show a 15%-20% risk reduction from BMP 
implementation. This is likely because there is not as much opportunity 
for cumulative reduction due to benefits from upstream BMPs, unlike 
the changes seen in the upper third of the main stem. In addition to the 
reduction in load from BMPs, further reduction occurs through uptake. 
Additionally, loads from high-risk streams mixing with those from lower 
risk streams reduce the overall risk. All of these factors collectively 
contribute to the reduction of risk in the main stem. There are also some 
differences across years. Years 2009 and 2010 have in common the lo
cations where the reduction in risk primarily happens. However, in 2010 
risk is not reduced as much as in 2009, even though 2010 has higher 
initial risk. This is likely due to the additional capacity generated by 
higher flows in 2009 as compared to 2010. 

Watershed managers can use information that STREAMS produces to 
help inform planning decisions. Having the high-risk areas be the most 
attenuated by BMPs provides a potential scenario for the managers to 
consider. They may find it acceptable to only implement changes in the 
upper third of the watershed as this would produce results for that area 
and also reduce risk downstream. This alternative scenario to BMP 
implementation throughout the entire watershed could also be simply 
simulated using STREAMS. The placement of additional monitoring 
stations for this area, as well as continued use of current stations, could 
be considered to monitor progress. The final decisions should be made 

Fig. 9. STREAMS risk map of the Upper East Fork Watershed for 2009 and 2010. Dark red indicates a high risk of exceeding the safety threshold, while green 
indicates low risk. 

Table 6 
Export coefficients of nitrogen used for various land use types.  

Land Use (Based on 
NLCD2006) 

Mean Export Coefficient μ∊i
(kg of TIN/ha/year)   

Reported Range in 
Literature 

Used in this 
Study 

Forested 1 – 15  2.1 
Row Crops 2 – 80  8.4 
Mixed Agriculture 2 – 80  8.2 
Urban 2 – 41  5.4 
Residential 0.1 – 14  5.1 
Commercial 0.1 – 14  5.4 
Industrial 0.1 – 14  2.3 
Barren 0.5 – 20  4.9  

Table 7 
Spiraling lengths at different flow rates used in this study.  

Flow (cfs) Mean Spiraling Length (m) 

1–50 200 
50–100 150 
100–300 200 
300+ 800  
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based on STREAMS results augmented by the cost-benefit analysis of 
different management options. 

5. Conclusions 

This paper presents STREAMS (STochastic Reliability-based Risk 
Evaluation And Mapping for watershed Systems and Sustainability), a 
spatially distributed, reliability-based approach to compute and visu
alize water contamination risk at a watershed scale. Inspired by spatial 
visualization of the chance of rain in weather maps, STREAMS output is 
mapped to visualize risk of water contamination in watersheds. 
STREAMS expands the computational capabilities of ArcGIS geospatial 
processing tools, which serve as a platform to integrate a watershed- 
scale nitrogen transport model with reliability-based risk assessment. 
As a result, STREAMS is an intuitive and visually compelling decision- 
making tool. It is expected to facilitate communication of risk to stake
holders and provide insights into the spatial distribution of risk, as well 
as changes in risk as best management practices are simulated and 
tested. The results enable identification of vulnerable, high-risk sites 
within the watershed where water quality remediation could be 
implemented. It allows watershed managers to make decisions based on 
the reduction in risk and location of that reduction, which in turn en
ables targeting and protecting these areas effectively and efficiently. The 
general public can also view and understand these maps in deciding 

recreational safety and raising awareness. STREAMS can be extended to 
a wide range of contaminants, and can also be linked to real-time models 
so that timely advisories can be implemented for acute contamination 
events. 
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Appendix:. Nomenclature  

Parameter Definition 

Ltotal  Total input load at the given catchment 
LNPS  Non-point sources load 
LPS  Point sources load 
Lu  Upstream load 
∊i  Export coefficient 
Ai  Area 
m  Number of land uses in a catchment 
Cy  Concentration at distancey  
C0  Initial Concentration 
Qy  Flow at distancey  
Q0  Initial Flow 

(continued on next page) 

Fig. 10. STREAMS model output - risk reduction map of the Upper East Fork Watershed for 2009 and 2010. The darker red areas show a higher reduction in risk, the 
yellow a moderate change in risk, and the blue a low change in risk. 
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(continued ) 

Parameter Definition 

S Spiraling length 
Y Distance 
Q  Flow 
λ  Decay rate 
V  Flow velocity 
t  Time (to travel distance y at velocity V)  
r  Reach 
Lr  Contaminant load at end of reachr  

L0  Initial load 
L  Load 
Z  A stochastic variable 
X1,X2,⋯,Xn  Stochastic variables 
g() A function of variables 
μX1

,μX2
,⋯,μXn  

Mean of Xi, i = 1,…,n  
μXj  

Mean of Xj  

μL r  Mean of L at end of reachr  

μL0  
Mean ofL0  

μV  Mean ofV  
μS  Mean ofS  
μt  Mean oft  
μ∊i  

Mean of∊i  

μLPS ι  the ιth mean point-source input  
ℵ Number of point sources at some node 
ι  Index used with point sources 
μLu i  

mean upstream load for the i th upstream branch  
i  Index used for upstream branches 
η  Number of upstream input branches at some node 
Z  Set of all integers 
QPS  Measured flow 
CPS  Measured Concentration 
μCPS  

Mean of the measured concentration from a point source 
μQPS  

Mean of the measured flow from a point source 
CV  Coefficient of variation 
CVLr  

Coefficient of variation of the load in stream linkr  

pf r  
Probability of failure for link (reach)r  

Rr  capacity or resistance in reachr  

Lr  Contaminant load in reachr  

R Capacity, a random variable 
L Load, a random variable 
pf Probability of failure 
L’ Load transformed into standard normal variate 
R’ Capacity transformed into standard normal variate 
y* The most probable point of failure in FORM algorithm 
В The minimum distance between the origin and the performance function in FORM algorithm 
CT  Safety concentration threshold 
μRr  Mean of capacity of reachr  

μQ r  
Mean flow in reachr  

μL r  Mean of load in reachr  

CVRr  Coefficient of variation of capacity in reachr  

CVL r  Coefficient of variation of load in reachr  

CVR  Coefficient of variation of capacity 
CVL  Coefficient of variation of load 
Φ()  Cumulative distribution function of the standard normal variate 
ρ  Correlation coefficient 
Bi  BMP export percent  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jhydrol.2021.126030. 

References 

Abrishamchi, A., Tajrishy, M., Shafieian, P., 2005. Uncertainty Analysis in QUAL2E 
Model of Zayandeh-Rood River. Water Environ. Res. 77 (3), 279–286. 

Ahmadisharaf, E., Benham, B.L., 2020. Risk-based decision making to evaluate pollutant 
reduction scenarios. Sci. Total Environ. 702, 135022. 

Ahmadisharaf, E., Camacho, R.A., Zhang, H.X., Hantush, M.M., Mohamoud, Y.M., 2019. 
Calibration and validation of watershed models and advances in uncertainty analysis 
in TMDL studies. J. Hydrol. Eng. 24 (7), 03119001. 

Ahn, K.-H., Merwade, V., 2014. Quantifying the relative impact of climate and human 
activities on streamflow. J. Hydrol. 515, 257–266. 

Alarcon, V.J., McAnally, W., Ervin, G., Brooks, C., 2010. Using MODIS land-use/land- 
cover data and hydrological modeling for estimating nutrient concentrations. In: 
International Conference on Computational Science and Its Applications. Springer, 
pp. 501–514. 

Alvarez, S., Asci, S., Vorotnikova, E., 2016. Valuing the potential benefits of water 
quality improvements in watersheds affected by non-point source pollution. Water 8 
(4), 112. 

A. Teklitz et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.jhydrol.2021.126030
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0005
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0005
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0010
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0010
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0015
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0015
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0015
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0020
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0020
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0025
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0025
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0025
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0025
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0030
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0030
http://refhub.elsevier.com/S0022-1694(21)00077-9/h0030


Journal of Hydrology 596 (2021) 126030

14

Ames, D.P., et al., 2012. HydroDesktop: Web services-based software for hydrologic data 
discovery, download, visualization, and analysis. Environ. Modell. Software 37, 
146–156. 
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