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Discharge time series in rivers and streams are usually based on simple stage-discharge relations cali-
brated using a set of direct stage-discharge measurements called gaugings. Bayesian inference recently
emerged as a most promising framework to build such hydrometric rating curves accurately and to esti-
mate the associated uncertainty. In addition to providing the rigorous statistical framework necessary to
uncertainty analysis, the main advantage of the Bayesian analysis of rating curves arises from the quan-
titative assessment of (i) the hydraulic controls that govern the stage-discharge relation, and of (ii) the
individual uncertainties of available gaugings, which often differ according to the discharge measure-
ment procedure and the flow conditions. In this paper, we introduce the BaRatin method for the Bayesian
analysis of stationary rating curves and we apply it to three typical cases of hydrometric stations with
contrasted flow conditions and variable abundance of hydraulic knowledge and gauging data. The results
exemplify that the thorough analysis of hydraulic controls and the quantification of gauging uncertainties
are required to obtain reliable and physically sound results.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Physical basis of stage-discharge relations

Most often, the discharges of water streams are monitored by
converting continuous water level records using a stage-discharge
relation (e.g., Rantz, 1982; Schmidt, 2002; WMO, 2010; ISO 1100,
2010). Such a hydrometric rating curve is usually calibrated using
a set of direct stage-discharge measurements, which are called
gaugings. McMillan et al. (2012) provide a comprehensive review
of the uncertainty values for gaugings and rating curves that were
reported in the literature. Due to technical constraints, the gau-
gings are often scarce, especially at extremely high or low dis-
charge, and may be affected by large and variable uncertainty,
typically 5–20% of the measured discharge. Note that in this docu-
ment, by default uncertainty is expressed at 95% confidence level,
which corresponds to the convention most often used in hydrom-
etry, as recommended by the Hydrometry Uncertainty Guide
(HUG, ISO/TS, 2007). Stage-discharge relations often have to be
extrapolated beyond the range of available gaugings, which may
produce systematic errors as high as 100% or even more, resulting
in wide credibility intervals associated with flood quantile esti-
mates (Lang et al., 2010) and obviously also with drought discharge
values. According to the expertise of the hydrometer and to avail-
able information, establishing and updating rating curves involve
analyzing the hydraulic conditions at the study site. Managing rat-
ing curves and assessing their uncertainty hence remain difficult
tasks which are not fully standardized yet.

A simple rating curve is a monotonic function relating the dis-
charge, Q, to the water level, h, which is assumed to prevail at a
cross-section of the flow in the reference hydraulic conditions. This
reference hydraulic regime is seldom explicitly defined. Most
often, the reference regime refers to the hydraulic conditions
which usually prevail in the considered flow (Schmidt, 2002), i.e.
steady flow (negligible transient effects) and usual hydraulic
controls (e.g. no variable backwater effects, no change in channel
roughness or in the geometry of the cross-section). Nevertheless,
any time the flow deviates from the reference regime, significant
errors in the discharge estimate may appear. Such errors must be
distinguished from the errors directly related to the reference
stage-discharge relation.

When the reference regime is permanently changed, e.g., in case
of changed channel geometry after a flood, the rating curve is no
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longer valid, and a new one must be established corresponding to
the new reference regime. Temporary changes of the reference re-
gime may occur, due for instance to seasonal vegetation growth
(WMO, 2010), variation of the downstream boundary condition
(Petersen-Overleir and Reitan, 2009a), hysteresis due to transient
flow effects (Le Coz et al., 2012), or dune-flat bed transitions during
floods (Shimizu et al., 2009). Non-stationarity in the stage-dis-
charge relation may impose the use of different rating curves
according to time periods, or even of rating curves with time-vary-
ing parameters.

The physical characteristics of the channel which govern the
relation between stage h and discharge Q at a section constitute
the hydraulic control. Basically, two kinds of hydraulic controls
may be distinguished: section vs. channel controls (WMO, 2010;
ISO 1100, 2010). When section control holds, the flow is mainly
regulated by the geometry of a cross-section or a hydraulic work
where the flow becomes critical due to a water fall (e.g., riffle, weir,
sill) or due to a constriction (e.g., Venturi, Parshall flumes). When
channel control holds, usually for medium to high flows, the flow
is mainly regulated by the geometry and roughness of a portion
of the channel. In non-uniform flow cases, the downstream bound-
ary condition may also influence the stage-discharge relation
(backwater effects).

Depending on the discharge, hydraulic controls may change,
with some controls disappearing and others appearing. Typically,
the section control exerted by a sill will disappear when water
stage exceeds a given level of submersion or when the backwater
effect is repelled downstream of the station. Fig. 1 shows how
the transition between different section and channel controls
may occur at a typical hydrometric station without an artificial
control. With increasing discharge, the stage at the station is suc-
cessively controlled by a small natural riffle, then by a higher
one, then by the main channel only, and eventually by the main
channel and the floodplain. More complex hydraulic controls
may be activated successively or simultaneously.

Based on simplifications acceptable for hydrometry purposes,
the usual hydraulic formulas for uniform channel controls and
for conventional section controls can be expressed as the following
power function (ISO 1100, 2010; WMO, 2010):

Q ¼ a ðh� bÞc ð1Þ

where Q is the discharge, h (h P b) is the water level relative to a
given datum (usually at the staff gauge), a is a scaling coefficient re-
lated to the characteristics of the control section or channel, b is a
cease-to-flow reference level, and c is an exponent related to the
type of hydraulic control.

Hydraulic theory provides nominal values for c such as 5=3 for a
wide, uniform, rectangular channel control (derived from the Man-
ning–Strickler equation), 3=2 for a rectangular weir control, 5=2 for
a triangular weir control (derived from the critical flow equation).
Fig. 1. Illustration of the succession of section and channel hydraulic controls for a ty
different discharge values (right); the water levels are plotted against the river cross-se
The value of the hydraulic exponent may also be determined
experimentally for some control structures: c � 1:55—1:60 for
commercial Parshall flumes, typically. The value of the exponent,
c, may show some variability around the nominal value (say,
�0:1) due to complex cross-sectional geometry or overbank flow
processes. However, it is crucial to keep realistic values for c to al-
low for the physical derivation of coefficient a values, following the
hydraulic formulas. Indeed, different values for the ða; cÞ couple
with no physical meaning may better fit the observations, but yield
very poor predictions in extrapolation.

1.2. Uncertainty analysis of stage-discharge relations

The methodology for assessing the uncertainty associated with
stage-discharge relations is an important open scientific issue
which received some attention in the recent literature. A first ap-
proach based mainly on hydraulic analysis of the stage-discharge
relation can produce a valuable quantification of errors, since the
physical basis of such errors is explicitly defined (Schmidt, 2002).
Sensitivity analysis of the parameters of a hydraulic model pro-
vides a realistic and site-specific estimation of error bounds (Di
Baldassarre and Montanari, 2009; Lang et al., 2010; Neppel et al.,
2010; Di Baldassarre and Claps, 2011; Domeneghetti et al., 2012).
However, translating these worst-case errors into probabilistic dis-
tributions from which uncertainty may be derived and combined is
usually not a straightforward task.

The second family of approaches is based on the statistical anal-
ysis of gaugings. The work by Venetis (1970) seems to be the first
published statistically sound method for computing the uncer-
tainty associated with rating curves, based on nonlinear regression
of a single segment power function (cf. Eq. (1)). In the same way,
Dymond and Christian (1982) suggested a new method accounting
not only for rating curve error and stage error, but also for errors
caused by ignoring all physical parameters other than stage. In
works by Herschy (1999); Clarke (1999); Clarke et al. (2000), the
rating curve uncertainty analysis is based on the residual variance
from regression of a power function like Eq. (1), and possibly on the
standard error of the parameter estimates.

Petersen-Overleir (2004) proposed a heteroscedastic model to
take into account the usually observed heteroscedasticity of
stage-discharge relations, which is not captured by classical
non-linear least squares methods. The same author extended the
non-linear regression approach to more complex stage-discharge
relation cases, including multi-segment (or piecewise) power func-
tions (Petersen-Overleir and Reitan, 2005), hysteresis (Petersen-
Overleir, 2006), and overbank flow in rivers with floodplains
(Petersen-Overleir, 2008). While this seminal work constituted a
significant advance in stage-discharge analysis, the physical basis
of the assumptions seems too loose since unrealistic hydraulic
exponents (> 3; > 4) were sometimes obtained.
pical hydrometric station without an artificial control: bottom and water lines for
ction at the station (left).
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In recent years, the application of Bayesian inference (Gelman
et al., 2004) and Markov chain Monte-Carlo (MCMC) simulations
has brought new solutions to the problem of rating curve uncer-
tainty analysis. With computational costs that are now acceptable,
MCMC simulation is an efficient way to estimate the posterior
probability density function of the parameters of a rating curve,
hence the corresponding uncertainty (McMillan et al., 2010). From
the practitioner point of view, the Bayesian framework shows deci-
sive advantages for the estimation and management of hydromet-
ric rating curves. First of all, hydraulic knowledge of the stage-
discharge relation can be explicitly translated into prior distribu-
tions of the parameters of the assumed rating curve equation. Sec-
ond, as with any likelihood technique, it is possible to derive a
likelihood function that accounts for the uncertainty in individual
gaugings, leading to heteroscedastic models similar to that of Pet-
ersen-Overleir (2004). Based on the corresponding uncertainties,
information from observations (likelihood function) and hydraulic
knowledge (priors) are combined into a posterior distribution.
Also, as the technique is directly based on probability density func-
tions, uncertainty analysis can be achieved in an easy and clear
way using percentiles of the posterior distribution.

To our best knowledge, Moyeed and Clarke (2005) authored the
first published Bayesian analysis of stage-discharge relations,
based on a power function and Box-Cox transformation. However,
some assumptions of this pioneering work appear questionable: no
formal analysis of the hydraulic relations and of the discharge mea-
surements was performed; the uncertainty on discharge data was
quite arbitrarily assumed to be proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h� h0

p
; and again,

unrealistic hydraulic exponents were obtained. Other Bayesian/
MCMC studies of stage-discharge relations focused on the uncer-
tainty due to the lack of gaugings for a single-segment power func-
tion (Reitan and Petersen-Overleir, 2008), on the establishment,
including extrapolation, of a piecewise power function (Reitan
and Petersen-Overleir, 2009), and on the rating procedures for
gauging stations that are subject to variable backwater, using
stage-fall-discharge relations for twin gauges (Petersen-Overleir
and Reitan, 2009a). While those published works proved the po-
tential of Bayesian analysis for investigating all acknowledged
sources of errors, the interpretation of hydraulic controls and the
quantification of gauging uncertainties did not receive the atten-
tion corresponding to their practical interest.

Most of the aforementioned uncertainty analysis methods as-
sumed that changes in the reference hydraulic regime are negligible
or exceptional within each period of validity of the studied rating
curve. Recently, non-stationary stage-discharge relations in unsta-
ble channels were addressed by different methods ranging from
variographic analysis (Jalbert et al., 2011) to Bayesian analysis (Reit-
an and Petersen-Overleir, 2011), weighted fuzzy regression within a
moving time window (Westerberg et al., 2011) and the Generalised
Likelihood Uncertainty Analysis (GLUE) methodology (Guerrero
et al., 2012). Again, the two main limitations of such studies are that
uncertainties in individual gaugings were not sufficiently analyzed
(in some cases, the errors in some gaugings may be as large as the de-
tected non-stationarity); and that the analysis of hydraulic controls
was too crude to account for the physical processes governing the
non-stationarity. This is especially true when only one power-law
segment was used while most often, the lower segment is much
more prone to morphogenic or vegetation-driven non-stationarity
than the upper ones (e.g., Di Baldassarre and Claps, 2011).

Most of the works cited in this literature review addressed the
uncertainty of the stage-discharge relation. To assess the uncer-
tainty of the discharge time series derived from the rating curve,
it is further necessary to propagate the uncertainty of the stage
time series proportionally to the inverse of the sensitivity of the
stage-discharge relation. Only Olivier et al. (2008), following the
GUM (JCGM, 2008) framework, and Freestone (1983), in a more
empirical way, accounted for the uncertainty in the water stage re-
cords. Indeed, in low flow conditions, for a poorly sensitive hydrau-
lic control, this stage-related uncertainty component is often much
larger than the uncertainty of the rating curve itself.

1.3. Objectives of this paper

In this paper, we introduce the BaRatin method for the Bayesian
analysis of stationary rating curves. This framework is primarily
based on the thorough elicitation of hydraulic priors. Methods for
quantifying the uncertainty in individual gaugings are also intro-
duced and the Bayesian inference assumptions are described. Then,
we present the results obtained using the BaRatin method from
three typical cases of hydrometric stations with contrasted site
and flow configurations.

The application cases include (1) a densely gauged river with
poor prior information on piecewise natural controls; (2) a small
stream with precise prior knowledge on compound artificial con-
trols; (3) a river where high-flow extrapolation of the rating curve
is sensitive to the adequate interpretation of some tricky hydraulic
controls. These application cases exemplify the importance of
building physically-based hydraulic priors and checking the con-
sistency of the obtained results. The value of more uncertain flood
gaugings or discharge estimates is also highlighted, provided that
their uncertainties are correctly assessed.

All the results presented in this paper were produced using the
BaRatin software and its graphical user interface BaRatinAGE,
which are freely available on request to the authors. Multilingual
versions are supported, including French and English languages.
2. The Bayesian rating curve framework (BaRatin)

This section describes the statistical and hydraulic foundations
of the BaRatin framework. We stick here to a factual presentation
of the models and hypotheses behind BaRatin. Limitations and ave-
nues for improvement will be thoroughly discussed in the discus-
sion Section 4.

2.1. Bayesian inference

BaRatin is the application of the Bayesian paradigm (Gelman
et al., 2004) to the problem of estimating rating curve parameters,
based on uncertain gaugings and hydraulic knowledge. It is based
on the following statistical model.

2.1.1. Measurement error models
Gauging measurements ðeHi; eQ iÞi¼1:N are estimations of the real

values ðHi;QiÞi¼1:N of water levels and associated discharges. The
following error models are assumed:

eHi ¼ Hi ð2ÞeQ i ¼ Q i þ �Q
i �Q

i � N 0;uQi

� �
: ð3Þ

Eq. (2) assumes that the errors in stage measurements are neg-
ligible. Eq. (3) assumes that discharge measurements are affected
by Gaussian errors with mean zero (i.e. no bias) and known stan-
dard deviation uQi

, i.e. the so-called standard uncertainty.

2.1.2. Rating curve
The rating curve is formalized as a function f ðhjhÞ , where h is

the stage and h ¼ ðh1; . . . ; hNpar Þ are the rating curve parameters.
In most cases, the function f is given by the elementary hydraulic
control Eq. (1), or a piecewise combination of several elementary
hydraulic controls, as will be introduced in next Section 2.2. In
statistical terms, the fact that we are using a piecewise formulation
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of the rating curve corresponds to a ‘‘segmented regression’’
context.

The stage-discharge relationship is then formalized as follows:

Q i ¼ f ðHijhÞ þ �f
i �f

i � Nð0;rf Þ: ð4Þ

The error term �f
i is the remnant error, and represents the fact that

the rating curve, in its assumed mathematical form, would not per-
fectly represent the stage-discharge relationship, even if the true
stage/discharge values were known. Note that the standard devia-
tion rf is unknown and therefore has to be estimated. We also
make the assumption that the remnant error �f

i and the measure-
ment error �Q

i are independent.
Combining Eqs. (2)–(4) yields the following relationship be-

tween observed stage-discharge values:

eQ i ¼ f ðeHijhÞ þ �f
i þ �

Q
i �f

i þ �
Q
i � N 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

f þ u2
Qi

q� �
: ð5Þ
2.1.3. Bayesian equations
Eq. (5) involves several unknown quantities: the rating curve

parameters h and the remnant standard deviation rf . Inference
on these quantities is performed through the posterior distribu-
tion, the probability density function (pdf) of which is defined as:

p h;rf j eH; eQ� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

posterior

/ p eQ j h;rf ; eH� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

likelihood

p h;rf

� �|fflfflfflffl{zfflfflfflffl}
prior

: ð6Þ

The likelihood of observed discharge values eQ , given rating
curve parameters h, remnant standard deviation rf and observed
stage values eH is given by:

p eQ j h;rf ; eH� �
¼
YN
i¼1

pN
fQi j f ðfHi j hÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

f þ u2
Qi

q� �
ð7Þ

where pNðz j m; sÞ is the pdf of a Gaussian distribution with mean m
and standard deviation s, evaluated at value z. The prior pdf is de-
rived by assuming independent priors on each inferred quantity:

pðh;rf Þ ¼ pðrf Þ
YNpar

i¼1

pðhiÞ ð8Þ

Note that hydraulic knowledge can be used to derive informa-
tive priors on at least some of the parameters hi, depending on
the type of hydraulic control. In particular, the exponents in the
rating curve equation can be quite precisely elicited for each
hydraulic control (see discussion in next Section 2.2). Conversely,
it is much more difficult to elicit an informative prior distribution
for the remnant standard deviation rf . We will therefore use a
wide uniform distribution (between 0 and 10,000) for this
parameter.

2.1.4. Inference
The posterior distribution (Eq. (6)) is explored by sampling real-

izations using a Markov Chain Monte Carlo (MCMC) sampler (see
(Renard et al., 2006) for a detailed description). This generates an
ensemble of realizations ðhj;rf ;jÞj¼1:Nsim

, with Nsim ¼ 104 � 105, typi-
cally. For each of these realizations, a rating curve is computed
from parameters hj. From this large set of rating curves, the statis-
tics computed at each stage value allows assessing the parametric
uncertainty of the stage-discharge relation. To assess the total
uncertainty, a Gaussian noise with mean zero and standard-devia-
tion rf ;j is added to each rating curve.

Note that there is room to improve the MCMC sampling algo-
rithm by customizing it to the peculiarities of the BaRatin model.
However, we never encountered convergence issues over the 50
gauging stations analyzed so far with BaRatin. This is most proba-
bly due to the use of informative, hydraulics-based priors, which
makes the inference well-behaved. In the absence of such priors,
the posterior distribution would probably be much more complex
(e.g. multimodality), especially in this context of segmented
regression.

As a summary, taking as input the prior knowledge on hydraulic
controls and the gauging data with their individual uncertainties,
the Bayesian simulator provides the MaxPost rating curve that cor-
responds to the maximum-posterior parameter values, along with
its uncertainty interval. Following the common practice in
hydrometry (ISO/TS, 2007), uncertainty intervals are defined as
95% credibility intervals. It is important to acknowledge that obser-
vations (gaugings) should not be used to achieve the elicitation of
priors. If some gaugings are absolutely necessary to do so, they
must be removed from the observation dataset provided to the
Bayesian simulator.

2.2. Elicitation of hydraulic priors

2.2.1. Identification of elementary hydraulic controls
The main step of the Bayesian Rating curve framework (BaRa-

tin) is to conduct a hydraulic analysis of the study site in order
to identify the hydraulic controls at work at different ranges of
stage, which will constitute the prior knowledge of the Bayesian
inference. Such a hydraulic analysis may be achieved based on
the observation of the channel geometry and roughness, as well
as the flow patterns over a range of discharge values, within the
minimum and maximum water heights for which the hydrometric
station is designed to be operated. Field surveys, expert knowledge
of the station managers, topography campaigns, photographs and
movies, water level records, flood marks and any other kind of doc-
umentation are usually very helpful. Numerical hydraulic models
may also be used to predict the stage-discharge relation, including
the transitions between successive hydraulic controls, especially
for situations including overbank flow, flow singularities or artifi-
cial structures.

As will be illustrated hereafter with some application cases,
most of the hydraulic controls in rivers can be acceptably ac-
counted for using Eq. (1). Each parameter, a; b and c, of each iden-
tified control must be assigned a prior distribution. In the
following, we will assume that they follow Gaussian distributions
and provide the modal value (prior mean) and standard deviation
(prior width) of each parameter. Non-Gaussian priors can also be
used without additional difficulty.

Table 1 summarizes the mean prior values for parameters a; b
and c given by textbook hydraulic formulas for most common
hydraulic control types encountered in rivers and canals. For a
channel control, the Manning–Strickler equation is usually applied
to more or less steady, uniform flows:

Q ¼ A Ks S1=2
e R2=3

h ð9Þ

with A, the wetted area, Ks, the Strickler flow resistance coefficient,
Se, the flow energy slope, and Rh, the hydraulic radius. For a wide
rectangular cross-section, Eq. (9) reduces to Eq. (1) with
a ¼ BKsS

1=2
e ; b ¼ zb, and c ¼ 1:67. The flow width, B, and the average

bed level, zb, can be derived from the geometry of the uniform
reach, modeled by an equivalent rectangle. Note that upstream as
well as downstream elements can govern the stage-discharge rela-
tion in case they have a large influence on the average geometry of
the channel in which is located the station. Se can be estimated
either from the water surface slope or from the average bed or val-
ley slopes. Ks, or equivalently the Manning coefficient, n ¼ 1=Ks, can
be estimated from usual default values depending on relevant indi-
cators of head losses, such as grain size, bedforms, sinuosity and
land cover of the main channel or the floodplain. Most natural chan-
nels and artificial canals present cross-sectional shapes that can be



Table 1
Mean prior values for parameters, a; b and c, given by classical hydraulic formulas for most common types of hydraulic controls. The definitions of all the variables are provided in
the text. We always set g ¼ 9:81 m=s2 for gravity acceleration.

Control type Ideal assumptions a b c

Channel Wide rectangle, steady and uniform flow Ks B
ffiffiffiffiffi
Se
p

Average bed level 5=3
Section (rectangle) Perpendicular to mean flow, no backwater Cr Br

ffiffiffiffiffiffi
2g

p
Crest level 3=2

Section (triangle) Perpendicular to mean flow, no backwater Ct tan b
ffiffiffiffiffiffi
2g

p
Lower vertex level 5=2

Section (orifice) Perpendicular to mean flow, no backwater Co Ao
ffiffiffiffiffiffi
2g

p
Orifice center level 1=2
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fairly approximated by a wide rectangle, or a mixture of wide rect-
angles, which is therefore the method we suggest to follow. Consid-
ering a realistic concave cross-section, the highest sensitivity would
correspond to a triangular channel control (of which we personally
know no example in natural streams), which leads to c ¼ 2:33.
Hydraulic exponents well above this value should therefore be con-
sidered as suspicious.

Formulas for section controls include a discharge coefficient with
nominal values Cr ¼ 0:4 for an ideal rectangle weir, Ct ¼ 0:31 for an
ideal triangle weir, Co ¼ 0:6 for an ideal orifice. Deviations to nomi-
nal values may be�0:2 or even more in complex, real situations. The
cross-section geometry is defined by Br (rectangle weir width, per-
pendicular to flow), b (triangle half-angle), Ao (orifice area), and
the reference level, b. When necessary, the geometry of the control
section must be projected perpendicularly to the mean flow, as a
simple approximation. Prior widths on a; b, and c can be easily de-
rived by conducting a sensitivity analysis on all these parameters
in the corresponding formulas. When numerical simulation is per-
formed using a 1-D or 2-D (more seldomly 3-D) hydraulic model,
sensitivity analysis on salient parameters of the model can also be
conducted to document prior widths on a; b, and c. The Strickler flow
resistance coefficient, Ks, is usually the main calibration coefficient
to be varied over a range of realistic values.

Note that the prior Eq. (8) assumes independent priors for each
parameter a; b, and c. This is a reasonable hypothesis in general, be-
cause they are deduced from distinct properties of the section/
channel. If deemed too restrictive, the assumption of prior inde-
pendence can easily be relaxed by directly specifying the joint
prior of all parameters.
2.2.2. A versatile rating curve equation
As soon as hydraulic controls are identified and priors are spec-

ified, it is possible to model most stage-discharge relations using
compound or piecewise combinations of power functions like Eq.
(1), which are individually suited for different segments of the
stage-discharge relation. This can be written using the following
versatile equation for Nrange stage ranges and Ncontrol hydraulic
controls:

Q ¼
XNrange

r¼1

1½jr�1 ;jr �ðhÞ �
XNcontrol

j¼1

Mðr; jÞ � ajðh� bjÞcj

 !
ð10Þ

The function 1½jr�1 ;jr � is equal to 1 if jr�1 6 h 6 jr , to 0 other-
wise. The elevation jr is the transition water level between stage
ranges r and r þ 1. Such transition levels also have to be defined
as parameters of the hydraulic priors, with provided modal values
and standard deviations. For stage ranges higher than the first one,
the values of parameters bj will be actually computed so as to
maintain the continuity of the stage-discharge function at each
transition level.

The hydraulic control matrix, M, has to be defined too:
Mðr; jÞ ¼ 1 if hydraulic control j is active in the stage range
r; Mðr; jÞ ¼ 0 otherwise. The generality of this rating curve equation
(Eq. (10)) allows for representing most hydraulic situations. Typi-
cally, the matrix of the hydraulic controls depicted in the example
in Fig. 1 comprises 4 ranges (4 rows) with 4 columns for the
hydraulic controls by the first riffle, the second riffle, the main
channel and the floodplain, respectively. It simply writes:

ð11Þ

This example illustrates that if one hydraulic control is
drowned, then a new one takes over (rows 1–2–3). But a new con-
trol can add to an existing one, yielding this control to be active in
two or more segments (e.g. rows 3 and 4 for main channel, and
main channel + floodplain). In the latter situation, parameters b
and j of the new control are physically equal.

2.3. Observations: uncertainty in individual gaugings

The BaRatin framework also requires the analysis of individual
gaugings, i.e., the observations provided to the Bayesian simulator.
Indeed, rating curve uncertainty analysis requires the correction of
all identified errors in gaugings, and the estimation of the individ-
ual uncertainty of each gauging. Gaugings conducted by hydrome-
try staff consist of direct measurements of stage and discharge over
a reduced period of time, in given hydraulic conditions. It should be
noted that most authors recognize that uncertainty in stage mea-
surements of individual gaugings are negligible compared with
uncertainty in discharge measurements.

At least three kinds of errors should be considered when such
measurements are to be used for establishing or evaluating a
stage-discharge relation (Le Coz et al., 2012):

1. measurement errors, combining instrumental errors, environ-
mental errors, and spatial integration errors;

2. time integration error due to possible flow variability during
the measurement period of time;

3. stage-discharge bias due to non-reference flow conditions, such
as the dynamic hysteresis effect (e.g., Muste et al., 2011). The
latter effect is not a measurement error, but a deviation of the
real flow conditions from the ideal conditions for which the rat-
ing curve is built.

The literature provides some methods for quantifying discharge
uncertainty according to the measurement technique (e.g. for cur-
rent-meters Herschy (2002); Pelletier (1988); ISO (2007)). How-
ever, the task remains challenging for many practitioners facing a
range of situations and techniques, and some research work is still
in progress in order to improve the uncertainty analysis of individ-
ual discharge measurements (Cohn et al., 2013; Le Coz et al., 2012).
In order to parameterize such error propagation modeling (cf. the
GUM, JCGM, 2008), interlaboratory field comparison tests (Le Coz
et al., 2012) provide valuable information.

In the application examples of this study, typical uncertainty
values were assigned to gaugings according to the measurement
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technique and instrumentation, and to quality criteria such as the
number of velocity points and verticals in velocity-area gaugings
(Le Coz et al., 2012), or the repeatability coefficient and the extrap-
olated discharge ratio for ADCP gaugings (Le Coz et al., 2011).
These uncertainty estimation procedures are consistent with com-
mon practices in hydrometry. Typically, the uncertainties assigned
to good-level current-meter and ADCP gaugings are 7% and 5%,
respectively, while uncertainties for surface velocity gaugings
(handheld radar velocimeter, LSPIV image sequence analysis) can
reach 10% or 20%, according to the data quality and the site
conditions.

3. Application cases

3.1. Study sites and available information

Three hydrometric stations were selected to exemplify impor-
tant aspects of the application of the BaRatin method for con-
trasted situations. The first application case is typical of a natural
river with uncertain prior knowledge on the hydraulic controls.
BaRatin yields correct results as far as the hydraulic exponents
are given realistic values and the uncertainty of available gaugings
is correctly assessed. In the second application case, the section
controls exerted by an artificial structure can be accurately pre-
dicted. BaRatin proves to be able to account for these compound
controls with abrupt transitions. The third application case shows
that in more complex river situations wrong assumptions on the
hydraulic controls may lead to significantly biased results, espe-
cially for the high-flow extension of the rating curve. It is therefore
essential to verify the consistency of the results with the structure
of the hydraulic controls used to define priors. For such situations,
numerical simulation using a simple 1D hydraulic model is often of
great help for establishing the structure of the control matrix.

A brief description of the three study sites and available infor-
mation on their hydraulic controls and gaugings is provided
hereafter.

Draining a catchment area of 2240 km2, the Ardèche river at
Sauze flows in a straight channel carved in an inerodible limestone
bedrock, with a width of � 80 m and a mean longitudinal bed slope
of 0.3% (Le Coz et al., 2010). From past hydraulic studies, the Stric-
kler flow resistance coefficient is estimated to be Ks � 33 m1=3=s.
The hydrometric station is located in a deep pool with a low-flow
section control which is governed by a natural gravel riffle located
� 500 m downstream (see Fig. 2a). This riffle section is � 30 m
wide. The flat gravel crest may be modified due to floods or recre-
ational activities. Over the considered recent period of time, it was
estimated to be stable with a mean elevation roughly 0.50 m below
the staff gauge zero level. Gaugings are densely distributed from
4:8 m3=s to 2700 m3=s, which corresponds to the 5 year flood (Le
Coz et al., 2010). The mean annual discharge is 63 m3=s. Gauging
techniques include mechanical currentmeters deployed from a
Fig. 2. Views of the hydraulic controls of the three application cases: the Ardèche river at
Sarrebourg, viewed from upstream (c). All three sites are located in France.
cableway (estimated uncertainty: 7%), vessel-mounted ADCP (esti-
mated uncertainty: 5%), and image-based surface velocity gau-
gings. The latter remote technique induces uncertainties ranging
from 10% to 20% in good image conditions, and from 30% to
80% in adverse image conditions (Le Coz et al., 2010). Only im-
age-based surface velocity gaugings conducted in good image con-
ditions were kept for the present study.

The hydrometric station of the Charbonnières River at Charbon-
nières-les-Bains is located on a small peri-urban river, draining an
area of 23 km2. The hydraulic control is artificial: a V-notch weir
was inserted within a flat-crested sill (Fig. 2b). It is therefore a typ-
ical case in which simple hydraulic priors can be predicted accu-
rately from the measured geometry of the control section with
narrow prior widths. As a consequence, here the hydraulic priors
are more informative than the gaugings. Available gaugings span
all over the discharge range from 0:02 to 2 m3/s. Their uncertain-
ties were estimated from conventional values for the optimal
application conditions of the variety of streamgauging techniques
used: velocity-area with electro-magnetic and acoustic current-
meters (7%), acoustic profiler ADCP (5%), saline and fluorescent
tracer dilution (5%), handheld radar velocimeter (10%). A larger
uncertainty (15%) was attributed to velocity-area gaugings
conducted in very shallow flow conditions.

The Sarre River at Sarrebourg is a medium-size, lowland river
(catchment area is 311 km2) with a mild slope (� 1 m=km). Since
1953, a pressure gauge is located right upstream a large railway
bridge, in the right bank: the cabin of the hydrometric station is
visible in Fig. 2c. The bridge has three 10 m-wide arches and there
is also a 4 m-wide road tunnel on the left side, the road elevation
laying slightly above 3 m at staff gauge. The bed of the main chan-
nel is made of sand and fine gravels, with long algae growing dur-
ing the Spring and Summer periods. A large bar covered with grass
formed upstream of the hydrometric station (Fig. 2c). Available
gaugings are numerous and quite scattered for low flow conditions,
likely due to non-stationary effects (vegetation, changes of the mi-
cro-topography) which could not be distinguished clearly from the
available information. An interesting set of gaugings are distrib-
uted over the medium flow segment. Two recent ADCP gaugings
were performed at high flows, showing a sharp increase in flood
conveyance. Their validity was confirmed from the comprehensive
analysis of the raw ADCP data and the comparison with surface
velocities inferred from movies that were recorded during the
measurement operations.

3.2. The Ardèche river at Sauze: the importance of gauging
uncertainties and hydraulic exponent values

We are facing a typical river case where no comprehensive
topography survey and a fortiori no numerical model were used
to build precise hydraulic priors. However, the aforementioned
information on the site allows to set orders of magnitude for the
Sauze (a); the Charbonnières river at Charbonnières-les-Bains (b); the Sarre river at
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prior parameters of a rectangle section control, followed by a chan-
nel control (see priors in Table 2). The transition stage is very
roughly estimated to be 1 m at staff gauge, assuming that the nat-
ural riffle is submerged for a flow depth around 1.5 m above the
crest.

Wide uncertainties were attached to these prior values to define
the first set of priors with uncertain c (Table 2). A second set of pri-
ors was set up by considering narrow prior values for c exponents
(priors with precise c), according to the hydraulic formulas corre-
sponding to both types of controls. Each set of priors was tested
with BaRatin against either all available gaugings (Fig. 4a) or
against a subset including image-based (LSPIV) gaugings only
Table 2
The Ardèche at Sauze: prior and posterior modes (and standard deviation) for parameters
presented for 4 simulations: using all gaugings (Posterior 1) or using image-based (LSPI
assuming equal uncertainties set to 5% (Posterior 3 and Posterior 4).

Control 1

a1 b1 c1

Priors with uncertain c
Prior 50 (100) �0.50 (1) 1.50 (2.5)
Posterior 1: all gaugings 49 (5.8) �0.39 (0.077) 1.45 (0.19)
Posterior 2: subset 40 (4.0) �0.51 (0.055) 1.83 (0.11)
Posterior 3: all gaugings (U ¼ 5%) 36 (16) �0.50 (0.30) 1.97 (0.69)
Posterior 4: subset (U ¼ 5%) 59 (7.6) �0.23 (0.082) 2.04 (0.076)

Priors with precise c
Prior 50 (100) �0.50 (1) 1.50 (0.25)
Posterior 1: all gaugings 48 (4.3) �0.40 (0.075) 1.50 (0.024)
Posterior 2: subset 55 (3.1) �0.31 (0.038) 1.50 (0.024)
Posterior 3: all gaugings (U ¼ 5%) 51 (12) �0.38 (0.23) 1.49 (0.025)
Posterior 4: subset (U ¼ 5%) 63 (23) �0.30 (0.29) 1.51 (0.025)

a A uniform distribution U[0;10,000] is used.

Fig. 3. The Ardèche river at Sauze: scatterplot matrix of MCMC samples from
above stage 1 m (Fig. 4b). This subset was designed to test a typical
situation where only remote techniques with larger uncertainty
could provide flood gaugings. In order to test the importance of
accounting for the uncertainties of individual gaugings, all the pre-
vious simulations were replicated assuming equal uncertainties for
all gaugings. The constant uncertainty was set to 5% as if all gau-
gings were of good quality. The results of the 8 simulation tests
are presented in Table 2 and Fig. 4.

Fig. 3 shows the direct output of MCMC sampling (using precise
priors for c and all gaugings). This representation allows observing
prominent features of the posterior distribution. In this case, the
most apparent feature is the large correlation between parameters
j; a; b, and c of the hydraulic controls, as used for the BaRatin runs. The results are
V) gaugings only for stages above 1 m (Posterior 2); the same sets of gaugings but

Control 2

j1 a2 b2 c2 rf

1 (1) 100 (200) – 1.67 (2.5) a

1.10 (0.052) 124 (12) 0.29 (0.068) 1.64 (0.048) 8.7 (1.2)
1.56 (0.21) 252 (69) 0.89 (0.29) 1.24 (0.17) 1.7 (0.58)
1.15 (0.37) 137 (8.0) 0.35 (0.053) 1.59 (0.025) 33 (5.2)
5.05 (0.11) 58 (128) �17.8 (1) 1.09 (0.40) 28 (5.2)

1 (1) 100 (200) – 1.67 (0.25) a

1.10 (0.037) 123 (4.3) 0.29 (0.026) 1.65 (0.017) 9.1 (1.2)
1.02 (0.12) 107 (9.3) 0.14 (0.091) 1.68 (0.024) 2.4 (0.62)
1.05 (0.12) 117 (4.8) 0.23 (0.04) 1.66 (0.018) 33 (5.2)
0.63 (0.35) 97 (7.1) �0.09 (0.11) 1.67 (0.025) 56 (11)

the posterior distribution (using precise priors for c and all gaugings).
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a/b (control 1) and a/c (control 2). All marginal distributions appear
to be unimodal and fairly symmetric. Those posterior samples can
then be propagated through the rating curve equation, yielding an
ensemble of rating curves from which one can extract the MaxPost
rating curve and uncertainty envelopes, as shown in Fig. 4.

When all the existing gaugings are used, the 4 options yield
MaxPost rating curves with narrow uncertainty envelopes that
are in close agreement with each other, even in the high-flow
extrapolated section (Fig. 4a). Even when wide uncertainties are
used for all j; a; b; c parameters, the MaxPost results are consistent
with the hydraulic interpretation. Thanks to the high quality of the
gaugings dataset and to the stability of the hydraulic controls, this
validation case confirms the performance of the BaRatin method
when many gaugings are available. The values for parameters
j; a and b are consistent with the physical dimensions of the riffle
and of the channel. However, the hydraulics-based exponent val-
ues for both controls are more accurately reproduced when the
gauging uncertainties are correctly assessed (c1 ¼ 1:45 and
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Fig. 4. The Ardèche river at Sauze: gaugings with individual uncertainties, MaxPost
rating curves and uncertainty intervals, as provided by the BaRatin method using all
gaugings (a) or only image-based (LSPIV) gaugings for stage greater than 1 m (b).
The MaxPost rating curves are shown as solid lines for precise priors for c (red) and
wide priors for c (blue). Corresponding uncertainty envelopes are shown with
dashed lines. Assuming a constant 5% uncertainty for all gaugings, the MaxPost
rating curves obtained for precise and uncertain priors for c are shown as black and
green solid lines, respectively. The computed transition level between section and
channel controls is marked with a vertical dashed line (around stage 1.1 m). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
c2 ¼ 1:64) than when larger uncertainties are ignored (c1 ¼ 1:97
and c2 ¼ 1:59). As expected, setting precise priors for c exponents
stabilizes the results whatever the assessment of gauging
uncertainties.

When only a subset of existing gaugings is used, uncertainty
envelopes are wider and the highest parts of the MaxPost rating
curves are significantly different for the 4 tested options
(Fig. 4b). When gauging uncertainties are correctly assessed, but
priors with uncertain c are used, the MaxPost values for parame-
ters j1 and a2 are significantly overestimated, while exponents
c1 ¼ 1:83 and c2 ¼ 1:24 cannot be related to known hydraulic for-
mulas (Table 2). Such unrealistic results arise from the high level of
interaction between simulated values for parameters a and c. This
is the reason why it is advised to fix narrow prior uncertainties for
the c values, which yields realistic values for parameters j; a and b,
even with a reduced quantity of gaugings with increased uncer-
tainty (see Table 2). The results are totally unrealistic when priors
with uncertain c are used and larger uncertainties in flood gaugings
are ignored: meaningless parameters are computed by BaRatin so
that the high-flow segment be aligned along the two highest gau-
gings. In that specific run, some MCMC realizations with c � 0 lead
to a variance greater than the machine overflow for parameter b2.
Here again, forcing the values of the c exponents according to the
hydraulics theory is useful to stabilize the MaxPost results even
when less gaugings are available and/or the uncertainty analysis
for each individual gauging is more crude.

Lastly, Table 2 also reveals that the remnant standard devia-
tions are much larger when an unduly optimistic 5% uncertainty
is assumed for all gaugings. This illustrates that the remnant error
compensates for the misspecification of gauging uncertainty, by
mistakingly interpreting measurement errors as structural errors.
This reiterates the importance of accurately quantifying measure-
ment uncertainty in each individual gauging.
3.3. The Charbonnières river at Charbonnières-les-Bains: accounting
for compound artificial controls

In this application case typical of small streams equipped with
artificial controls, simple hydraulic formulas provide a much more
precise prior knowledge than in the previous example. The prob-
lem in using Eq. (10) to describe such compound artificial controls
as a triangle weir inserted in a horizontal sill is that when the sill is
active, the V-notch remains active but the corresponding flow no
longer expands laterally. It is therefore inaccurate to use a simple
triangle weir formula for the first control when h > b2, with b2

the cease-to-flow elevation of the horizontal sill. The following
equation has to be used instead of Eq. (10) when h > b2:

Q ¼ a1ðh� b1Þc1 � a1ðh� b2Þc1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bounded triangle weir

þ a2ðh� b2Þc2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
rectangle weir

ð12Þ

The first control is defined by a modified version of the triangle
weir formula, with an additional negative term accounting for the
unnecessary cross-section area of the divergent triangle above the
level of the horizontal sill: a1 is computed with Ct ¼ 0:31 and
b ¼ 45� (cf. Table 1); b1 was accurately measured to be 0.053 m;
c1 ¼ 2:5 (triangle weir equation); b2 is the average measured level
of the sill crest (0.403 m). The second control follows the conven-
tional equation for the flow over the horizontal sill (cf. Table 1):
a2 is computed with Cr ¼ 0:4 and B ¼ 4:60 m; c2 ¼ 1:5. Hence, this
is a specific situation where the first control formula in Eq. (10) has
to be modified for a bounded triangle weir, with an additional
parameter, b2, which is common with the second control formula
(cf. Eq. (12)).

First BaRatin was run using these precise priors on the artificial
hydraulic controls. Parameters are listed in Table 3 and gaugings,
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priors and results are plotted in Fig. 5a. As expected, the results are
very close to the prior modal values for all parameters. The transi-
tion between hydraulic controls by the V-notch and by the hori-
zontal sill is accurately reproduced at the correct stage, and in
close agreement with the gaugings. This suggests that the simple
continuity condition between segments used in BaRatin allows
for control transitions, even the most abrupt ones.
Table 3
The Charbonnières river at Charbonnières-les-Bains: prior and posterior modes (and stan
BaRatin runs. A modified hydraulic formula for bounded triangle weir is used for the first

Control 1

a1 b1 c1 j1

Precise priors
Prior 1.24 (0.1) 0.053 (0.005) 2.50 (0.025) 0.403 (0.01)
Posterior 1.25 (0.061) 0.056 (0.0043) 2.49 (0.022) 0.409 (0.0032)

Non informative priors
Prior b b b b

Posterior 1.77 (0.31) 0.061 (0.021) 2.72 (0.16) 0.422 (0.0043)

a A uniform distribution U[0;10,000] is used.
b A uniform distribution U[0;20] is used.
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Fig. 5. The Charbonnières river at Charbonnières-les-Bains: MaxPost rating curve (solid b
using precise (a) or noninformative (b) hydraulic priors. The same gaugings with indiv
precise priors (red dashed lines) is plotted, even when non informative priors were used
computed transition level at which the rectangle weir control adds to the bounded tria
interpretation of the references to color in this figure legend, the reader is referred to th
Also noticeable are the apparently too narrow uncertainty enve-
lope (gray area) computed for high flows and the apparently too
wide uncertainty envelope computed for low flows. In high flows,
the scatter of the uncertain gaugings around the MaxPost rating
curve seems too large to be fully attributable to measurement
uncertainty. This may be due to the assumption of an additive rem-
nant uncertainty rf for the whole rating curve.
dard deviation) for parameters a; b, and c of the hydraulic controls, as used for the
control (see text).

Control 2

a2 b2 c2 rf

8.0 (1) – 1.50 (0.025) a

7.92 (0.26) 0.409 (0.0032) 1.48 (0.022) 0.0044 (0.0022)

b - b a

5.88 (0.45) 0.422 (0.0043) 1.29 (0.048) 0.0040 (0.0022)
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lue line) and its uncertainty interval (gray patch), as provided by the BaRatin method
idual uncertainties (red marks) are used, and the 95% uncertainty envelope of the
(b). Results are shown with discharge in linear scale (left) and log scale (right). The

ngle weir control is marked with a vertical dashed line (around stage 0.41 m). (For
e web version of this article.)
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As a comparison test, a second run was done using non informa-
tive priors: all parameters were assumed to follow a uniform dis-
tribution between 0 and 20 (Table 3). BaRatin accurately
reproduced the hydraulic formulations by fitting the dense set of
available gaugings (Fig. 5b). While slightly different, MaxPost
parameter values are still consistent with the accurate priors,
regarding the geometry of the weirs (parameters a and b) and
the hydraulic exponents: c1 ¼ 2:72 instead of 2.5 (V-notch), and
c2 ¼ 1:29 instead of 1.5. The lowest end of the MaxPost curve
now deviates from the prior rating curve, and the uncertainty
envelope is even larger than before for the triangle weir control.
This is mainly due to an increase in the parametric uncertainty
(rf is lower, cf. Table 3), because the priors used in this simulation
are non-informative.

This application example shows that BaRatin, if necessary with
a modified version of Eq. (10), is able to account for complex arti-
ficial controls with abrupt transitions. As expected, the influence of
the precision in priors is more important where gaugings are less
abundant or more uncertain. Also, the assumption of an additive
remnant uncertainty, rf , possibly leads to questionable uncer-
tainty envelopes.

Note that a reasonable approximation of the hydraulic controls
can also be built on Eq. (10) by substituting an equivalent triangu-
lar weir to the V-notch when h > b2. This 3-controls approximation
leads to equivalent results when precise priors are used, but not
when non-informative results are used.

3.4. The Sarre river at Sarrebourg: identifying tricky controls using
numerical simulation

A 1-D hydraulic model was built to numerically simulate reliable
priors for the medium to high flow conditions at the hydrometric
station of the Sarre river at Sarrebourg (cf. Fig. 6). The priors for
the low flow segment were computed using the rectangle weir for-
mula, since the hydraulic model was not suited to predict low flow
conditions accurately. This simulation exercise made us realize that
the other hydraulic controls were actually governed by the narrow
channel and the bar of the reach located just upstream of the station
(cf. Fig. 2c), which was far from obvious. From sensitivity tests on the
flow resistance coefficients, prior modal values and widths are
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Fig. 6. The Sarre river at Sarrebourg: 1-D simulation results with average, rough
and smooth flow resistance scenarios (blue solid and dashed lines, respectively) and
the low-flow stage-discharge relation computed with a horizontal weir formula
(black solid line). The hydraulic priors provided to BaRatin in the third simulation
are represented by the 95% uncertainty envelope of the prior rating curve (red
dashed lines). The transition stages are shown as vertical black dashed lines. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.) Ta
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Fig. 7. The Sarre at Sarrebourg: gaugings with individual uncertainties (red marks), 95% uncertainty envelope of the priors with appropriate control structure (red dashed
lines), MaxPost rating curve (blue solid line) and its 95% uncertainty interval (gray patch), as provided by the BaRatin method for priors with 2 inappropriate controls (a), with
3 inappropriate controls (b), and with 3 appropriate controls (c). The same set of gaugings is used for the three simulations. Vertical dashed lines show the computed
transitions between segments. Results are shown with discharge in linear scale (left) and log scale (right). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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determined for both of these controls (cf. Table 4). The lowest and
highest values for flow resistance coefficients are used to compute
the prior uncertainty of parameters a for the medium and high flow
controls. Using MCMC simulation to sample possible rating curves
from these parameters, the 95% uncertainty envelope of the prior
rating curve can be computed (cf. Fig. 6).
To test the influence of an inappropriate control structure for
building priors, three sets of hydraulic priors are successively
tested, always using narrow prior uncertainties for the values of
exponents c as recommended for the BaRatin method (cf. Table 4).
First, ignoring the modeling results, let us assume that the stage-
discharge relation is controlled by a low-flow natural riffle, then



584 J. Le Coz et al. / Journal of Hydrology 509 (2014) 573–587
by a single channel. The obtained rating curve fails in reproducing
the observed flow conveyance increase near 3 m correctly (cf.
Fig. 7a). Actually, BaRatin computes the transition level, j, so low
that only the channel control is used to fit the gaugings, which is
inconsistent with our prior knowledge of the hydraulic controls.

Therefore, focussing on the cross-section of the bridge located
right downstream of the pressure gauge, we now assume that
the additional flow through the road tunnel is the cause of that
inflexion of the stage-discharge relation. The apparently good
agreement between the resulting rating curve and the gaugings
(cf. Fig. 7b) is misleading. Indeed, while the results for all other
parameters appear to be consistent with the priors (cf. Table 4),
the far too high value obtained for j1 (2.8 instead of 1.2) indicates
that BaRatin actually uses the second control (main channel
through the bridge) to reproduce the trend of the third identified
control (overbank flow through the road tunnel). Again, our
hydraulic analysis is erroneous since the road tunnel is actually
too high and too narrow to be a credible candidate for the observed
high-flow control.

Eventually, the 3 controls predicted after consideration of the
hydraulic modeling results are used as priors. Fig. 7c shows that
the agreement with the gaugings is as good as previously, while
the transitions levels are now realistic as regards the geometry of
the river reach. It is worth noting that the extrapolated flood dis-
charges are significantly different than with the previous mislead-
ing hydraulic priors.

For the three runs of BaRatin, the 95% uncertainty envelopes of
the MaxPost rating curve are far narrower than the prior envelope,
within which they are included. The only exception is the highest
end of the MaxPost rating curve computed with only two hydraulic
controls (first run), which intersects the lowest bound of the prior
envelope (cf. Fig. 7a). The inappropriate definition of the control
matrix therefore leads to obviously wrong results for the first
run. However, the second and third runs of this application case
show that a good agreement between the MaxPost curve and the
gaugings can be misleading, and that checking the hydraulic mean-
ing of the results is absolutely necessary, especially to avoid
hydraulically unrealistic extrapolation.
4. Discussion

Several limitations of the BaRatin framework call for future
developments that are discussed in this section.
4.1. Effect of assuming measurement uncertainties are known

The statistical model behind BaRatin assumes that the standard
deviation of discharge measurement error uQi

is known for each
individual gauging. This means that this uncertainty has to be as-
sessed by hydrometric services: while this is not yet a generalized
practice, this assessment is performed by a growing proportion of
hydrometric services. Several operational methods have been pro-
posed (e.g. Le Coz et al., 2012; Cohn et al., 2013), and some are even
implemented in some commercial instruments (e.g. the Sontek
ADV FlowTracker). The ability to use those uncertainty estimates
in the derivation of the rating curve is a strong motivation for oper-
ational services to start or continue quantifying gauging
uncertainties.

Notwithstanding these remarks, assuming discharge measure-
ment uncertainties are perfectly known is only an approximation.
A possible extension of the model would be to consider them as
unknown quantities (with informative priors) to be included in
the inference. While this might yield a more realistic quantification
of rating curve uncertainties, this approach would also be subject
to the following difficulties:
1. It would result in a markedly increased computational com-
plexity, with the inclusion of as many unknowns as there are
gaugings.

2. The resulting model would probably be prone to non-identifi-
ability issues, hence still requiring strong priors to ensure the
well-posedness of the inference (see Renard et al., 2010, for a
similar discussion in the context of rainfall-runoff modeling).

Future work will investigate the sensitivity of the BaRatin
framework to misspecified discharge measurement uncertainties,
and if need be, will further develop the statistical framework. In
addition, the interest of considering non-Gaussian measurement
errors will also be assessed.

4.2. Effect of assuming error-free stage values

Consider a single-control rating curve equation, Q Hð Þ ¼
a H � bð Þc , and let �H denote a Gaussian stage error with mean 0
and standard deviation rH . A first-order approximation of the
resulting error in discharge can be obtained as follows:

QðH þ �HÞ � QðHÞ þ @Q
@H
ðHÞ �H ð13Þ

¼ QðHÞ þ acðH � bÞc�1 �H ð14Þ
¼ QðHÞ þ �Q ð15Þ

where �Q follows a Gaussian distribution with mean 0 and standard
deviation rQ ¼ acðH � bÞc�1rH . This simple approximation first sug-
gests that the impact of stage errors is larger for insensitive controls
(i.e. when @Q=@H is large). Moreover, it also suggests that the
resulting discharge uncertainty depends on the stage.

Ignoring large stage errors is expected to have several types of
impact on the inference: (i) it might introduce some bias in rating
curve parameters; (ii) it might create compensatory effects
through the remnant error term, hence artificially inflating the
remnant standard deviation rf . A possibility to overcome these
drawbacks would be to explicitly recognize stage errors, by consid-
ering the stage as an unknown quantity that has to be estimated
(with an informative prior representing stage uncertainty). This
would be similar to error-in-variables hierarchical approaches
introduced in the hydrological modeling literature (e.g. Kavetski
et al., 2006). As for discharge measurement uncertainty, this ap-
proach would result in an increased computational complexity,
but this increase may be limited: for many gaugings conducted
in favorable conditions, stage uncertainty is indeed negligible. This
explicit treatment of stage uncertainty could therefore be re-
stricted to gaugings realized in adverse conditions, e.g. during
floods or very low flows.

Finally, we reiterate the distinction between errors affecting the
stage of gaugings and errors affecting continuously-measured
stage values: the latter can easily be taken into account by propa-
gating the corresponding uncertainty to the discharge time series
through the estimated rating curve.

4.3. Effect of assuming the number of controls is known

The rating curve equation (Eq. (10)) involves identifying the
number of controls from a purely hydraulic analysis of the gauging
station. From our experience in analyzing around 50 stations with
BaRatin, this can be achieved in most cases, yielding consistent and
acceptable results from a hydrometric point of view. However,
there exist cases where this identification is challenging (as illus-
trated by the Sarre at Sarrebourg case study), with several compet-
ing hypotheses being a priori equally sensible.

In such a situation, it might be necessary to work with several
rating curve equations in parallel, and evaluate whether gauging
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data are informative enough to identify the most relevant hypoth-
esis. Alternatively, additional analyses might also be useful (e.g.
collecting additional topographic data and/or using hydraulic mod-
eling). An interesting development would be to explicitly recognize
the uncertainty related to the number of controls, by implementing
a multi-model framework. This could be based on Bayesian Model
Averaging (Reitan and Petersen-Overleir, 2009), or on reversible
jump MCMC algorithms (Green, 1995). In any case, we believe that
letting the number and type of controls free of any hydraulic
expertise is the most hazardous option (as illustrated by the last
case study, the Sarre at Sarrebourg).

4.4. Improvement of the remnant error model

Experience suggests that the remnant error term leads to uncer-
tainties that are often too large for low flows and too small for high
flows (see Section 3.3). This is probably due to its additive, Gaussian
and homoscedastic nature (see Eq. (4)). These three hypotheses
may be relaxed if necessary. The most straightforward modification
is to introduce heteroscedasticity by assuming that the remnant
standard deviation is a function of the rating curve discharge, for in-
stance: rf ðQÞ ¼ c1 þ c2 	 Q , where parameters c1 and c2 are un-
known and are therefore added to the inference list. As an
illustration, Fig. 8 shows the results obtained with this heterosced-
astic remnant error model for the Charbonnières case study (Sec-
tion 3.3). Comparing homoscedastic and heteroscedastic error
models, one can first observe that the MaxPost rating curve remains
almost unchanged (blue and red solid lines being hardly discernible
in Fig. 8a and b). However, the difference is much more striking in
terms of uncertainty envelopes. In high flows (Fig. 8a), the heteros-
cedastic error model (red) yields a much larger uncertainty than the
homoscedastic one (blue, hardly discernible in Fig. 8a), while the
opposite holds in low flows (Fig. 8b). The reliability of these two
competing error models can be assessed by means of a quantile–
quantile plot (QQ-plot) of the standardized residuals. The standard-
ization is performed by dividing the raw residual by its standard
deviation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

f þ u2
Qi

q
(see Eq. (5)). In the homoscedastic case, rf is

constant, while in the heteroscedastic case, it is an affine function
of the discharge. The QQ-plot in Fig. 8c confirms that the heteros-
cedastic treatment is much more realistic, with the red points being
closer to the 1:1 line than the blue ones.

An additional and more challenging difficulty is related to the
nature of remnant errors. Indeed, this error term is intended to rep-
resent structural errors (e.g. approximation due to a power formu-
lation). However, as illustrated in Section 3.2, it will effectively also
compensate for any other misspecification in the model, including
ill-specified priors, non-stationarity, ignored stage errors, etc.
This may have strong consequences on the handling of the related
uncertainty when a stage time series is transformed into a
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Fig. 8. The Charbonnières river at Charbonnières-les-Bains: homoscedastic (blue lines,
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residuals. (For interpretation of the references to color in this figure legend, the reader
discharge time series using the rating curve. In an ideal case where
the remnant error exclusively represents structural uncertainty,
then this error should be systematic (and the induced uncertainty
will therefore not decrease by temporal averaging of the discharge
series). However, if most of the remnant error variance is attribut-
able to underestimated measurement uncertainty, then the rem-
nant error should probably not even be propagated (since the
rating curve aims at predicting the true discharge, not the mea-
sured one). The practical significance of this challenging difficulty
will be evaluated in future work.
4.5. Tackling non-stationary rating curves

A major limitation of BaRatin, in its current version, is related to
the assumption of stationarity of the stage-discharge relation. An
important perspective is to generalize the method to account for
rating shifts and the associated uncertainties. The development
of statistical models for sudden, seasonal or episodic rating shifts
will require introducing time-varying parameters in the stage-dis-
charge relation, leading to a rating curve that changes over time. As
for stationary rating curves, it will be most important to address
the non-stationary hydraulic controls on a physical basis. Indeed,
detecting and modeling non-stationarity is not a mere statistical
problem, but is instead strongly related to the hydraulics govern-
ing the gauging sections. As an illustration, if the river bed is
eroded after a large flood, the equations of the lower segment(s)
should indeed change, but not necessarily the equations of the
higher segment(s): having formalized a hydraulics-based frame-
work in the stationary case therefore helps in deciding how the
non-stationarity should be modeled (e.g. deciding which parame-
ters of which segments should be made time-dependent, according
to which covariates).
5. Conclusions

The BaRatin framework combines Bayesian inference and
hydraulic analysis for building steady, multi-segment stage-dis-
charge relations. It is based on three main components:

1. a versatile rating curve equation, based on piecewise compound
power functions, that can describe most (though not all) practi-
cal stage-discharge relations;

2. the identification of the hydraulic controls and the specification
of priors (in particular for hydraulic exponents);

3. the quantification of the individual uncertainty of gaugings.

Such a statistical approach makes the derivation of uncer-
tainty easy and rigorous, unlike with existing purely hydraulic
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approaches. Meanwhile, the priors and results are always di-
rectly related to simple and realistic formulations for hydraulic
controls, which is seldom the case in reported Bayesian
studies. Hydraulic modeling may be helpful for deriving more
accurate priors, which may help in reducing uncertainties for
ungauged or poorly gauged high-flow segments of the rating
curve. Another important aspect of the method is the attention
paid to the variable uncertainty in individual gaugings. This is
especially important for making the most of more uncertain
flood data based on emerging remote techniques (handheld ra-
dar, image-based techniques, cf. e.g. Dramais et al., 2011) or
on post-flood discharge estimation, using flood marks, hydraulic
modeling, etc.

The BaRatin framework was applied to around 50 hydrometric
stations, including the 3 contrasted application cases presented
in this paper. The application demonstrated the versatility and
the reliability of the method once hydraulic controls are correctly
identified and gaugings are validated individually with their uncer-
tainty. Already used by some hydrological services in France, BaR-
atin along with its user-friendly interface BaRatinAGE is released
freely on request to the authors.

Beyond the developments reported in the discussion section,
the next stage is to make use of the discharge uncertainty provided
by BaRatin in hydrological studies. This will require propagating
the uncertainty in measured stages, as well as departures from ref-
erence hydraulic conditions, to derive the uncertainty in the
instantaneous discharge records. Temporal averaging will then
yield uncertain discharge time series recorded at any other time
step (e.g. daily, monthly).

Taking into account the uncertainties related to the stage-dis-
charge relation in hydrological calculations remains an area of ac-
tive research. For instance, while most frequency analysis
methods are able to take into account sampling uncertainty, tak-
ing into account the uncertainties induced by the rating curve is
much less common. Solutions have been explored in the litera-
ture [see e.g. Kuczera, 1996; Kuczera, 1999; Reis and Stedinger,
2005; Petersen-Overleir and Reitan, 2009b; Neppel et al., 2010],
and could be coupled with the output provided by BaRatin, for in-
stance to estimate flood quantiles taking into account both the
sampling uncertainty (extreme paucity of data) and the uncer-
tainty in the data themselves (due to the rating curve). In a sim-
ilar vein, accounting for rating curve uncertainty in the
calibration of hydrologic models is also an important research
avenue (McMillan et al., 2010; Thyer et al., 2009; Renard et al.,
2011; Sikorska et al., 2013).
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