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ABSTRACT

We introduce the developed lexicographic calibration strategy to circumvent the imbalance between
sophisticated hydrological models in combination with complex optimisation algorithms. The criteria
for the evaluation of the approach were (i) robustness and transferability of the resulting parameters,
(ii) goodness-of-fit criteria in calibration and validation and (iii) time-efficiency. An order of preference
was determined prior to the calibration and the parameters were separated into groups for a stepwise
calibration to reduce the search space. A comparison with the global optimisation method SCE-UA
showed that only 6% of the calculation time was needed; the conditions total volume, seasonality and
shape of the hydrograph were successfully achieved for the calibration and for the cross-validation peri-
ods. Furthermore, the parameter sets obtained by the lexicographic calibration strategy for different time
periods were much more similar to each other than the parameters obtained by SCE-UA. Besides the sim-
ilarities of the parameter sets, the goodness-of-fit criteria for the cross-validation were better for the lex-
icographic approach and the water balance components were also more similar. Thus, we concluded that
the resulting parameters were more representative for the corresponding catchments and therefore more
suitable for transferability. Time-efficient approximate methods were used to account for parameter

uncertainty, confidence intervals and the stability of the solution in the optimum.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many hydrological modelling applications deal with long-term
simulations up to 100 years. This includes climate impact research
or extreme value statistics. In this context, reliable statements can
only be obtained if the model and its calibration are representative
for the whole time period. The transferability of calibration param-
eters to independent validation periods is considered to be an
important issue in modern hydrologic modelling tasks, because it
is going hand in hand with robust optimisation techniques. Com-
mon practice to calibrate a hydrological model is to estimate model
parameters iteratively. Due to the increased performance of mod-
ern computers, semi- or fully automatic optimisation algorithms
have been established for calibration, especially with regard to sci-
entific questions (Efstratiadis and Koutsoyiannis, 2010). Simulta-
neously, enhanced physically based process descriptions as well
as improved available input data were more and more integrated
into the spatially highly resolved models. Consequently, these
developments induce increased calculation times and effort in cal-
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ibration, which can hardly be solved with conventional “trial and
error” methods (Hogue et al., 2000). Alternatively, automated opti-
misations methods can be used, albeit the disadvantages of long
computation times and insufficient user participation. For this rea-
sons, optimisation methods are mostly used in combination with
conceptual models, often on a daily time step or purely for research
purposes (Zhang et al., 2009). Applications of both highly devel-
oped hydrological models and complex optimisation methods are
challenging for operational hydrology due to the enormous com-
puting time (Zhang et al., 2009; Vaze et al., 2011). To overcome this
imbalance, Zhang et al. (2016) proposed the use of a parallel opti-
misation approach by using a high-performance computer (HPC).
Since HPCs are often not available, we introduce a lexicographic
calibration strategy in this study, whereby the objectives are based
on an order of preferences. It delivered representative parameter
sets under the constraint of limited calculation effort, while keep-
ing objectivity in contrast to a manual calibration. The hydrological
community agrees that expert knowledge should be included in
the calibration process (see. e.g. Moussa and Chahinian, 2009). Pri-
marily, expert knowledge is necessary for the following processes:
parameterisation of the catchment’s properties, the correct choice
of the objective function(s), selection of an appropriate optimisa-
tion algorithm, plausibility check of the obtained parameter sets
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and selection of the best parameter set. Boyle et al. (2000) coupled
expert knowledge with automated optimisation methods by sepa-
rating the hydrograph into different cases. The criteria of differen-
tiation were periods with and without precipitation. For these two
cases different objective functions have been defined. As a result,
pareto optimal parameter sets were obtained by using the time-
consuming MOCOM-algorithm' by Yapo et al. (1998). Hogue et al.
(2000) considered the expert knowledge by performing a stepwise
calibration. An order of preferences of the objectives has not been
set and a global optimisation method (SCE-UA?) was used. Similarly,
Fenicia et al. (2007) introduced a method for stepwise calibration by
using a global optimisation algorithm. Model parameters were
linked to processes and objective functions were defined for every
one of those processes. Cullmann et al. (2008) grouped observed
hydrographs based on hydrological characteristics in several classes.
Parameter sets were then detected for each class set, representing
the dominant process. The aim was to improve the model results
for the flood forecast. For the operational application, a simultaneous
use of all sets was not feasible due to the time factor. Hence, all
parameter sets were used to train a neural network. This black box
model was then applied for the event-based flood forecast. Other
hydrological applications with respect to optimisation techniques
are stated in the field of flow forecast with artificial neural network
techniques, see e.g. Wu et al. (2009), Wang et al. (2015), Taormina
and Chau (2015) or Chen et al. (2015). The aim was to improve the
neural network performance in the estimate of daily flows. For
parameter estimations in highly resolved process based distributed
models these methods are not feasible.

Based on all these different approaches, we identified the defi-
cits of representative and efficient parameter calibration: Either
the calibration is dominated by mathematical solutions, which
may struggle in validation. Alternatively, the calibration is per-
formed manually by an expert (trial and error), which is maybe
more representative but often not reproducible (even by the same
person) and inefficient. Thus, the first objective of this study was to
find representative and robust parameter sets. We incorporated
expert knowledge at the beginning of the calibration process by
determining an appropriate order of hydrologic objectives. The
developed lexicographic calibration strategy (LCS) can be consid-
ered as an approach, where the order of preference depends on
the scientific framework and hydrological model. Gelleszun et al.
(2015) introduced a lexicographic calibration strategy, which
delivered a single representative and optimal parameter set by
defining an order of preference of the objective functions. The
method was validated by using synthetic hydrographs and a dis-
tributed hydrological model. To achieve the representativeness of
the estimated parameters, the second objective of this study was,
to achieve good performances in calibration and particularly in val-
idation. We did not intend to find the mathematical global mini-
mum of one objective or multi-objective function during the
calibration period solely, but we expected to identify parameter
sets, which were valid for the hydrological system and thus for
the validation periods respectively.

In general, we distinguish between optimisation algorithms and
calibration strategies. The optimisation itself is considered as a
mathematically definite process with the aim to find parameters
in order to minimize the objective function. These approaches
can be divided into local and global methods. Global optimisation
methods include evolution strategies or genetic algorithms. Wide-
spread methods for multi-objective optimisation in applied
hydrology are MOCOM (Multi-Objective Complex Evolution) by
Yapo et al. (1998), MOSCEM (Multi-Objective Shuffled Complex

! Multi-objective complex evolution global optimization method.
2 Shuffled Complex Evolution - University of Arizona.

Evolution Metropolis algorithm) by Vrugt et al. (2003) or SCE-UA
(Shuffled Complex Evolution algorithm) by Duan et al. (1992). A
broad description of this subject is given in Efstratiadis and
Koutsoyiannis (2010). The challenge of linking complex optimisa-
tion algorithms with computationally intensive hydrological mod-
els was analysed by Zhang et al. (2009). The parameter estimation
of a hydrological model was implemented with different global
and evolution-based optimisation methods. None of the tested
methods required less than 500 iterations. The methods for
multi-objective optimisation are computationally intensive, as
complex structures within the objective function lead to many
local minima (Abbaspour, 2005). Hence, there is generally a con-
flict between high-resolution models in conjunction with complex
optimisation algorithms (Zhang et al., 2009). This leads to the third
objective of this study, namely to achieve practicable calculation
effort by minimizing the optimisation runs since the calculation
time of a physically based distributed hydrological model is often
high.

Summarised, in the study at hand, the main focus lays on the
reproducibility of the parameter estimations in order to obtain rep-
resentative parameter sets for gauged catchments. For two areas,
the observed runoff time series of ten years length (01.11.2001
to 31.10.2011) were divided into five separate series of two years
each. We applied the lexicographic calibration strategy to obtain
for each time series an individual parameter set. We expected
the resulting parameter sets to be similar to each other, as the indi-
vidual time series originate from the identic runoff regime. To
compare the overall quality of each parameter set, we cross-
validated each set for (i) every other two-year period and (ii) the
overall ten-year period. In addition to goodness-of-fit-criteria, such
as model efficiency (Nash and Sutcliffe, 1970), we analysed the
similarities of the obtained parameter sets and the resulted influ-
ences on the simulated water balance components. Further, we
compared the obtained results with the lexicographic calibration
strategy with results received by applying the global multi-
criteria optimisation method SCE-UA by Duan et al. (1992). We
additionally showed that an uncertainty analysis of complex
hydrological models can be performed by applying the approxi-
mate first-order second-moment (FOSM) method.

2. Materials and methods
2.1. The hydrological model system PANTA RHEI

PANTA RHEI is a deterministic, semi-distributed, physically
based hydrological model for long term or single event simula-
tions. It has been developed by the Department of Hydrology,
Water Management and Water protection, Leichtweiss Institute
for Hydraulic Engineering and Water Resources, University of
Braunschweig in co-operation with the “Institut fiir Wasserman-
agement IfW GmbH”, Braunschweig (LWI-HYWAG und IfW,
2012). It has been successfully employed for scientific questions
(Holscher et al., 2012) and in numerous national and international
projects (Meon and Pdtsch, 2014; Wurpts et al., 2014). Further-
more, PANTA RHEI is applied in the operational flood forecast of
the federal state Lower Saxony, Germany (Meyer et al., 2012).
The temporal discretisation is adaptive and in many applications
an hourly time step is used. The spatial differentiation is divided
into three levels: HRUs (hydrologic response units), sub-
catchments and gauged catchments.

A modified Penman-Monteith method (Penman, 1948;
Monteith, 1965) is used to estimate the evapotranspiration. It is
one of the most established physically based methods to calculate
evapotranspiration (Sentelhas et al., 2010; Chen et al., 2005). Our
modification includes the dynamic calculation of vegetational
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parameters by means of the growing season index (Forster et al.,
2012). An alternative to Penman-Monteith is e.g. the equation of
Priestley and Taylor (1972). Other methods are based on empirical
approaches like Thornthwaite (1948) or Turc (1961).

Snow accumulation and melting (as snow-water-equivalent) is
calculated by energy balance approaches (Forster et al., 2014).

Soil types were parameterised by texture information, which
are derived from soil maps (Edt.: ]. Boess et al., 2004; Kreye and
Meon, 2016). PANTA RHEI provides a physically based soil model
(Kreye et al., 2010, 2012; Kreye, 2015). The soil model DYVESOM
(dynamic vegetation soil model) accounts for root growths and
vegetational feedback on soil properties by using the growing sea-
son index (Jolly et al., 2005). This parameterisation was success-
fully validated by comparing its course of year with phenological
observation data of the German Weather Service and satellite
based measurements, in particular the normalised differenced veg-
etation index (NDVI), see Forster et al. (2012). Simulated variables
of DYVESOM, like soil water content or groundwater recharge,
were successfully validated by different products of satellite based
soil water measurements and by groundwater level measure-
ments. Details of the parameterisation of DYVESOM are given in
Kreye and Meon (2016).

PANTA RHEI is a state-of-the-art hydrological model, which can
be adopted over a large bandwidth of spatial and temporal scales
(Kreye, 2015; Kreye and Meon, 2016). It provides an API° to apply
individual optimisation methods. Alternative models are e.g.
WaSim-ETH (Schulla, 2012) or the MHM model (Samaniego et al.,
2010).

The calculation of runoff concentration is based on four linear
storages with individual storage constants: surface runoff, fast
and slow interflow and base flow.

All used calibration parameters of PANTA RHEI are listed and
explained in Table 1. The calibration parameters are valid for the
sub-catchments and affect the processes in the HRUs.

In the evaluation of the final calibration results several quality
criteria were used. The selection is based on common criteria used
in hydrological science (Hall, 2001). E;, E, R>, RMSE, PBIAS and IoAd
were calculated in addition to Ej,,, which is the model efficiency
based on logarithmic time series. E;,; was additionally used as an
objective function (see Section 2.3.2 “Lexicographic calibration
strategy”). These criteria were calculated for both model areas
and all time periods. E stands for model efficiency and E,; for
model efficiency with relative errors. R? is the coefficient of deter-
mination and IoAd the index of agreement. These criteria are
dimensionless and have their optimum at a value of one. PBIAS
gives the percentage deviation in total volume. RMSE is the root
mean square error. More information regarding these criteria can
be found in Legates and McCabe (1999), Hall (2001), Krause et al.
(2005), Moriasi et al. (2007) or Dawson et al. (2007).

2.2. Study areas

The lexicographic calibration strategy was applied and tested in
two physiogeographical different model areas at the mesoscale,
which are located in northern Germany (Hellwege and Recker-
shausen). Hellwege is characterised by agricultural and livestock
economy, while Reckershausen has a large proportion of arable
land. The catchment Hellwege in the northern Liineburger Heath”
has a large proportion of sandy soils. In contrast, the catchment
Reckershausen is characterised by fine-grained soils. Spatial data
are available in high resolutions for both catchments. Further, we

3 API - application programming interface.
4 Liineburger Heide.

Table 1
Properties of the model parameters of PANTA RHEI, which are used for the
lexicographic calibration strategy and for SCE-UA.

Parameter Description

Os Offset of infiltration function. This parameter shifts the function
of infiltration capacity and therefore influences the amount of
water that infiltrates into the first soil storage. The higher the
value, the higher is the infiltration rate

D, Draining rate of the canopy storage. The draining rate influences
the interception loss and therefore the volume of runoff. The
higher the value, the faster the canopy storage drains, leading to
more runoff

F, Factor that accounts for the influence of vegetation development
on the soil properties. The higher the value, the more smoothed
is the influence of vegetation (depending on the growing season
index)

Fp Factor that influences percolation. The higher the value, the
more water percolates into deeper soil storages, leading to more
base flow and less interflow

Ki Linear storage constant of fast interflow. The higher the value,
the steeper are the hydrographs of fast interflow
Ps Factor that influences preferential flow in the soil and therefore

accounts for the allocation between fast and slow interflow. The
higher the value, the more preferential flow occurs

have high experience with the hydrological response in these areas
due to several research projects.

The relevant regional properties are summarised in Table 2. The
meteorological input data (precipitation, average, minimum and
maximum temperature, relative humidity, global radiation and
wind speed) were available on a daily basis. The average process-
ing time of a six-year simulation run for the catchment Hellwege
is 41 min and for Reckershausen eight minutes on an i7-4930 @
6 x 3.4 GHz.

2.3. Strategies for calibration of rainfall-runoff models

2.3.1. Multi-objective optimisation methods

An optimisation task can be posed in different ways. Either one
single objective function is implemented for one criterion (in
hydrology usually the catchment discharge) or various objective
functions are implemented with one or several criteria. Different
objective functions can be aggregated over random weights into
a single objective function. Alternatively, the euclidean norm of
the objective functions can be minimised (see Efstratiadis and
Koutsoyiannis, 2010). Both options of these simultaneously opti-
mised objective functions yield many results of pareto-optimal
parameter sets, which have to be evaluated in the post-
processing (Madsen and Khu, 2006). This leads to different options
to select the “best” suitable parameter set (see Confesor and
Whittaker, 2007), for which it is necessary to determine an order
of preferences after the calibration. Consequently, the chosen
“best” parameter set is always a compromise solution. In this con-
text, broad definitions and summaries are given e.g. in Madsen
(2000) or Boyle et al. (2003).

There is a general conflict between high resolution models,
which need much calculation time, and complex global optimisa-
tion algorithms, which need many iterations (see chapter 1 intro-
duction or Zhang et al., 2009 respectively Vaze et al., 2011). For
this reason, we implemented time efficient local optimisation
methods. Furthermore, a stepwise approach leads to a downsizing
of the parameter search space and therefore allows the application
of local optimisation methods.

The lexicographic calibration strategy can be implemented with
different optimisation algorithms. We tested different methods,
mainly direct search methods, where no information about the
gradient of the objective function is required (e.g. downhill simplex
method by Nelder and Mead (1965) or the pattern search method
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Table 2

Properties of the two study areas Reckershausen and Hellwege.
Property Reckershausen Hellwege
Gauss-Krueger-coordinates of the gauge [m] 3564820/5697260 3513861/5882633
Area [km?] 321 907

Main land use
Soil properties

Height a.s.L [m] 186-470
MQ (1970-2000) [m? s~ '] 2.59

P (1970-2000) [mm)] 785

T (1970-2000) [°C] 8.1
Number of HRU 294
Spatial resolution [km?/HRU] 1.06

61% arable land, 29% forest, 10% other
55% clayey loam, 45% sandy loam

37% arable land, 32% pasture, 21% forest, 10% other
80% pure and loamy sand, 20% organic soil

12-121

9.13

837

8.8

1778

0.51

(Audet and Dennis, 2002), which can be modified to the Sequential
Line Search method, see Kuzmin et al. (2008). Since these two
methods, as well as the additionally tested SCE-UA, delivered the
same parameter sets for 10 different test cases, we selected the
downhill simplex method for this study due to performance rea-
sons. This algorithm converges reliably, provided that the surface
of the search space is continuous and has an explicit minimum
(Nelder and Mead, 1965). These requirements were often not valid,
when this algorithm was applied for minimising the multi-
objective function by optimising all parameters simultaneously.
A simplex is a geometric construct, which consists of a set of n
+1 points in an n-dimensional parameter space. The smaller the
dimension of the parameter space, the more reliable is the conver-
gence of the downhill simplex method. If only one parameter has
to be optimised, we used Brent’s method (2002). This method is
reliable for determining the minimum of a function in one dimen-
sion. The derivative-free parabolic interpolation is combined with
the golden section search (Brent, 2002). Unlike the widely used
local Levenberg-Marquardt algorithm (as for example imple-
mented in PEST®), a computation of derivatives of the model is not
necessary for the used methods of this study.

2.3.2. Lexicographic calibration strategy

From the mathematical point of view, an optimisation task is
not the challenge, if the objective function is well formed and the
search space has a definite minimum. But from the hydrologic
point of view, there are many challenges that need to be taken into
account when optimising parameters within a hydrologic model:
The data (runoff observations and input data, especially rainfall)
are uncertain. According to this fact, hydrologists demand robust
methods in terms of insensitivity of the model against measure-
ment errors. Next, the calculation time of large-scale models can
be costly due to the high resolution. This leads to optimisation
approaches, which are fast and thus requires less iteration steps.
The last requirement refers to the transferability of the resulting
parameter sets. For these reasons the intention of this study was
to define a strategy for calibration of hydrological models with
the criteria (i) transferability of the parameter set (ii) goodness-
of-fit in calibration and validation and (iii) time-efficiency.

The developed lexicographic strategy determines the prefer-
ence order of the objectives prior to the calibration. This is in con-
trast to traditional multi-objective optimisation, in which the most
appropriate parameter set has to be identified by the experts after-
wards. The individual prioritisation can be compared to the specific
determination of the weights to aggregate the multi-objective
goals to a single objective function in the multi-objective optimisa-
tion (see Efstratiadis and Koutsoyiannis, 2010). Hydrological
knowledge is needed for an appropriate division of the parameters
into smaller sub-groups within the lexicographical calibration. Fur-

5 Parameter estimation, Doherty (1994).

thermore, it is important to identify suitable objective functions for
all parameter sub-groups individually.

There are many possibilities for the quantification of cause-
effect relationships of model parameters and their associated pro-
cesses by means of one or more target functions. The assignment
sequence from model parameters over hydrological processes to
an objective function is often undetermined, since the model
parameters are rarely associated with only one single process
(Kreye, 2015; Gelleszun et al., 2015). Despite that, the effects of
complex processes can hardly be evaluated within one single
objective function. The presented lexicographical approach cir-
cumvents the assignment sequence by developing suitable objec-
tive functions for model parameters directly. Based on Reusser
et al. (2009) and Reusser et al. (2011), Reusser and Zehe (2011)
analysed the temporal course of parameter sensitivities and the
accompanying dominant error types. They concluded that the
effects of parameters are both time- and state-dependent, while
still allowing an aggregation of the parameters by their actions.
Since objective functions evaluate various aspects of the time ser-
ies differently, the definition of direct assignments from model
parameter to objective function is consequential. This approach
needs particular adjustments in dependence of the used hydrolog-
ical model. Once an assignment is specified, various questions can
be processed by setting an appropriate order of preference.

A hydrologist who wants to adjust parameters in a hydrological
model has knowledge about his model in the way, that he can
assess which parameter has specific influence on the modelling
result respectively on different objective functions. In general,
expert knowledge (=defining a suitable order of preferences prior
to the calibration) can be compared to the selection of the “best”
parameter set of a pareto optimum after a global multi-objective
calibration. A change of the preference order would lead to differ-
ent parameter sets, but they would be still representative concern-
ing the determined objective function(s). Our aim was to improve
the a priori subjectivity with the best possible objectivity via a
stepwise calibration process.

In the context of hydrological model calibration the term “step-
by-step calibration” is not defined clearly. In some cases it is
defined as manual stepwise calibration, other studies (e.g. Hay
and Umemoto, 2007) describe their step-by-step approach as a
stepwise circle (starting with step 1, then 2, 3, n and then step 1
again). Alternatively, Ning et al. (2015) described a stepwise cali-
bration method, but did not change the objective function within
the different time steps. In contrast to these definitions, we use dif-
ferent objective functions in every calibration step and these func-
tions are associated with model parameters that have sensitive
influence. Further, the preference order, the objective functions
and the parameters all can vary due to the overall scope of the pro-
ject or application and scientific framework.

For this study, we defined the order of preference as presented
in the following enumeration. The overall objective was a reliable
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reproduction of the observed discharge at the gauge with its fol-
lowing criteria:

1. Volume and runoff peaks
2. Seasonality and low flow values
3. Shape of the hydrograph

Prior to the calibration, we performed sensitivity analyses of all
parameters in order to assign each parameter to an objective func-
tion. Therefore we performed Latin hypercube samplings for a
small test catchment. Next to the influence of each parameter on
the simulated runoff, we analysed the direct influence on several
objective functions. Descriptions of the resulting objective func-
tions for each step are given in Table 3.

We generally recommend focusing on the volume as a first step.
In many hydrological models, more than one model parameter has
an influence on the simulated volume. In PANTA RHEI, we identi-
fied two model parameters (D,, Os). However, these parameters
additionally influence the simulated peaks. Therefore, we chose
the combination of an absolute error between simulated and
observed peaks and an RMSE between logarithmic observed and
simulated time series. The peaks were determined by means of
time series analysis (identification of local maxima) based on the
observation. Two model parameters (Fp, F,) were identified to have
high impact on the simulation at low values. Hence, in the second
step we developed an objective function accounting for values that
are smaller than the 40% percentile of the (observed) duration
curve of non-exceedance. The last step of the lexicographic calibra-
tion strategy concentrates on an overall fitting of the shape of the
simulated hydrograph by using the model efficiency. Values of
observed hydrographs in moderate climate zones often follow a
logarithmic Gaussian distribution (Bowers et al., 2012). Further-
more, we avoid focussing on high flow values solely. Therefore, log-
arithmic time series of observation and simulation were used to
calculate the model efficiency (see Krause et al., 2005). The param-
eter Prand K; were identified to inherit particular influence on this
objective function. From these analyses, we also developed one
multi-objective function, which was used in the optimisation with
the global method SCE-UA (see Section 2.4 Calibration scheme).

2.4. Calibration scheme

Parts of the time series of observed runoff from 01.11.2001 to
31.10.2011 were used to calibrate the hydrological model PANTA
RHEI for both catchments. All simulations were started four years
before the actual calibration periods began in order to minimize
effects of initial conditions within the hydrological model. The total
time series (Pcontrol, see Table 4) was split into five sub-periods of
two years each (P1-P5, see Table 4).

The developed lexicographic calibration strategy was used to cal-
ibrate all six periods independently. The global optimisation algo-
rithm SCE-UA (Duan et al., 1992) served as a reference calibration.
We selected the SCE-UA algorithm as reference since it is an estab-
lished approach in hydrological research and it was often proofed
that SCE-UA performs very well to identify the global minimum of
amulti-criteria objective function (see e.g. Duan et al., 1994). Twelve
calibrations were performed in total (6x LCS and 6x SCE).

2.5. Uncertainty analysis

Established methods for estimating model uncertainties in
hydrological rainfall-runoff models are often based on stochastic
approaches like Monte Carlo methods (Ajami et al., 2007). Proba-
bility densities of the parameters and/or probabilities of occur-
rence of model predictions are based on random experiments
(see. Freer et al., 1996; Beven and Freer, 2001). For applications

Table 3
Order of preference with the corresponding calibration steps, associated parameters
of PANTA RHEI and applied objective functions.

Step Parameter

Volume 1 D;, Og

Objective function, description

Absolute error between observed and
simulated peaks multiplied with root mean
square error (RMSE) between logarithmic
observed and simulated time series
RMSE between low flow values of the
observed and simulated time series. The
low flow values are determined in
dependence of the 40% percentil of the
(observed) duration curve of non
exceedance

Model efficiency Ejqg of the logarithmic
observed and simulated time series

Seasonality 2 Fp, Fy

Shape 3 Pg, K;

Table 4
Periods of simulations and calibrations.

Label Start of simulation  Period of calibration End of simulation
P1 01.11.1997 01.11.2001-31.10.2003  31.10.2003
P2 01.11.1999 01.11.2003-31.10.2005 31.10.2005
P3 01.11.2001 01.11.2005-31.10.2007  31.10.2007
P4 01.11.2003 01.11.2007-31.10.2009  31.10.2009
P5 01.11.2005 01.11.2009-31.10.2011  31.10.2011
Pcontrol  01.11.1997 01.11.2001-31.10.2011  31.10.2011

with high-resolution models, these methods are unsuitable, due
to enormous computational effort. Based on this premise, we
applied approximate methods for determining the uncertainty.
Kunstmann et al. (2002) showed that the approximated uncer-
tainty intervals for simulated groundwater levels with an
enhanced FOSM method (first-order second-moment) achieved
good matches with those obtained by the time-consuming Monte
Carlo method.

Hydrological modelling entails various sources of uncertainty,
in this study we focused on the following uncertainties:

e Parameter uncertainty in relation to the chosen optimisation
algorithm (empirical variance estimator, see Eq. (3)).

e Confidence intervals of the model with respect to the uncer-
tainty of the parameters (variance propagation, see Egs. (1)
and (2)).

e Empirical standard deviation between observed and simulated
runoff.

In the final LCS optimisation step (see Table 3), we maximised
the model efficiency of the logarithmised observed and simulated
runoff time series. This determination was made to increase the
weight of the mean flow in the parameter estimation. Accordingly,
we quantified the uncertainties by using the logarithmic runoff
data. As reverse operation, we exponentiated the calculated confi-
dence and prediction intervals.

The FOSM-method is based on the variance-covariance propa-
gation, given by Eq. (1) (see Witte and Schmidt, 2004, page 149):

Cyy = ACA” (1)

The variances and co-variances of the parameters are given by
the co-variance matrix Cxx (n x n). The matrix A (m x n) is denoted
as Jacobian, sensitivity-, or functional-matrix. This matrix contains
the partial derivations of the model with respect to its parameters.
The co-variance matrix Cyy (m x m) of the calculated random vari-
able y (in this case the simulated runoff) gives the variances of y on
the diagonal. These variances can be calculated directly by Eq. (2):

n n
var(y) = Zzaijaikcjk

=1 k=1

a; : elements of A
c; : elements of Cy

(2)
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Similar to Monte Carlo simulations, the variances of the param-
eters are needed a priori. In most cases, the estimation of the vari-
ances is challenging. For this reason, we calculated the empirical
co-variance matrix by means of Eq. (3) (see Witte and Schmidt,
2004, page 154). The result is then used in Eq. (1). In general, Eq.
(3) is valid for linear models and therefore provides approximated
values for Cyy:

Coo = S2(ATA) 3)

The empirical standard deviation s2 is a scalar value, which can
be obtained from the entire simulation period.

Commonly, a hydrological model cannot be derived analytically
by its parameters. Consequently, we calculated the Jacobian matrix
A by numerical derivation in the optimum (see Maskey and Guinot,
2003). We used central differences as an approximation of the
derivatives. Each parameter was changed by +1% of the optimum
parameter value. The obtained two time-series of simulated runoff
were subtracted for every time step and divided by 2% of the cor-
responding parameter value. The sensitivity matrix was not only
used in the above equations, but also to determine dimensional
quantities. Therefore, we calculated the one-percent scaled sensi-
tivity by multiplying the columns of the sensitivity matrix with
the corresponding parameter values (Hill, 1998) and divided them
by 100. The dimension describes the variation of the simulated
result if the parameter is changed by one percent (Hill, 1998).

2.6. Reliable parameter estimation

Hydrologists interpret the terms robust, stable and representa-
tive in different ways. Here, we distinguished between robust
parameter estimation, well-posed optimisation problems, includ-
ing stability, and representative parameter sets.

The idea of robust parameter estimation is the insensitivity of the
resulting parameter-vector to measurement errors (Klute et al.,
1994; Bardossy and Singh, 2008). Bardossy and Singh (2008) showed
that erroneous discharge data have a significant effect on the result-
ing parameter set, when using a global optimisation method with
one objective function in combination with a conceptual model.
They used the half space depth method to circumvent this problem.
The method is promising, but due to the complexity of physically
based models and its concomitant calculation time, it is not applica-
ble to common practice. In Gelleszun et al. (2015), we showed that
the lexicographic approach leads to similar parameter sets, when
adding a synthetic noise on the observed discharge data. This led
us to the conclusion that LCS induces robust parameter sets.

The three most important criteria to evaluate the quality of an
inverse problem are identifiability, uniqueness and stability
(Carrera and Neuman, 1986). A parameter set is identifiable if dif-
ferent parameter sets produce different results. In this context, “re-
sults” refer exclusively to the direct calculations within the model.
In contrast, the uniqueness considers the inverse problem. An
inverse problem is precisely unique if the considered objective
function has a defined minimum. The last criterion is the stability
of the optimal parameter set. It is an indication of the robustness of
a solution in the optimum. Small differences in this stable solution
do not lead to significant differences in the results (Carrera and
Neuman, 1986). The inverse problem is well-posed if the obtained
parameter set fulfils all three conditions. We performed a sensitiv-
ity analysis and a collinearity analysis as sufficient condition for
the identifiability. Since uniqueness is dependent on the objective
function(s), it is obvious, that a single aggregated objective func-
tion leads to many “good” results. We circumvented this issue by
using multiple objective functions in a stepwise approach, which
has a defined minimum each. The stability of the final parameter
set was proved by calculating the condition numbers of each of
the Hessian matrixes.

3. Results
3.1. Lexicographic calibration results

In this section, we concentrate on results of the (individual) cal-
ibrations for the five different two-year periods and the total per-
jod (2001-2011).

High goodness-of-fit criteria regarding the simulated discharges
in comparison to the observations were achieved for the total period
2001-2011, as well as for the five periods of two years each in both
model areas (Reckershausen, Hellwege). Established quality criteria,
based on simulated and observed discharge time series, are given in
Table 5. Following these quality criteria, the (individual) calibration
results mostly reach top scores. In Reckershausen, the time period
2005-2007 shows weaknesses regarding high flow (moderate val-
ues of E and R?). However, the volume (RMSE, PBIAS) and mean/
low flow (Ejoq, Erer) are simulated reasonable. A similar constellation
occurs for the period 2009-2011 in the model area Hellwege.

The observed and LCS-simulated discharge time series, as well
as the prediction intervals (see Egs. (2) and (3)) for the model area
Reckershausen, are shown in Fig. 1. At the top, the calibration of
the total period is visualised and the picture in the middle shows
the calibration of the two-year period from 2007 to 2009. Both
for the calibration of the total and of the two-year period, the sim-
ulated discharges are highly correlated with the observations. The
a priori defined criteria of the preference order (volume, seasonal-
ity and shape) were fulfilled successfully. The qualities of the sim-
ulations are particularly good for low and mean flow conditions.
The calibration results for Reckershausen based on the SCE-UA
algorithm are shown for the period 2007 to 2009 in the graphic
at the bottom of Fig. 1. The simulated time series is very close to
the observed time series and the quality criteria are only margin-
ally higher as for the lexicographic calibration.

For the model area Hellwege, the volume was slightly overesti-
mated for the lexicographical calibration of the total period, see
Fig. 2 (top), while low, mean and high flow values are met with
high performance. The calibration of the two-year period from
2007 to 2009 of Hellwege is visualised in Fig. 2 (middle). Both,
the time series and cumulative time series of the simulation reach
the observation with very high accuracy. The shown prediction
intervals are calculated by means of Egs. (2) and (3). The relatively
narrow bandwidth of the 68.3%-prediction interval results from a
small empirical standard deviation caused by the large amount
of available time series data. Due to our prioritisation to assign
more weight to the low and mean flow, the prediction interval is
smaller in those phases. The calibration results for Hellwege based
on the SCE-UA algorithm are shown for the period 2007 to 2009 in
the graphic at the bottom of Fig. 2. The volume was not fitted per-
fectly by SCE-UA, because high flow events were a bit underesti-
mated, but the shape of the simulated time series looks very
reasonable in comparison to the observation.

3.2. Validation of the lexicographic calibration and comparison with
the SCE-UA calibration

We investigated the validation performances of the model
parameter sets, which resulted from the different calibrations
(see Section 3.1 “Lexicographic calibration results”). In addition
to the lexicographic calibrations, we elaborated calibrations by
means of the SCE-UA algorithms. The results of these two
approaches were compared.

Every two-year period was calibrated individually (see Table 4).
Hence, five different sets of model parameters were determined for
LCS and for SCE-UA. The general hydrological response of the
catchments did not change relevantly over the total (ten-year) per-
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Quality parameters of calibration results obtained by LCS for the total period (2001-2011) and the five individual two-year periods of the study areas Reckershausen and
Hellwege. Ej, represents the model efficiency based on logarithmic time series, E, the relative and E the standard model efficiency. R? is the coefficient of determination, RMSE
the root mean square error, PBIAS the percentage volume error and IoAd the index of agreement. All quality criteria without units have their optimum at a value of one, the other

two (PBIAS, RMSE) have their optimum at a value of zero.

Ejog [—] Erel [—] E[-] R? [-] RMSE[m® s~ 1] PBIAS [%] loAd
[-]
Reckershausen 2001-2011 0.92 0.96 0.87 0.87 0.91 -1.69 0.96
2001-2003 0.94 0.96 0.90 0.90 1.12 ~-1.74 0.97
2003-2005 0.93 0.94 0.88 0.89 0.55 -2.99 0.97
2005-2007 0.86 0.92 0.71 0.72 0.97 0.66 0.90
2007-2009 0.96 0.97 0.90 0.90 0.66 1.77 0.97
2009-2011 0.95 0.97 0.91 0.91 0.91 ~1.16 0.98
Hellwege 2001-2011 0.88 0.89 0.85 0.88 3.34 —5.61 0.97
2001-2003 0.91 0.90 0.90 0.91 3.72 —-2.56 0.98
2003-2005 0.82 0.82 0.78 0.86 2.26 —5.54 0.95
2005-2007 0.84 0.86 0.81 0.85 3.08 -3.31 0.96
2007-2009 0.95 0.96 0.94 0.95 2.54 —-0.95 0.99
2009-2011 0.82 0.81 0.71 0.76 3.91 —4.94 0.93
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Fig. 1. Reckershausen: Discharge time series and cumulative time series of observation and lexicographic calibration, as well as the corresponding prediction interval for the
total period (2001-2011, top graphic) and for the two-year period from 2007 to 2009 (middle graphic). The graphic below shows the result of the calibration with SCE-UA

from 2007 to 2009.

iod (H=Ischer et al., 2012; Wurpts et al., 2014). Therefore, the
model parameters, which resulted from the five different calibra-
tions periods, are expected to be similar in their numeric values
and in their effects on hydrological simulation results. Fig. 3 shows
box-whisker plots based on the bandwidth of each parameter with
different colours for the two calibration approaches (LCS, SCE-UA).
In the study area Reckershausen (left hand side of Fig. 3), the
ranges of the parameters O, F, and Py are significantly smaller for
the lexicographic calibration strategy, compared to the calibration
with SCE-UA. In the model area Hellwege (right hand side), the
ranges of the parameters D, and K; are much smaller and the ranges
of the parameters O; and F, are slightly smaller for the lexico-
graphic calibration strategy. Out of these findings, the following
statements can be pointed out:

e In general, the ranges of the parameters, based on the lexico-
graphic calibration strategy, are smaller than the ranges based
on calibration with SCE-UA.

e Not all parameters show smaller ranges, approx. 50% are smal-
ler and 50% are more or less the same, when comparing the lex-
icographic calibration with SCE-UA.

e For different study areas, different parameters show smaller
ranges. Due to different physiographical structure and hydro-
logical behaviour of the catchment, the model parameters have
various influences on simulation results. The higher the influ-
ence of the specific parameters, the smaller the (lexicographic)
parameter ranges (see Chapter 3.3). For each calibration step,
given by the order of preferences, the range of the dominant
parameter (at this point) is very narrow. Hence, the
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Fig. 2. Hellwege: Discharge time series and cumulative time series of observation and lexicographic calibration, as well as the corresponding prediction interval for the total
period (2001-2011) and for the two-year period from 2007 to 2009. The graphic below shows the result of the calibration with SCE-UA from 2007 to 2009.
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Fig. 3. Box-whisker plots for parameter ranges based on the five different two-year calibration periods. A parameter range of 0% means that all parameters have the same
value. Results of the lexicographic calibration are shown in blue colour and results of calibration with SCE-UA are shown in grey colour. Left: Reckershausen, Right: Hellwege.

lexicographic calibration strategy increases the reliability of
resulting parameters based on their specific influence on simu-
lation results.

To further investigate the representativeness of the parameter
sets, we performed a cross-validation. All five two-year parameter
sets were applied to each of the other four time periods. In addi-
tion, the total time period of ten years was simulated with each
of the five parameter sets. We performed this validation with the
parameter sets obtained by the lexicographic calibration strategy,
as well as with the parameter sets from the SCE-UA. In total, 60
(30 for each calibration approach) values of quality criteria (e.g.
Eiog) were calculated in this manner for every study area.

The resulting values of E,,g are visualised in Fig. 4. Blue colour
represents the lexicographic calibration strategy and grey colour

the calibration with SCE-UA. Results of the catchment Recker-
shausen are shown on the left hand side and results of the catch-
ment Hellwege on the right hand side of Fig. 4. The parameter
sets, that show the valid calibration for the current time periods
are each marked with a black cross. The rectangles without a black
cross show the validation results. Hence, we obtained four
validation-values of Eog for each time period and one value of Ej,
which resulted from the calibration. In addition to these five values
of Ejog per time period, an average value was calculated arithmeti-
cally. The following statements were distinguished, based on the
findings presented in Fig. 4:

e Both approaches (LCS, SCE-UA) achieved Ej,, values of high
quality for calibration (rectangles marked with black crosses)
and validation (rectangles without crosses).
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Fig. 4. Cross-validation of calibration results. Each parameter set was applied on each time period. Leading to overall five values of Ejog per time period and per calibration
strategy (blue colour: lexicographic, grey colour: SCE-UA). The values that are valid for the calibration of the current time periods are marked with a black cross, the other four
values per time period show the validation results. The mean values are shown as horizontal lines. Left: Reckershausen, Right: Hellwege. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

e Regarding calibration solely, SCE-UA achieved higher values of
Eig than the lexicographic calibration. This behaviour was
expected, since SCE-UA is a global optimisation algorithm and
the lexicographic uses a stepwise local algorithm.

e The lexicographic calibration parameter sets achieved higher
validation values for the two-year-validation periods and for
the total period.

e The range of Ejo, values of the validations based on the lexico-
graphic approach is much narrower than the range based on
SCE-UA.

It can be summarised that the validation results, as well as the
similarity of the parameter sets by the lexicographic calibration
strategy, is higher than the results based on SCE-UA. These findings
indicate the high representativeness of the parameter sets deter-
mined by the lexicographic calibration strategy.

The effects of the different parameterisations on components of
the water balance are shown in Fig. 5. Each of the model parameter
sets, which resulted from the five two-year calibrations, was used
to simulate the total period of ten years. Hence, these two times
five validation runs determine different water balances. We inves-
tigated mean yearly effects on the discharge, evapotranspiration,
groundwater recharge and soil water content. As shown in Fig. 5,
the variations in all of these components are much higher for the
SCE-UA simulation runs compared to the variations of the runs
based on the lexicographical calibration strategy. This indicates
that the lexicographical calibration yielded in parameter sets of
higher robustness. To explain this statement, we took a closer look
to the groundwater recharge. Based on the SCE-UA validation runs,
the yearly groundwater recharge varied between 78% to 120% for
Reckershausen and between 88% to 135% for Hellwege. In other
words: The highest value is more than 1.5 times the size of the
smallest value (for the same area and time). The validation runs
based on the lexicographical calibration produced a variation in
groundwater recharge from 96% to 105% for Reckershausen and
95% to 107% for Hellwege. Here, the highest value is only increased
by a factor of 1.09 or 1.15 of the smallest one. Similar constella-
tions arised for the other components of the water balance
(Fig. 5). Hence, the lexicographical calibration delivers parameter
sets, which have similar effects on the hydrological system.

3.3. Sensitivity analysis

For all parameter sets (five LCS and five SCE-UA with six param-
eters each) we performed a sensitivity analysis for the overall ten-
year validation period. For this, we used the one-percent scaled

sensitivity, which has the advantage of the dimensions of the
parameters being irrelevant. Fig. 6 shows the scaled sensitivities
for the catchment Reckershausen in dependence of the time
(shown here: 2007-2009). The six parameters are visualised by
different colours and for each parameter five lines are drawn,
which were derived from the five different calibration sets. Results
based on the lexicographic calibration strategy are shown at the
top of Fig. 6 and results based on SCE-UA are shown at the bottom.
First to mention is the fact that the five different sets of the lexico-
graphic calibration produced much more similar pictures of sensi-
tivities for each of the parameters than the sets of the SCE-UA
calibration: The coloured five lines (per parameter) of LCS have a
very close range. This behaviour emphasises the statement that
the lexicographic calibration strategy determines highly represen-
tative and robust parameters. The hydrological effects of these
parameters are supposed to be similar, which lies in agreement
to Fig. 5. The sensitivities in dependence of the five sets of the
SCE-UA calibration on the other hand, have relatively high differ-
ences to each other. This leads to parameterisations of the hydro-
logical system, which are potentially in disagreement to each
other. Fig. 7 shows the scaled sensitivities of the catchment Hell-
wege with an equivalent structure to Fig. 6. For Hellwege, a similar
constellation arose as for Reckershausen, but less distinctive.

Supplementary to these findings, it is noteworthy that the
parameters with particularly high sensitivity (see Figs. 6 and 7)
have very narrow ranges in their numeric values (see Fig. 3). For
Reckershausen these parameters are O, F, and Pr. In Hellwege
we identified F, and Ki. From a physical point of view this is
entirely sensible: Those parameters that have a high influence on
the result should have numerical values of the same magnitude.
This again emphasises the reliability of the parameters determined
with the lexicographic calibration strategy.

4. Discussion

We demonstrated that the lexicographic calibration strategy
(LCS) delivered suitable parameter sets for the associated hydro-
logic system under the premises of robustness and minimal calcu-
lation effort. The stated constraint of limited calculation time
originated from the complexity of the physically based hydrologi-
cal model. In contrast to Zhang et al. (2016), where a HPC was used
to circumvent this imbalance, we applied a lexicographic calibra-
tion strategy in combination with a local optimisation algorithm.
The strength of LCS is an integration of expert knowledge from
the very beginning of work (in the way of defining an appropriate
order of preference) while keeping objectivity by using automatic
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optimisation algorithms. We used five different time periods from
one and the same gauged catchment(s). It was shown that the lex-
icographical calibration strategy lead to robust and representative
parameter sets, when applied to the different validation periods.
The results of LCS were additionally compared to the results
obtained by the global optimisation method SCE-UA. We deter-
mined different criteria to evaluate the quality of the parameter
estimation: These criteria took different aspects of the calibration
process, the resulting parameters and the resulting simulations
into account. Starting with goodness-of-fit criteria, as expected,
the global optimisation algorithm SCE-UA achieved mathematical
better results of the objective function than LCS during the calibra-
tion period. At the same time, the lexicographic calibration strat-
egy averagely reached better scores for the four validation
periods (see Fig. 4). Hence, the obtained lexicographic parameter
sets were very robust when cross-validating with different time
periods. We thus conclude that the transferability of the parameter
sets for different purposes, such as planning tasks or operational
flood forecast, is more suitable, and the parameters themselves
are more reliable and representative. Furthermore, the five LCS
parameter sets were comparable to each other, despite referring
to different time periods. The general hydrological response for
the catchment had not changed significantly over the considered
ten years (Holscher et al.,, 2012; Holscher et al., 2014; Wurpts
et al., 2014). Therefore it is plausible and remarkable, that the dif-
ferent LCS parameter sets were similar in their numeric values,
their scores in the validation period and in their effect on hydrolog-
ical simulation results such as discharge, evapotranspiration,
groundwater recharge or soil moisture (see Fig. 5). It thus can be
concluded, that the method is promising in regard to regionalisa-
tion approaches.

Measurements of water levels and discharges, as well as corre-
sponding rating curves, cause uncertainties in observed data. This
circumstance leads to the idea of robust parameter estimation.
We distinguished between robust parameter estimation, a well-
posed optimisation problem and representative resulting parame-
ter vectors. All these aspects were considered in our calibration
strategy. The stepwise approach allows minimizing the parameter
search space connected with time-saving local optimisation meth-
ods instead of global optimisation methods. We considered various
aspects of uncertainty, while focusing on uncertain model param-
eters due to the chosen optimisation algorithm. We applied the
approximate first-order second-moment method to determine
the confidence intervals of the estimated parameters, the corre-
sponding confidence intervals of the simulated runoff, as well as
the prediction intervals, which includes the standard deviation
between observed and simulated runoff. The obtained parameter
uncertainty could be transferred to the simulated runoff time ser-
ies by using the variance-covariance propagation law. The calcu-
lated condition numbers of the Hessian were less than 100 for all
LCS results. This demonstrates the stability of the lexicographic
results. For the parameter sets obtained by SCE-UA, the value of
the condition numbers were for two sets higher than 100 (120
and 117). These findings are emphasising the results of the one-
percent scaled sensitivity (see Figs. 6 and 7), where we showed
that the influences on the simulation results are highly depended
on the based parameter sets. Regarding the effect on hydrological
processes and therefore on water balance components, LCS deliv-
ered much more plausible and robust parameter sets than the
tested global optimisation method.

By separating the parameters into groups and with a stepwise
calibration, approximately 6% of the calculation time was needed,
compared to the global optimisation method SCE-UA. One iteration
run with our model (PANTA RHEI) and a standard desktop pc (i7
6 x 3.4 GHz) needs approx. 40 min for a medium size catchment like
Hellwege. A global optimisation method needs approx. 1000 itera-

tions, which results in more than 4 days of computing time for only
one gauge. Usually many gauges have to be considered. In the Aller-
Leine-Oker catchment, in which Reckershausen is located, more
than 150 gauges (with different area sizes) are available.

The parameters of hydrological models are usually not quantifi-
able with field measurements or experiments. This challenge leads
to fuzzy parameter definitions with the difficulty of clear determi-
nations of the parameters with their blurry influence on model
results. The clustering of parameters into independent groups with
specific influence on the hydrograph is not straightforward feasi-
ble. This drawback limits the application of the presented LCS. Nev-
ertheless, it is possible to group the parameters according to their
main influence on the hydrograph (or other model result). In addi-
tion, we suggest already considering the calibration strategy, when
developing the hydrological model, especially with respect to the
calibration parameters.

The application of the lexicographic calibration strategy
demands subjective adjustments, in the way, that the order of pref-
erences needs to be determined. The order of preference has a
deductive influence on the resulting parameter set, but usually this
order is framed by the scientific question or planning task. The
most important fact is that the results are reproducible, if the iden-
tic order is chosen. In general, the subjective definition of the “cor-
rect” order of preferences can be considered to be equal to finding
the “best” parameter set of a pareto optimum after a global multi-
objective calibration. The individual freedom within the LCS is con-
sidered as strength, because this “subjectivity” is taken into
account from the beginning and not at the end. This reduces the
search space from the beginning and focuses on the individual
demands. In several projects, we had different demands on the
model and thus on the parameters, e.g.: for the reproduction of
flood statistics the most important criterion was the correct repre-
sentation of high water events (Holscher et al., 2012). The second
preference was the long-time water balance and the last one
referred to low water. Another project aimed in analysing the
low flow events in the context of climate change (Holscher et al.,
2014). Obviously, the first preference was the correct representa-
tion of low flows, which we achieved by using the NMQ7D (mini-
mum low flow of the moving average of 7 days) as criterion within
the objective function. The second preference referred to the volu-
metric soil water content (fitting to e.g. satellite based soil mois-
ture data) and the last criteria was a balanced long-term water
budget. In a recent BMBF-project®, we had to deliver resilient rec-
ommendations concerning the possible development of the water
supply, which can be used to meet the future requirements of water
resources management of Germany’s coastal zones. Scenario-results
from the project are directly used for decision-making by the local
water suppliers. It is advantageous that the lexicographic calibration
strategy results in only a single parameter set, as it is required. This
is especially important, since parameters were used for simulations
with numerous climate scenarios.
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