
Journal Pre-proofs

Research papers

Predicting flood susceptibility using long short-term memory (LSTM) neural
network model

Zhice Fang, Yi Wang, Ling Peng, Haoyuan Hong

PII: S0022-1694(20)31195-1
DOI: https://doi.org/10.1016/j.jhydrol.2020.125734
Reference: HYDROL 125734

To appear in: Journal of Hydrology

Received Date: 22 April 2020
Revised Date: 26 October 2020
Accepted Date: 2 November 2020

Please cite this article as: Fang, Z., Wang, Y., Peng, L., Hong, H., Predicting flood susceptibility using long
short-term memory (LSTM) neural network model, Journal of Hydrology (2020), doi: https://doi.org/10.1016/
j.jhydrol.2020.125734

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.jhydrol.2020.125734
https://doi.org/10.1016/j.jhydrol.2020.125734
https://doi.org/10.1016/j.jhydrol.2020.125734


1 

 

Predicting flood susceptibility using long short-term 1 

memory (LSTM) neural network model 2 

Zhice Fang 
1
, Yi Wang 

1,*
, Ling Peng 

2
, Haoyuan Hong 

3,4,5,6,*
 3 

1 
Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 4 

430074, China 5 

2 
China Institute of Geo-Environment Monitoring, Beijing 100081, China 6 

3 
Department of Geography and Regional Research, University of Vienna, 7 

Universitätsstraße 7, 1010 Vienna, Austria 8 

4 
Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), 9 

Ministry of Education, Nanjing, 210023, China 10 

5 
State Key Laboratory Cultivation Base of Geographical Environment Evolution 11 

(Jiangsu Province), Nanjing, 210023, China 12 

6 
Jiangsu Center for Collaborative Innovation in Geographic Information Resource 13 

Development and Application, Nanjing, Jiangsu 210023, China 14 

*
Correspondence Author: Yi Wang (cug.yi.wang@gmail.com); Haoyuan Hong 15 

(171301013@stu.njnu.edu.cn) 16 

  17 



2 

 

Abstract 18 

Identifying floods and producing flood susceptibility maps are crucial steps for 19 

decision-makers to prevent and manage disasters. Plenty of studies have used machine 20 

learning models to produce reliable susceptibility maps. Nevertheless, most studies 21 

ignore the importance of developing appropriate feature engineering methods. In this 22 

study, we propose a local spatial sequential long short-term memory neural network 23 

(LSS-LSTM) for flood susceptibility prediction in Shangyou County, China. Three 24 

main contributions of this study are summarized as follows. First, it is a new 25 

perspective that the deep learning technique of LSTM is used for flood susceptibility 26 

prediction. Second, we integrate an appropriate feature engineering method with 27 

LSTM to predict flood susceptibility. Third, we implement two optimization 28 

techniques of data augmentation and batch normalization to further improve the 29 

performance of the proposed method. The LSS-LSTM method can not only capture 30 

both attribution information of flood conditioning factors and local spatial information 31 

of flood data, but also retain the powerful sequential modelling capability to deal with 32 

flood spatial relationship. Experimental results demonstrate that the LSS-LSTM 33 

method achieves satisfying prediction performance (93.75% and 0.965) in terms of 34 

accuracy and area under the ROC curve.  35 

Key words: Flood susceptibility prediction; long short-term memory neural network; 36 

deep learning; feature engineering. 37 
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1. Introduction 38 

Floods are one of the most common and disastrous natural hazards in the world 39 

(Giovannettone et al., 2018). As reported by the United Nations Office for Disaster 40 

Risk Reduction (UNDRR), 150,016 floods occurred between 1996 and 2015, severely 41 

affecting natural systems and human activities (Hong et al., 2018a). Flood 42 

susceptibility is the possibility of flooding in an area based on a range of 43 

geo-environmental conditions (Ahmadlou et al., 2018; Bui et al., 2019b). Flood 44 

susceptibility prediction (FSP) can provide helpful guidance for decision-makers to 45 

effectively manage and prevent flood hazards. Therefore, producing reliable and 46 

accurate susceptibility maps is important for flood-prone areas. 47 

In recent years, machine learning techniques for FSP have exhibited powerful 48 

capability and achieved successful results, including decision tree (Bui et al., 2019c; 49 

Choubin et al., 2019; Khosravi et al., 2018), support vector machine (Choubin et al., 50 

2019; Tehrany et al., 2014), random forest (Chapi et al., 2017; Zhao et al., 2019), and 51 

artificial neural network (Campolo et al., 2003; Gebrehiwot et al., 2019). Recently, 52 

some studies attempt to use hybrid strategy to obtain more powerful models for FSP. 53 

For example, subsampling and bootstrapping algorithm are combined with machine 54 

learning models to predict flood susceptibility (Dodangeh et al., 2020). Researchers 55 

integrate frequency ratio and logistic regression model for FSP (Costache et al., 56 

2020b). Reduced-error pruning tree models are integrated with bagging and random 57 

subspace ensemble strategies (Chen et al., 2019). Moreover, some researchers use 58 
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meta-heuristic optimization algorithms to find the optimal parameters of intelligence 59 

models (Ahmadlou et al., 2018; Bui et al., 2019a; Bui et al., 2019b; Wang et al., 60 

2019c). These methods use different strategies to capture flood occurrence 61 

characteristics from existed background information and then predict unknown flood 62 

locations. 63 

Feature engineering is an essential step in machine learning, which use domain 64 

knowledge of the data to create features that make models work better (Turner et al., 65 

1999). In FSP, feature engineering can convert raw flood data into specific data 66 

representations that better portray the susceptibility prediction task to the predictive 67 

models. This operation determines the processing perspective of flood susceptibility 68 

models when facing flood data. Therefore, it is very important to develop an 69 

appropriate feature engineering method for machine learning models to better 70 

understand and learn the information of flood occurrence. In general, when using 71 

machine learning methods for FSP, the one-dimensional vector-based feature 72 

engineering method is widely used because of its convenience in operation (Chapi et 73 

al., 2017; Khosravi et al., 2019; Wang et al., 2019b). This method converts raw flood 74 

data into a set of one-dimensional feature vectors. Specifically, the entire study area is 75 

first converted to a raster form with a specified spatial resolution. Then, flood 76 

susceptibility prediction can be regarded as a binary classification process to 77 

distinguish whether a grid cell (pixel) in the study area will have flood disasters. Each 78 

grid cell is composed of a set of feature values (flood conditioning factors). Therefore, 79 

machine learning methods can predict flood susceptibility by learning these feature 80 
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vectors. However, there are some drawbacks when using the machine learning 81 

methods mentioned previously for FSP. First, standard guidelines of feature 82 

engineering for flood data remain controversial. Second, various machine learning 83 

models have their own feature learning characteristics, and the appropriate feature 84 

engineering methods can maximize the classification ability of these models (Zheng 85 

and Casari, 2018). But there are few studies aimed at explore the feature engineering 86 

method for specific models for FSP. Therefore, it is essential to develop an 87 

appropriate feature engineering method for a specific prediction model to achieve 88 

reliable flood susceptibility maps.  89 

Over the past few years, deep learning techniques have achieved inspiring results in 90 

many fields, such as pattern recognition (Hu et al., 2015), scene annotation (Zhou et 91 

al., 2014) and natural language processing (Collobert and Weston, 2008). Recently, 92 

several deep learning techniques have been successfully used for disaster 93 

susceptibility prediction, such as convolutional neural network (Fang et al., 2020a; 94 

Fang et al., 2020b; Sameen et al., 2019; Wang et al., 2019a; Zhang et al., 2019), 95 

recurrent neural network (RNN) (Wang et al., 2020b), fully connected sparse 96 

autoencoder neural network (Huang et al., 2019) and deep neural network (Bui et al., 97 

2020; Bui et al., 2019d). Among these incredible techniques, RNN is of great interest 98 

because it can periodically capture sequential data by using a special recurrent hidden 99 

unit (LeCun et al., 2015). However, the conventional RNN has gradient vanishing and 100 

exploding problems, and is difficult to tackle long-term sequential input (Bengio et al., 101 

1994). To tackle the above problems, a modified RNN of long short-term memory 102 
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neural network (LSTM) is proposed and achieves better performance in solving 103 

sequence tasks than conventional RNNs (Hochreiter and Schmidhuber, 1997; Ma et 104 

al., 2015). In particular, LSTM has been used for flood forecasting and achieved 105 

impressive results (Le et al., 2019; Liu et al., 2018). However, the application of 106 

LSTM in regional flood susceptibility analysis is still rare. In addition, in our previous 107 

study (Wang et al., 2020a), we find that involving spatial information to flood 108 

susceptibility model can improve the prediction accuracy, but there still exists 109 

redundant spatial information in local space. The special forget mechanism of LSTM 110 

structure can remember key information and discard useless information, which can 111 

solve the above problem to a certain extent (Sak et al., 2014). 112 

In this study, we propose a local spatial sequential long short-term memory neural 113 

network (LSS-LSTM) for FSP in Shangyou County, China. The three main 114 

contributions of this study are outlined below. First, it is a new perspective that the 115 

deep learning technique of LSTM is used as a classifier for FSP. Second, we combine 116 

an appropriate feature engineering method with LSTM to transform raw flood data 117 

into spatial sequences. Third, we implement two powerful optimization techniques of 118 

data augmentation and batch normalization to further improve the performance of the 119 

LSS-LSTM method. Based on these contributions, the LSS-LSTM method can not 120 

only capture both attribution information of flood conditioning factors and local 121 

spatial information of flood data, but also retain powerful sequential modelling ability 122 

to deal with flood spatial relationship. 123 
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2. Study area and available data 124 

2.1. Study area 125 

Shangyou County is located in the southern Jiangxi Province, with an area of about 126 

1543 km
2
 between the coordinates of 25°42′N to 26°01′N and 114°00′E to 114°40′E. 127 

The altitude of the study area is between 110 m and 1901 m above sea level (Fig. 1). 128 

Shangyou County is located in the hilly mountains in the middle of Luoxiao 129 

Mountains. The northeast, northwest, and southwest of the county are mountains, and 130 

the southeast is hills and valley basins. The altitude of the low hills is less than 200 131 

meters above sea level and the relative altitude is less than 50 meters. The terrain of 132 

Shangyou County slopes from northwest to southeast, and the hills and valleys are 133 

mainly distributed in the southeast of the region. In Shangyou County, approximately 134 

90% of natural land is covered by vegetation (including grass and forest). The 135 

agricultural land accounts for only 6%, and the rest areas are other types of land use.  136 

The geological structure of Shangyou County is diverse and complex. The area is 137 

located in the uplift zone of the southern section of the Huaxia Plate, spanning the 138 

Luoxiao-Zhuguang uplift and the Yushan uplift. The magmatic activity in the study 139 

area is frequent, and the structural deformation is strong. The faults are most 140 

developed in the northwest and northeast directions. The neotectonic movement is not 141 

obvious, mainly intermittent uplift. The exposed strata are mainly the Sinian, 142 

Cambrian, Ordovician, Devonian, Carboniferous, Cretaceous and Quaternary strata. 143 

Magmatic rocks are dominated by Caledonian and Yanshanian granites. The main 144 
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types of rock are metamorphic rocks and magmatic rocks. The rock mass is highly 145 

weathered and has fissures. From a climate perspective, this county belongs to the 146 

humid monsoon climate zone of the subtropical hilly region. During the period from 147 

1959 to 2014, the annual average temperature and sunshine hours were 18.6 ℃ and 148 

1708.3 h, respectively, and the annual average precipitation was between 933.7 and 149 

2147.6 mm. In general, Shangyou County has abundant precipitation and extreme 150 

climatic conditions, and flood disasters often occur after heavy rainfall. 151 

 152 

Fig. 1. Location of the study area. 153 

2.2. Flood inventory map 154 

Producing a reliable flood inventory map is a crucial step in flood susceptibility 155 

assessment (Gebrehiwot et al., 2019; Termeh et al., 2018). This map provides the 156 

detailed location information of inundated area. In fact, flood events are always 157 
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polygons in the study area. To show the spatial distribution of floods, the practice that 158 

floods are represented as points has been used in previous publications (Diakakis et al., 159 

2012; Salvati et al., 2010). When modelling flood susceptibility in a specific area, 160 

there is also no need to use entire polygons. In this study, the flood areas are identified 161 

by collecting previous records, extensive field surveys, and unmanned aerial vehicle 162 

data. The flood areas contain four flood events that occurred from July 26 to 29, 2006. 163 

Then, we collect 108 historical flood locations from the flood polygons to construct 164 

the flood inventory map. All the available data are obtained from Jiangxi 165 

Meteorological Bureau
1
 and the Department of Civil Affairs of Jiangxi province

2
. 166 

Non-flood points are not directly available in this study area, and there is no standard 167 

guide to select accurate non-flood data. Therefore, we randomly sampled the same 168 

number of non-flood points (108) from areas without floods. This is a simple and 169 

universal sampling process widely used in previous studies (Bui et al., 2019a; Chen et 170 

al., 2019; Costache et al., 2020a). The distribution of flood and non-flood points is 171 

presented in Fig. 1. 172 

2.3. Flood conditioning factors  173 

Since flooding is triggered by a variety of environmental factors, it can ensure the 174 

reliability and accuracy of FSP results by choosing appropriate conditioning factors 175 

(Bui et al., 2020; Chapi et al., 2017). In this study, we selected flood conditioning 176 

factors based primarily on previous studies and expert knowledge. For example, flat 177 

                                                   
1
 http://jx.cma.gov.cn 

2
 http://www.jxmzw.gov.cn 
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areas have a high potential for flooding as water flows down from higher terrain (Li et 178 

al., 2012). As for Shangyou County, river flood disasters are more likely to occur in 179 

areas of lower height and slope. Curvature indicates the degree of deformation of the 180 

slope surface. Hudson and Kesel (2000) concluded that the areas with curvature 181 

values between 1 and 2 are prone to flooding. Aspect is another key factor, as the 182 

windward slope is prone to precipitation. Aspect is related to the intensity of solar 183 

radiation, which affects the surface vegetation and soil moisture. Soil types reflect 184 

water permeability and storage capacity and directly affect drainage processes (Chapi 185 

et al., 2017; Choubin et al., 2019). Heitmuller et al. (2015) concluded that lithology 186 

determines the shape of channel and affects the development of floodplains. In 187 

addition, lithology affects the formation of soil characteristics to some extent 188 

(Tehrany et al., 2019; Zazo et al., 2018). The distance of river factor was chosen 189 

because the river network is the main way for flood discharging and expanding 190 

(Shafizadeh-Moghadam et al., 2018). Different types of land use directly or indirectly 191 

affect water infiltration and evapotranspiration (Bui et al., 2019b; Giovannettone et al., 192 

2018; Tiwari et al., 2016). Normalized difference vegetation index (NDVI) displays 193 

the density of surface vegetation coverage, and Huang et al. (2012) studied the 194 

relationship between NDVI and flooding. Furthermore, areas with sparse vegetation 195 

cover have a high potential for flooding since its poor water storage capacity 196 

(Caprario and Finotti, 2019). NDVI is defined as follows: 197 

NIR R

NIR R

R R
NDVI

R R





 (1) 

where NIRR  and RR  are the spectral reflectance of the near-infrared band and the red 198 
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band in the electromagnetic spectrum, respectively. 199 

The reason for choosing the annual average precipitation factor is that the floods in 200 

Shangyou County mostly occurred during or after heavy rainfall. The stream power 201 

index (SPI) reflects the erosive force of the current, which affects the stability of the 202 

terrain. Fuller (2008) studied the relationship between geomorphic conditions and 203 

floods and claimed that high stream power could lead to catastrophic channel 204 

variation. The sediment transport index (STI) factor has been widely used in flood 205 

susceptibility analysis (Chapi et al., 2017; Chen et al., 2019; Tehrany et al., 2019). STI 206 

represents the influence of terrain on erosion and reflects the intensity of sediment 207 

movement due to water movement (Werner et al., 2005). In addition, Billi (2011) 208 

concluded that the active capacity of sediment transportation can increase the 209 

frequency of floods. The factors of SPI and STI are calculated as follows (Moore et 210 

al., 1993; Moore and Wilson, 1992): 211 

tansSPI A   (2) 

0.6 1.3
sin

22.13 0.0896

sA
STI

   
   

    

(3) 

where sA  and   represent the area of the basin and the slope gradient, 212 

respectively.  213 

Topographic wetness index (TWI) portrays soil saturated situation associated with 214 

water accumulation in the basin (Mahmoud and Gan, 2018; Tehrany et al., 2015). The 215 

TWI factor is calculated as follows (BEVEN and Kirkby, 1979): 216 

ln
tan

TWI




 
  

   

(4) 

where   is the upslope area per unit contour length and   represents the slope 217 
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angle. 218 

As mentioned previously, we considered 13 flood conditioning factors for FSP in 219 

this study based on theoretical analysis and literature review (Fig. 2). Related 220 

information of all factors is listed in Table 1. It should be noted that the DEM data 221 

was acquired from ASTER (Advanced Spaceborne Thermal Emission and Reflection 222 

Radiometer) GDEM Version 2
3
 with a spatial resolution of 30  30 m. 223 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

                                                   
3
 http://gdem.ersdac.jspacesystems.or.jp 
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(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 
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(k) 

 

(l) 

 

(m) 

 

Fig. 2. Thematic maps of flood conditioning factors. (a) Altitude, (b) aspect, (c) curvature, 224 

(d) slope, (e) distance to rivers, (f) soil, (g) lithology, (h) land use, (i) NDVI, (j) rainfall, (k) 225 

SPT, (l) STI and (m) TWI.  226 
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Table 1 Information of the landslide conditioning factors. 227 

Flood conditioning factors Source Scare/Resolution 

Altitude  

DEM-derived 30 m 

Aspect  

Curvature  

Slope 

SPI 

STI 

TWI 

Lithology China Geology Survey
4
 1:2,000,000 

Land use  Landsat 7 ETM + images 

(Scene ID: LE71220422001324SGS00) 
30 m 

NDVI 

Soil 
Institute of Soil Science, Chinese 

Academy of Sciences
5
 

1:1,000,000 

Distance to rivers DEM-derived 30 m 

Rainfall Jiangxi Meteorological Bureau
6
 1:50,000 

 228 

3. Methodology 229 

3.1. Data preparation  230 

Data preparation is an essential step before flood susceptibility modelling. The 231 

factors of altitude, aspect, curvature, and slope were calculated from the DEM data 232 

using ArcGIS software. The river networks were extracted from the topographic map 233 

and the distance to rivers factor was calculated by using Euclidean tool. The land use 234 

factor was derived from a Landsat 7 ETM+ satellite image with a classification 235 

accuracy of 85% by using the conventional maximum likelihood algorithm. This 236 

classification algorithm has excellent performance in land use classification task 237 

                                                   
4
 http://www.cgs.gov.cn 

5
 http://www.issas.ac.cn 

6
 http://www.weather.org.cn 
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(Paola and Schowengerdt, 1995). The NDVI factor was calculated from this satellite 238 

image using the ENVI software. The factors of SPI, STI, and TWI were calculated 239 

from the DEM data by using the SAGA software. Different scale data was first 240 

vectorized on the ArcGIS platform. Then, specific flood conditioning factors was 241 

extracted from these vector data and converted into a raster form. All the factors were 242 

converted to a raster format of 30 m spatial resolution, which is consistent with the 243 

DEM data. These factors were also reclassified into different categories based on 244 

previous studies, expert knowledge, and characteristics of flood spatial distributions 245 

(Costache et al., 2020a; Khosravi et al., 2019; Sameen et al., 2019). In this study, 70% 246 

flood and non-flood locations (76 and 76) were randomly selected for training models, 247 

whereas the remaining 30% flood and non-flood locations (32 and 32) were used to 248 

construct the test set.  249 

3.2. Information gain ratio  250 

To analyze the relationship between flood conditioning factors and flood 251 

occurrence, information gain ratio (IGR) method was used to evaluate the importance 252 

of flood conditioning factors. The IGR method is a commonly used feature selection 253 

method that has been widely used in flood susceptibility analysis (Bui et al., 2020; 254 

Chapi et al., 2017; Khosravi et al., 2019). Assuming that the training set S contains n 255 

classes, the expected information is calculated as follows: 256 

   2

1

H S log
n

i i

i

p p


   (5) 

where 
ip  is the probability that a sample belongs to class

iC . The factor A has m 257 
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values and its average entropy is calculated as follows: 258 

   
1

E A
m

i

i

p H S


   (6) 

The split information value denotes the potential information obtained by splitting 259 

S into m parts corresponding to m outcomes on attribute A and can be calculated as 260 

follows: 261 

     2

1

S log
m

A i i i

i

SplitInfo X S S S S


   (7) 

Finally, the variable importance value (VI) is defined as follows: 262 

 
 

 

( )

A

H S E A
VI A

SplitInfo S


  (8) 

Factors with higher VI values are more important for prediction models. If the 263 

values are equal to 0, it can be considered that the corresponding factors have no 264 

contribution to flood occurrence and should be removed from flood susceptibility 265 

modelling. 266 

3.3. RNN and LSTM neural network 267 

As a class of artificial neural network, RNN has received great success in the fields 268 

involving sequential data analysis (Choi et al., 2017; Ma et al., 2015; Mou et al., 269 

2017). From the graphic structure of the regular RNN shown in Fig. 3, we can see that 270 

RNN can store information of the previous hidden state and apply it to the output 271 

along with the current input. In this manner, RNN is able to capture dynamic 272 

representations from sequential data by using a specific recurrent hidden state (LeCun 273 

et al., 2015). 274 
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LSTM, as a special type of RNN, is presented to capture long-term dependence of 275 

sequential data (Hochreiter and Schmidhuber, 1997). A LSTM network consists of an 276 

input layer, a hidden layer and an output layer, and its structure is similar to that of 277 

RNN. But the difference between RNN and LSTM is that the latter replaces the basic 278 

unit of the regular RNN with a memory block (Graves et al., 2013). As shown in Fig. 279 

4, the memory block contains three gate functions which play different roles in 280 

information flow process.  281 

Let  1 2, ,..., Nx x x x  be a sequential input and  1 2, ..., Ny y y y  denotes the 282 

output sequence, the forget gate is a key state that determine whether the current 283 

information should be forgotten or remembered. For a certain time step t, it can be 284 

calculated as follows: 285 

 1t fx t fh t ff W x W h b     (9) 

where fxW  and fhW  are the forget weight matrix and the forget-hidden weight 286 

matrix, respectively, fb  is the bias of the forget gate, and   is the sigmoid 287 

function. The input gate ti  determines the information updating and tc  memorizes 288 

the new information, which are defined as follows: 289 

 1t ix t ih t ii W x W h b     (10) 

 1tanh cx t ch tt cW x W hc b    (11) 

where ixW  and chW  denotes the weight matrix, ib  and cb  are the bias vectors 290 

of input gate and updating cell state, respectively. 291 

Then, the new memory cell state tc  is updated as follows: 292 

1t t tt t cc f c i   (12) 
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where 1tc   is the previous memory cell state and  represents the element-wise 293 

product. 294 

Finally, the output gate controls the output activations. The hidden layer sent to 295 

next time step is defined as follows: 296 

tanh( )t t th o c  (13) 

1( )t ox t oh t oo W x W h b     (14) 

where oxW  is the output weight matrix, ohW  denotes the output-hidden weight 297 

matrix and ob  is the bias of the output gate. 298 

 299 

 300 

Fig. 3. Graphic structure of the regular RNN. x , h  and y  are the input layer, 301 

hidden layer and output layer, respectively. t  is a certain time step. 302 
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 303 

Fig. 4. Architecture of the LSTM network. x  and y  are the input layer and output 304 

layer, respectively. t  is a certain time step. t
i , t

f  and t
o  are the input gate, forget 305 

gate and output gate, respectively. t
c  memorizes the new information and t

c is new 306 

memory cell gate. 307 

3.4. Modelling process of LSS-LSTM 308 

The proposed LSS-LSTM method mainly consists of three steps: layer stacking, 309 

feature engineering and LSTM construction, as illustrated in Fig. 5. In the layer 310 

stacking step, each flood conditioning factor can be viewed a single-band image with 311 
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a size of 2156  1722, and all the conditioning factor layers are stacked together to 312 

form a multi-band image. In the feature engineering step, we produce each image 313 

patch pixel by pixel from the multi-band image. As shown in the Fig. 5 (b), each 314 

central pixel and its neighboring pixels in a 3  3 window are first extracted, and the 315 

resultant image patch have a size of 3  3  13 that is composed of 9 vectors. Image 316 

patches contain the characteristics of the factors and the spatial information. Then, 317 

these vectors are sorted to construct sequential data with a size of 9  13 according to 318 

spatial continuity. In the LSTM construction step, a LSTM structure is constructed to 319 

possess these extracted sequential data. The sorted vectors are progressively sent to 320 

the LSTM architecture and the results are output only at the final time step. To the 321 

best of our knowledge, flood events are not only related to its morphological, 322 

geological and hydrological conditions, but also to the neighboring environment 323 

information (Giovannettone et al., 2018; Sampson et al., 2015). According to the 324 

inherent nature of LSTM mentioned previously, useful information for previous 325 

vectors that contribute to flood prediction can be memorized and passed to subsequent 326 

hidden layer states. Irrelevant and redundant information will be discarded by using 327 

the forget gate of LSTM. In the final time step, all important information is 328 

aggregated and contributes to flood susceptibility analysis.  329 
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 330 

Fig. 5. Modelling process of LSS-LSTM. In panel (a), all the conditioning factors are 331 
stacked together to form a multi-band image. Then, in panel (b), each pixel and its 332 

neighboring pixels in a 3  3 window are extracted, and 9 pixel vectors are sorted into a 333 

sequential data based on spatial continuity. In panel (c), the sequential data is sent to LSTM 334 
network. x and y denote the input and output, respectively. 335 

3.5. Model optimization 336 

Over-fitting is a common problem in applying deep learning methods 337 

(Schmidhuber, 2015). Specifically, over-fitting occurs when learning models are so 338 

closely fitted to training data and causes a negative impact on predicting new data. In 339 

this study, two optimization techniques of data augmentation and batch normalization 340 
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were used to solve the over-fitting problem during the modelling process. 341 

3.5.1. Data augmentation 342 

Since it is very difficult to obtain sufficient flood samples for model construction, 343 

the data augmentation technique is used to increase the number of training samples, 344 

which can improve the generalization ability of the prediction model. In general, the 345 

training set can be augmented by rotating and flipping each extracted image patch. 346 

Fig. 6 shows seven types of transformation for an image patch with an uppercase 347 

letter F in the augmentation process. We can obtain 4 different samples by rotating the 348 

image patch with 90˚, 180˚ and 270˚, including the image patch itself, and the other 349 

four new samples are obtained by flipping the four image patches in the horizontal 350 

direction. Finally, the training set can be increased by 8 times. For example, the 351 

original training set contains 152 samples in this study. After the data augmentation 352 

procedure, the final training set for LSS-LSTM modelling includes 1216 samples. 353 

 354 

Fig. 6. Schematic diagram of data augmentation. 355 
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3.5.2. Batch normalization 356 

Batch normalization can normalize the neural network layer by adjusting and 357 

scaling the activations, which can improve the generalization ability and convergence 358 

speed of the model (Ioffe and Szegedy, 2015). This technique is conducted to fix the 359 

mean and variance of layer input. During the training process of the LSS-LSTM 360 

method, the training data is sent to the neural network in batches. For one of the 361 

batches B that have m samples, the mean and variance are first calculated as follows: 362 

1

1 m

B i

i

x
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


   (15) 
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Then, each sample is normalized separately as follows: 363 

2
ˆ , 1, 2,...,i B

i

B

x
x i m



 


 


 (17) 

where   is a very small constant for numerical stability. Next, the normalized 364 

values are scaled and shifted by a pair of parameters that are calculated as follows: 365 

ˆ , 1,2,...,i iy x i m     (18) 

where   and   are learnt in the subsequent optimization process. Finally, the 366 

output of the batch normalization transformation is passed to the neural network layer.  367 

3.6. Model evaluation criteria 368 

Model evaluation is a crucial step to assess the effectiveness of various FSP 369 

methods (Ahmadlou et al., 2018; Wang et al., 2019c). In this study, the receiver 370 
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operating characteristic (ROC) curve that plots “sensitivity” on y-axis and 371 

“1-specificity” on x-axis and the area under ROC (AUC) is used for evaluation. The 372 

AUC value ranges from 0 to 1, and a higher value indicates a better model 373 

performance. Furthermore, several statistical criteria shown in Table 2 were used to 374 

assess the performance of the FSP model as well. 375 

Table 2 Statistical criteria for evaluation. 376 

Evaluation criterion Description & formula  

True Positive (TP) The number of flood samples that are correctly classified. 

False Positive (FP) The number of non-flood samples that are misclassified. 

True Negative (TN) The number of non-flood samples that are correctly classified. 

False Negative (FN) The number of non-flood samples that are misclassified. 

Accuracy 
TP TN

Accuracy
TP TN FP FN




  
 

Sensitivity 
TP

Sensitivity
TP FN




 

Specificity 
TN

Specificity
TN FP




 

4. Results and discussion 377 

4.1. Relationship analysis between conditioning factors and 378 

flood occurrence 379 

The VI values of different flood conditioning factors are shown in Fig. 7. All 380 

factors had a positive impact on the occurrence of floods. Specifically, the factors of 381 

slope and aspect achieved the highest and lowest VI values of 0.2929 and 0.0142, 382 

respectively. This is because river flood disasters often occur on flat terrain with low 383 

slopes. In addition, other studies confirmed the similar observations (Bui et al., 2020; 384 

Chen et al., 2019; Termeh et al., 2018).  385 
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 386 

Fig. 7. Importance of flood conditioning factors using the IGR method. Factors with 387 

higher VI (variable importance) values are more important for prediction models, whereas 388 

factors with VI of zero indicate no contribution to floods. 389 

To further explore the relationship between the conditioning factors and the 390 

occurrence of floods, we calculated the frequency ratio (FR) values of various factors. 391 

FR can measure the potential of flooding in the area corresponding to each category 392 

of a conditioning factor. The FR value is calculated by the ratio of percentage of 393 

floods to the percentage of domain in a specific class (Arabameri et al., 2019; Tehrany 394 

et al., 2015). The higher the FR value, the more prone to flooding in the 395 

corresponding areas (Termeh et al., 2018). Fig. 8 shows the FR values of different 396 

conditioning factors (see detailed information in Table A1 in Appendix). As for the 397 

altitude factor, areas with altitude lower than 300 m have higher FR values than other 398 

regions, and 89.81% of the historical floods occurred in the corresponding area. This 399 

observation is associated with our previous analysis that flat areas are more prone to 400 

floods. Furthermore, our results are relevant to other studies (Arabameri et al., 2019; 401 

Shafizadeh-Moghadam et al., 2018). In terms of the aspect factor, the flat class has the 402 
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highest FR value of 3.54. However, since flat class contain very few grid cells and 403 

floods, this class is not instructive for floods. In addition, the FR values of aspect of 404 

other classes are closer, indicating the relationship between the aspect factor and flood 405 

occurrence is weak. This observation can also explain why the lowest VI value of 406 

aspect is achieved using the IGR method. Area with curvature value between -1 and 1 407 

has the highest FR value. The corresponding area is determined to be a flat area, with 408 

74.07% of the historical floods. The distance to river factor is key because rivers are 409 

the main channels for flood drainage and expansion (Bui et al., 2019d). From the Fig. 410 

8 we can find that the FR value decreases with increasing distance to rivers. In 411 

addition, FR values of the class with distance to river between 0 and 200 m are much 412 

higher than other classes, and the corresponding area accounts for 92.59% of the 413 

historical floods. This is why the distance to rivers factor is the second most important 414 

variable according to the results of the IGR method. Land use is another important 415 

factor for flood occurrence. Among these categories, the percentage of floods in 416 

grassland areas is the highest (83.33%), because grassland is usually located in flat 417 

areas. Moreover, no floods occur in forested areas because the forest area has strong 418 

water storage capacity and can mitigate flood disasters (Caprario and Finotti, 2019; 419 

Chapi et al., 2017). For lithology, Class I has the highest FR value of 1.61, while 420 

Class A has a FR value of 0 because the areas of Class A is mainly composed of 421 

dolomite, and its drainage density is lower, so the possibility of flooding is lower. For 422 

NDVI, the FR value decreases as the NDVI value increases. Higher NDVI values 423 

indicate better condition for vegetation growth . As a result, vegetated areas can store 424 
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large amount of water and reduce the possibility of floods. Regarding the rainfall 425 

factor, all categories except the lowest rainfall class achieve high FR values. Other 426 

studied have also confirmed that heavy rainfall can increase the likelihood of floods 427 

(Giovannettone et al., 2018; Rahmati et al., 2016; Zhao et al., 2018). The areas with 428 

slope less than 10° has the highest FR value and other areas have near-zero FR values. 429 

It can be found that flat terrain is more prone to flooding. In the case of soil, the 430 

classes of ACh and ATc have higher FR values of 3.91 and 1.18 than other soil types. 431 

Several studies have confirmed that soils are related to the occurrence of floods 432 

because soil types directly determine soil permeability and structure 433 

(González-Arqueros et al., 2018; Tehrany et al., 2014; Tehrany et al., 2015). The class 434 

with SPI value larger than 200 has the highest FR value of 1.51, and the class with 435 

value between 25 and 50 has the lowest FR value of 0.32. For the STI factor, areas 436 

with SPI value less than 10 class has the highest FR value of 1.50, and the 437 

corresponding area accounts for 73.15% of the historical flood locations. This 438 

observation is consistent with previous studies that low STI a high flooding potential 439 

(Hong et al., 2018b; Tehrany et al., 2019). For the TWI factor, the FR value increases 440 

as the TWI value increases because higher TWI values indicate higher water 441 

accumulation levels, which is also consistent with other studies (Chapi et al., 2017; 442 

Shafizadeh-Moghadam et al., 2018; Tehrany et al., 2015). 443 

In this study, we extracted flood conditioning factors from different sources and 444 

screened them based on the above relationship analysis. The quality of data sources is 445 

important for flood susceptibility modelling. The ASTER GDEM product is available 446 
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for free to acquire, which have been widely used to extract flood conditioning factors 447 

in previous studies (Iosub et al., 2020; Khosravi et al., 2019; Tien Bui et al., 2019). 448 

Moreover, some advanced DEM products (such as shuttle radar topography mission 449 

(SRTM) DEM and multi-error-removed improved-terrain (MERIT) DEM) have 450 

higher accuracy than ASTER GDEM in hydrological analysis. Therefore, in future 451 

research, it is necessary to discuss the impact of different advanced DEM data for 452 

flood susceptibility modelling. In addition, we should note that there is a temporal 453 

mismatch between flood occurrence and its conditioning factors. Generally, lithology 454 

and soil can be regarded as constant factors and may not change over time. However, 455 

DEM, land use and NDVI will be affected by major changes seasonally within 456 

decades. Even within the same year, certain flood conditioning factors may change 457 

significantly. This is an important problem existed widely and is difficult to solve in 458 

FSP. Most researchers treated the flood conditioning factors as constant and ignore the 459 

temporal mismatch (Bui et al., 2019d; Chapi et al., 2017; Giovannettone et al., 2018). 460 

It should be noted that Roy et al. (2020) discussed the flood susceptibility results 461 

based on multi-temporal land use and rainfall factors. It will be necessary to 462 

dynamically analyze flood susceptibility with different temporal factors in the future.  463 
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Fig. 8. Spatial relationship between conditioning factors and flood occurrence using frequency 464 

ratio (FR) model. A higher FR value indicates that the corresponding class is more prone to 465 

flooding. 466 

4.2. Model performance 467 

In the LSS-LSTM modelling process, the training strategy and hyperparameter 468 
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setting have a significant impact on model performance. The purpose of the training 469 

process is to minimize the loss value and iteratively update the parameters using a 470 

specific optimization method. As shown in Fig. 9, the loss values of the training and 471 

validation data gradually decreased as the epochs increases, indicating a satisfactory 472 

training process. In this study, all the hyperparameters used in the LSS-LSTM method 473 

were optimized using the grid search method based on the five-fold cross-validation 474 

procedure, and Table 3 lists the search space and the optimized results. The final 475 

network architecture of LSS-LSTM model contains one input layer, one hidden layer 476 

with 25 LSTM cells and one hidden layer. Moreover, the batch normalization layer 477 

was added before each activation function layer. All experiments were performed in 478 

Python under the framework of Keras
7
 and Scikit-Learn

8
. 479 

 480 

Fig. 9. The loss value variation during training process. The convergence of training and 481 

validation loss values to a lower level indicates a satisfactory training result. 482 

 483 

                                                   
7
 https://keras.io 

8
 https://scikit-learn.org 
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 484 

Table 3 The search space and the optimized hyperparameters. 485 

Hyperparameters Search space Search results Description 

Activation 

function 

[ReLU, Tanh] Tanh Converting the linear relationships 

into nonlinear ones 

Optimizer [Adam, Adadelta, Adagrad, RMSprop] Adagrad Providing the direction to update the 

weights of the network 

Learning rate [0.001, 0.002, 0.005, 0.1, 0.2, 0.5, 1] 0.002 Controlling the learning speed of the 

model 

Batch size [100, 200, 300, 400, 500] 500 Number of samples processed by the 

neural network per iteration 

Hidden size [10, 15, 20, 25, 30] 25 Modulating the output size of hidden 

layers in the LSTM network 

After the modelling construction, we used the LSS-LSTM method to predict flood 486 

susceptibility. Table 4 presents the prediction performance. The LSS-LSTM method 487 

achieved an accuracy of 93.75%, which means that the method can effectively 488 

distinguish between flood samples and non-flood samples. In this experiment, flood 489 

susceptibility model is used to predict the probability of flood occurrence in a given 490 

area. Therefore, it is necessary to accurately predict the flood area and a higher 491 

accuracy value is crucial for our results. Moreover, another key point is that the flood 492 

model cannot miss any potential flood regions. This is because if we fail to find the 493 

area where the flood disaster may occur, prevention and management of this area may 494 

be ignored, which may cause devastating damage for society. Therefore, sensitivity is 495 

a remarkable index in the field of FSP. Results show that LSS-LSTM method 496 

achieved a very high sensitivity value of 96.67, indicating that the model has the 497 

ability to find almost all potential flood locations. Fig. 10 shows the ROC curve using 498 

the test set. As claimed in previous studies (Arabameri et al., 2019; Kanani-Sadat et 499 

al., 2019), a AUC value larger than 0.9 is an excellent prediction result. Therefore, the 500 
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proposed LSS-LSTM method achieved a relative good prediction performance with 501 

an AUC value of 0.965. 502 

Table 4 Prediction performance of LSS-LSTM. 503 

Method Accuracy Sensitivity Specificity 

LSS-LSTM 93.75% 96.67% 91.18% 

 504 

Fig. 10. ROC curve of the LSS-LSTM method. 505 

In our experiments, we calculated the susceptibility indices of 1,714,419 grid cells 506 

in the study area to build the flood susceptibility map. All the susceptibility indices 507 

were sorted in ascending order and divided into five classes using the natural (Jenks) 508 

breaks method (Chapi et al., 2017; Shafizadeh-Moghadam et al., 2018; Tehrany et al., 509 

2019). Fig. 11 shows the final flood susceptibility map obtained by the proposed 510 

LSS-LSTM method. The majority of floods are located in the very high and high 511 

susceptible zones, and these very high susceptible areas are mainly located in the 512 

eastern and southern parts of the study area, which are low in altitude and slope and 513 

close to rivers. The sub-region (a) in the susceptibility map is the location of 514 
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Shangyoujiang Reservoir, and the sub-region (b) is close to the Shangyou River, 515 

which is the main tributary of the Gangjiang River system in the Yangtze River basin. 516 

To quantitatively analyze the resultant susceptibility map, the flood density (FD) 517 

index, that is the percentage of flood pixels (PFP) divides by the percentage of 518 

susceptible class pixels (PSP), was used for evaluation. As shown in Table 5, the very 519 

high susceptibility class achieved the highest FD value of 13.39, followed by the 520 

classes of high (2.99), and moderate (0.29). Meanwhile, no flood occurred in the very 521 

low and low susceptible areas, indicating that the flood susceptibility map is reliable 522 

in the low susceptible area. It is also instructive for management, making it easier for 523 

people to focus on these areas with high susceptibility. In addition, the obtained trends 524 

of flood density distribution are completely consistent with several previous studies 525 

(Bui et al., 2020; Shafizadeh-Moghadam et al., 2018; Termeh et al., 2018). 526 

 527 

Fig. 11. Flood susceptibility map of the LSS-LSTM method. The continuous susceptibility 528 
values were reclassified into five susceptible classes using the natural (Jenks) breaks method. 529 

 530 
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 531 

 532 

 533 

 534 

 535 

 536 

Table 5 Flood density analysis of the flood susceptibility map by LSS-LSTM. The flood 537 
density (FD) is calculated by the ratio of the percentage of flood pixels (PFP) to the 538 
percentage of susceptible class pixels (PSP). 539 

Susceptibility Class No. of class pixels PSP No. of flood pixels PFP FD 

Very low 965,654 59.70 0 0.00 0.00 

Low 380,243 23.57 0 0.00 0.00 

Moderate 161,723 6.37 3 2.78 0.29 

High 106,032 3.97 20 18.52 2.99 

Very high 100,767 6.39 85 78.70 13.39 

4.3. Model sensitivity analysis 540 

Generally, results of a robust flood susceptibility model should not change a lot if 541 

the input data changes with a reasonable range. To effectively demonstrate the 542 

prediction results of the LSS-LSTM method is universal rather than accidental, this 543 

study analysed two random manipulations occurred in LSS-LSTM modelling process 544 

to measure model sensitivity.  545 

For the first random manipulation, we randomly selected the training and test sets 546 

for 10 times. Thus, a total of 10 LSS-LSTM models were constructed for evaluation. 547 

Table 6 reports the results of several evaluation criteria for the proposed method 548 

performed 10 times. All the evaluation criteria demonstrate stable and reasonable 549 
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fluctuations. For example, the mean and standard deviation (std) of AUC were 0.958 550 

and 0.016, and those of ACC were 91.95% and 2.06%, respectively. In summary, the 551 

results indicate that the proposed method is not sensitive to the randomness of 552 

training/test splitting process and is robust to flood susceptibility analysis. 553 

For the second random manipulation, we randomly changed the stacking order of 554 

conditioning factors for 10 times when all the conditioning factors are stacked 555 

together, as shown in Fig. 5 (a). Results of LSS-LSTM performed 10 times is shown 556 

in Table 7. All the evaluation criteria have a reasonable fluctuations. For example, the 557 

mean and std of AUC were 0.958 and 0.011, and those of ACC were 92.35% and 558 

1.30%, respectively. Compared to the results of LSS-LSTM with different 559 

training/test sets (Table 6), the results of LSS-LSTM with different factor stacking 560 

orders are less fluctuating. The phenomenon indicates that model performance is less 561 

sensitive to the variation of factors stacking order. This is because modelling samples 562 

contains different flood information, and each random splitting process may generate 563 

totally new training/test sets. However, when we change the stacking order of 564 

conditioning factors in LSS-LSTM modelling process, the total amount of 565 

information contained in the factors did not change. Furthermore, from the inherent 566 

structure of LSTM we can know that this network is not sensitive to factors order. 567 

 568 
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Table 6 Results of the LSS-LSTM method that carried out 10 times with different training/test sets. 569 

Evaluation criteria 
Number of experiments Statistics 

1 2 3 4 5 6 7 8 9 10 Min Max Average Std 

AUC 0.965 0.955 0.946 0.985 0.946 0.976 0.959 0.976 0.938 0.938 0.938 0.985 0.958 0.016 

Accuracy (%) 93.75 89.06 90.63 92.19 92.19 93.75 90.63 92.19 89.06 95.90 89.06 95.90 91.95 2.06 

Sensitivity (%) 96.67 83.78 100 96.55 100 96.67 90.63 93.55 93.10 96.67 83.78 100 94.76 4.59 

Specificity (%) 91.18 96.30 84.21 88.57 86.49 91.18 90.63 90.91 85.71 91.18 84.21 96.30 89.64 3.12 

Table 7 Results of the LSS-LSTM method that carried out 10 times with different stacking orders of flood conditioning factors. 570 

Evaluation criteria 
Number of experiments Statistics 

1 2 3 4 5 6 7 8 9 10 Min Max Average Std 

AUC 0.965 0.941 0.955 0.974 0.963 0.966 0.947 0.965 0.940 0.962 0.940 0.974 0.958 0.011 

Accuracy (%) 93.75 92.19 93.75 90.63 92.19 93.75 90.63 92.19 93.75 90.63 90.63 93.75 92.35 1.30 

Sensitivity (%) 96.67 96.55 96.67 96.43 100 96.67 96.43 100 100 96.43 96.43 100 97.59 1.58 

Specificity (%) 91.18 88.57 91.18 86.11 86.49 91.18 86.11 86.49 88.89 86.11 86.11 91.18 88.23 2.15 

 571 

 572 
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4.4. Model uncertainty analysis 573 

To analyze the uncertainty of applying the LSS-LSTM method in FSP, we 574 

constructed two uncertainty scenarios: 10 susceptibility estimates obtained from 575 

LSS-LSTM method with different training/test sets and 10 susceptibility estimates 576 

obtained from the LSS-LSTM method with different factors stacking orders. For 577 

convenience, we named the above two scenarios as uncertainty scenario A and 578 

uncertainty scenario B, respectively. Due to the large amount of statistical calculation 579 

cost, for each uncertainty scenario, we first calculated the average of the 10 580 

susceptibility estimates and arranged them in ascending order. Then, we selected 581 

85720 grid cells from the average susceptibility estimates based on a systematic 582 

sampling with a periodic interval of 20, which can represent the susceptibility value 583 

distribution of the study area. A comparison between the single susceptibility estimate 584 

(the same as the Fig. 11) and the average susceptibility estimate is shown in Fig. 12. 585 

Guzzetti et al. (2006) compared the mean value of 50 susceptibility estimates and a 586 

single susceptibility estimate, which proved that the correlation between them is very 587 

high. Peng et al. (2014) performed a comparison between the average of 5 588 

susceptibility estimates and a single susceptibility estimate, and obtained a high 589 

correlation ( 2 0.909r  ) as well. As shown in Fig. 12, two uncertainty scenarios 590 

showed very high correlations ( 2 0.939r  and 2 0.915r  ) between the single 591 

susceptibility estimate and the average susceptibility estimate, indicating the predicted 592 

susceptibility by the LSS-LSTM method is robust.  593 
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. 594 

 

(a) 

 

(b) 

Fig. 12. Comparison between a single susceptibility estimate and the average susceptibility 595 
estimate. (a) Uncertainty scenario A. The average susceptibility estimate was calculated 596 
based on the 10 estimates derived from different training/test sets. (b) Uncertainty scenario 597 
B. The average susceptibility estimate was calculated based on 10 estimates derived from 598 
different factors stacking orders. 599 

In addition, in order to quantify the uncertainty of flood prediction methods, we 600 

adopted a measure strategy proposed by Guzzetti et al. (2006). Fig. 13 plots the mean 601 

susceptibility estimate on the x-axis against two standard deviations (2std) of the 602 

susceptibility estimate on the y-axis. For the two uncertainty scenarios, the 2std values 603 

increases from very low susceptibility to moderate and then decreases to very high 604 

susceptibility. Specifically, the 2std values are relatively low (< 0.35) for the low and 605 

high susceptibility zones, which indicates the LSS-LSTM method is capable of 606 

achieving stable predictions in these two susceptible zones. This conclusion is 607 

instructive and significant because it is necessary to accurately and stably predict 608 

flood locations. On the other hand, minimizing the problem of predicting potential 609 

flood areas as non-flooded areas is also important for further hazard management. 610 

Furthermore, the scatter distribution shown in Fig. 13 is sparser for moderate 611 
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susceptibility, indicating that the LSS-LSTM method is unable to stably predict 612 

whether a grid cell with moderate susceptibility is flood or non-flood. The variation in 613 

Fig. 13 can be fitted by the following equations: 614 

2 20.964 0.946 , 0 1, 0.616y x x x r        (19) 

2 21.078 1.07 , 0 1, 0.520y x x x r        (20) 

where x is the estimated susceptibility and y denotes the 2std value. In this way, Eq. 615 

(19) and Eq. (20) can be used to quantitatively assess the model uncertainty for each 616 

grid cell. 617 

 

(a) 

 

(b) 

Fig. 13. Mean susceptibility estimate (x-axis) against two standard deviations of the 618 

susceptibility estimate (y-axis). (a) Uncertainty scenario A. x-axis denotes the mean 619 

susceptibility estimate of 10 estimates obtained from different training/test sets. y-axis is the 620 

two standard deviations (2std) of the susceptibility estimate. (b) Uncertainty scenario B. 621 

x-axis denotes the mean susceptibility estimate of 10 estimates obtained from different 622 

factors stacking orders. y-axis is 2std of the susceptibility estimate. 623 

4.5. Hyperparameters sensitivity analysis 624 

It is crucial for flood susceptibility modelling to accurately set hyperparameters 625 

(Rijal et al., 2018; Santos et al., 2019), especially for constructing a deep learning 626 

neural network. In this subsection, we discussed the impact of three hyperparameters 627 
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for flood susceptibility analysis. 628 

In the first experiment, we analyzed the impact of batch normalization on flood 629 

susceptibility. The LSS-LSTM models optimized with and without batch 630 

normalization were compared. Fig. 14 presents the training and validation accuracy 631 

variations of the two models during the training process. The LSS-LSTM method 632 

using batch normalization achieved higher training and validation accuracy values 633 

than those by the LSS-LSTM method without batch normalization, indicating that the 634 

prediction capability of LSS-LSTM can be effectively improved by using the batch 635 

normalization. This is because batch normalization can solve the problem of internal 636 

covariate shift existing in the training process (Ioffe and Szegedy, 2015). More 637 

specifically, the input distribution of each hidden layer in the LSS-LSTM method is 638 

transformed to a normal distribution, which can avoid the vanishing gradient problem 639 

and accelerate convergence. Hence, the purpose of improving accuracy and 640 

generalization can be achieved.  641 

In the second experiment, we compared the LSS-LSTM models optimized with and 642 

without data augmentation. In Fig. 15, the LSS-LSTM method using data 643 

augmentation achieved higher training and validation accuracy values than those by 644 

the LSS-LSTM method without data augmentation. The data augmentation approach 645 

is a simple and convenient trick that artificially expands the size of the training set. 646 

Some publications have proven its effectiveness in improving generalization ability 647 

and application accuracy of deep learning methods in several fields (Han et al., 2018; 648 

Ma et al., 2019; Renda et al., 2019). In the field of flood susceptibility analysis, real 649 
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flood samples are very limited and the collection of the flood samples is 650 

time-consuming, which may hinder the application of deep learning in this field. The 651 

results of applying the data augmentation technique in our study demonstrate its 652 

effectiveness in improving the prediction capability of LSS-LSTM, which can provide 653 

reference and help for other researchers in applying deep learning method for FSP. 654 

  

Fig. 14. Loss variation using the LSS-LSTM models with and without batch normalization. 655 

  

Fig. 15 Loss variation using the LSS-LSTM models with and without data augmentation. 656 

In the third experiment, we analyzed the parameter of window size mentioned in 657 

section 3.2. It is an important hyperparameter in the LSS-LSTM modelling process. 658 

Fig. 16 presents the AUC values of the proposed method as the number of window 659 

size is increased during the training process. The LSS-LSTM method obtained the 660 
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highest AUC value when this parameter is set to 3. Meanwhile, since the larger 661 

window size may bring a lot of irrelevant and redundant information, the AUC value 662 

decreases as this parameter is increased from 5 to 11, which has a negative impact on 663 

flood susceptibility prediction. 664 

 665 

Fig. 16. AUC variation using the LSS-LSTM method with different window sizes. 666 

4.6. Comparison with state-of-the-art techniques 667 

To demonstrate the effectiveness of the LSS-LSTM method, we selected three 668 

benchmark deep learning techniques for comparison: regular deep neural network 669 

(DNN), one-dimensional convolutional neural network (1D-CNN) and 670 

three-dimensional convolutional neural network (3D-CNN). The input form of DNN 671 

and 1D-CNN used a commonly used one-dimensional vector-based method. The 672 

3D-CNN extract factors information and local spatial information from window 673 

patches. The implementation details of DNN, 1D-CNN, and 3D-CNN can refer to 674 

several previous publications (Bui et al., 2020; Bui et al., 2019d; Wang et al., 2020a). 675 
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Note that the data augmentation method in Section 3.5.1 was used in 3D-CNN 676 

modelling process. Table 8 presents the prediction accuracies of the four methods. 677 

The LSS-LSTM method achieved the highest accuracy value of 93.75%, followed by 678 

3D-CNN (92.19%), 1D-CNN (90.63%), and DNN (89.06%). Moreover, 1D-CNN 679 

obtained the highest sensitivity value of 100%, followed by LSS-LSTM (96.67%) 680 

3D-CNN (96.55%), and DNN (96.43%). 681 

Table 8 Prediction accuracies of different methods. 682 

Method Accuracy Sensitivity Specificity 

LSS-LSTM 93.75% 96.67% 91.18% 

DNN 89.06% 96.43% 86.11% 

1D-CNN 90.63% 100% 84.21% 

3D-CNN 92.19% 96.55% 88.57% 

The ROC curves of the three methods using the test set is shown in Fig. 17. The 683 

LSS-LSTM method had the highest AUC value of 0.965, followed by 3D-CNN 684 

(0.956), 1D-CNN (0.929), and DNN (0.917), indicating that the proposed method is 685 

superior to the other methods for flood prediction. In fact, to the best of our 686 

knowledge, the prediction ability of any model has its limitations due to different 687 

morphological and hydrological conditions of a certain study area, we cannot be sure 688 

that LSS-LSTM can always maintain its superiority in various inundated regions. 689 

However, the application mode of LSTM in flood susceptibility analysis can help 690 

other researchers to some extent. Moreover, the reasons why the LSS-LSTM method 691 

has the potential to portray exciting performance can be explained from the following 692 

three points. First, as mentioned in Section 3.3, LSTM is one of the powerful deep 693 

learning technique that has achieved reliable results in many fields (Graves and Jaitly, 694 
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2014; Mou et al., 2017; Sundermeyer et al., 2015; Zhang et al., 2018). Second, the 695 

occurrence of floods is not spatially independent and is closely related to neighboring 696 

terrain units. Third, the forget gate in LSTM can effectively filter out the useless 697 

information from the input data, which can improve the prediction capability of the 698 

model. Therefore, the LSS-LSTM method not only captures hidden information in 699 

flood conditioning factors, but also considers local spatial information in a specific 700 

sequence perspective. Furthermore, the proper selection of window size associated 701 

with the batch normalization and data augmentation techniques can further improve 702 

the prediction performance of the LSS-LSTM method, as mentioned in Section 4.4. 703 

 704 

Fig. 17. The ROC curve of different methods. 705 

Analyzing the impact of different training sample sizes is very important for 706 

measuring model performance (Schulz et al., 2020; Yang et al., 2020). To further 707 

demonstrate the superiority of the LSS-LSTM method to other methods, we 708 

conducted a sample sensitivity analysis using different training sample sizes for 709 
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comparison. Different proportions ranging from 10% to 90% of the flood historical 710 

locations with a step size of 20% were randomly selected as training samples. Fig. 18 711 

plots the impact of different training samples on AUC for the study area. The 712 

LSS-LSTM method obtained a higher AUC value than the other three methods when 713 

the percentage of training data increases from 30% to 70%. The reason for this 714 

observation is that LSS-LSTM method can use sufficient data to learn the best fit 715 

function. Moreover, the optimization techniques of data augmentation and batch 716 

normalization can help avoid over-fitting and improve prediction capability. Note that 717 

the LSS-LSTM method cannot achieve higher performance than other three methods 718 

with 10% and 90% training sets. This is because 10% training samples cannot provide 719 

enough flood information for modelling. When the training samples occupy 90% of 720 

the total samples, the test sample size is too small. Therefore, that two scenarios 721 

cannot reliably and accurately reflect the prediction performance of models. 722 

 723 

Fig. 18. AUC variation with different percentages of the training set. 724 
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5. Conclusions 725 

In this study, we proposed a new LSS-LSTM method to obtain a reliable and 726 

accurate flood susceptibility map by integrating an appropriate feature engineering 727 

technique with the LSTM. The proposed method can retain the superior sequence 728 

modelling ability of LSTM and capture the local spatial information of floods. The 729 

main conclusions based on the experimental results can be summarized as follows. 730 

First, the proposed LSS-LSTM method achieved a satisfactory prediction 731 

performance with the accuracy and AUC values of 93.75% and 0.965, respectively. 732 

Second, the LSS-LSTM method is not sensitive to the randomness of training/test sets 733 

splitting process and the factors stacking order. Third, the LSS-LSTM method 734 

achieved better results than the benchmark methods of DNN, 1D-CNN, and 3D-CNN 735 

with several evaluation criteria. Finally, the prediction accuracy of LSS-LSTM can be 736 

effectively improved through the two manipulations of data augmentation and batch 737 

normalization. As a conclusion, the proposed LSS-LSTM method can be an inspiring 738 

alternative for decision-makers to prevent and mitigate flood hazards. In the future, 739 

our research will explore more representative feature engineering methods that 740 

accurately portray flood information for other state-of-the-art models. 741 
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 749 

Appendix 750 

Table A1 Detailed information of FR values of all the flood conditioning factors. 751 

Factor Class 
No. of 

floods 

Percentage 

of floods 

No. of pixels 

in domain 

Percentage 

of domain 
FR 

Altitude (m) < 300 97 89.81  642,724 37.49  2.40  

300–600 10 9.26  691,735 40.35  0.23  

600–900 1 0.93  239,346 13.96  0.07  

900–1,200 0 0.00  101,286 5.91  0.00  

> 1,200 0 0.00  39,328 2.29  0.00  

Aspect Flat 2 1.85  8,969 0.52  3.54  

North 12 11.11  197,258 11.51  0.97  

Northeast 23 21.30  209,774 12.24  1.74  

East 15 13.89  224,526 13.10  1.06  

Southeast 12 11.11  267,607 15.61  0.71  

South 13 12.04  220,593 12.87  0.94  

Southwest 9 8.33  198,148 11.56  0.72  

West 10 9.26  185,559 10.82  0.86  

Northwest 12 11.11  201,985 11.78  0.94  

Curvature < -1 23 21.30  414,286 24.16  0.88  

-1–1 80 74.07  928,713 54.17  1.37  

1–3 5 4.63  312,336 18.22  0.25  

> 3 0 0.00  59,084 3.45  0.00  

Distance to 

rivers (m) 

0–200 100 92.59  491,345 28.66  3.23  

200–500 5 4.63  595,256 34.72  0.13  

500–800 2 1.85  401,932 23.44  0.08  

> 800 1 0.93  225,886 13.18  0.07  

Land use Water 0 0.00  38,042 2.22  0.00  

Farmland 1 0.93  108,600 6.33  0.15  
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Forest 0 0.00  590,942 34.47  0.00  

Bare 12 11.11  10,103 0.59  18.85  

Residential 5 4.63  12,300 0.72  6.45  

Grass 90 83.33  954,432 55.67  1.50  

Lithology A 0 0.00  752 0.04  0.00  

B 1 0.93  98,015 5.72  0.16  

C 11 10.19  431,040 25.14  0.41  

D 12 11.11  99,104 5.78  1.92  

E 1 0.93  99,094 5.78  0.16  

F 2 1.85  161,751 9.43  0.20  

G 12 11.11  62,405 3.64  3.05  

H 2 1.85  99,490 5.80  0.32  

I 67 62.04  662,768 38.66  1.60  

NDVI < 0.1 73 67.59  191,936 11.20  6.04  

0.1–0.2 29 26.85  355,224 20.72  1.30  

0.2–0.3 6 5.56  510,347 29.77  0.19  

0.3–0.4 0 0.00  453,945 26.48  0.00  

> 0.4 0 0.00  202,967 11.84  0.00  

Rainfall < 1,500 0 0.00  11,799 0.69  0.00  

1,500–1,600 25 23.15  211,303 12.33  1.88  

1,600–1,700 37 34.26  511,137 29.81  1.15  

1,700–1,800 39 36.11  919,713 53.65  0.67  

> 1,800 7 6.48  60,467 3.53  1.84  

Slope ( ) < 10 102 94.44  435,411 25.40  3.72  

10–20 6 5.56  631,952 36.86  0.15  

20–30 0 0.00  441,683 25.76  0.00  

> 30 0 0.00  205,373 11.98  0.00  

Soil ATc 27 25.00  109,518 6.39  3.91  

WR 0 0.00  31,973 1.86  0.00  

ACu 3 2.78  351,468 20.50  0.14  

ALh 0 0.00  132,386 7.72  0.00  

Ach 77 71.30  1,036,970 60.49  1.18  

CMo 0 0.00  450 0.03  0.00  

LVh 0 0.00  24,647 1.44  0.00  

RGc 1 0.93  27,007 1.58  0.59  

SPI 0–25 66 61.11  867,514 50.60  1.21  

20–50 6 5.56  295,701 17.25  0.32  

50–100 12 11.11  211,872 12.36  0.90  

100–200 4 3.70  128,630 7.50  0.49  

> 200 20 18.52  210,702 12.29  1.51  

STI < 10 79 73.15  838,580 48.91  1.50  

10–30 16 14.81  594,586 34.68  0.43  

30–50 2 1.85  134,566 7.85  0.24  

50–70 2 1.85  49,108 2.86  0.65  


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> 70 9 8.33  97,579 5.69  1.46  

TWI < 4 0 0.00  56,562 3.30  0.00  

4–6 13 12.04  1,016,532 59.29  0.20  

6–8 41 37.96  401,754 23.43  1.62  

8–10 28 25.93  134,892 7.87  3.30  

> 10 26 24.07  104,679 6.11  3.94  

 752 

 753 
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