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A B S T R A C T

Accurate and reliable water temperature forecasting models can help in environmental impact assessment as
well as in effective fisheries management in river systems. In this paper, a hybrid model that couples discrete
wavelet transforms (WT) and artificial neural networks (ANN) is proposed for forecasting water temperature.
Four mother wavelets, including Daubechies, Symlet, discrete Meyer and Haar, are considered to develop the
WT-ANN hybrid model. The hybrid model is applied to forecast daily water temperature on the Warta River in
Poland. Time series of daily water temperatures in eight river gauges as well as daily air temperatures of seven
meteorological stations are used for forecasting daily water temperature. The performance of this WT-ANN
hybrid model is evaluated by comparing the results with those obtained from linear and non-linear regression
models as well as a traditional ANN model. The results show that the WT-ANN models perform well in simulating
and forecasting river water temperature time series, and outperform the linear, non-linear and traditional ANN
models. The superior performance of the WT-ANN models is particularly observed for extreme weather condi-
tions, such as heat waves and drought. Among the four mother wavelets applied, the discrete Meyer performs the
best, slightly better than the Daubechies at level 10 and Symlet, while the Haar mother wavelet has the lowest
accuracy. In addition, the model performance improves with an increase in the decomposition level, indicating
the importance of the choice of decomposition level. The outcomes of this study have important implications for
water temperature forecasting and ecosystem management of rivers.

1. Introduction

The temperature of water in rivers is a good indicator of climate
variability and change as well as an indicator of the control of processes
occurring in river ecosystems and their services (Webb et al., 2008;
Letcher et al., 2016). It is an important abiotic factor that shapes op-
timal conditions for the existence and growth of organisms and pre-
serves the ecological function of the watercourses (Caissie, 2006;
Padilla et al., 2015; Letcher et al., 2016). Analysis of the thermal regime
of rivers in various climatic and environmental conditions constitutes
key information for the assessment of the ecological status of waters.

The temperature of water in rivers is shaped by the influence of the
natural environment, undergoing daily, seasonal, annual and decadal
changes. Changes in water temperature are mainly in terms of surface
heat exchange with the atmosphere, as well as turbulent mixing of
water of different temperatures (Caissie, 2006). Accurate and reliable

water temperature forecasting models can help in environmental im-
pact assessments as well as in effective fisheries management in river
systems.

Many studies on the relationships between water temperature and
air temperature have been carried out for the evaluation of long-term
trends of their changes and the possibility of their predictions (Mohseni
et al., 1998; Mohseni and Stefan, 1999; Webb et al., 2003; Morrill et al.,
2005; Webb and Nobilis, 2007; van Vliet et al., 2011; Grbić et al., 2013;
Johnson et al., 2014; Nury et al., 2017; Graf, 2018; Zhu et al., 2018,
2019a,b). Such studies have applied simple linear and non-linear re-
gression models and more complex parametric and nonparametric
methods (St-Hilaire et al., 2012; Detenbeck et al., 2016). Interesting
examples are: the Gaussian process regression models, which are non-
parametric kernel-based probabilistic models (Grbić et al., 2013; Zhu
et al., 2018) and the cross-correlation function or Granger’s causality
(Graf, 2018). A majority of such studies have also reported high
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coefficients of determination (> 0.8), demonstrating high dependence
of water temperature on air temperature (Pilgrim et al., 1998; Caissie
et al., 2001; Webb et al., 2003; Morrill et al., 2005). The traditional
statistical/time series methods, such as linear and non-linear regression
models, are simple to implement; however, they produce, in general,
large modelling errors (van Vliet et al., 2011). On the other hand, the
process-based deterministic models are accurate; however, they are
often complex and need a lot of information as model inputs, such as
river bathymetry, a complete set of meteorological information (air
temperature, solar radiation, wind, etc.), inflow and outflow conditions,
etc. As a result, application of such models for regions with limited data
is impractical.

During the past two decades or so, artificial neural networks (ANN)
have been gaining wider applications in forecasting time series, in-
cluding geophysical, meteorological and hydrological time series. Most
ANN applications are used for forecasting in situations where there is an
unknown relationship between the set of input factors and the outputs.
The ANN model has become a valuable tool for modeling non-linear
hydrometeorological phenomena, such as precipitation forecasting
(Kuligowski and Barros, 1998; Tokar and Markus, 2000; Ramírez et al.,
2005; Chiang et al., 2007; Aksoy and Dahamsheh, 2009; Mandal and
Jothiprakash, 2012), streamflow forecasting (Hsu et al., 1995;
Sivakumar et al., 2002; Noori and Kalin, 2016; Shiau and Hsu, 2016;
Prasad et al., 2017), ground water level simulation (Coulibaly et al.,
2001; Lallahem et al., 2005; Daliakopoulos et al., 2005; Nayak et al.,
2006; Mohanty et al., 2015; Chang et al., 2015), as well as river water
temperature forecasting (Hadzima-Nyarko et al., 2014; Piotrowski
et al., 2015; Zhu et al., 2018, 2019a,b; Piotrowski and Napiorkowski,
2019).

Despite their merits and usefulness, applications of the linear and
non-linear regression models as well as the traditional ANN models for
river water temperature modeling frequently have limitations, espe-
cially in processing of non-stationary data, which most hydrological
time series are (Tiwari and Chatterjee, 2010; Adamowski and Chan,
2011). In this regard, wavelet transform, as a good pre-processing
method for non-stationary data, can be a potential complement for the
traditional methods.

Wavelet transform (WT) has been widely used to reveal information
(signal) both over time and on a domain scale (frequency). It spreads
the main time series into subcomponents, which improves the decom-
position of data used in forecasts, and thus enables the capture of useful
information at different levels of data resolution. It is particularly useful
during data and function analysis, highlighting characteristic points
and discontinuities of the input signal. It has been extensively applied
in hydrology, such as rainfall–runoff relations for karstic springs (Labat
et al., 2001, 2005), scale-dependent synthetic streamflow generation
(Niu and Sivakumar, 2013), temporal patterns of precipitation (Niu,
2013; Roushangar et al., 2018), variabilities of hydrological processes
(Niu and Chen, 2016; Sang et al., 2018), and hydrological forecasting
and regionalization (Maheswaran and Khosa, 2012; Agarwal et al.,
2016).

With the ability of ANNs and WT to perform different functions on
time series, many studies have developed hybrid WT-ANN models and
applied such for forecasting time series in different fields. Such hybrid
WT-ANN models have been shown to provide good performance in
hydrological studies, such as rainfall-runoff modelling (Shoaib et al.,
2016, 2019), streamflow forecasting (Kasiviswanathan et al., 2016;
Partal, 2016; Peng et al., 2017; Yaseen et al., 2018), and river water and
groundwater level forecasting (Adamowski and Chan, 2011; Seo et al.,
2015; Barzegar et al., 2017; Ebrahimi and Rajaee, 2017), among others.
Several studies have also shown that the WT-ANN hybrid models per-
form better than some other widely used models. For example, Peng
et al. (2017) applied empirical wavelet transform and artificial neural
networks for streamflow forecasting, and reported that the hybrid
model can capture the nonlinear characteristics of the streamflow time
series and, thus, provide more accurate forecasts than the traditional

ANN model. Adamowski and Chan (2011) applied the WT-ANN model
to predict groundwater level and stated that the WT-ANN model pro-
vided better forecasting accuracy than the conventional ANN model.
Similar results have also been reported by Rajaee et al. (2011) and Seo
et al. (2016). These studies indicate that the WT-ANN hybrid models
allow users to achieve forecasts with higher accuracies.

Despite the fact that the WT-ANN models have found widespread
applications in hydrology, their applications for forecasting river water
temperature (RWT) have been very limited. To our knowledge, the
studies of Piotrowski et al. (2015) and Zhu et al. (2019b) have been the
only two, thus far, to apply the hybrid WT-ANN models for RWT pre-
diction. The study of Piotrowski et al. (2015) mainly focused on com-
paring various artificial neural network types for RWT simulation, in-
cluding multi-layer perceptron, product-units, adaptive-network-based
fuzzy inference systems and WT-ANN. Zhu et al. (2019b) applied the
WT-ANN models for RWT forecasting in the Drava River, Croatia. They
used the Daubechies at level 10 wavelet. The results showed that the
combination of WT and ANN yields better models than the conventional
forecasting models for RWT simulation. Since there are many mother
wavelets within WT, the choice of the most applicable one is of great
importance to accurately forecast RWT. This provided the motivation
for the present study.

In this paper, a hybrid model based on coupling discrete WT and
ANN for daily river water temperature forecasting was proposed.
Compared with previous studies, four widely used mother wavelets
were evaluated, for the first time, for RWT forecasting: Daubechies
(Db), Symlet (Sym), discrete Meyer (dMey) and Haar. One of the most
widely used ANN type, namely the multilayer perceptron neural net-
work (MLPNN), was used here. Eight river gauges in the Warta River in
Poland were studied with observation series covering a period of 22 to
27 years. The performance of the hybrid model (WT-ANN) was eval-
uated by comparing the results with those obtained from linear and
non-linear regression models, as well as a traditional ANN model.

2. Methodology

2.1. Linear and non-linear regression models

2.1.1. Linear regression model
For linear regression models, where one dependent variable exists,

water temperature is modelled with linear functions. Linear regression
models provide a first order estimation of the sensitivity of water
temperature to air temperature (Zhu et al., 2018). This simple model is
represented as:

= + +T t A B T t( ) · ( )w a (1)

where Tw(t) is water temperature for a given day t, A and B are re-
gression parameters, and ε(t) is an error term. Ta is the smoothed air
temperature, which can be obtained by the air temperatures from the
recent several days, as follows:

=
=

T T t i( )·a i

n
a i0 (2)

where λ0 to λn are the regression parameters. In the present study, air
temperatures over the recent seven days were used.

2.1.2. Non-linear regression model
Mohseni et al. (1998) found a non-linear relationship between water

and air temperature. They developed a non-linear regression model for
water temperature forecasting based on a logistic S-shaped function.
The non-linear regression model proposed by Mohseni et al. (1998) is
given as:

= +
+

T t µ µ
e

( )
1w T·( )a (3)

where α is a coefficient which estimates the maximum water tem-
perature, μ is a coefficient which estimates the minimum water
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temperature, β represents the air temperature at the inflexion point, and
γ represents the steepest slope of the logistic S-shaped function.

2.2. Multilayer perceptron neural network (MLPNN)

Artificial neural network models were inspired from the function of
human brain, and they have been widely used in various fields. A
neural network can be used to forecast future values based on past
history. The objective of developing an ANN model is to transform the
inputs into meaningful outputs.

The MLPNN is one of the most widely used ANN types. The MLPNN
model consists of an input layer, a single hidden layer and one output
layer (Fig. 1). The input signal are transmitted through the network in a
forward direction and layer by layer. The connections between neurons
in different layers are supplied by adjusted weighting values. Each
neuron is connected only with neurons in the subsequent layers, and
each neuron sums its inputs and later produces its output using a non-
linear activation function. The goal of an MLPNN model is to develop a
relationship of the form:

=Y f X( )m n (4)

where Xn is model input (including variables x1, x2…xn) and Ym is
model output (including variables y1, y2…ym). For RWT forecasting in
this study, xi is air temperature, and yi is RWT.

In the MLPNN model used in this study, the observed data were
divided into three sets, namely a training dataset, a validation dataset,
and a testing dataset. A trial-and-error method was used to determine
the optimum number of neurons in the hidden layer. The
Levenberg–Marquardt algorithm was used to train the MLPNN models
because it is accurate and reliable (Adeloye and De Munari, 2006;
Adamowski and Chan, 2011). In the model calibration period, the mean
squared error was used to define the network error. For each MLPNN
model, we repeated every calibration 30 times, and used the mean
squared error as the performance index. To prevent overfitting, early
stopping method was used for each model, as suggested by Piotrowski
and Napiorkowski (2013). One of the simplest methods of early stop-
ping, namely the Generalization Loss class (Prechlet, 1998; Rowinski
and Piotrowski, 2008; Piotrowski and Napiorkowski, 2011), was used,

which can help to terminate the training process when validation error
exceeds its previously defined minimum value by 20%. Then, the pre-
viously defined solution with the lowest objective function value for
validation data set was considered as the optimal one.

In the present study, the traditional MLPNN models used the ori-
ginal time series data of air temperature (without transformation by
WT) as the model input. To consider the time lags between air tem-
perature and water temperature, air temperature of the recent seven
days were used as input.

Data normalization is an important step for MLPNN models. In this
study, all the variables were normalized to have zero mean and unit
variance using the Z-score method (Olden et al., 2004; Zhu et al.,
2019a):

=x
x m

Sni k
i k k

dk
,

,

(5)

where xni,k is the normalized value of the variable k (input or output)
for each sample i, xi,k is the original value of the variable k, and mk and
Sdk are the mean value and standard deviation of the variable k.

2.3. Coupled wavelet transform and artificial neural networks (WT–ANN)
model

Fig. 1 presents the flow diagram of the steps involved in the com-
bined WT-ANN model. As mentioned earlier, the MLPNN was selected
in this study to represent the ANN model. The combination of WT and
MLPNN was named WTMLPNN (Fig. 1). The raw time series of daily
average air temperatures were firstly transformed into approximation
part (A) and several details (D) by WT as pre-processing (see below for
further details about WT). Then, the transformed forms of the raw time
series of daily average air temperatures were fed into the ANN model as
model inputs.

Wavelet transform has been widely applied for the analysis and de-
noising of signals and images. Wavelet transform deals with the ex-
pansion of functions based on the basis functions. Different from the
classical Fourier analysis, WT expands functions in terms of wavelets
rather than trigonometric polynomials, which are produced with the
form of translations and dilations using a fixed function, namely the

Fig. 1. Flow diagram showing the steps of the combined wavelet transform (WT) and artificial neural network (ANN): Ta is air temperature, WT-ANN is the model
coupling of WT and ANN, N1, N2 to Nn are hidden neurons, MLPNN is multilayer perceptron neural network.
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mother wavelet. The raw time series is decomposed by the wavelet
transformation into ‘wavelets’, a scaled and shifted version of the mo-
ther wavelet (Robertson et al., 1996; Chaari et al., 1996). Compared
with the Fourier Transform (FT), WT has the advantage of simulta-
neously obtaining information on the time, location and frequency of a
signal, while the FT can only provide the frequency information of a
signal (Daubechies, 1990). The WT can be divided into two categories:
the continuous wavelet transform (CWT) and the discrete wavelet
transform (DWT). Compared with the classical CWT, which requires a
significant amount of computational time and data, DWT needs less
time and is easier to implement (Adamowski and Chan, 2011; Demirel
and Anbarjafari, 2011; Nayak et al., 2016).

In this study, the DWT was employed to decompose the original
time series data of daily average air temperatures. In the DWT, digital
filtering techniques are used to obtain a time-scale signal. The original
time series is passed through high-pass and low-pass filters, and de-
tailed coefficients and approximation series are obtained with the
wavelet algorithm (Gurley and Kareem, 1999).

Choices of the appropriate mother wavelet and the decomposition
level are the two main issues in the applications of DWT (Sun and
Chang, 2002; Tascikaraoglu et al., 2016). There are several types of
mother wavelets. In this study, we used and compared four widely used
mother wavelets: Daubechies (Db), Symlet (Sym), discrete Meyer
(dMey) and Haar. These wavelets have been frequently employed in the
literature (Nourani et al., 2009, 2011; Chouakri et al., 2011;
Adamowski and Chan, 2011; Seo et al., 2015). As for Db in particular,
the Daubechies at level 10 (Db10) wavelet has been widely used in the
literature, since its wavelet coefficients can capture the maximum
amount of signal energy (Chouakri et al., 2011; Seo et al., 2015), and
was therefore used in this study as well.

The decomposition level can be determined using the method pro-
vided by Nourani et al. (2009). The method has also been applied in
Adamowski and Chan (2011) and Seo et al. (2015, 2016) for water level
and river stage forecasting. This log10 based method determines the
decomposition level using the length of time series data, and is given
by:

=L int log P[ ( )] (6)

where L is the number of decomposition levels, and P is the number of
time series data.

To investigate the impact of the decomposition level on modeling
performance, we compared wavelets with different decomposition le-
vels.

In this study, the four mother wavelets Db10, Haar, Sym, and dMey
were used separately to decompose the original time series of daily air
temperatures, and the obtained approximation part (A) and several
details (D) were fed into the MLPNN model as forecasters for RWT,
respectively. The output results of the four mother wavelets Db10,
Haar, Sym, and dMey coupled with MLPNN were named as
WTMLPNN1, WTMLPNN2, WTMLPNN3 and WTMLPNN4 respectively.
The WTMLPNN models were calibrated by the same algorithm
(Levenberg-Marquardt algorithm) as the traditional MLPNN models and
used early stopping to avoid over-fitting. For each WTMLPNN model,
we repeated every calibration 30 times, and used the mean squared
error as the performance index.

2.4. Performance indices

In this study, model performance was evaluated using three indices:
the coefficient of determination (R2), the root mean squared error
(RMSE), and the mean absolute error (MAE). These three indices have
been widely used in the literature to assess modeling performance
(Morrill et al., 2005; Singh et al., 2009; Adamowski and Chan, 2011).

The R2 measures the degree of correlation between the observed
and modelled values, and is given by:

=
= =

R
O O M M

O O M M

( )( )

( ) ( )
N i m i m

N i
N

i m N i
N

i m

2
1

1
1

2 1
1

2

2

(7)

where N is the number of samples, Oi is the observed water temperature
and Mi is the predicted water temperature at time i, Om and Mm are the
average values of Oi and Mi. The R2 values range from 0.0 to 1.0, with
1.0 indicating a perfect fit between the modelled values and the ob-
served data.

The RMSE indicates the discrepancy between the observed and
modelled values, and is given by:

=
=

RMSE
N

O M1 ( )
i

N
i i1

2
(8)

A perfect fit would have an RMSE value of 0.0.
The MAE measures the mean of all the individual errors, and is

given by:

=
=

MAE
N

M O1 | |
i

N
i i1 (9)

3. Study area and data sources

3.1. Study area

The Warta River in Poland is 808.2 km long and is the largest tri-
butary of the River Oder, which flows into the Baltic Sea (Fig. 2). The
Warta River basin covers an area of 5.45 × 104 km2, which is about
17.4% the entire area of Poland. The main tributaries are: Noteć,
Prosna, Ner and Obra. A majority of the region is lowland areas. The
northern part of the basin is dominated by low-glacial lowland land-
scapes, whereas in the southern part, periglacial plains prevails. In the
north-western part of the basin, there are extensive forest complexes,
separated by agricultural areas, while the middle part is typically
agricultural with a small share of forests. Urban areas are also im-
portant components of the landscape, with the largest urban areas
being Poznań, Łódź and Częstochowa. The Warta River in the area of
Uniejów and Poznań stations (see Fig. 2) is under the strong influence of
anthropopressure. In Uniejów, the temperature of river waters is in-
fluenced by the operation of the Jeziorsko dam reservoir. In Poznań, a
high urbanization index is registered, which is manifested, among
others, in increased pollution of river waters through uncontrolled in-
flow of sewage and sewage waters.

The Warta River basin has a typical feature of the transitional cli-
mate, with a significant share of oceanic climate features: lower tem-
perature amplitudes, early spring and summer, and relatively short
winter. In the northern and northwestern parts, the impact of the
maritime climate, resulting from the impact of the Baltic Sea (more
cloudy, lower air temperature amplitudes, and cooler summer), is in-
creasingly visible. In the eastern part of the basin, the share of con-
tinental climate features (higher amplitudes of air temperature, longer
and colder winter) increases.

The average annual air temperature in the region ranges from about
8.3 °C in the northeast to around 8.8 °C in the south and south-west.
Poznań is one of the warmest places in this area, and the entire region is
one of the warmest in Poland in terms of average annual air tempera-
ture. The hottest month is July, and the coldest is January. The average
monthly temperature in the region is below zero only in January and
February (from 0.0 to −1.0 °C). The summer months are characterized
by a smaller range of temperature, and July’s average temperature can
range from 15.0 °C to over 23.5 °C. The Warta River region, like the
whole of Poland, belongs to the regions where the last four decades
have seen an increase in temperature in all seasons (Owczarek and
Filipiak, 2016).
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3.2. Data

Daily monitoring of the Warta River water temperature is conducted
by the Institute of Meteorology and Water Management - National
Research Institute (IMGW-PIB, Warsaw, Poland) with eight river gauges
across the region: Bobry, Sieradz and Uniejów (located in the upper
course), Nowa Wieś Podgórna, Śrem and Poznań (middle course) and
Skwierzyna and Gorzów Wielkopolski (lower course) (Fig. 2). In the
vicinity of the water gauge stations, the IMGW-PIB meteorological
stations are located, where the daily air temperatures are recorded.
Data from these featured river gauges and meteorological stations were
analyzed in this study. The data considered cover a period of 22 to 27
hydrological years (hydrological year in Poland is November 1 to Oc-
tober 31). For each river gauge, data sets were divided chronologically
into training (4/9), validation (2/9) and testing (1/3) parts. The paired
river gauges and meteorological stations with training and testing

periods are summarized in Table 1. Fig. 3 presents the time series of
daily RWT for the eight river gauges. As seen, RWT in the eight gauges
generally is in the range of 0.0–25 °C.

4. Results and discussion

4.1. Model performance for the eight study basin stations

All the parameters for the linear and non-linear regression models
were fitted using least squares regression in Excel. In the ANN models,
the number of neurons in the hidden layer was varied between 10 and
13 for the eight studied gauges.

The performances of the different models in the training, validation
and testing periods for the eight stations in the Warta River are sum-
marized in Table 2.

Linear regression model: The linear model showed slight differences

Fig. 2. Map showing the Warta River and the locations of the water gauges and meteorological stations.

Table 1
Paired river gauges and meteorological stations with training and testing periods.

River gauges Meteo station Training period Validation period Testing period Hydrological years

Bobry Wieluń 1987–1998 1999–2004 2005–2012 26
Sieradz Sieradz 1987–1998 1999–2004 2005–2013 27
Uniejów Koło 1987–1992 1993–1998 2000–2009 22
Nowa Wieś Podgórna Słupca 1991–2000 2001–2006 2007–2013 23
Śrem Kórnik 1987–1998 1999–2004 2005–2013 27
Poznań Poznań 1984–1995 1996–2001 2002–2009 26
Skwierzyna Gorzów Wlkp. 1987–1996 1997–2002 2003–2010 24
Gorzów Wlkp. Gorzów Wlkp. 1984–1995 1996–2001 2002–2009 26
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in performance for individual river stations in the training, validation
and testing periods. The R2 values ranged from 0.883 (Uniejów) to
0.924 (Sieradz). In the testing periods, higher values of R2 were ob-
tained, which confirms better performance of the model for this data
series, with the exception of Skwierzyna and Nowa Wieś Podgórna
stations. These two stations are located at Warta’s valleys with low
impact of anthropopressure. Fig. 4, for example, presents a comparison
of the observed and modelled daily water temperature for the linear
(first row) for the testing period at the Bobry station (Fig. 4 also in-
cludes such a comparison for the other models used in this study for the
Bobry station; see below for details). As seen, the linear regression
model yielded many lower water temperature values (Tw < 0.0 °C) in
the winter period when air temperatures were relatively low (below
zero), which is inconsistent with the observed data (Tw > 0.0 °C).

Non-linear regression model: The non-linear regression model, based
on the logistic S-shaped function, showed greater suitability for

forecasting the Warta River water temperature as compared to the linear
model. This is evidenced by the higher R2 values and lower RMSE and
MAE values (Table 2) for the training, validation and testing datasets. For
all the eight stations, the nonlinear regression model reproduced the
relationship between the air temperature and water temperature
(R2 = 0.914–0.957) better than what the linear model did
(R2 = 0.883–0.924). The lowest performance by the non-linear model
was observed for the Uniejów station (upper river) and the Poznań sta-
tion (middle river), yielding lower R2 and higher RMSE and MAE values
(R2 = 0.914–0.920, RMSE = 1.823–2.144 °C, MAE = 1.458–1.650 °C).
The non-linear model in the testing periods showed an even better per-
formance, which is reflected by the significantly higher R2 and the de-
creased values of RMSE and MAE for most of the gauges. Fig. 4 (second
row), for example, presents a comparison of the observed and modelled
daily water temperature using the non-linear model for the testing period
at the Bobry station. As seen, the matching between the observed and

Fig. 3. Time series data of daily water temperatures for the eight river gauges.
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modelled values was better than that obtained with the linear regression
model.

MLPNN model: The MLPNN performed better than that of the non-
linear and linear regression models for each of the eight river stations.
The R2 values ranged from 0.947 for the Gorzów Wielkopolski station
(testing set) to 0.969 for the Sieradz station (testing set) (Table 2).
Generally, the modelling results of MLPNN models are acceptable, with
the RMSE and MAE values ranging from 1.241 to 1.646 °C and from
0.970 to 1.473 °C in the testing period, respectively. Fig. 4 (third row)
presents a comparison of the observed and modelled daily water tem-
perature for the MLPNN for the testing period at the Bobry station. The

matching between the observed and modelled values was slightly better
than that obtained using the non-linear regression model and much
better than that obtained using the linear regression model.

WT-ANN hybrid models: The hybrid models used in the forecasting of
river water temperature time series showed a high similarity in the
results for all the eight stations (Table 2). The results were definitely
better than those obtained from the other models, including the
MLPNN, as clearly shown in Fig. 5 with the boxplots of R2, RMSE and
MAE (higher R2 values and lower RMSE and MAE values). Comparing
the hybrid and the traditional models, both in terms of individual
matching of observed versus modelled values through time series and

Table 2
Performances of different models in the training, validation and testing periods (the best models are in bold, and the results are the mean from 30 calibrations).

River station Model version Training Validation Testing

R2 RMSE (°C) MAE (°C) R2 RMSE (°C) MAE (°C) R2 RMSE (°C) MAE (°C)

Bobry Linear 0.893 1.985 1.507 0.894 1.980 1.502 0.908 1.907 1.430
Non-linear 0.937 1.526 1.169 0.938 1.520 1.162 0.948 1.445 1.140
MLPNN 0.955 1.370 1.037 0.955 1.322 1.045 0.952 1.400 1.051
WTMLPNN1 0.963 1.202 0.998 0.963 1.200 0.989 0.964 1.223 0.950
WTMLPNN2 0.965 1.188 0.982 0.954 1.235 0.980 0.949 1.426 0.980
WTMLPNN3 0.965 1.194 0.986 0.963 1.210 0.965 0.963 1.228 0.940
WTMLPNN4 0.975 1.085 0.973 0.967 1.121 0.964 0.964 1.217 0.930

Sieradz Linear 0.890 2.184 1.682 0.892 2.180 1.678 0.924 1.927 1.420
Non-linear 0.930 1.753 1.267 0.935 1.746 1.254 0.957 1.459 1.120
MLPNN 0.955 1.297 1.032 0.959 1.285 0.963 0.969 1.272 0.970
WTMLPNN1 0.969 1.181 0.982 0.972 1.089 0.952 0.979 1.023 0.890
WTMLPNN2 0.969 1.197 0.983 0.965 1.223 0.983 0.964 1.245 0.984
WTMLPNN3 0.971 1.154 0.976 0.973 1.054 0.910 0.981 0.993 0.821
WTMLPNN4 0.971 1.153 0.959 0.976 1.052 0.901 0.983 0.981 0.781

Uniejów Linear 0.883 2.442 2.089 0.893 2.437 2.021 0.901 2.150 1.824
Non-linear 0.914 1.988 1.567 0.915 1.983 1.563 0.920 1.823 1.458
MLPNN 0.958 1.213 1.028 0.955 1.225 1.056 0.953 1.241 1.086
WTMLPNN1 0.979 1.018 0.895 0.972 1.121 0.965 0.968 1.211 1.050
WTMLPNN2 0.976 1.073 0.915 0.964 1.205 1.002 0.953 1.255 1.108
WTMLPNN3 0.982 1.086 0.908 0.973 1.111 0.952 0.967 1.206 1.069
WTMLPNN4 0.988 1.033 0.887 0.982 1.056 0.943 0.978 1.110 0.959

Nowa Wieś Podgórna Linear 0.921 1.894 1.657 0.915 2.150 1.684 0.913 2.318 1.737
Non-linear 0.952 1.538 1.335 0.950 1.545 1.330 0.950 1.666 1.320
MLPNN 0.961 1.218 0.983 0.960 1.324 1.121 0.969 1.320 1.041
WTMLPNN1 0.985 0.857 0.728 0.976 1.125 0.987 0.975 1.301 1.022
WTMLPNN2 0.983 0.888 0.761 0.974 1.205 0.994 0.967 1.335 1.047
WTMLPNN3 0.984 0.868 0.747 0.981 1.045 0.965 0.979 1.268 0.984
WTMLPNN4 0.985 0.849 0.726 0.983 0.993 0.894 0.983 1.080 0.930

Śrem Linear 0.892 2.501 1.893 0.894 2.480 1.865 0.910 2.364 1.790
Non-linear 0.923 2.125 1.602 0.928 2.114 1.594 0.944 1.951 1.529
MLPNN 0.955 1.355 1.017 0.953 1.356 1.023 0.951 1.381 1.046
WTMLPNN1 0.984 1.114 0.900 0.980 1.156 0.965 0.977 1.227 0.973
WTMLPNN2 0.978 1.232 0.965 0.962 1.325 0.994 0.956 1.338 1.049
WTMLPNN3 0.985 1.005 0.885 0.983 1.067 0.913 0.982 1.144 0.933
WTMLPNN4 0.985 0.987 0.796 0.985 0.992 0.856 0.987 1.008 0.893

Poznań Linear 0.887 2.460 1.949 0.888 2.500 1.951 0.892 2.505 1.956
Non-linear 0.920 2.051 1.597 0.917 2.123 1.611 0.918 2.144 1.650
MLPNN 0.961 1.313 1.144 0.954 1.334 1.211 0.951 1.436 1.290
WTMLPNN1 0.982 1.133 0.923 0.974 1.204 1.004 0.968 1.303 1.116
WTMLPNN2 0.977 1.272 1.022 0.968 1.310 1.088 0.962 1.389 1.198
WTMLPNN3 0.981 1.149 0.961 0.975 1.189 1.026 0.967 1.332 1.212
WTMLPNN4 0.982 1.132 0.903 0.978 1.134 0.978 0.974 1.262 1.032

Skwierzyna Linear 0.901 2.016 1.749 0.894 2.230 1.780 0.888 2.503 1.940
Non-linear 0.929 1.697 1.455 0.918 1.890 1.720 0.915 2.184 1.682
MLPNN 0.958 1.071 0.975 0.950 1.365 1.245 0.948 1.646 1.473
WTMLPNN1 0.989 0.908 0.755 0.967 1.312 1.223 0.952 1.523 1.445
WTMLPNN2 0.986 0.915 0.824 0.964 1.332 1.254 0.952 1.586 1.467
WTMLPNN3 0.989 0.881 0.754 0.967 1.298 1.203 0.957 1.498 1.348
WTMLPNN4 0.989 0.868 0.734 0.972 1.178 1.067 0.966 1.434 1.286

Gorzów Wielkopolski Linear 0.889 2.447 1.973 0.890 2.445 1.975 0.895 2.454 1.980
Non-linear 0.921 2.080 1.576 0.921 2.071 1.580 0.922 2.131 1.636
MLPNN 0.954 1.342 1.134 0.950 1.367 1.178 0.947 1.389 1.250
WTMLPNN1 0.984 1.074 0.853 0.980 1.089 0.945 0.979 1.167 0.982
WTMLPNN2 0.980 1.166 0.880 0.972 1.224 1.035 0.967 1.337 1.209
WTMLPNN3 0.984 1.070 0.850 0.974 1.212 1.023 0.970 1.298 1.157
WTMLPNN4 0.984 1.056 0.825 0.982 1.102 0.895 0.982 1.125 0.946
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scatter diagrams (Fig. 4) and in terms of the overall performance
measures through boxplots of R2, RMSE and MAE values (Fig. 5), it can
be concluded that the combination of WT and MLPNN yielded more
accurate results than the conventional forecasting models used to
forecast water temperature in the Warta River. The reason why the WT-
MLPNN combination performed better might be that the WT method
provided useful decompositions of the original air temperature time
series, and the transformed data improved the performance of the
MLPNN model by analyzing useful information on various decomposi-
tion levels; see Adamowski and Chan (2011) for details. Although the
above conclusion for the Warta River cannot be generalized for all
rivers and for all situations, the outcomes are nevertheless certainly
encouraging on the usefulness and effectiveness of the hybrid WT-ANN
models for river water temperature forecasting.

Wavelet transform allows for the transition from a time-value

system to a time-scale (frequency) system, which allows analysis of
frequency change in the time domain. The present results for the eight
stations in the Warta River have shown that the WTMLPNN4 model
(with dMey - wavelet decomposition) performed the best (Table 2 and
Fig. 5). This model showed slightly better performance compared to the
Db wavelet, i.e. Daubechie at level 10 (Db10), whose wavelet coeffi-
cients can capture the maximum amount of signal energy (Seo et al.,
2015). Compared with other WTMLPNN models, the WTMLPNN2
models have the lowest accuracies, and the modelling results of the
WTMLPNN3 models are relatively acceptable (Table 2 and Fig. 5). It is
relevant to note, at this point, the study of Nourani et al. (2011) on
rainfall-runoff forecasting. Nourani et al. (2011) found that the Haar
and Db mother wavelets outperformed Sym. They reasoned that, since
runoff time series peaks could be approximated as a single-peaked event
with varying durations, the single-peaked wavelets, such as the Haar,

Fig. 4. Comparison of linear, non-linear, MLPNN and WTMLPNN4 models and observed data at the Bobry station for the testing period (Wt: water temperature).
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might provide a good estimation of the sharp events contained in the
runoff records. However, for RWT forecasting, as is the case in the
present study, due to the diurnal variations of air and water tempera-
ture, there are usually many peaked values with varying durations.
Therefore, the Haar wavelet performed poorly, and the dMey method
performed well.

Considering the hybrid models, the best performance was seen for
the Sieradz station, for which R2 in the testing period was in the range
of 0.964–0.983, RMSE in the range of 0.981–1.245 °C, and MAE in the
range of 0.781–0.984 °C. Similarly, a high degree of fit was demon-
strated by the WTMLPNN models in the case of the Śrem station in the
testing period (R2 = 0.956–0.987, RMSE = 1.008–1.338 °C,
MAE = 0.893–1.049 °C) in the middle region of the Warta River.

To investigate the impact of decomposition level on the perfor-
mances of the WTMLPNN models (WTMLPNN4), we considered two
gauges (Bobry and Sieradz) as examples. In this study, the method of
Nourani et al. (2009) was used. This method has also been used, in the
past, for water level forecasting and river stage forecasting in
Adamowski and Chan (2011) and Seo et al. (2015, 2016), and the re-
sults showed that the method is reliable. In the present study, appli-
cation of this method yielded a decomposition level of 4 for the Bobry
and Sieradz stations. However, to confirm this further, we evaluated six
decomposition levels for each station (Table 3). For both gauges, model
performances improved with an increase in the decomposition level
(Table 3), indicating the importance of the choice of the decomposition
level. However, improvements in model performances slowed down
when the decomposition level was larger than 4. This suggested that

using a decomposition level of 4 was enough for the WTMLPNN4 model
to obtain considerable accuracy (Table 3). These results further sup-
ported the suitability and effectiveness of the method of Nourani et al.
(2009). Additionally, a recent study by Quilty and Adamowski (2018)
showed that an incorrect development of wavelet-based forecasting
models can occur during wavelet decomposition and, as a result, errors
can be introduced into the forecast model inputs. One of the main issues
in this regard is an inappropriate selection of decomposition levels and
wavelet filters (Quilty and Adamowski, 2018), which further indicated
the importance of appropriate decomposition levels.

4.2. Model performance during the heat wave and summer drought of 2003
in Europe

In order to properly assess the effectiveness of the models in fore-
casting water temperature in extreme weather conditions, the model
performances were compared for two different periods that had ex-
treme weather conditions across Europe, including Poland: (1)
2000–2005, which corresponded to heat waves across Europe; and (2)
the summer drought of 2003.

Fig. 6 (left) presents the time series comparison of the observed and
modelled river water temperatures for the period 2000–2005 when the
traditional ANN model (MLPNN) and a hybrid model (WTMLPNN4)
were used, for three stations: Bobry (upstream) (top panel), Śrem
(middle river run) (middle panel), and Gorzów Wielkopolski (down-
stream) (bottom panel). The figure also includes the air temperature,
for a proper perspective on the relationship between air temperature
and water temperature. As seen, the modelling results of the MLPNN
fluctuate sharply compared with the observed data. However, the
WTMLPNN4 model was more stable and accurate for each station, in-
dicating that, with the coupling of WT, the MLPNN model tended to be
more robust and could better capture the seasonal thermal dynamics
during heat wave events.

The validity of the MLPNN and WTMLPNN4 models for the three
river stations was also tested specifically for the heat wave and drought
of July and August 2003 (Fig. 6, right). The WTMLPNN4 model well
reproduced the observed time series of water temperature, and it
clearly outperformed the (traditional) MLPNN model for each station.
The results further indicated that, with the coupling of WT, the MLPNN
model was able to better capture the thermal dynamics during summer
droughts.

5. Conclusions

In this study, a hybrid model (WTMLPNN), by coupling wavelet
transform (WT) and multilayer perceptron neural network (MLPNN),
was developed to achieve better forecasts for water temperature in rivers.
The model was applied to data from eight stations in the Warta River in
Poland. Four different WTMLPNN models were considered, based on four
different mother wavelets. The performances of these models were
compared with linear and non-linear regression models as well as tra-
ditional MLPNN models. The results lead to the following conclusions:

(1) The MLPNN models outperformed the linear and non-linear re-
gression models for the eight stations.

(2) The hybrid WTMLPNN models performed much better than the
traditional MLPNN model in both normal and heat wave/drought
conditions.

(3) The WTMLPNN model with the discrete Meyer (dMEY) mother
wavelet performed the best (average R2 = 0.979, RMSE = 1.084 °C,
MAE = 0.919 °C), slightly better than the Daubechies level 10
(Db10) mother wavelet (average R2 = 0.974, RMSE = 1.157 °C,
MAE = 0.979 °C) and the Symlet (Sym) (average R2 = 0.975,
RMSE = 1.148 °C, MAE = 0.979 °C). The WTMLPNN model with
the Haar mother wavelet performed the worst (average R2 = 0.967,
RMSE = 1.246 °C, MAE = 1.029 °C).

Fig. 5. Boxplots of the R2, RMSE and MAE based on all the river stations for all
the models during the training, validation and testing periods.
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Table 3
Impact of decomposition level on performances of WTMLPNN models in the training, validation and testing periods (the results are the mean from 30 calibrations) for
the Bobry and Sieradz stations.

River station Decomposition level Training Validation Testing

R2 RMSE (°C) MAE (°C) R2 RMSE (°C) MAE (°C) R2 RMSE (°C) MAE (°C)

Bobry 1 0.955 1.344 1.025 0.946 1.324 1.047 0.941 1.376 1.047
2 0.958 1.230 1.017 0.948 1.315 1.040 0.950 1.325 1.012
3 0.964 1.153 0.997 0.952 1.213 0.998 0.958 1.285 0.980
4 0.975 1.085 0.973 0.967 1.121 0.964 0.964 1.217 0.930
5 0.978 1.082 0.967 0.970 1.112 0.957 0.966 1.215 0.925
6 0.980 1.080 0.962 0.972 1.087 0.945 0.968 1.212 0.921

Sieradz 1 0.956 1.292 1.030 0.960 1.282 0.960 0.970 1.267 0.967
2 0.962 1.272 1.014 0.965 1.178 0.945 0.975 1.197 0.904
3 0.967 1.184 0.989 0.970 1.035 0.924 0.980 1.055 0.845
4 0.971 1.153 0.959 0.976 1.052 0.901 0.983 0.981 0.781
5 0.972 1.145 0.954 0.978 1.047 0.896 0.984 0.979 0.778
6 0.974 1.142 0.950 0.980 1.042 0.893 0.984 0.978 0.776

Fig. 6. Observed daily water temperatures and simulated daily water temperatures for the MLPNN and WTMLPNN4 models during the period 2000–2005, and during
the heat wave and summer drought of 2003 (Ta: air temperature) at the Bobry (upstream), Śrem (middle river), and Gorzów Wielkopolski (downstream) stations.
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(4) Model performances improved with an increase in the decomposi-
tion level in the wavelet transform, indicating the importance of the
choice of the decomposition level. The results in this study provided
further support to the applicability of the method of Nourani et al.
(2009) to determine the optimum decomposition level.

The outcomes of the present study have important implications for
research on forecasting the temperature of water in rivers, especially
from the viewpoint of coupling/integrating wavelets and ANNs in
particular, and different time series/data-based methods more broadly.
Though the hybrid WTMLPNN models performed well, there is still
scope for further improvements through additional studies. Firstly,
according to some previous studies, flow discharge may play an im-
portant role on river water temperature forecasting, especially in rivers
impacted by snow or higher altitude hydropower reservoirs (Piccolroaz
et al., 2016; Zhu et al., 2019a). However, due to lack of complete data,
flow discharge was not considered in this study. Therefore, in a future
study, we will further improve the hybrid models by including flow
discharge as a model input for rivers with available flow discharge data.
Secondly, there are many other factors that influence river temperature
as well (e.g., irradiance, shading, water depth, slope, groundwater in-
puts), and we have not considered all these factors in this study.
Nevertheless, our model showed good predictability in calibration and
validation period using long-term observed data, and during model
calibration and validation, even when the above factors were not taken
into consideration. We intend to look into the other factors in our future
research, to further improve the model accuracy. Lastly, though eight
river gauges were assessed in the present study, they were all in only
one river. Therefore, offering general conclusions on the effectiveness
of the hybrid WTMLPNN models and the superiority of such over tra-
ditional models for any river around the world is not possible. Our
future research will focus on further refining the coupling as well as
application of the hybrid models to different rivers around the world to
more properly test the suitability and effectiveness of the models for
rivers characterized by different climatic, hydrological, and land use
regimes.
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