
Journal of Hydrology 373 (2009) 164–176
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
Examining geological controls on baseflow index (BFI) using regression analysis:
An illustration from the Thames Basin, UK

J.P. Bloomfield *, D.J. Allen, K.J. Griffiths
British Geological Survey, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK

a r t i c l e i n f o s u m m a r y
Article history:
Received 5 September 2008
Received in revised form 14 April 2009
Accepted 20 April 2009

This manuscript was handled by P. Baveye,
Editor-in-Chief, with the assistance of
Nunzio Romano, Associate Editor

Keywords:
Baseflow
Baseflow index
BFI
BFIHOST
Groundwater
Thames Basin
0022-1694/$ - see front matter � 2009 NERC. Publish
doi:10.1016/j.jhydrol.2009.04.025

* Corresponding author. Tel.: +44 01491 692310/838
E-mail address: jpb@bgs.ac.uk (J.P. Bloomfield).
Linear regression methods can be used to quantify geological controls on baseflow index (BFI). This is
illustrated using an example from the Thames Basin, UK. Two approaches have been adopted. The areal
extents of geological classes based on lithostratigraphic and hydrogeological classification schemes have
been correlated with BFI for 44 ‘natural’ catchments from the Thames Basin. When regression models are
built using lithostratigraphic classes that include a constant term then the model is shown to have some
physical meaning and the relative influence of the different geological classes on BFI can be quantified.
For example, the regression constants for two such models, 0.64 and 0.69, are consistent with the mean
observed BFI (0.65) for the Thames Basin, and the signs and relative magnitudes of the regression coef-
ficients for each of the lithostratigraphic classes are consistent with the hydrogeology of the Basin. In
addition, regression coefficients for the lithostratigraphic classes scale linearly with estimates of log10

hydraulic conductivity for each lithological class. When a regression is built using a hydrogeological clas-
sification scheme with no constant term, the model does not have any physical meaning, but it has a rel-
atively high adjusted R2 value and because of the continuous coverage of the hydrogeological
classification scheme, the model can be used for predictive purposes. A model calibrated on the 44 ‘nat-
ural’ catchments and using four hydrogeological classes (low-permeability surficial deposits, consoli-
dated aquitards, fractured aquifers and intergranular aquifers) is shown to perform as well as a model
based on a hydrology of soil types (BFIHOST) scheme in predicting BFI in the Thames Basin. Validation
of this model using 110 other ‘variably impacted’ catchments in the Basin shows that there is a correla-
tion between modelled and observed BFI. Where the observed BFI is significantly higher than modelled
BFI the deviations can be explained by an exogenous factor, catchment urban area. It is inferred that this
is may be due influences from sewage discharge, mains leakage, and leakage from septic tanks.

� 2009 NERC. Published by Elsevier B.V. All rights reserved.
Introduction

Hydrological characteristics of catchments, such as baseflow, or
measures of high and low stream flow, may be estimated using a
variety of physical descriptors (Nash, 1960; Hall, 1968; Nathan
and McMahon, 1990a, 1992). These descriptors include physio-
graphic and climatological parameters and may involve geologi-
cally or hydrogeologically related parameters. A hydrogeological
characteristic of catchments that has been the focus of a number
of studies, particularly in the context of modelling ungauged catch-
ments, is baseflow index (BFI). BFI is the long-term ratio of base-
flow to total stream flow and thus represents the slow or
delayed contribution to river flow and may be influenced to a sig-
nificant extent by catchment geology. However, to date the rela-
tionship between catchment geology and BFI has not been
quantified in a systematic manner. Even though there is a tacit
ed by Elsevier B.V. All rights reser
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assumption that the underlying geology influences baseflow, pre-
vious studies that estimate BFI typically simplify the effect of
catchment geology to a parameter that represents the fractional
area of aquifers in a catchment (Nathan et al., 1996; Sefton and
Howarth, 1998; Mwakalila et al., 2002; Mwakalila, 2003; Abebe
and Foerch, 2006; Santhi et al., 2008). Some studies have adopted
a slightly more refined approach to include a number of discrete
geologies as physical catchment descriptors (Nathan and McMa-
hon, 1990b; Lacey and Grayson, 1998; Mazvimavi et al., 2005),
and, rather than use the areas of aquifers or different lithologies
as catchment descriptors, Haberlandt et al. (2001) used the physi-
cal properties of the aquifers (effective porosity and saturated
hydraulic conductivity). However, because, in addition to geologi-
cal parameters, all these studies use non-geological parameters to
estimate baseflow or BFI they cannot provide specific insights into
the relationships between the geological characteristics of catch-
ments and baseflow or BFI. The motivation for this study is to
examine geological controls on BFI independent of other catch-
ment factors.
ved.
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A streamflow hydrograph describes the variation in the rate of
flow of a stream with time and consists of four basic elements: di-
rect surface runoff, interflow, groundwater flow or baseflow (Nash,
1960; Hall, 1968; Nathan and McMahon, 1990a; Eckhardt, 2008),
and channel precipitation. In most hydrograph analyses, interflow
and channel precipitation are grouped with direct runoff (unless
there is a need to explicitly treat them independently) and the total
runoff hydrograph is made up of the sum of surface runoff and dis-
charge from saturated groundwater storage or baseflow (Nathan
and McMahon, 1990a; Viessman and Lewis, 2002). The baseflow
component of the hydrograph represents longer-term (weeks to
months) changes in the regional groundwater head and flow sys-
tem and typically varies in response to relatively long seasonal
changes in saturated groundwater head driven by seasonal
changes in factors such as evapotranspiration (Wittenburg and Sil-
vapalan, 1999). BFI is defined as the difference in area under the
baseflow hydrograph and total runoff hydrographs obtained by
baseflow or hydrograph separation (Institute of Hydrology,
1980). There are a variety of graphical or manual methods of base-
flow separation. For example, Viessman and Lewis (2002) describe
five methods and Eckhardt (2008) has recently compared seven
different automated methods. In each case the separation methods
are designed to separate the fast component of flow from the
slower baseflow component by identifying the onset of rising limbs
in the total stream hydrograph and the end of direct surface runoff
towards the end of a local peak in the total stream hydrograph.
Regardless of the details of the method used, and as Eckhardt
(2008) notes, since the true values of the baseflow index are always
unknown it is not possible to identify which of the methods pro-
vides the ‘best’ estimate of BFI.

Geological information, along with other variables, has been
correlated with BFI using a range of approaches including: multiple
linear regression techniques (Nathan et al., 1996; Lacey and Gray-
son, 1998; Mwakalila et al., 2002; Mazvimavi et al., 2005; Abebe
and Foerch, 2006), neural network methods (Mazvimavi et al.,
2005), and regional landscape mapping (Santhi et al., 2008). The
fractional area of aquifers, or in some cases specific lithologies, typ-
ically shows some correlation with BFI. Lacey and Grayson, 1998
demonstrated that there was a strong relationship between com-
bined geology–vegetation groups and BFI, but suggested that the
groups also represented other factors such as climatic history, re-
charge capacity and transmissivity. Mazvimavi et al. (2005) found
that geology was not a significant predictor of BFI in their study
area, but concluded that this was due to groundwater in certain
formations in their study area (several catchments in Tanzania)
being relatively deep and disconnected from surface streams.

Soil data has also been used extensively in studies of baseflow
and BFI in ungauged catchments as a surrogate for the underlying
geology. The Institute of Hydrology low flow study developed the
‘hydrology of soil types’ (HOST) classification to estimate flow
duration and flow frequency parameters (Gustard et al., 1992;
Boorman et al., 1995). It consists of a grouping of soil associations
into classes based on physical properties of soils and on their
hydrogeological setting. Multivariate regression of soil type data
against BFI data for representative catchments in the United King-
dom produced continuous BFI catchment characteristics scaled on
continuous soil parameters, referred to as BFIHOST (Gustard et al.,
1992; Boorman et al., 1995). The BFIHOST methodology and data
have been used successfully in a number of studies (Boorman
et al., 1995; Sefton and Howarth, 1998; Dunn and Lilly, 2001; Lee
et al., 2005; Marechal and Holman, 2005; Young, 2006).

The present study uses a similar approach to BFIHOST, in that
geological associations are grouped into classes, based on litholog-
ical or hydrogeological characteristics, which are then correlated
with observed BFI. However, unlike the previous studies, including
BFIHOST, where the aim was to build robust predictive models
using sometimes very limited information, the central task of the
present study is to quantify as fully as possible the relationship be-
tween geological or hydrogeological characteristics of an area and
observed BFI independent of any other factors. This is possible in
the Thames Basin because high quality geological mapping and riv-
er flow data are available. In this study, linear regression models
have been used to quantify geological controls on BFI by correlat-
ing detailed 1:50,000 scale geological mapping with BFI values
for catchments with diverse geological and aquifer characteristics
at the basin scale (�10,000 km2). There are two complementary
aims for the work described in this paper. The first aim is to inves-
tigate if physically meaningful relationships between lithological
characteristics of catchments and BFI can be quantified at the basin
scale using regression methods. The second aim is to show how a
geologically-based model of BFI can be used to produce continuous
BFI catchment characteristics in a similar manner to BFIHOST. The
models have been applied to the Thames Basin, UK, as a case-study.
The approach, however, is not basin specific and the methodology
description and discussion include generic observations related to
the application of regression modelling to the quantification of
geological controls on baseflow regardless of basin hydrology or
geology.
Study area

The Thames Basin, defined by the catchment of the River
Thames and its tributaries, is situated in the south east of the Uni-
ted Kingdom (Fig. 1a). For the purposes of this study the Thames
Basin is defined by the Environment Agency’s Thames River Basin
District (Environment Agency, 2007). The source of the River
Thames is in the Costwolds in Gloucestershire. The length of the
river down to Teddington Lock, in west London, is approximately
235 km, and the area of the Basin is about 16,100 km2. Teddington
Lock is the lowest flow gauging station on the River Thames and
marks the non-tidal limit of the river. Mean annual rainfall varies
across the Thames Basin from about 600 to 900 mm and the mean
flow at Teddington Lock is about 78 m3 s�1 (Natural Environment
Research Council, 2003).

The Thames Basin is underlain by a thick sequence of Mesozoic
to Recent rocks that can be divided into three broad zones based on
geological structure: the Midlands Shelf to the northwest; the Lon-
don Basin in the central area; and the Wealden Anticline to the
southeast (Fig. 1b), each with their own characteristic lithostratig-
raphy. The Midlands Shelf consists of a sequence of Jurassic rocks
(including oolitic limestones and clays), Cretaceous and Palaeo-
gene rocks (including the Upper Cretaceous Chalk, the major aqui-
fer in the Basin) are exposed in the London Basin, and a Lower
Cretaceous sequence of clays and sands outcrop in the structurally
distinct Wealden Anticline in the southeast of the Thames Basin.
Palaeogene to Recent surficial deposits can be found throughout
the Thames Basin across all three of the structural zones.

The western parts of the Thames Basin are predominantly rural,
whereas, the highly urbanised area of Greater London is located in
the central and eastern part of the Basin and is home to about 13
million people. Just over 40% of public water supplies in the Basin,
equivalent to �2.25 million m3/d, come from groundwater, mainly
from the Chalk aquifer.

There is a long history of investigations into the water resources
of the Basin and the system is highly regulated. However, there is
only one basin-wide study of the relationships between groundwa-
ter and surface water in the peer-reviewed literature (Andrews,
1962). Andrews (1962) investigated, at a basin scale, the geological
controls on the nature of groundwater discharge to the Thames
above Teddington Lock. For example, based on expressions for nat-
ural recession of groundwater discharge at Teddington Lock and at
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Fig. 1. Maps of the Thames Basin showing, (a) physiography, rivers and the 44 catchments used in the study for calibration and (b) the distribution of the 19 lithological
classes used as the basis of regression Models 1a and 1b.
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Days Weir, Andrews was able to show that the rate of groundwater
flow at Days Weir diminishes 1.7 times faster than at Teddington
Lock. From gaugings above Days Weir, Andrews estimated that
the yield per unit area of the Jurassic limestones is about 25% high-
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er than that from the Chalk, but that the limestones give up water
more quickly and the summer and autumn discharges fall below
those from the Chalk.
Model methodology

Three least squares regression models are described in this
paper. Two related step-wise multiple linear regression models,
Models 1a and 1b, have been developed to quantify the relative
influence of the fractional areas of lithostratigraphic classes on ob-
served BFIs. A third model, Model 2, has been developed to inves-
tigate whether regression models based on an alternative
hydrogeologically-based classification scheme can be used to
produce continuous characteristics, similar to BFIHOST, that ade-
quately predict BFI across the Thames Basin. The lithostratigraphic
and hydrogeological classification schemes (Table 1) for all regres-
sion models were developed and selected iteratively as part of the
regression modelling process as illustrated schematically in Fig. 2.
The following sections describe how the catchments were selected;
how the BFI data used in the study was obtained; how the geolog-
ical and hydrogeological parameters used in the regression models
were derived, and finally; the regression techniques that were
used. The steps in the model methodology referred to in this sec-
tion relate to the numbered steps shown in Fig. 2.

Selection of catchments

Based on information for available gauging stations in the
Thames Basin (Natural Environment Research Council, 2003), 154
Table 1
Description of main geological and hydrogeological features of the lithological classes. The
of each lithological class.

Lithological class Description

Surficial deposits
Alluvium (low-permeability surficial

deposit)
Recent unconsolidated deposits consisting o

Gravel (intergranular aquifer) Quaternary to Recent unconsolidated grave
and glaciofluvial deposits found away from
Chalk aquifer

Clay-with-flints (low-permeability
surficial deposit)

Stiff clay-with-flints found as a weathered r

Diamicton (low-permeability surficial
deposit)

Till of glacial origin. Unconsolidated, very p

Consolidated units
Ancholme (aquitard) Ancholme Group, including the Oxford Clay
Bagshot and Bracklesham (aquitard) Bagshot formation and Bracklesham Group
Chalk (fractured aquifer) The Chalk Group. Dual porosity limestone w

hydraulic conductivities associated with the
depth. Locally sub-karstic

Corallian (fractured aquifer) Corallian Group. Fine-grained calcareous sa
Gault (aquitard) The Gault Formation. Grey mudstones and
Lias (aquitard) Lias Group. Mainly clay aquitard
Lower Greensand (intergranular aquifer) Lower Greensand Group. Variably cemented

aquifer in the Thames Basin
Oolite, Great (fractured aquifer) The Great Oolite Group. Mixed lithologies do

limestones. Locally important aquifer
Oolite, Inferior (fractured aquifer) The Inferior Oolite Group. Mixed lithologies

sandy limestones. Locally important aquifer
Portland and Purbeck (fractured aquifer) Portland and Purbeck Beds. Mixed lithologie

minor aquifer
Thames (aquitard) Thames Group, including the London Clay F

but more permeable westward
Thanet (low-permeability surficial

deposit)
Lambeth Group (including the reading Woo
grained sands, mottled clays, flint pebble be

Upper Greensand (intergranular aquifer) The Upper Greensand Formation. Glauconiti
a minor aquifer

Weald Clay (aquitard) Weald Clay formation. Mudstone. Aquitard
Wealden Sand (intergranular aquifer) Hastings Beds. Sandstone with minor muds
catchments were initially selected for use in this study. The suc-
cessful identification of multivariate relationships between stream
flow characteristics, such as BFI, and catchment characteristics re-
quires good quality data from catchments where the flow regimes
are relatively natural (Gustard et al., 1992). However, this is partic-
ularly problematic in a basin like the Thames Basin where artificial
influences and anthropogenic stresses and impacts, such as river
regulation measures, river and groundwater abstraction, conjunc-
tive use schemes and effluent discharge to rivers are locally signif-
icant. Consequently, the 154 catchments were screened to remove
those with poor quality records and or significant anthropogenic
influences. The screening criteria developed for the Institute of
Hydrology low flow estimation programme for the United King-
dom (Gustard et al., 1992) have been used to identify the sub-set
of catchments for the regression modelling.

Following this screening, 44 relatively ‘natural’ catchments with
good or adequate quality flow data were identified to be used to
calibrate the regression models. The location of these catchments
is shown in Fig. 1a. The remaining 110 catchments have been used
to validate Model 2. The 44 calibration catchments cover
�7800 km2, equivalent to about 48% of the area of the Thames Ba-
sin, their areas are approximately log-normally distributed, and
they range in size from 12 to 1016 km2 with a geometric mean
of �103 km2. Based on a multi-scale typology classification system
for groundwater–surface water interaction developed by Dahl et al.
(2007), the catchments in this study broadly fall into a ‘landscape
type’ category, where groundwater flow systems are assumed to be
influenced primarily by regional geomorphology, hydrogeological
setting and aquifer structure and heterogeneity rather than specific
riparian zone processes.
hydrogeological classification used in the study is given in parenthesis after the name

f clay, silt, sand and gravel. Present in many river valleys in the Basin

ls and sands. Mainly present in river valleys, although older River Terrace deposits
valley axes. Locally important aquifer particularly when in contact with underlying

esidual deposit derived from the Chalk

oorly sorted deposit with significant clay fraction

, Kellaways Formation, Ampthill Clay and Kimmeridge Clay
Fine-grained sands with thin silt or clay lenses
ith local hardbands and marl seams. The major aquifer in the Basin, with highest
larger river valleys and lower hydraulic conductivity below interfluves and with

ndstones and limestones. Local minor aquifer
silty mudstones. Acts as an aquitard

fine to medium-grained sandstones with minor mudstones. A locally important

minated by oolitic and shelly limestones with minor mudstones and silty and sandy

dominated by oolitic and shelly limestones with minor mudstones and silty and

s containing marls, shelly and oolitic limestones and local glauconitic sands. Local

ormation. Clay, locally silty with fine sands at base. Aquitard throughout the Basin,

lwich and Upnor Formations) and the Thanet Sands Formation. Highly variable fine
ds and shelly clays. Aquitard or local minor aquifers depending on clay content

c, calcareous siltstones, sands and sandstones, variably cemented. Locally may act as

tones. Local minor aquifer
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BFI data

BFI data were taken from the Hydrometric Register for the Uni-
ted Kingdom (Natural Environment Research Council, 2003). BFI
was calculated using the UKIH method (Gustard et al., 1992; Nat-
ural Environment Research Council, 2003). In this method, for each
stream hydrograph minima in 5-days non-overlapping consecutive
periods are identified and then searched for turning points. The
turning points are connected to obtain the baseflow hydrograph
which is constrained to equal the observed hydrograph ordinate
on any day when the separated hydrograph exceeds the observed.
BFI is then calculated as the ratio of the volume beneath the base-
flow line between the first and last turning points. BFI is based on a
separation of the entire record for a flow gauge where typical flow
records are greater than 5 years (Natural Environment Research
Council, 2003). Piggott et al. (2005) have suggested minor
improvements to the Institute of Hydrology procedure that take
into account effects associated with different starting points for
Table 2
Summary statistics for BFI, and fractional area of each lithological and hydrogeological cla

Class Model Number of observa

BFI 1, 2 and 3 44
Diamicton 1 and 2 44
Chalk 1 and 2 44
Lower Greensand 2 44
Thames 1 and 2 44
Weald Clay 1 and 2 44
Oolites 1 and 2 44
Low permeability surficial deposits 3 44
Aquitards 3 44
Intergranular aquifers 3 44
Fractured aquifers 3 44
the analysis of the 5-days non-overlapping periods and the calcu-
lation of values of baseflow that exceed corresponding values of
stream flow. The differences in BFI estimates using the Institute
of Hydrology method and the revised method of Piggott et al.
(2005) are relatively small (typically up to 5% of baseflow) and
the average of the difference is approximately zero. As these errors
are small, the published Institute of Hydrology BFI data have been
used in this study (Natural Environment Research Council, 2003).
Table 2 shows summary statistics for the BFIs for the 44 catch-
ments used to calibrate the regression models.

Identification of geological and hydrogeological parameters

The lithostratigraphic classification scheme for Models 1a and
1b and the hydrogeological classification scheme for Model 2 are
both based on the same 1:50,000 scale digital geological map of
the Thames Basin. The geological data were taken from the British
Geological Survey’s 1:50,000 scale digital geology data set of the
ss exposed in each watershed used in regression Models 1a, 1b, and 2.

tions Minimum Maximum Mean SD

0.190 0.980 0.648 0.243
0.000 0.900 0.107 0.235
0.000 0.800 0.180 0.243
0.000 0.656 0.042 0.132
0.000 0.931 0.179 0.281
0.000 0.706 0.041 0.140
0.000 0.912 0.086 0.240
0.000 0.903 0.283 0.257
0.000 0.931 0.267 0.287
0.000 0.857 0.175 0.192
0.000 0.912 0.274 0.293
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United Kingdom (British Geological Survey, 2008). The map shows
>200 named units exposed at the land surface in the Thames Basin
(step 1), many of which are local units that cover only a few square
kilometres, such as local river terrace (sand and gravel) deposits.
Consequently, it was necessary to reduce the number of geological
classes to ensure that the regression models were tractable, while
at the same time allowing a sufficient number of geological classes
to characterise the geological and hydrogeological diversity of the
Thames Basin. The geological classes were grouped based on ex-
pert judgement (step 2). The following approach was used:

� Define a target for the number of lithological classes. In the case
of the present study an initial target of 20–30 lithological classes
was set (to be broadly comparable with the 29 classes used in
the BFIHOST scheme Gustard et al., 1992; Boorman et al., 1995).

� Group the 1:50,000 geology classes into internally consistent
lithologies based on prior knowledge of the degree and nature
of lithological variability in the Basin. For the purposes of this
study, internally consistent was taken to mean that at least
85% or more of the class by area consisted of a similar lithotype
based on the expert judgement of a hydrogeologist.

� Because the Thames Basin consists of a thick sequence of sedi-
mentary rocks with no intrusive rocks, and because there is no
major faulting in the Basin at surface, the classes could be based
on the stratigraphic column and the hydrogeologist started the
grouping exercise with the oldest formations and worked pro-
gressively up the stratigraphic column. As a consequence, strati-
graphically neighbouring groups had to be lithologically distinct.
In practice this meant that lithologically alternating chronolog-
ically distinct units dominated by alternating carbonate, clay
and sandstone lithologies were identified.

� Two hydrogeologists were independently set the task of group-
ing the lithologies. The two lithological classification schemes
were then compared. There were trivial differences between
the two classification schemes which were then reconciled
through discussion to produce the final lithological classes.

This process resulted in 19 lithological classes being identified
consisting of 15 classes of consolidated deposits and four classes
of surficial deposits (step 3) shown in Fig. 1b. Table 1 gives a brief
description of the main geological and hydrogeological features of
each the 19 lithological classes.

Based on the initial lithostratigraphic classification, preliminary
data analysis was undertaken before the development of the
regression models (step 4). Pearson correlation coefficients were
calculated to check for any significant correlations between litho-
logical classes and to characterise the relationships between the
dependent and independent variables used in the regression. No
transformations were applied to any of the independent variables.
As a result of this preliminary data analysis, eight lithological clas-
ses were rejected from inclusion in regression Models 1a and 1b
and two classes were combined.

Eight geological classes (Bracklesham, Corallian, Gault, Gravels,
Lias, Portland and Purbeck, Thanet and Clay-with-Flints) were re-
jected as they showed no consistent correlation between BFI and
their catchment fractional areas due to the very limited number
of catchments that contained these classes, or because two or more
classes showed significant correlation, but the classes could not be
combined due to significant lithological differences. In addition,
two classes (the Great and Inferior Oolites) were combined as they
showed weak correlation (Pearson correlation coefficient of 0.57)
are stratigraphically adjacent and show some hydrogeological sim-
ilarity. Consequently, following the preliminary data analysis, 10
lithological classes were left for use in Models 1a and 1b (step 5).

The rationale for the hydrogeological classification was to start
with the simplest scheme and to increase the complexity of the
scheme until a satisfactory regression could be developed with
adequate predictive capabilities (step 6). The simplest hydrogeo-
logical classification scheme is one based on a twofold classifica-
tion of aquifer and aquitard (Nathan et al., 1996; Sefton and
Howarth, 1998; Mwakalila et al., 2002; Mwakalila, 2003; Abebe
and Foerch, 2006). When models were built with either aquifer
or aquitard fractional areas as the independent variable (both
could not be used in the same regression as the two variables are
co-correlated) they only explained about 70% of the variation in
BFI (step 7). The next step (step 8) was to increase the number of
hydrogeological classes to a number that would be significant in
a regression model but would also enable independent variables
to be identified. The aquifers were divided into aquifers where
fracture flow is dominant (e.g. limestone aquifers) and aquifers
where intergranular flow is dominant (e.g. consolidated sandstone
aquifers). The justification for this was that it was assumed that
differences in the permeability and storage structure of these
two types of aquifer may be usefully discriminated in the regres-
sion model. It was hypothesised that on average there may be
more storage available in the intergranular aquifers compared with
fractured aquifers, but that these aquifers would drain more slowly
due to their relatively lower hydraulic conductivity. The aquitards
were divided into two classes: thin relatively non-permeable surfi-
cial deposits, and consolidated aquitards. Again, the justification
for this distinction was that the two types of aquitard may show
significantly different storage, hydraulic conductivity and drainage
characteristics.

The 19 lithological classes were then mapped onto the four
hydrogeological classes using expert judgement. This was a trivial
task since, as noted previously, due to the simple sedimentary se-
quence in the Basin the lithostratigraphic classification had given
rise to chronologically distinct units dominated by alternating car-
bonate, clay and sandstone lithologies and there was clear corre-
spondence with the four hydrogeological classes. Table 1 shows
how the initial 19 lithological classes (defined at step 3) have been
mapped onto four hydrogeological classes: low permeability surfi-
cial deposits, aquitards, intergranular aquifers, and fractured aqui-
fers at step 8. Pearson correlation coefficients were calculated for
the four hydrogeological classes to test the degree of independence
of the variables used in the regression. There were no significant
correlations between hydrogeological classes. The spatial distribu-
tion of the four hydrogeological classes in the Thames Basin is
shown in Fig. 3.

BFI may be expected to correlate with the fractional volume of
the hydrogeological classes within a catchment. However in the
absence of a detailed 3-D geological model of the Basin, once the
lithostratigraphic and hydrogeological classes had been identified,
as a surrogate for fractional volume, the fraction by area of the
classes in each of the 44 catchments was estimated using a GIS.
Table 2 shows summary statistics for the fractional area data for
the final 10 lithological classes used in regression Models 1a and
1b (step 5) and for the four hydrogeological classes used in regres-
sion Model 2 (step 9).

Regression methodology

An initial multiple least square regression model was built
using the lithostratigraphic classification for the ten lithological
classes (step 10) using the 44 calibration catchments. This regres-
sion model had an adjusted squared multiple R value of 0.85 and a
standard error of estimate of 0.086. However, a number of the coef-
ficients were not significantly different from zero. So a stepwise
regression model, Model 1a (step 11), was built based on the ten
independent lithological classes. Parameters were removed during
stepwise regression where their coefficients were not significantly
different from zero at 90% confidence level. Jackknife (leave one
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Fig. 3. Map of the Thames Basin showing the distribution of the four main hydrogeological classes used in regression Model 2.

Table 3a
Model 1a regression.

Coefficient Std. error t value Pr (>t)

Model 1a: model coefficients
Constant 0.640 0.047 13.700 <0.001
Diamicton �0.236 0.078 �3.002 0.005
Chalk 0.533 0.089 5.955 <0.001
Lower Greensand 0.228 0.119 1.908 0.064
Thames �0.391 0.074 �5.264 <0.001
Weald Clay �0.545 0.118 �4.639 <0.001
Oolites 0.229 0.081 2.835 0.007

Model adjusted squared multiple R: 0.878.
Model residual standard error 0.085.

Table 3b
Model 1b regression.

Coefficient Std. error t value Pr (>t)

Model 1b: model coefficients
Constant 0.693 0.039 17.676 <0.001
Diamicton �0.303 0.072 �4.216 <0.001
Chalk 0.449 0.082 5.496 <0.001
Thames �0.462 0.067 �6.884 <0.001
Weald Clay �0.602 0.119 �5.056 <0.001
Oolites 0.158 0.075 2.105 0.042

Model adjusted squared multiple R: 0.885.
Model residual standard error 0.088.
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out) resampling was performed on the result of the stepwise
regression model, Model 1a, to investigate the sensitivity of the
model to individual cases (catchments). Based on the results of
the Model 1a jackknife, a further model, Model 1b (step 12), was
built using the same geological classes as used in Model 1a, but
with one lithological class (the Lower Greensand) removed. Model
2 was built by regressing data for the four hydrogeological classes
onto the BFI data (step 9) using the 44 calibration catchments. A
jackknife (leave one out) was performed on Model 2. In addition,
bootstrap re-sampling (random resamples from the observed data)
was performed on Model 2 to characterise the distribution of mod-
el coefficients and to assess usefulness of the coefficients for pre-
dictive modelling. Statistics from the regression coefficients
obtained from the bootstrap resampling of Model 2 were used as
the basis for Monte Carlo simulations to predict confidence bounds
for the model predictions. Model 2 was validated using the 110
catchments assessed as being ‘variably impacted’ during the catch-
ment selection process.

Results

Tables 3a, 3b and 3c show the results for the regression models,
Model 1a, 1b and 2, respectively. Fig. 4 shows modelled values of
BFI plotted against observed BFI for the 44 calibration catchments
for Models 1a, 1b and 2. It also shows the distribution of residuals
for Models 1a, 1b and 2 as a function of the modelled values of BFI.

Model 1

Model 1a shows that six of the ten lithological classes: Diamic-
ton, Chalk, Lower Greensand, Thames, Weald Clay, and Oolites as
well as the regression constant, have coefficients significantly dif-
ferent from zero. Model 1a explains about 88% of the variance in
BFI in the 44 catchments with a low residual standard error
(0.085) associated with the model (Table 3a). Fig. 4 shows the good
correlation between modelled and observed BFI using Model 1a.
However, jackknife (leave one out) resampling of Model 1a indi-
cated that the model may be sensitive to the Lower Greensand var-
iable in one particular case. A co-efficient for Lower Greensand of
0.107 was obtained in one case during jackknife resampling when
the mean and standard deviation of the coefficients for Lower
Greensand for the jackknife samples are 0.226 and 0.021 respec-
tively. Consequently, a second regression model, Model 1b (Table
3b), was built with the Lower Greensand variable removed to see
if this produced an improved model. Model 1b explains a similar



Table 3c
Model 2 regression.

Coefficient Std. error t value Pr (>t)

Model 2: model coefficients
Low permeability surficial deposits 0.557 0.055 10.105 <0.001
Aquitards 0.241 0.053 4.548 <0.001
Fractured aquifers 1.090 0.050 21.648 <0.001
Intergranular aquifers 0.724 0.083 8.713 <0.001

Model adjusted squared multiple R: 0.970.
Model residual standard error 0.121.
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level of variance in BFI (88%) to Model 1a with a similar low resid-
ual standard error (0.088), it also shows a good correlation be-
tween the modelled and observed BFI (Fig. 4).

Plots of residuals for Models 1a and 1b qualitatively show
homoscedasticity (Fig. 4), there is no significant autocorrelation
present in the residuals, and the residuals are broadly normally
distributed. One-way Kolmogorov–Smirnov tests on the distribu-
tion of the residuals shows normal distributions with probabilities
of 0.79 and 0.95 for Models 1a and 1b respectively. In summary,
both models have the same adjusted squared multiple R value
Fig. 4. Plots of modelled BFI against observed BFI and model residuals for the 44 calibratio
are based on the 5% tile and 95% tile values for a Monte Carlo simulation using bootstra
while Model 1a has a slightly lower residual standard error than
Model 1b. Although jackknife results for Model 1a indicate that it
may be sensitive to a single anomalous class (catchment) associ-
ated with a high fractional area of Lower Greensand, removal of
the Lower Greensand variable does not change the overall form
or performance of the regression (Fig. 4).

Model 1 validation

The regression constants from Model 1a and Model 1b, 0.64 and
0.69, respectively (Tables 3a and 3b), are representative values of
BFI for the 44 catchments used in the calibration, while the coeffi-
cients of the lithological classes in the regression models indicate
the degree of departure from this typical value of BFI due to each
geological class. The values for the constants of the two models
are consistent both with the mean value for the 44 catchments
used in the calibration (0.65) and with the BFI at Teddington Lock
(0.64), the lowest gauge in the Basin. It is inferred from the similar-
ity between the model constants and observed mean BFI value and
the value for BFI at Teddington Lock that the regression models
have some physical meaning. This is supported by the observation
that the significant lithological classes in the models, the signs of
n catchments for Models 1a, 1b, and 2. Confidence bounds on BFI values for Model 3
p statistics for the model.
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their coefficients and the relative magnitudes of the coefficients
are all consistent with an understanding of the hydrogeology of
the Basin.

Ten lithological classes were used as the input for the stepwise
regression (Model 1a) and six classes, Diamicton, Chalk, Lower
Greensand, Thames, Weald Clay, and Oolites, were found to be sig-
nificant. These lithological classes cover just over 50% of the area of
the Basin (about half of the remaining area is covered by thin shal-
low deposits such as sands and gravels �10%, alluvium �9%, and
the Clay-with-Flints �5%) and include the Chalk, the most impor-
tant aquifer in the Basin (Allen et al., 1997), as well as two other
major aquifers, the Oolites, and, in Model 1a, the Lower Greensand.
They also include the single most extensive aquitard in the Basin,
the London Clay (part of the ‘Thames’ lithological class, Table 1).
The signs and magnitudes of the coefficients for each of the litho-
logical classes in Models 1a and 1b are consistent with their hydro-
geological characteristics. The Chalk and Oolite classes have
positive coefficients as would be expected of aquifers, while the
Diamicton, Thames and Weald Clay classes represent aquitards
and have negative coefficients. The Chalk co-efficient is greater
than that for the Oolites and this is consistent with the observa-
tions of Andrews (1962) that groundwater discharges from the
Jurassic Limestones above Days Weir yield water more quickly
than the Chalk in the Lower Thames. It is interesting to note that
Diamicton is identified as having a significant negative co-efficient
in Models 1a and 1b. Diamicton is not a regionally significant aqui-
tard, such as the London Clay and the Weald Clay. It is a stiff,
brown, yellow and grey mottled sandy clay glacial till that covers
mainly Chalk in the north east of the Basin, Fig. 1b. Although it only
reaches a maximum thickness of �25 m (Millward et al., 1987), the
clay content of Diamicton appears to be sufficiently high to con-
tribute to relatively low values of BFI in catchments where it is
present.

If, as assumed, the regression models have some physical mean-
ing, it should be possible to correlate the regression coefficients
with aquifer properties for each of the lithological classes. Baseflow
may be expected to scale with a parameter such as hydraulic diffu-
sivity, D (K/SS, where K is hydraulic conductivity and SS is specific
storage). Since hydraulic conductivity is likely to range over many
orders of magnitude, but specific yield for aquitard and aquifer
materials typically ranges from 0 to �0.3 (Freeze and Cherry,
1979), as a first approximation hydraulic conductivity is a good
surrogate for hydraulic diffusivity and is an appropriate parameter
to attempt to correlate with the regression coefficients.

Each geological class will have a range of hydraulic conductivi-
ties depending on the scale of observation (Neuman, 1990) and
heterogeneities in their pore structure, fabrics and larger-scale
lithological variations (e.g. Andreson, 1997). For the purposes of
this study we have considered the range of hydraulic conductivi-
ties that could be expected as derived from a typical pumping test
or at the river reach scale (i.e. a scale of 10–100s m) for each geo-
logical class. Table 5 lists representative values for hydraulic con-
ductivity for each of the geological classes with notes on how the
representative values were inferred. Hydraulic conductivity data
from the Thames Basin is available for the Chalk, Lower Greend-
sand, Oolites and Thames classes. Representative values for Dia-
Table 4
Summary statistics for the bootstrap re-sampling of Model 2.

Class Model Number of re-samples

Non-permeable surficial deposits 3 10,000
Aquitards 3 10,000
Sandy aquifers 3 10,000
Limestone aquifers 3 10,000
micton and Weald Clay have been taken from (Freeze and
Cherry, 1979, Table 2.2).

Fig. 6 is a plot of these representative values of hydraulic con-
ductivities against the regression coefficients for each of the geo-
logical classes in Model 1a. Note that in Model 1a the coefficients
for the Lower Greensand and the Oolites are almost identical as
are their inferred representative hydraulic conductivities so the
two points plot effectively on top of each other. The hydraulic con-
ductivity of the Chalk is known to be relatively high in valleys and
low under interfluves (Allen et al., 1997). This has been repre-
sented by the range bar for the Chalk in Fig. 6. The large range bars
on the hydraulic conductivity of the Diamicton and Weald Clay
represent the range of values for the respective lithologies taken
from (Freeze and Cherry, 1979, Table 2) with the representative va-
lue being taken as the median of the range. Fig. 6 shows that there
is a positive linear relationship between the regression coefficients
and log10 hydraulic conductivity for the geological classes in Model
1a.

If the regression coefficients in Models 1a and 1b indicate the
degree of departure from the typical or basin wide value of BFI rep-
resented by the constant terms in the regressions, the hydraulic
conductivity associated with a regression coefficient of zero in
Fig. 6 may represent a class-independent value of hydraulic con-
ductivity for a basin. Based on Fig. 6, a representative hydraulic
conductivity in the range of 10�5–10�9 m/s can be inferred for
the Thames Basin as shown by the range of values defined by the
dashed lines. This value is consistent (albeit towards the lower
end of the range) with representative values for aquifers i.e.
10�1–10�8 m/s (Manning and Ingerbritsen, 1999, Fig. 1), for esti-
mated basin scale values of hydraulic conductivity, e.g. 10�7–
10�11 m/s (Willet and Chapman, 1989; Deming, 1993), and for
modelled values of ‘equivalent hydraulic conductivity’ of heteroge-
neous sedimentary sequences, e.g. 10�7–10�8 m/s (Zhang et al.,
2007). Consequently, Fig. 6 is taken as further support for the
assertion that Models 1a and 1b have physical meaning.

Model 2

Regression Model 2, Table 3c, shows that the coefficients for all
four hydrogeological classes are significantly different from zero
and that the model explains about 97% of the variance in BFI in
the 44 catchments. A jackknife resample of Model 2 showed that
the model is not sensitive to any particular cases. Fig. 4 shows a
good correlation between modelled and observed BFI based on
Model 2. Residuals from Model 2 qualitatively show homoscedas-
ticity (Fig. 4), there is no significant autocorrelation in the residu-
als, and the residuals are broadly normally distributed. A one-
way Kolmogorov–Smirnov test on the residuals indicates a normal
distribution with a probability of 0.76. In addition, no spatial corre-
lation was seen in the distribution of the residuals for the cases
(catchments across the Basin).

Bootstrap statistics were generated for the regression coeffi-
cients in Model 2 based on 10,000 bootstrap samples each with
44 cases. Table 4 gives summary statistics for the results from
the bootstrap resampling of Model 2. Confidence bounds have been
calculated for the modelled BFI data for Model 2 based on the boot-
Minimum Maximum Mean SD

0.382 0.937 0.565 0.069
�0.026 0.463 0.243 0.055
�0.309 0.922 0.709 0.091

0.936 1.441 1.094 0.055
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strap statistics. Assuming a normal distribution for each coefficient
and using the mean and standard deviation of each coefficient from
the bootstrap resampling, Monte Carlo simulations were per-
formed, based on 10,000 simulations for each case (catchment),
to produce a distribution of predicted BFI values. Fig. 4 shows the
confidence bounds on the modelled values of BFI based on 95% tile
and 5% tile values for the Monte Carlo simulations using the boot-
strap statistics. The range in predicted BFI values for a given case is
relatively small (typically 0.05), and there is no significant correla-
tion between width of the confidence bands and the observed BFI,
indicating the robustness of Model 3 for predictive purposes.

Model 2 validation

As a validation of Model 2, BFI predicted using the hydrogeolog-
ical classification scheme can be compared with BFI calculated
using BFIHOST for the 44 calibration catchments (Marsh and Han-
naford, 2008). Fig. 5 is a plot of predicted BFI against observed BFI
for the respective models. It shows that there are no systematic dif-
ferences in the range or magnitude of predicted BFI between the
two models across the range of observed BFIs. In addition, linear
regressions through the predicted and observed data for each mod-
el have similar slopes and that the 90% confidence bounds for the
two regression overlap (Fig. 5), although BFIHOST systematically
predicts slightly lower BFIs by about 0.06. From these observations,
it is inferred that predictions of BFI based on the Model 2 hydro-
geological classification scheme (this study) and BFIHOST are com-
Fig. 5. Comparison between observed and modelled BFI for the 44 calibration
catchments for this study and for BFIHOST. The 90% confidence bounds to linear
regressions through the two respective data sets are also shown.

Table 5
Summary of hydraulic conductivity data used in Fig. 6.

Lithostratigraphic
class

Hydraulic conductivity (m/s) Notes

Diamicton 1E�5 to 1E�11 1E�8 (typical
value)

Typical range for glacial till is f
the till in the north of the Tha

Chalk 2E�3 to 1E�5 Ranges from 2E�3 m/s, a typic
Lower Greensand 9.6E�4 Based on a typical transmissivi

effective aquifer thickness of 3
Thames 1E�9 Ranges from 3E�8 m/s to 3E�
Weald Clay 5.0E�10 Typical range for unweathered
Oolites 8.1E�4 Based on a typical transmissiv

assuming and effective aquifer
parable and that Model 2 performs as well as BFIHOST as a
predictive tool.

Unlike Models 1a and 1b, Model 2 provides continuous BFI
catchment estimates scaled on the independent hydrogeological
parameters (in a similar manner to BFIHOST, Gustard et al.,
1992; Boorman et al., 1995). Because the four hydrogeological clas-
ses cover the whole of the Basin the model calibrated using the 44
baseline catchments, can be used to predict BFI values for the
remaining 110 catchments in the Thames Basin. If, as has been as-
sumed, the 44 catchments used for calibration of Model 2 are lar-
gely un-impacted by anthropogenic effects then the degree of
deviation of observed BFI from modelled BFI in the other 110
catchments in the Thames Basin should be a function of exogenous
factors not related simply to catchment hydrogeology, including
anthropogenic factors. Any systematic deviations of observed from
modelled BFI that can be correlated with non-hydrogeological fac-
tors would provide additional validation for the regression model.

Fig. 7 shows predicted BFI, based on Model 2, as a function of
observed BFI for the 110 catchments in the Thames Basin. As ex-
pected, there is a wider scatter of predicted values for the 110
catchments compared with the 44 calibration catchments (Fig. 5)
due to both poorer quality flow records and a range of artificial
influences and anthropogenic stresses and impacts on baseflow.
Despite the larger scatter in predictions, there is still a good posi-
tive correlation between predicted and observed BFI and this cor-
relation can be used to identify outliers. Based on the difference
rom 1E�5 m/s to 1E�11 m/s Freeze and Cherry (1979). There is no available data for
mes Basin
al value in valleys, to 1E�5 m/s, typical value under interfluves Allen et al. (1997)
ty value of 250 m2/d for the Lower Greensand Allen et al. (1997) and assuming and
0 m
10 m/s Ellison et al. (2004)

marine clay is from 1E�9 m/s to 1E�12 m/s Freeze and Cherry (1979)
ity value of 350 m2/d for the Great and Inferior Oolites Allen et al. (1997) and
thickness of 50 m

Fig. 6. Relationship between regression coefficients for Model 1a and estimates of
the hydraulic conductivity for each lithostratigraphic class in the model. The dashed
lines bracket the inferred range of representative hydraulic conductivity for the
Basin as a whole.



Fig. 7. Modelled against observed values of BFI for 110 ‘variably impacted’
catchments in Thames Basin based on Model 2 with outliers identified.
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between observed and modelled BFIs, outliers have been identified
as being either greater than or less than one standard deviation of
the mean difference, Fig. 7. The cases where observed BFI is higher
than modelled BFI indicate that there is an apparent excess of base-
flow above that which would be expected under natural condi-
tions. Conversely, the cases where observed BFI is lower than
modelled BFI indicate that the river has lower baseflow than that
which would be expected under natural conditions. But do these
outliers show systematic relationships with any anthropogenic
factors or other characteristics of the catchments? Land cover data
are available for the catchments, including urban coverage (Centre
for Ecology and Hydrology, 2008; Marsh and Hannaford, 2008), and
for this study percentage urban area of the catchments has been ta-
ken as a surrogate for the degree of anthropogenic impact on the
catchments. Fig. 8 is a plot of observed BFI as a function of urban
area for the two classes of outliers identified in Fig. 7. For catch-
ments where the observed BFI is significantly higher than the mod-
elled BFI there is a good negative correlation over a wide range of
BFIs, but there is no similar correlation between observed BFI and
Fig. 8. Observed BFI as a function of percentage urban area for the outliers
identified in Fig. 7.
urban area for catchments where observed BFI is less than the
modelled BFI.

A number of studies have shown that urbanisation may cause
increased surface runoff in annual streamflow including an in-
creased magnitude of peak runoff (Chin and Gregory, 2001; Rose
and Peters, 2001; Burns et al., 2005). However, Burns et al.
(2005) in a study of the effects of suburban development on runoff
generation also noted that baseflow during dry periods was great-
est in high-density residential catchments and attributed this to
discharge of septic tank effluent through the shallow groundwater
system to streams. Because the negative correlation between ob-
served BFI and urban area (for catchments where BFI is higher than
expected) identified by this study holds over a wide range of abso-
lute values of BFI and urban area, a single factor is unlikely to influ-
ence this relationship. Consequently, it is inferred from Fig. 8 that a
number of factors may contribute to the ‘excess’ observed baseflow
that could include sewage discharge, mains leakage, and leakage
from septic tanks. However, it is clear from Fig. 8 that factors di-
rectly associated with urbanisation are not related to the catch-
ments that show unexpectedly low values of BFI. These
catchments are mainly rural (<20% urban area), sometimes rela-
tively small (on average �75 km2) and most are highly impacted
by groundwater abstraction. Some are affected by sewage dis-
charges and a few of them have notably poor flow records (Marsh
and Hannaford, 2008). A combination of these and possibly other
factors must account for their anomalously low values of BFI.
Discussion

Geological controls on BFI

By regressing fractional areas of discrete lithologies within
catchments onto BFI and by demonstrating that the resulting
regression models have some physical meaning, this study has
shown that BFI can be considered as an integrated expression of
the fractional areas of discrete lithologies within catchments. This
can be done because only geological factors were considered dur-
ing model calibration enabling the role of geology to be quantified
independent of other factors. However, it has previously been
demonstrated, using a variety of methods, that other parameter
sets, including topographic, soil, vegetational and climatic factors
(Nathan et al., 1996; Sefton and Howarth, 1998; Mwakalila et al.,
2002; Mwakalila, 2003; Abebe and Foerch, 2006; Santhi et al.,
2008), can explain observed variations in BFI equally well. How
can these observations be reconciled?

Lacey and Grayson (1998) note that ‘geology affects baseflow in
at least two ways. The first effect is direct: groundwater is stored in
rocks . . . and this contributes to baseflow. The second effect is the
formation of soil: different types of rocks tends to produce differ-
ent types and depths of soil . . . and hence differences in recharge,
groundwater and baseflow’. However, the interrelationships be-
tween geology and other catchment parameters are likely to be
far more complex than described by Lacey and Grayson (Tetzlaff
et al., 2008). The underlying lithological characteristics of a catch-
ment certainly effect the nature and depth of soils, but these in
turn can influence vegetation type, land cover and land use. The
underlying lithological characteristics of the catchment will affect
long-term weathering and hence physiographic characteristics of
the catchment and this in turn will effect soil and veretation devel-
opment and may even influence to some small extent the distribu-
tion and magnitude of precipitation across the catchment. A
combination of all these interactions will influence the nature
and extent of recharge to the aquifer and all these factors and
interactions will have a bearing on baseflow and BFI as an empiri-
cal measure of baseflow. Given the above, it is reasonable to con-
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ceptualise the underlying geology in catchments, as characterised
by lithological variations and the associated variations in hydraulic
and storage characteristics of those formations across a catchment,
as a primary factor in affecting baseflow and BFI. However, because
of the complex interrelationships between different catchment
parameters it is not possible to simply say that a measure of one
parameter set, e.g. a geology or soils index, is responsible for a gi-
ven percentage of the variation in BFI.

A generic methodology

It has been shown that regression methodologies can be used to
describe physically meaningful relationships between litholgical
characteristics of catchments and their associated BFI in the
Thames Basin (Models 1a and 1b), and that a regression model
relating hydrogeological characteristics of catchments to BFI (Mod-
el 2) can be used to produce continuous BFI catchment character-
istics with useful predictive capabilities for the Thames Basin (in a
manner similar to BFIHOST). The details of the methods used in
this study are specific the Basin, however, the generic approach
has a wider application to other basins.

For models based on a lithological classification scheme the first
step is to identify the lithological classes to be used in the step-
wise regression models. In this study we used an expert judgement
approach, although, depending on the type and quality of geologi-
cal mapping information available, statistical techniques such as
cluster analysis could be used to help inform the initial classifica-
tion scheme prior to regression modelling. This step could even
be removed by using an all possible subsets regression approach
to entirely automate the regression process. Where an expert
judgement approach is used, this study shows that it is helpful to
have explicit targets (number of classes), assessments undertaken
by independent workers to compare resulting initial lithological
classification schemes, and rules appropriate to the basin and
stratigraphic sequence being assessed. The target for the initial
number of lithological classes may be limited by the available geo-
logical mapping. For example, the British Geological Survey has
published three digital geological maps that cover the Thames Ba-
sin at 1:625,000, 1:250,000 and 1:50,000 scales. The 1:50,000 scale
map was used as this gave the best resolution to the geological
linework when estimating fractional areas of geologies in different
catchments. The 1:625,000 mapping shows 17 lithological classes
in the Thames Basin. If this had been the only mapping available
then the first step, to identify the lithological classes to be used
in the regression, would not have been needed as all the mapped
units at 1:625,000 could have been used in the stepwise regression,
but the model would less accurately represent the fractional areas
of the different lithological classes.

The particular rules used by the independent workers to estab-
lish the expert judgement-solicited initial lithological classification
are particular to the Thames Basin, but a generic approach can be
identified. As previously noted, because the Basin consists of a se-
quence of sedimentary rocks the classes was be based on the strati-
graphic column, and, as a consequence, stratigraphically
neighbouring groups had to be lithologically distinct. This scheme
is broadly applicable, however, for other basins in other geological
and tectonic settings, for example, where there are major faults
that cut-out sections of the stratigraphy or where there are intru-
sive units, the simple grouping of stratigraphically neighbouring
units into lithologically coherent classes is not possible. In this case
the hydrogeologists need to develop specific rules related to the
grouping of units associated with faulting or intrusions. For the
Thames Basin lithological classes were defined on the degree of
internal coherency of lithology. For sequences that are faulted or
contain intrusions then similar considerations can apply except
that stratigraphically-, lithologically- and structurally-based
grouping schemes could be developed and combined.

For the regression models based on a hydrogeological classifica-
tion scheme it is necessary to identify hydrogeologically represen-
tative classes that are continuous over the entire basin. In this
study we developed the most simple classification scheme for
which a satisfactory regression could be developed with adequate
predictive capabilities. This entailed identifying four hydrogeolog-
icaly distinct classes and mapping the lithological classification
onto those units. Because the lithological classification for the
Thames Basin had produced a series of chronologically distinct
units dominated by alternating carbonate, clay and sandstone
lithologies the task was trivial. An alternative more generic ap-
proach would be to use standard hydrogeological mapping conven-
tions (UNESCO, 1983) to identify the hydrogeological classes. This
may give more than the four hydrogeological classes used in this
study, but would enable a similar regression model to be built.

Summary

Despite a common assumption that underlying geology in
catchments influences baseflow, to date the relationship between
catchment geology and BFI has not been quantified in a systematic
manner. In this study, relationships between lithological character-
istics of catchments and BFI are quantified at the basin scale by
multiple linear regression methods using the Thames Basin, UK,
as a case-study. Multiple linear regression methods have been used
before to relate catchment parameters to BFI, however, because
these studies used geological and non-geological parameters to
estimate BFI they cannot provide specific insights into the relation-
ships between the geological characteristics of catchments and BFI.

Standard step-wise multiple linear regression methods are used
in this study to relate geological and hydrogeological parameters to
BFI. Two similar regression models have been developed to quan-
tify the relative influence of the fractional areas in catchments of
different lithostratigraphic classes to BFI, and a second model has
been developed to quantify the relationship between a simple
hydrogeological classification scheme and BFI. The latter enables
continuous characteristics to be modelled across the Basin, in a
manner similar to the BFIHOST methodology.

Results suggest that for linear regression models built using
lithological classifications schemes a physically meaningful regres-
sion model can be obtained if a constant term is included in the
regression. The models have been validated by comparing the
regression constant with a BFI value for the outflow stream for
the whole basin, and by comparing the regression coefficients for
each of the lithological classes with the known hydrogeological
characteristics of those lithologies across the basin. The coefficients
were found to scale linearly with estimates of log10 hydraulic con-
ductivity for each of the lithological classes.

For a linear regression model built using a simple fourfold
hydrogeological classification scheme, the model provides contin-
uous BFI catchment estimates that are comparable to those ob-
tained by BFIHOST. The model based on the hydrogeological
classification scheme was validated using 110 ‘variably impacted’
catchments in the Thames Basin. Significant deviations between
observed and modelled BFI can be explained in part by consider-
ation of an exogenous variable to the model, urban area. For cases,
where the observed BFI is significantly greater than the modelled
BFI, i.e. for catchments where there is an apparent excess of base-
flow, the BFI is negatively correlated with urban area.

The study has shown that BFI can be considered as an integrated
expression of the fractional areas of lithologies in catchments. Pre-
vious studies have shown that other parameter sets, including
topographic, soil, vegetational and climatic factors can also explain
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observed variations in BFI equally well. Despite the complex corre-
lations and interdependencies between different catchment
parameter sets catchment lithology can be considered a first order
or primary factor in affecting baseflow and BFI.

This study describes an expert judgement approach to select-
ing the initial set of geological parameters to be used in the step-
wise linear regression models. The approach is generic, and can
be applied to basins with a range of geological and structural set-
tings, however, other statistical methods could easily be substi-
tuted to obtain the initial geological parameters. For the
regression models based on a hydrogeological classification
scheme it is necessary to identify hydrogeologically representa-
tive classes that are continuous over the entire basin. In this
study we developed the most simple classification scheme for
which a satisfactory regression could be developed with adequate
predictive capabilities. An alternative more generic approach
would be to use classes associated with standard hydrogeological
mapping conventions.
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