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Abstract 

In operational hydrological forecasting systems, improvements are directly related to the 

continuous monitoring of the forecast performance. An efficient evaluation framework must 

be able to spot issues and limitations and provide feedback to the system developers. In 

regional systems, the expertise of analysts on duty is a major component of the daily 

evaluation. On the other hand, large scale systems need to be complemented with semi-

automated tools to evaluate the quality of forecasts equitably in every part of their domain.  

This article presents the current status of the monitoring and evaluation framework of the 

European Flood Awareness System (EFAS). For each grid point of the European river 
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network, 10-day ensemble streamflow predictions are evaluated against a reference simulation 

which uses observed meteorological fields as input to a calibrated hydrological model. 

Performance scores are displayed over different regions, forecast lead times, basin sizes, as 

well as in time, considering average scores for moving 12-month windows of forecasts. 

Skilful predictions are found in medium to large rivers over the whole 10-day range. On 

average, performance drops significantly in river basins with upstream area smaller than 300 

km
2
, partly due to underestimation of the runoff in mountain areas. Model limitations and 

recommendations to improve the evaluation framework are discussed in the final section. 

 

Keywords: flood early warning; ensemble streamflow predictions; CRPS; skill scores; 

distributed hydrological modelling. 
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1 Introduction  1 

Operational hydrological forecasting systems play a key role in the water resources 2 

management and in the preparedness against extreme events. Assessing their performance is 3 

crucial for the error diagnostic and in the planning of development work to improve the 4 

system accuracy and extend the forecast lead time. A vast number of regional and national 5 

hydro-meteorological centres have flood forecasting and early warning systems in place based 6 

on weather predictions (see Alfieri et al., 2012 for a recent review of European systems). At 7 

the same time, the number of ensemble-based systems is increasing (Cloke and Pappenberger, 8 

2009; Wetterhall et al., 2013), with the aim of describing part of the uncertainty embedded in 9 

the forecasts. The evaluation of the forecast accuracy is regularly performed in many 10 

operational systems, where verification scores need to be complemented by the local 11 

knowledge and experience of analysts on duty. Further, skill scores are rarely displayed 12 

publicly, to prevent misinterpretation of results and avoid the need for simplifying their 13 

information content for a wider recipient of users. Yet, reporting on past performance by 14 

means of verification scores is listed as one of the main priorities of users, to increase the trust 15 

in forecasting systems (Wetterhall et al., 2013). 16 

Assessing the forecast performance over large domains raises the challenge of comparing 17 

river points with different upstream area and hydrological regimes. In these cases, a 18 

widespread approach to tackle the forecast verification is to compute scores based on the 19 

probability of thresholds exceedance (e.g., warning levels), that can be defined in a consistent 20 

way for every point. While this is a standard practice for early warning systems (e.g., 21 

Bartholmes et al., 2009; Gourley et al., 2012), it is also applied to the verification of 22 

categorical events for any set of thresholds (Thirel et al., 2008). If quantitative values are 23 

considered, the choice of performance scores becomes wider (Legates and McCabe, 1999; 24 
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Wilks, 2006), though only a relatively small subset is specifically dedicated to evaluate the 25 

quality of ensemble forecasts (Brown et al., 2010). The comparison of forecast skill in several 26 

river sections is often performed through benchmarking against simplified simulations 27 

(Pappenberger et al., submitted), previous model versions (Arheimer et al., 2011), different 28 

input data (e.g., Renner et al., 2009), or climatological values (Demargne et al., 2010; 29 

Verkade et al., 2013; Wood et al., 2005). An alternative method consists in normalizing 30 

forecasts and reference values before the evaluation (Pappenberger et al., 2010). Trinh et al. 31 

(2013) used a similar concept to propose a modified Continuous Ranked Probability Score 32 

(CRPS) which is suitable to compare forecast performance at different river sections. In 33 

operational systems, the forecast performance must be monitored and updated continuously in 34 

time. Hence, a skill assessment based on different scores and benchmarks (e.g., Alfieri et al., 35 

2013a; Randrianasolo et al., 2010) is often preferred in order to analyze different aspects of 36 

the forecast performance at several locations and quickly detect trends over time or 37 

weaknesses.  38 

In 2012, after the transfer of the EFAS operational suite to the European Centre for Medium-39 

Range Weather Forecasts (ECMWF), a commitment was made to set up an evaluation 40 

framework of the hydrological forecasts, in order to monitor their performance over time and 41 

after major system updates. The idea was to implement an automated procedure to regularly 42 

produce and update summary skill scores for the whole computation domain, able to spot a 43 

variety of possible problems and address subsequent in-depth analysis. Among the main 44 

challenges to face was the choice of appropriate skill scores, the handling of large data sets, 45 

and the visualization of results through concise and intuitive graphs. 46 

This article presents the current status of implementation of such an evaluation framework, 47 

after one year of operational runs at ECMWF. Streamflow forecasts at every grid point of the 48 
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river network are verified against a reference simulation which uses observed meteorological 49 

fields as input to a calibrated hydrological model.  50 

2 Data and Methods 51 

2.1 Model framework 52 

The main components of the EFAS hydro-meteorological forecasting chain are: a) a 53 

hydrological model, b) weather forecasts, and c) meteorological observations, to update the 54 

initial model states and for verification purpose (see Figure 1). Each of these three 55 

components has inherent uncertainty, which can be described in the modelling framework and 56 

propagated to the output discharge. The current EFAS system is a multi-model ensemble 57 

approach, in that it accounts for the uncertainty of input weather forecasts using model runs 58 

from different meteorological centres in Europe. These include two deterministic forecasts, 59 

from the ECMWF (ECMWF-HiRes, Miller et al., 2010) and from the German Weather 60 

Service (DWD, see Majewski et al., 2002; Steppeler et al., 2003), and two ensemble forecasts, 61 

from the COSMO Consortium (COSMO-LEPS, Marsigli et al., 2005) and from ECMWF 62 

(ECMWF-ENS, Miller et al., 2010). The version of the evaluation framework presented here 63 

is based on the performance of the ECMWF-ENS forecasts only, though it is foreseen to 64 

extend it to include the other model simulations. The system setup and additional details on 65 

how weather forecasts are handled in EFAS are documented in the published literature 66 

(Bartholmes et al., 2009; Pappenberger et al., 2010; Thielen et al., 2009), therefore we refer 67 

the reader to these articles for additional information not included in the present work, and 68 

focus on the analysis of the evaluation framework.  69 

 70 

Figure 1: Schematic view of the EFAS hydro-meteorological forecasting system. 71 
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2.2 Meteorological data 72 

ECMWF-ENS is a 51-member ensemble forecast run twice per day, at 00 UTC and 12 UTC 73 

as part of the operational production suite of ECMWF Integrated Forecast System (IFS, see 74 

Bechtold et al., 2014; Miller et al., 2010). ENS forecasts are run globally at T639 spectral 75 

resolution, corresponding to about 32 km horizontal resolution, with forecast lead time (LT) 76 

up to 10 days. After day 10, the model run is extended up to day 15 (day 32 twice per week) 77 

at a coarser horizontal resolution of about 65 km. Currently, EFAS uses only the first 10 days 78 

of forecast as input to the hydrological model. For this work, ENS forecasts from January 79 

2009 to the present were extracted and used in the hydrological simulations, considering those 80 

available at the time of the forecasts (i.e., no reforecast with more recent IFS versions was 81 

used). Meteorological forecast fields used are total precipitation, evaporation, and 2-metre 82 

temperature, which are regridded to the same spatial resolution of the hydrological model (see 83 

next section).  84 

A database of observed meteorological fields for Europe was provided by the Joint Research 85 

Centre of the European Commission. It consists of maps of spatially interpolated point 86 

measurements of precipitation and temperature at the surface level. The database includes 87 

daily data from the 1990 to the present, and it is populated by an increasing number of 88 

reporting gauges over time, with the latest figures showing on average more than 6000 89 

stations for precipitation and more than 4000 for temperature (see Figure 2 for a recent 90 

example of daily data). A subset of the same meteorological station network is used to 91 

generate interpolated potential evapotranspiration maps using the Penman-Monteith method. 92 

 93 

Figure 2: stations reporting observed precipitation (left) and average temperature (right) on 94 

the 1st October 2013. 95 
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 96 

2.3 Hydrological modelling 97 

In EFAS, hydrological simulations are performed with Lisflood, a hybrid between a 98 

conceptual and a physical rainfall–runoff distributed model, designed to reproduce the main 99 

hydrological processes of medium to large river basins (see van der Knijff et al., 2010). The 100 

considered model setup for Europe was calibrated at 481 river gauges, using the observed 101 

meteorological fields as input and up to 7 years of gauged discharge. A reference hydrological 102 

simulation starting in 1990 was run for the European window with the calibrated Lisflood 103 

model at 5x5 km resolution, using the observed meteorological fields as input. The 104 

operational model is updated daily using the initial states of the previous day and the most 105 

recent meteorological observations acquired with about 1 day lag. This simulation, hereafter 106 

referred to as EFAS Water Balance (EFAS-WB), represents our best estimate of the 107 

hydrological states in the European rivers. The EFAS-WB is used in EFAS with regard to 108 

three main aspects (see Figure 1): I) deriving climatological features of the runoff in each 109 

point of the river network (e.g., average conditions, extremes, alert thresholds, seasonality); 110 

II) creating initial conditions for daily hydrological runs driven by the latest weather 111 

predictions; III) providing a reference simulation which is as realistic as possible, to be used 112 

as a proxy to evaluate streamflow forecasts in every grid point of the simulation domain. 113 

Further details on the EFAS-WB are described by Alfieri et al. (2013b). The same calibrated 114 

Lisflood setup is used to perform 10-day EFAS streamflow forecasts updated twice per day, 115 

by forcing the hydrological model with initial conditions from the EFAS-WB and with 116 

forecast weather fields (described in the previous section) with 1-day temporal resolution. 117 
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3 Evaluation strategy 118 

EFAS forecasts are run at the ECMWF twice per day since October 2012, using weather 119 

predictions initialized at 00 and 12 UTC. This operational dataset of hydrological forecasts 120 

was complemented by running 4 years of daily hindcasts with the same model configuration, 121 

starting on January 2009. To reduce the computing load, the hindcasts were run only once per 122 

day, using forecast runs from 12 UTC. Ensemble streamflow predictions (ESP) are validated 123 

against the EFAS-WB for each point of the modelled European river network, comprising 124 

38452 grid points. Such an approach enables a quick spatial overview of skill scores on every 125 

region of the computation domain, rather than just at stations where observed discharge is 126 

provided. On the other hand it does not account for the potential mismatch between actual 127 

river discharge and the simulated EFAS-WB used as reference. 128 

Average scores are calculated over 1-year time windows. This choice proved to be effective 129 

as it includes one full hydrological year and dampens the seasonal variability of skill scores. 130 

In practice, the verification of dry months leads to higher scores than those of rainy months, 131 

as the quantitative forecast of high precipitation amounts is more challenging than forecasting 132 

days with zero precipitation. As a result, the evaluation framework was set up to select the 133 

first day of each month and calculate the average skill scores of the previous 365 days, 134 

starting on the 1st January 2010. The procedure was then semi-automated and skill scores are 135 

now updated every month to include results of the latest forecasts. 136 

Skill scores to evaluate the ESP were chosen so that grid points with different upstream area 137 

and climatic regime could be compared together in the same graphs and in the same maps. To 138 

this end, four different dimensionless skill scores were selected, able to stress different 139 

aspects of the forecast performance. These are described in the following sub-sections and 140 

summarized in Table 1. 141 
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3.1 Nash-Sutcliffe efficiency 142 

The Nash-Sutcliffe efficiency (NS, Nash and Sutcliffe, 1970) applied to discharge forecasting 143 

can be defined as: 144 

�� = � − ∑ ��	
��
������
����
��∑ ��	
��
����	
����
��  ,     (1) 145 

where qsim is the proxy discharge given by the EFAS-WB and qfc is the forecast discharge at 146 

the same time step. t is a time index spanning all N forecasts included in the evaluation 147 

window, that is N=730 in operational forecasts (when two forecasts per day are evaluated) 148 

and N=365 for hindcasts between 2009 and 2012. In the case of the considered ESP, qfc 149 

represents the mean of the 51-member ensemble. The NS values range from -∞ to 1, the latter 150 

corresponding to perfect forecasts. NS above 0 means that forecasts perform better than 151 

climatological values, in the form of their average discharge �����. In the presented work, NS 152 

values are calculated for fixed forecast lead times between 1 and 10 days, and the average 153 

values over 1 year windows are shown, as described in the previous section. 154 

3.2 Forecast bias 155 

Monitoring the bias of ensemble streamflow predictions is of vital importance for a flood 156 

awareness system based on a threshold exceedance approach as in EFAS. Flood alerts are 157 

detected by comparing EFAS simulations driven by weather forecasts as input, against 158 

reference warning thresholds, derived from the EFAS-WB. If weather forecasts were 159 

persistently different from observed meteorological values, discharge forecasts would be 160 

consequently biased, which may result in statistically significant over- or under-prediction of 161 

flood alerts. The main potential source of bias in ESP is the quantitative forecast of 162 

precipitation, particularly for high flow events. However, biased forecast values of 163 

temperature may induce cyclical drifts of discharge predictions, particularly in hydrological 164 
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regimes where the snow accumulation and melting processes play a prominent role. In 165 

addition, precipitation, temperature and evapo-transpiration are key drivers for the soil 166 

moisture state, therefore consistent bias in their forecast values can affect the streamflow 167 

potentially over long ranges (i.e., monthly to inter-annual time scales). In the presented 168 

evaluation framework, the bias at each grid point is rescaled by the corresponding average 169 

discharge for the same period, calculated from the EFAS-WB:  170 

 ��� ! = �� ∑ ��	
��
������
���
�� ��	
�       (2) 171 

Being a linear operator, the sum of the percentage bias (Pbias) of all ensemble members is 172 

equal to the percentage bias of the ensemble mean. 173 

3.3 Coefficient of variation of the RMSE 174 

The Root Mean Squared Error (RMSE) has long been used to assess the magnitude of the 175 

error of deterministic forecasts. It has the advantage that it retains the units of the forecast 176 

variable and it includes the effect of both bias and variance of estimation. In addition, the 177 

RMSE depends on a quadratic function of the estimation residuals. This lead to some 178 

peculiarities, among which: 1) it is highly affected by few large errors and 2) it is often used 179 

as an error function to be minimized in a wide range of calibration and optimization 180 

processes. On the other hand it is difficult to compare RMSE values among different river 181 

stations, as their climatological discharge values may be substantially different. One option to 182 

compare the RMSE at different locations is to rescale it by the corresponding average 183 

discharge, as shown in Reed et al. (2007), so that resulting values become dimensionless: 184 

 "# = $∑ %�	
��
�&����
�'��
�� ���	
� ,      (3) 185 



  

 11

The resulting score is commonly referred to as coefficient of variation (CV) of the RMSE 186 

and, as for the RMSE, values close to zero are preferable. Also, when CV values are close to 187 

1 it means that the RMSE of estimation is of the same order as the average discharge. Indeed, 188 

it can be associated to an inverse of the signal-to-noise ratio. By definition the CV penalizes 189 

river reaches with low average discharge compared to its variability, therefore higher CV 190 

values are expected in small or flash-flood prone river basins, such as those along the 191 

Mediterranean coast, where the predictability is indeed shorter than in large river basins. 192 

3.4 Continuous Ranked Probability Skill Score 193 

To fully exploit and assess the added value of probabilistic predictions, the Continuous 194 

Ranked Probability Skill Score (CRPSS) is used to evaluate the quantitative skills of the ESP.  195 

The CRPSS (e.g., Hersbach, 2000) is defined as: 196 

()*++ = ,-./012�������������,-./23014567�������������������
,-./012������������ ,      (4) 197 

where 198 

()*+ = 8 �9�:� − 9;�:��<=:>�>      (5) 199 

and  200 

 9;�:� = @0,   : < DEFGHIG= IJKLG 1,   : ≥ DEFGHIG= IJKLG O      (6) 201 

while F(y) is the stepwise cumulative distribution function (cdf) of the ESP of each 202 

considered forecast. The CRPSS is a dimensionless indicator of the skill of ensemble 203 

predictions, measured by (CRPSforecast), compared to that of a reference forecast (CRPSref). 204 

The CRPSS ranges between 1 (for perfect predictions) to -∞, though ESP are valuable only 205 

when CRPSS>0, i.e., when the forecasts perform better than the reference. In this work, we 206 

compare and discuss the use of two different CRPSref to evaluate the CRPSS, the first based 207 
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on the average climatological discharge ����� (CRPSref,ad), and the second based on a 208 

persistence forecast (CRPSref,pf), meaning a forecast given by assuming the same value used to 209 

initialize the ESP. It is worth noting that both reference CRPS are based on deterministic 210 

predictions, hence the CRPSref reduces to the mean absolute error (Hersbach, 2000): 211 

()*+PQR,ST = UV ∑ |�����X� − �����|VYZU     (7) 212 

where t is a daily time index going from 1/1/1990 to the present. On the other hand, 213 

 ()*+PQR,[R�\]� = Û ∑ |�����X� − �����X − \]�|ŶZU   (8) 214 

where N has the same meaning as in Eq.1. 215 

Two significant differences between Eq.7 and 8 can be seen. The CRPSref,ad is a constant 216 

value and only depends on the location, though it needs climatological information to be 217 

evaluated, in the form of a reference time series of observations or proxy simulations (i.e., the 218 

EFAS-WB in this case). On the other hand, the CRPSref,pf depends on the lead time of the 219 

forecast (LT). It does not need any prior climatological information on the discharge regime 220 

at the point but the discharge value used to initialize the forecast. 221 

4 Results  222 

Skill scores of the last available year are now routinely calculated on the 13th day of each 223 

month, after all meteorological observations to update the EFAS-WB are received and the 224 

hydrological model is run. Simulated proxy discharges need to be computed until the 11th of 225 

the same month, so that 10-day ESP starting on the 1st can be evaluated. Scores described in 226 

Sect. 3 are shown in Figure 3. NS, CV and Pbias are deterministic scores; hence they are 227 

calculated on the ensemble mean, while the CRPSS take into account the whole ensemble. A 228 

forecast lead time of 5 days is chosen for most figures in the article, being representative of 229 

the general behaviour of the ESP and a frequent lead time of EFAS flood alerts. One can see 230 
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that, for LT=5 days, in the vast majority of grid points the ESP is more skilful than a 231 

persistence forecast (i.e., CRPSSpf>0). The NS and the CV suggest that higher performance is 232 

achieved in large rivers of Central and Northern Europe. Excluding Iceland, lower skills are 233 

mostly seen in Southern Europe and can be explained by a) resolution issues in small basins, 234 

b) less skilful precipitation forecast in mountainous areas, c) a comparatively lower station 235 

density to run the EFAS-WB, and d) the higher proportion of convective precipitation, 236 

leading to higher space-time variability of rainfall rates and larger extremes over short (i.e., 1-237 

day or sub-daily) durations. Similarly, the Pbias (on gray background in Figure 3) shows a 238 

widespread underestimation of discharge over the main mountain ranges (i.e., Pyrenees, Alps 239 

and Balkans, among others), mostly in the range 10% to 50% of the corresponding average 240 

flow. These findings are in line with previous works by Wittmann et al. (2010) and 241 

Pappenberger et al. (2013), who showed increasing underestimation of precipitation and 242 

streamflow forecast in the Alpine region during intense precipitation events. The apparently 243 

poor performance over Iceland in Figure 3 is actually imputable to an incorrect reference 244 

streamflow. Indeed, the number of reporting stations for this region is very low (see an 245 

example in Figure 2), particularly for precipitation, thus leading to a considerable under-246 

prediction of the streamflow. In other words, although EFAS streamflow forecasts over 247 

Iceland may be skilful, the current availability of meteorological observations prevents from 248 

simulating reliable reference discharge to perform forecast evaluation in this area. In the 249 

following analyses, summary scores of grid points in Iceland are excluded from all figures, 250 

which brings the dataset to a subset of 37588 points. 251 

 252 

Figure 3: CRPSSpf, CV, NS and Pbias over Europe for 1 year of daily forecasts ending on the 253 

1st October 2013 (5-day lead time). 254 
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4.1 Performance versus forecast range 255 

Skill scores as in Figure 3 are shown in Figure 4 for each forecast lead time between 1 and 256 

10 days. A solid line indicates the mean value among all grid points, while grey shades denote 257 

the 5%-95% (light grey) and the 25%-75% (dark grey) of their distribution. In the top-left 258 

panel, the CRPSS calculated using the average discharge as reference (i.e., CRPSSad) is 259 

shown with a thick dashed line (mean value) together with the corresponding 25%-75% 260 

values (dotted lines). Differences between the two methods are the largest for the first lead 261 

time, where in many cases the ESP does not bring substantial differences in comparison to a 262 

persistence forecast, due to the large weight of the initial model states. On the other hand, the 263 

CRPSSad decreases roughly linearly and suggests the presence of a crossing point for a LT>10 264 

days, when the climatological average discharge seems to become a more skillful benchmark 265 

than a persistence forecast. As expected, the CV tends to deteriorate with the lead time, 266 

though without a significant increase of the spread of its distribution. Similarly, the mean NS 267 

ranges between 0.9 for LT=1 and 0.7 at the end of the forecast range, while in 99% of 268 

forecasts NS>0 for LT=10 days. The Pbias shows a rather constant mean under-prediction of 269 

2% to 4%. Its distribution has an increasing spread with the lead time, with 65% to 70% of 270 

grid points lying constantly below the zero line.  271 

 272 

Figure 4: CRPSS, CV, NS and Pbias of ESP versus the forecast lead time. 273 

 274 

4.2 Performance versus catchment size 275 

Figure 5 displays the four scores against the upstream area of each grid point, calculated over 276 

1 year ending on 1/10/2013 and for a 5-day lead time. In addition, solid lines indicate the 277 

empirical median value (i.e., 50th percentile), in light grey, and the central 90% of the 278 
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distribution (i.e., 5th to 95th percentiles), in dark grey. Largest values on the x-axis 279 

correspond to the lower Danube River, with upstream area up to about 800,000 km2. On the 280 

left side of each panel, one can note the model grid resolution as limit, with catchments area 281 

being always a multiple of 25 km2. Results in Figure 5 denote a general positive trend of skill 282 

scores with increasing upstream area. Indeed, in large rivers, a) the discharge varies more 283 

gradually due to the smoothing and averaging effect of the complex river network and b) the 284 

influence of the initial discharge, compared to the forecast precipitation input, is larger than in 285 

smaller catchments. In detail, as the basin time of concentration increases and approaches the 286 

magnitude of the forecast range, a larger proportion of the forecast discharge at the river 287 

outlet is made up by a water volume which is already in the model, (i.e., gauged) at the 288 

starting time of the forecast run. Therefore the skill of weather forecasts affects that of 289 

streamflow forecasts with an average delay increasing with the upstream area, which can be in 290 

the order of some days for large European rivers. On the other hand, Figure 5 shows a clear 291 

deterioration of scores for catchments smaller than 300 km2, that is, for a ratio between 292 

upstream area and grid size of the weather forecasts of about 0.3. Results are in agreement 293 

with those of Pappenberger et al. (2010), though Bartholmes et al. (2006) suggested a 294 

minimum threshold of 4000 km
2
 if extreme values are considered. Indeed, the latter value is 295 

used in EFAS as minimum upstream area for flood alerts to be issued to partner institutes. 296 

The median value of the Pbias in Figure 5 indicates that the deterioration of scores can be 297 

partly attributed to the underestimation of the discharge for small catchments, which 298 

decreases below 2%, in absolute value, for upstream areas larger than 400 km
2
. As 299 

commented in Sect. 4, such trend is to be attributed to the under-prediction of quantitative 300 

precipitation in mountain areas and of extreme values in general, not fully captured by the 301 

atmospheric circulation model due to its grid size on average coarser than the observation 302 

network. 303 
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 304 

Figure 5: CRPSSpf, CV, NS and Pbias of ESP versus the upstream area of each river grid 305 

point. 306 

 307 

4.3 Evolution of 12-month average performance 308 

The evolution of summary scores over the past 5 years is shown in Figure 6. Scores are 309 

calculated on the 365 days preceding the first day of each month indicated in the x axis. In the 310 

top-left panel both CRPSSpf and CRPSSad are shown, using the same line types as in Figure 4. 311 

In addition, the average discharge over all grid points of the river network, for each evaluation 312 

period, is drawn at the bottom. One can note how the CRPSSad is largely affected by the 313 

magnitude of the observed runoff, so that, in drier years, it gives the impression of increasing 314 

forecast performance, and vice-versa. In the CRPSSpf, no dependence on the average runoff is 315 

visible. The latter shows an improvement of the forecast skills during the year 2013, 316 

particularly for the mean of the distribution and for the 75th and 95th quantiles. Such 317 

improvement is also pointed out by a reduced mean CV and increased mean NS, where in 318 

both cases the central 90% of the distribution becomes narrower since the beginning of 2013, 319 

though with a subsequent widening towards the end of the year. 320 

Interestingly, the bottom-right panel denotes a slow but constant increase of a negative bias in 321 

forecast streamflow over the last years. This appears consistently on all lead times (not 322 

shown), though it is more significant towards the end of the forecast range. On the other hand, 323 

no corresponding trend was reported in the forecast input precipitation produced by the 324 

ECMWF-ENS (personal communication, see some additional details in 325 

http://www.ecmwf.int/products/forecasts/d/charts/medium/verification), nor in temperature 326 

(possibly inducing a larger snow fraction). Instead, the main reason for such discrepancy is 327 
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most likely due to the progressive increase in the number of stations reporting meteorological 328 

observations in recent years. Higher station density leads to a more realistic representation of 329 

the input maps to run the EFAS-WB, so that small-scale features such as convective cells are 330 

more likely to be better observed quantitatively. In this regard, Kann and Haiden (2005) 331 

showed that when high density stations networks are used as reference, the mean absolute 332 

error of forecast precipitation tend to increase with the reduction of the aggregation area. 333 

Further, some of the stations added recently are located in elevated areas, such as in the Alps 334 

and the Pyrenees, where the orography enhances annual rainfall totals and consequently the 335 

runoff. Indeed, these areas are where the under-prediction of discharges has become clearer in 336 

the recent years, as shown in Figure 3. 337 

 338 

Figure 6: Trend of 12-month average CRPSS, CV, NS and Pbias of ESP from 2009 onwards. 339 

 340 

5 Discussion and conclusions 341 

This article presents the current status of the evaluation framework used to monitor and 342 

update regularly the forecast performance of the European Flood Awareness System. Results 343 

suggest that streamflow forecasts driven by weather predictions provide significant added 344 

value to the monitoring of the main European rivers. As expected, performance decreases 345 

with lead time, though it remains skilful for the whole 10-day range, in comparison to the use 346 

of climatological or persistence forecasts. In large river basins of Europe, the average time lag 347 

between weather forcing and runoff is on the order of some days. Hence the real-time 348 

hydrological simulation run with meteorological observations gives a significant proportion of 349 

the overall predictability, increasing with the basin time of concentration. In smaller river 350 

basins, the effect of initial conditions is less important, therefore the predictability is shorter 351 
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as it mostly depends on that of the weather forecasts. In river basins of size below 300-400 352 

km2 forecast skill becomes poorer. Their forecasts show large variability, often even for 1-day 353 

lead time, and significant underestimation of the runoff in mountain regions. 354 

Being designed on dimensionless scores, the main strength of the proposed verification 355 

system is in highlighting relative changes of performance, which can be detected over 356 

different regions, forecast lead time, basin size and, most importantly, in time. An evaluation 357 

of 12-month average scores over the past 5 years suggests a moderate improvement for all 12-358 

month forecasts ending from the beginning of 2013 onwards. Such improvement occurred 359 

notwithstanding an increasing negative forecast bias, especially in mountain regions. This can 360 

be attributed to a progressive increase of the meteorological stations used to run the EFAS-361 

WB, which in turn has improved the representation of the runoff dynamics in the presence of 362 

pronounced orography. Although the parameterization of the hydrological model was subject 363 

to changes and improvements every 1 to 1.5 years on average, the 5 year simulation shown in 364 

this study was carried out with a fixed model version, corresponding to the current operational 365 

one at the time of writing. Therefore, the positive trend of performance shown in Figure 6 is 366 

likely to underestimate the real improvements which have occurred and rather reflect that of 367 

weather forecasts used as input.  368 

5.1 The benchmark of skill scores 369 

The four performance scores presented in the article can be classified into two categories, 370 

depending on whether the comparison is carried out against a benchmark or not. On the one 371 

hand, the CV and the Pbias give a measure of the RMSE and of the bias of forecasts, 372 

respectively. RMSE and bias are commonly used in verification because of their physical 373 

meaning, as they quantify the error with the same units of the forecast variable. They are 374 

rescaled by the average flow to make them comparable over different regions and along the 375 
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river network. On the other hand, the NS and the CRPSS give a relative performance in 376 

comparison to an alternative benchmark forecast. Literature works show a surprising variety 377 

of different benchmarks used for comparison (see Pappenberger et al., submitted, for a recent 378 

review), sometimes without motivating the choice. Here we argue that, in assessing the 379 

predictability of a forecasting system, the benchmark should represent a realistic forecast 380 

achievable in case the system was not in place. The use of persistence forecasts is hereby 381 

suggested as a suitable benchmark, in that it does not require climatological information of 382 

the runoff at the river point, nor additional model runs. In comparison to a benchmark based 383 

on the average discharge, persistence acknowledges the role of initial conditions, indicating 384 

that the highest value of forecasts corresponds to a balance between the ability to provide 385 

accurate forecasts and the ability to detect deviations from an initial state (see CRPSSad versus 386 

CRPSSpf in Figure 4). Further, persistence is independent of seasonal variations or trends in 387 

the mean value of the forecast variable, as discussed in Sect. 4.3. 388 

It is worth noting that the same principle can be applied to the Nash-Sutcliffe efficiency, as 389 

suggested by Plate and Lindenmaier (2008), leading to a modified formulation which uses a 390 

persistence forecast as reference value: 391 

���_`� = � − ∑ ��	
��
������
����
��∑ ��	
��
���	
��
�_`����
��  .      (9) 392 

This formulation was not tested in the present framework, though it may be a valid alternative 393 

to the NS for large river basins (see e.g., Pagano, 2013). Its application will be considered for 394 

future system developments. 395 

5.2 The EFAS-WB as reference simulations 396 

The main assumption of the presented approach is that the EFAS-WB can be used as a 397 

realistic representation of the actual runoff. On the other hand the use of the output of a 398 
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distributed model as the EFAS-WB allows a performance evaluation over the full 399 

computation domain. Moreover, the continuous increase in the number of reporting stations, 400 

both for meteorological and hydrological data, is progressively pushing the EFAS-WB closer 401 

to the real streamflow conditions in the European rivers. This occurs thanks to a better 402 

reproduction of the meteorological input data and to the increase of the number of river 403 

stations where the parameters of the hydrological model can be calibrated. Recent advances in 404 

the meteorological dataset include the addition of more than 10 high density national 405 

networks and an improved approach to interpolating point values into spatial maps (see 406 

Ntegeka et al., 2013). This is currently being tested and will be used in the next version of 407 

EFAS, together with additional historical observed streamflow at a number of river gauges to 408 

improve the model calibration. Similarly, resulting simulated discharges of the EFAS-WB can 409 

potentially become a dataset to validate and benchmark a wide range of hydrological models, 410 

particularly on large scales. Current main limitations of simulated discharges are at the lower 411 

end of the range of the space-time scale of simulated catchments. In fact, the current daily 412 

time aggregation of input data induces a smoothing of output discharges, so that simulated 413 

extreme values have reported under-estimation issues, relatively to observed values. In 414 

addition, the presented scores are not able to capture potential errors in the hydrological 415 

model, because both ESP and the EFAS-WB used for validation are generated by the same 416 

model. However, this is evaluated separately at those stations where the model parameters are 417 

calibrated (see Feyen et al., 2007). Also, an assessment of the total predictive uncertainty is 418 

performed at river gauges (currently about 40) where discharge values are received in real-419 

time. The methodology and results are described by Bogner and Pappenberger (2011). 420 



  

 21

5.3 Concluding remarks 421 

In its current state, the evaluation framework has proved its usefulness in spotting strengths 422 

and weaknesses of ensemble forecasts used in EFAS, including trends of performance in time 423 

and size limits of river basins under monitoring. In addition, it has pointed out a number of 424 

key developments to focus on to improve the evaluation and the diagnostic of the forecasting 425 

system: 426 

- Implementation of the evaluation framework to streamflow predictions derived from all the 427 

different numerical weather predictions used as input in EFAS, including DWD, COSMO-428 

LEPS and products which are foreseen to be tested in the future. 429 

- Enlarging the collection of near real time observed discharges for continuous monitoring of 430 

the skill scores of both the EFAS-WB and streamflow predictions against observed values. 431 

- Comparison of performance scores for updated model versions. A new EFAS version was 432 

implemented in January 2014, which includes a more extensive calibration of the 433 

hydrological model and an enhanced dataset of meteorological observations. 434 

- Complementing the current approach with skill scores targeted to evaluate the performance 435 

in forecasting extreme events, including threshold exceedance analyses. 436 

- Set up a visualization platform on the web where performance can be monitored by 437 

developers, analysts on duty and users, to aid the monitoring of forecasts and the diagnostic of 438 

issues. 439 

 440 
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Tables 558 

 559 

Table 1: Summary of performance scores and their information content. 560 

Score Short name Use 

Nash-Sutcliffe efficiency NS Normalized measure of the mean squared 

error of the ensemble mean in comparison 

to a constant climatological mean 

Percent bias Pbias Dimensionless measure of the forecast 

bias 

Coefficient of variation of the 

Root Mean Squared Error 

CV Dimensionless measure of the Root Mean 

Squared Error of the ensemble mean 

Continuous Ranked Probability 

Skill Score (average discharge 

as reference) 

CRPSSad Skill score to compare the distribution of 

ensemble forecasts around observations, as 

opposed to using the climatological 

average discharge 

Continuous Ranked Probability 
Skill Score (persistence 

forecast as reference) 

CRPSSpf Skill score to compare the distribution of 
ensemble forecasts around observations, as 

opposed to using the persistence of the 
initial discharge 
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Figure captions 561 

 562 

Figure 1: Schematic view of the EFAS hydro-meteorological forecasting system. 563 
 564 

Figure 2: stations reporting observed precipitation (left) and average temperature (right) on 565 

the 1st October 2013. 566 

 567 

Figure 3: CRPSSpf, CV, NS and Pbias over Europe for 1 year of daily forecasts ending on the 568 

1st October 2013 (5-day lead time). 569 

 570 

Figure 4: CRPSS, CV, NS and Pbias of ESP versus the forecast lead time. 571 

 572 

Figure 5: CRPSSpf, CV, NS and Pbias of ESP versus the upstream area of each river grid 573 

point. 574 

 575 

Figure 6: Trend of 12-month average CRPSS, CV, NS and Pbias of ESP from 2009 onwards. 576 
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 578 

Research Highlights 579 

 580 

− The evaluation framework of the European Flood Awareness 581 

System is presented 582 

 583 

− Skill scores of  ensemble streamflow predictions over Europe are 584 

updated regularly 585 

 586 

− Predictions are skillful in river basins larger than 300 km
2
 over 587 

the 10-day range 588 

 589 

− The use of the CRPSS based on two different references is 590 
discussed 591 

 592 


