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This article presents a numerical study to investigate the combined role of partial well penetration (PWP)
and non-Darcy effects concerning the performance of groundwater production wells. A finite difference
model is developed in MATLAB to solve the two-dimensional mixed-type boundary value problem asso-
ciated with flow to a partially penetrating well within a cylindrical confined aquifer. Non-Darcy effects
are incorporated using the Forchheimer equation. The model is verified by comparison to results from
existing semi-analytical solutions concerning the same problem but assuming Darcy’s law. A sensitivity
analysis is presented to explore the problem of concern. For constant pressure production, Non-Darcy
effects lead to a reduction in production rate, as compared to an equivalent problem solved using Darcy’s
law. For fully penetrating wells, this reduction in production rate becomes less significant with time.
However, for partially penetrating wells, the reduction in production rate persists for much larger times.
For constant production rate scenarios, the combined effect of PWP and non-Darcy flow takes the form of
a constant additional drawdown term. An approximate solution for this loss term is obtained by perform-
ing linear regression on the modeling results.

� 2015 Published by Elsevier B.V.
1. Introduction

Energy losses associated with fluid production wells are often
considered to comprise of three components: (1) energy losses
within the aquifer as predicted by Darcy’s law; (2) energy losses
that occur adjacent to and within the borehole and well-screen
(sometimes referred to as skin effects); and (3) non-linear energy
losses associated with inertial and/or turbulent effects near the
well (Konikow et al., 2009). These latter non-linear losses can be
represented within numerical groundwater models using the
Forchheimer equation (Mayaud et al., 2014). The Forchheimer
equation is also often used to understand processes associated
with oil and gas production (Huang and Ayoub, 2008; Zeng and
Zhao, 2008; Wu et al., 2011) and gas injection (Mathias et al.,
2009, 2014; Mijic et al., 2014).

In a recent study, Mathias and Todman (2010) demonstrated
how the transient development of non-linear energy losses, associ-
ated with step drawdown tests in groundwater production wells,
can be explained by invoking non-Darcy effects associated with
the Forchheimer equation, using the numerical model developed
by Mathias et al. (2008). However, a significant shortcoming of
the Mathias et al. (2008) model is the assumption of a fully
penetrating well. In many cases, production wells only partially
penetrate the aquifer of concern.

Given that non-Darcy effects are localized around areas of high
flow velocities, the potentially large vertical fluxes above and
below a partially penetrating well are likely to generate significant
additional Non-Darcian energy losses. Wen et al. (2013, 2014)
sought to explore these effects by developing a semi-analytical
solution for flow to a partially penetrating well using the so-called
Izbash equation. The Izbash equation assumes that flow rate is pro-
portional to some power law of the hydraulic gradient, as opposed
to Darcy’s law, which assumes that flow is linearly proportional to
the hydraulic gradient.

Whilst the study gave some interesting insights concerning the
behavior of the Izbash equation in the presence of a partially
penetrating well, their mathematical development involves impos-
ing a number of restrictive assumptions. Firstly, it assumes that
Darcy’s law applies for vertical fluxes (the Izbash equation is only
used for radial flow). Secondly, the Izbash equation is used as
opposed to the Forchheimer equation. The Forchheimer equation
is more appropriate in this context, because it is capable of recog-
nizing that flow becomes Darcian far away from the production
well. Finally, it is assumed that the water flux across the
well-screen is uniform. In fact, the flux distribution across the
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well-screen is non-uniform, with the largest fluxes occurring at the
ends of the well-screen (Mathias and Butler, 2007).

Consider production from a vertically orientated well-bore with
a well-screen that is exposed to a limited thickness within a given
aquifer system. The boundary condition at the well-screen is best
represented as a fixed pressure condition, based on the fluid pres-
sure within the well-bore. At the well-bore, above and below the
well-screen, the boundary condition takes the form of a zero flux.
Therefore there are two boundary types along the side of the well
as it intersects the aquifer. Consequently, this problem is often
referred to as a mixed-type boundary value problem (Cassiani
et al., 1999; Chang and Chen, 2003).

Much attention has been focused on the derivation of analytical
solutions for estimating drawdown in partially penetrating wells.
Generally, these have used some form of integral transform in the
vertical direction. Unfortunately, such a technique does not allow
for the possibility of applying a mixed-type boundary condition.
Therefore, the boundary at the well-screen is generally approximat-
ed using a uniform flux condition, based on the vertically averaged
radial pressure gradient at the well-screen (e.g. Dougherty and
Babu, 1984; Moench, 1997; Mishra and Neuman, 2011).

Perina and Lee (2006) conducted a series of studies to investi-
gate the implications of imposing a uniform flux across the well-
screen. They observed that the uniform flux assumption can lead
to as much as 18% error in the estimated drawdown. The reason
is that the mixed-type boundary condition gives rise to very large
fluxes at the top and bottom of the well-screen. Indeed, for the
extreme case of a circular plate of raised potential in a semi-infinite
medium, these edge fluxes are infinite (Mathias and van Reeuwijk,
2009; Sneddon, 1966). Therefore, to better understand the nature
of non-Darcy flow around a partially penetrating well, it is impor-
tant to adequately incorporate this mixed-type boundary in full.

Some semi-analytical solutions have been derived for Darcian
flow problems in the presence of mixed-type boundaries. These
have either used dual-integral equations (Cassiani et al., 1999) or
imposed a discrete non-uniform well-screen flux distribution,
defined using an inverse matrix method (Chang and Chen, 2003;
Perina and Lee, 2006; Mathias and Butler, 2007; Klammler et al.,
2011). Such approaches are cumbersome to evaluate and employ
either numerical integration methods or discretisation methods.
Furthermore, they are unlikely to be amenable to non-linear prob-
lems such as those associated with the Forchheimer equation.
Therefore, in this article, the relevant governing equations for
Forchheimer flow to a partially penetrating well in a confined
aquifer, are solved using a method of lines approach based on a
finite difference spatial discretisation, similar to that used by
Mathias et al. (2008).

The objective of this article is to evaluate the importance of
non-Darcy energy losses during fluid production from a partially
penetrating well (including for a mixed-type boundary condition
representation of the well-bore boundary) in a cylindrical confined
aquifer. The outline of the article is as follows: The relevant gov-
erning equations along with initial and boundary conditions are
presented. These are converted to a dimensionless form similar
to that previously used by Chang and Chen (2003). The numerical
methods are described, in particular the grid refinement around
the well-screen. The developed model is then bench-marked by
comparison with the semi-analytical solutions of Cassiani et al.
(1999) and Chang and Chen (2003). Non-Darcy effects are then
explored in the context of constant pressure production and con-
stant rate production.

2. Governing equations

The governing equations for fluid pressure for radially symmet-
ric flow of water to a partially penetrating production well in a
homogenous, vertically anisotropic, confined, cylindrical aquifer
of radial extent, re [L], and thickness, H [L], can be written as
follows:

/ðcw þ crÞ
@P
@t
¼ �1

r
@ðrqrÞ
@r

� @qz

@z
ð1Þ

where / [–] is porosity, cw [M�1LT2] and cr [M�1LT2] are the com-
pressibilities of water and rock, respectively, P [ML�1T�2] is fluid
pressure, t [T] is time, r [L] is radial distance from the production
well, z [L] is elevation from the base of the aquifer and the volumet-
ric fluxes, qr [LT�1] and qz [LT�1], are found from the Forchheimer
(1901) equations (see Appendix A and Knupp and Lage (1995))
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where F [–] is a non-Darcy factor found from
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and lw [ML�1T�1] is the dynamic viscosity of water, qw [ML�3] is
the density of water and kr [L2], kz [L2], cFr [–] and cFz [–] are the per-
meabilities and the Forchheimer inertia coefficients in the r and z
direction, respectively. Note that for isotropic media, the Forch-
heimer inertia coefficient, cF , can be estimated using the Geertsma
(1974) correlation, cF ¼ 0:005/�5:5.

The relevant initial and boundary conditions are as follows:

P ¼ P0; rw 6 r 6 re; 0 6 z 6 H; t ¼ 0
qz ¼ 0; rw 6 r 6 re; z ¼ 0; t > 0
qz ¼ 0; rw 6 r 6 re; z ¼ H; t > 0
qr ¼ 0; r ¼ re; 0 6 z 6 H; t > 0
qr ¼ 0; r ¼ rw; 0 6 z < zw; t > 0
P ¼ Pw; r ¼ rw; zw 6 z 6 zw þ L; t > 0
qr ¼ 0; r ¼ rw; zw þ L < z 6 H; t > 0

ð5Þ

where P0 [ML�1T�2] is the initial pressure of the aquifer prior to
pumping and rw [L], zw [L], L [L] and Pw [ML�1T�2] are the radius,
elevation of base, length and fluid pressure of the well-screen
associated with the production well, respectively.

The well pressure, Pw, is related to the production rate, Q
[L3T�1], via the conservation equation (Papadopulos and Cooper,
1967):

pr2
c

qwg
dPw

dt
þ Q þ 2prw

Z zwþL

zw

qrðr ¼ rw; z; tÞdz ¼ 0 ð6Þ

where rc [L] is the radius of the well casing and g [LT�2] is gravita-
tional acceleration. It is further assumed that

Pwðt ¼ 0Þ ¼ P0 ð7Þ
3. Dimensionless transformation

Introducing the following dimensionless transformations:
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½/ðcw þ crÞqwgL�1=2rw

; zwD ¼
zw

L
ð8Þ

PD ¼
2pLkrðP0 � PÞ

lwQ
; PwD ¼

2pLkrðP0 � PwÞ
lwQ

ð9Þ

qrD ¼ �
2pLrwqr

Q
; qzD ¼ �

2pLrwqz

Q
krL

kzrw

� �
ð10Þ



S.A. Mathias, Z. Wen / Journal of Hydrology 524 (2015) 53–61 55
rD ¼
r

rw
; zD ¼

z
L
; tD ¼

krt
lw/ðcw þ crÞr2

w
ð11Þ

x ¼ L
H
; k ¼ kr

kz

� �1=2 L
rw

ð12Þ

bD ¼
qwQ

2pLk1=2
r rwlw

c2
FrcFzk2

r kz

� �1=3
ð13Þ

the set of equations in the previous section reduce to the following
dimensionless problem:
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PD ¼ 0; 1 6 rD 6 reD; 0 6 zD 6 x�1; tD ¼ 0
qzD ¼ 0; 1 6 rD 6 reD; zD ¼ 0; tD > 0
qzD ¼ 0; 1 6 rD 6 reD; zD ¼ x�1; tD > 0
qrD ¼ 0; rD ¼ reD; 0 6 zD 6 x�1; tD > 0
qrD ¼ 0; rD ¼ 1; 0 6 zD < zwD; tD > 0
PD ¼ PwD; rD ¼ 1; zwD 6 zD 6 zwD þ 1; tD > 0
qrD ¼ 0; rD ¼ 1; zwD þ 1 < zD 6 x�1; tD > 0

ð18Þ
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Fig. 1. Illustration of the spatial discretisation used for the scenario with reD ¼ 107

and x ¼ 0:01. (a) Plot of dimensionless radial distance, rD , against node number. (b)
Plot of dimensionless vertical distance, zD , against node number.
4. Writing the non-Darcy factor in terms of pressure gradients

It is useful to write the expression for the non-Darcy factor
given in Eq. (17) in terms of pressure gradients as opposed to flux-
es. Note that substituting Eqs. (15) and (16) into Eq. (17) leads to

F ¼ 1
1þ bDFJ

ð21Þ

where
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� �2
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Given that J is always positive, the positive root of Eq. (21) can
be written as

F ¼ ð1þ 4bDJÞ1=2 � 1
2bDJ

ð23Þ

A disadvantage of the above equation is that it becomes difficult
to evaluate for the small pressure gradients (i.e. small J) that are
expected far away from the well. However, if we multiply the

top and bottom of Eq. (23) by ½ð1þ 4bDJÞ1=2 þ 1�, it can be seen that
(Mathias et al., 2014)

F ¼ 2

1þ ð1þ 4bDJÞ1=2 ð24Þ

which is much more convenient in this context.
5. Numerical solution

Following Mathias et al. (2008), numerical solution of the above
set of equations is achieved by discretising in space, using finite
difference approximations, and solving the resulting set of coupled
ordinary differential equations using MATLAB’s ode solver,
ODE15s. ODE15s uses adaptive time-stepping to ensure numerical
error remains below a pre-defined tolerance, therefore time-steps
are not specified a priori.

Pressure gradients are highest around the production well and
then decrease ultimately to zero at the far-field boundaries. There-
fore, the location of discretisation points in the radial direction are
logarithmically spaced such that finer resolution is provided
around the production well.

Special care must be taken to ensure adequate vertical grid
resolution is provided around the locations of boundary-type
changes, as these have a tendency of yielding exceptionally high
gradients in their near vicinity (Mathias and Butler, 2007;
Mathias and van Reeuwijk, 2009). Following Chang and Chen
(2003), zwD is set to zero. Therefore, a high level of vertical discreti-
sation is only required immediately above and immediately below
zD ¼ 1. Locations of the discretisation points in the vertical direc-
tion are chosen such that they are logarithmically spaced above
and below zD ¼ 1, with the finer spaced points clustered around
zD ¼ 1. For illustrative purposes, the locations of the finite differ-
ence nodes, in both the rD and zD directions, used for a simulation
with reD ¼ 107 and x ¼ 0:01, are shown in Fig. 1.

The integration associated with the integral term in Eq. (19) is
evaluated using trapezoidal integration.
6. Simulations assuming a constant well pressure

Before using the numerical model to investigate the effects of
Non-Darcy flow around a partially penetrating well, it is important
to verify that the model predicts the same results as the semi-
analytical solution of Chang and Chen (2003) when bD is set to
zero. Chang and Chen (2003) considered an identical scenario as
described above except that they only looked at when bD ¼ 0 and
also fixed PwD ¼ 1. They then used their semi-analytical solution
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to calculate the dimensionless production rate at the well-screen,
QwD, which can be found from

QwD ¼
Z zwDþ1

zwD

qrDðrD ¼ rwDÞdzD ð25Þ

The semi-analytical solution of Chang and Chen (2003) involved
Laplace transforming the time dimension and then Fourier cosine
transforming the vertical dimension. The resulting set of ordinary
differential equations were then solved to obtain analytical solu-
tions in terms of modified Bessel functions. The non-uniform well
flux was imposed by discretising the well-screen and superimpos-
ing a sequence of discrete production rates, obtained using an
inverse matrix method. The resulting set of equations were invert-
ed back to the time-domain using a numerical inverse Laplace
transform algorithm.

Chang and Chen (2003) reports the time-series of Q wD for a range
of different combinations of k and x. The results from Chang and
Chen (2003) are shown as green lines in Fig. 2. Results from our
finite difference model with bD ¼ 0 are shown as red dashed lines.
It can be seen that the correspondence between the two models is
excellent. However, note that just before tD ¼ 1014;Q wD from the
finite difference model starts to drop a little below the trajectory
predicted by Chang and Chen (2003). This is due to the pressure per-
turbation finally hitting the impermeable boundary at rD ¼ reD. Note
that for all the simulations reported in this article, reD was set to 107.

Also shown in circular blue markers, are equivalent results from
the semi-analytical solution of Cassiani et al. (1999). The conceptu-
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Table 1
An example of how rcD ;x; k and bD vary with L for a practical scenario where
rw ¼ rc ¼ 0:1 m, qw ¼ 1000 kg/m3, lw ¼ 10�3 Pa s, kr ¼ 10�11 m2, kz ¼ 10�12 m2,
/ ¼ 0:1; cw ¼ 3� 10�10 Pa�1, cr ¼ 4:5� 10�10 Pa�1, g ¼ 9:81 m/s2, H ¼ 100 m and
Q ¼ 0:03 m3/s. Note that this assumes that cFr ¼ cFz ¼ cF where cF is obtained from
the Geertsma (1974) correlation (cF ¼ 0:005/�5:5).

L (m) 10 20 30

rcD (–) 369 261 213
x (–) 0.1 0.2 0.3
k (–) 316 632 949
bD (–) 11.08 5.54 3.69
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al model adopted by Cassiani et al. (1999) is identical to that of
Chang and Chen (2003) except that they considered a semi-infinite
aquifer such that x! 0. The solution procedure involved the so-
called dual-integral integration method, and did not involve the
need to discretise the well-screen. Again, it can be said there is very
good correspondence between the Cassiani et al. (1999) work and
the response from the finite difference model when x ¼ 0:01.

The black solid lines shown in Fig. 2 are from the finite differ-
ence model with exactly the same setup except that bD was set
to 10. Therefore, this model represents a non-Darcian deviation
from the work of Chang and Chen (2003). It can be seen that during
early times (tD < 10), the production rate is less than half of the
rate generated by the Darcian models, for all values of x. At later
times (tD > 1012), for the case of a (close to) fully penetrating well
(i.e., x ¼ 0:99), the non-Darcian and Darcian models converge.
Similar findings were also reported from the one-dimensional flow
(as opposed to radial flow) simulations, also undertaken using the
Forchheimer equation, previously presented by Moutsopoulos and
Tsihrintzis (2005). However, Fig. 2 shows that as the production
well becomes smaller, relative to the formation thickness, the
non-Darcian model produces progressively less fluid than the cor-
responding Darcian system where bD ¼ 0, regardless of the time
considered.

To explore these effects further, the simulations presented in
Fig. 2 were repeated for a range of different bD values. Fig. 3 shows
plots of the ratio of QwD from the Darcian model (i.e., with bD ¼ 0),
denoted QwD;Darcy, to the Q wD calculated from the non-Darcian mod-
els against dimensionless time. This ratio represents the transient
production rate reduction factor due to non-Darcy effects.

In Fig. 3a, it can be seen that when bD ¼ 3, for dimensionless
times greater than 104, the non-Darcy effects represent less than
a factor of 1.3, regardless of the values of x and k assigned. How-
ever, these effects become much larger with increasing bD. Fig. 3d
shows the results when bD ¼ 100. Here it can be seen that non-
Darcy effects become more significant with reducing x and k.
Reducing x implies that the well-screen is becoming smaller rela-
tive to the formation thickness. Reducing k implies that the well-
screen is becoming smaller relative to the well radius and/or the
radial permeability is becoming less relative to the vertical
permeability.

As hypothesized in the introduction, the large fluxes that devel-
op at the top and bottom of the well-screen are found to enhance
non-Darcy effects on production rates, associated with the use of
the Forchheimer equation. Fig. 4a and b show the spatial distribu-
tion, at tD ¼ 1014, of dimensionless pressure, PD, and the non-Darcy
factor, F (as defined in Eq. (24)), respectively, for the case when
x ¼ 0:01; k ¼ 10 and bD ¼ 10. Note from Fig. 4a that the highest
pressure gradients are around the top of the well-screen at
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colors are used for the different x and k combinations, as indicated in the legend.
The Cooper and Jacob (1946) equation is also plotted, for comparison purposes, as a
dashed green line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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zD ¼ 1. In Fig. 4b it can be seen that F is significantly reduced (indi-
cating enhanced reductions in flow due to non-Darcy effects)
across the entire well-screen and, in particular, around the top of
the well-screen at zD ¼ 1.
7. Simulations assuming a constant production rate

To better understand the role of partial penetration effects on
step drawdown tests, it is more useful to consider a constant pro-
duction rate by imposing Eq. (19). Note that rcD was set to 200 for
all simulations, which is a realistic value (consider Table 1) and
also small enough not to significantly affect the results during
the times of interest. As with the previous simulations, reD was
set to 107 for all the simulations. Fig. 5 shows the plots of dimen-
sionless well pressure, PwD, against dimensionless time, tD, for the
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ω = 0.99
ω = 0.9
ω = 0.8
ω = 0.7
ω = 0.5
ω = 0.3
ω = 0.2
ω = 0.1
ω = 0.05
ω = 0.02
ω = 0.01

Fig. 7. Plot of a (refer to Eq. (27)) against k for all values of x studied. Note that a is
independent of bD .
range of x and k adopted by Chang and Chen (2003) when study-
ing the constant well pressure scenario. The red dashed lines are
due to simulations assuming bD ¼ 0 (i.e., Darcian flow). The black
solid lines are due to similar simulations but with bD set to 10.

All the finite difference simulations are found to share a similar
early time response (for tD < 102). In this region, the system is
mostly controlled by the dynamics of the well-bore equation (Eq.
(19)). For tD > 103, the simulated responses for the various combi-
nations of x; k and bD values, diverge. Nevertheless, the late time
pressure responses, for all the scenarios studied, are straight-lines
on a linear-log axes. The rate of dimensionless pressure increase
with dimensionless time can be seen to reduce with reducing x.
Reducing x corresponds to the well-screen becoming smaller as
compared to the formation thickness. For the smallest well-screens
(x ¼ 0:01), the well pressure quickly approaches a quasi-steady-
state.

Raising bD from zero to 10 leads to an increase in well pressures
for all scenarios. However, the slopes of the later time pressure
responses on the linear-log axes are the same as those of their Dar-
cian counterparts. It is also apparent that the pressure increase,
due to the non-Darcy effects, decreases with reducing x and
reducing k.

For a fully penetrating well, the late time well pressure respon-
se can be found from (Mathias et al., 2008)

PwD ¼
1
2

lnð4tDÞ � 0:5772½ � þ bD ð26Þ

which, when bD ¼ 0, reduces to the Cooper and Jacob (1946) late
time response of the Theis (1935) solution. The response of Eq.
(26) is shown in Fig. 5 for bD ¼ 0 and bD ¼ 10 as green and cyan
solid lines, respectively. It can be seen there is a close correspon-
dence between Eq. (26) and the finite difference models assuming
x ¼ 0:99.

To better understand how partial well penetration (PWP) influ-
ences non-Darcian losses in the well pressure, a large sensitivity
analysis was performed, whereby the simulations presented in
Fig. 2 were repeated for all combinations of the following para-
meter values:

x¼ ½0:99 0:9 0:8 0:7 0:5 0:3 0:2 0:1 0:05 0:02 0:01 �

k ¼ ½500 200 100 50 20 10 �

bD ¼ ½0 1 3 10 30 100 �
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ω

α 
/ l

n 
λ

1.06(1 − ω)1.38

λ = 500
λ = 200
λ = 100
λ = 50
λ = 20
λ = 10

Fig. 8. Plot of a= ln k (refer to Eq. (27)) against x for all values of k studied. Note that
a is independent of bD .
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Fig. 9. Plot of b (refer to Eq. (27)) against k for the x values as indicated in the legend. The values of bD adopted are as shown in the subplot titles.

1 For interpretation of color in Fig. 8, the reader is referred to the web version of
this article.
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For reference, Table 1 shows how these parameters vary for three
different practical scenarios.

By studying the well pressures generated by the simulations
and considering Eq. (26) of this article along with Eq. (44) of
Chang and Chen (2003), it can be determined that the late-time
response of the well-pressure takes the form

PwD �
x
2

lnð4tDÞ � 0:5772½ � þ aþ bbD ð27Þ

where a ¼ f ðx; kÞ and b ¼ f ðx; k; bDÞ.
Considering Eq. (26), a value for the bulk term, j ¼ aþ bbD can

be determined for each of the simulations from

j ¼ PwDðtD ¼ 1010Þ �x
2

lnð410Þ � 0:5772
h i

ð28Þ

Note that j ¼ a for the simulations where bD is set to zero. Once
values of a are obtained, b can be calculated by considering that
b ¼ ðj� aÞ=bD.

As an illustrative example, Fig. 6 shows a plot of ðPwD � jÞ=x
(from the finite difference results) against dimensionless time, tD,
for the same scenarios presented in Fig. 5. Solid lines are used for
the Darcian simulations (with bD ¼ 0) and dashed lines are used
for the non-Darcian simulations (with bD ¼ 10). Values of j were
obtained using Eq. (28). It can be seen that for late times, all the
finite difference simulations converge onto the Cooper and Jacob
(1946) equation (i.e., Eq. (26) with bD ¼ 0), which is plotted as a
dashed green line.
Fig. 7 shows plots of a against k for all the values of x studied. It
can be seen that a increases linearly with ln k. The rate of increase
decreases with increasing x. For x ¼ 0:99, a is close to zero, which
is indicative of this scenario being close to a fully penetrating well.
The fact that a increases with increasing k for a given x suggests
that energy losses associated with PWP increase with decreasing
well-radii.

Considering the logarithmic response of a with k seen in Fig. 7,
it is interesting to observe the plot of a= ln k against x, for all k val-
ues studied, shown in Fig. 8. Here it can be seen that all the results
follow a very similar curve. A power law, fitted to the data using
linear regression, is also shown for comparison as a green1 line.
The results suggest that a reasonable approximation for a can be
obtained from
a � 1:06ð1�xÞ1:38 ln k ð29Þ

Plots of b against k are presented in Fig. 9 for a range of x and bD

values. The first thing of note is that for all the simulations, b increas-
es with increasing k up to maximum value of 1.0. Furthermore, it is
apparent that b � 1:0 when k > 103 for all the scenarios studied. The
reason is that as k becomes sufficiently large, the vertical gradient
term in the conservation equation, Eq. (14), becomes negligibly
small compared to the radial gradient term.
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A second point of interest is that, for x 6 0:7, the relationship
between b and k converges to a single curve for all values of x
(where x 6 0:7) and bD. The reason for the b results converging
on to a single curve for x 6 0:7 is that, for these simulations, the
non-Darcy effects are unable to propagate out to the upper bound-
ary of the model, zD ¼ x�1, and hence are unaffected by x (also
consider again Fig. 4b).

Applying linear regression to all values where x 6 0:7 and
bD P 10, it was found that a reasonable approximation for b and
k can be obtained from

b � 1� 2:05k�0:93; x 6 0:7 ð30Þ

Note that this approximation is also reasonable for bD < 10. Howev-
er, the results from the simulations undertaken with bD < 10 were
excluded from the regression analysis because of precision issues
associated with the fact that the Non-Darcian losses associated with
these simulations were smaller.

A common approach to interpreting step-drawdown tests is to
analyze the resulting data using the so-called Jacob (1946) equation

sw ¼ AQ þ BQ2 ð31Þ

where sw [L] is the drawdown of the water level in the production
well and A [L�2T] and B [L�5T2] are referred to as the formation-loss
and well-loss coefficients, respectively.

The drawdown, sw, is related to the dimensionless well pres-
sure, PwD, by

sw ¼
lwQPwD

2pLkrqwg
ð32Þ

and therefore, from Eq. (27), it can be said that

sw �
lwQ

4pHkrqwg
lnð4tDÞ � 0:5772þ 2a

x

� �

þ
b c2

FrcFzk
2
r kz

� �1=3
Q 2

ð2pLÞ2k3=2
r rwg

ð33Þ

Comparing this with Eq. (31), it can be seen that the well-loss
coefficient can be calculated from

B ¼
b c2

FrcFzk
2
r kz

� �1=3

ð2pLÞ2k3=2
r rwg

ð34Þ

from which it can be seen that the non-Darcian well-loss coefficient,
B, is inversely proportional to the square of the well-screen length, L.

8. Summary and conclusions

The objective of this study was to investigate the role of partial
well penetration (PWP) on non-Darcian well losses associated with
groundwater production wells. A numerical finite difference mod-
el, for solving the problem of Forchheimer flow to a partially
penetrating well, was developed in MATLAB for this purpose. Spe-
cial attention was made to provide sufficient grid-resolution
around the top of the well-screen, so as to adequately capture
the large fluxes that develop as a consequence of the mixed type
boundary condition at the well-bore. The model was verified by
comparison with the semi-analytical solutions of Chang and
Chen (2003) and Cassiani et al. (1999), which solve for the problem
of Darcian flow to a partially penetrating well.

Normalizing the governing equations to a set of dimensionless
variables revealed that there were just three parameter groups of
interest: (1) the ratio of well-screen length to formation thickness,
x; (2) the ratio of well-screen length to well radius, k; and (3) a
normalized parameter group containing the product of the Forch-
heimer parameter and the production rate, bD.
The model was first implemented to explore the combined role
of PWP and non-Darcy effects on the decline in production rate
associated with constant pressure boundary conditions at the
well-screen. Non-Darcy effects lead to a reduction in production
rate in this context, as compared to an equivalent problem solved
using Darcy’s law. For fully penetrating wells, this reduction in pro-
duction rate becomes less significant with time. However, for par-
tially penetrating wells, the reduction in production rate persists
for much larger times (recall Fig. 3).

To better understand how PWP might affect performance during
a step-drawdown test, the model was implemented using a con-
stant rate of production. A sensitivity analysis was then undertaken
to explore the combined role of PWP and non-Darcy effects on well
pressure development. For large times, the combined effect of PWP
and non-Darcy flow takes the form of a constant additional draw-
down term (recall Eq. (27)). An approximate solution for this loss
term was obtained by performing linear regression on the modeling
results (recall Eqs. (29) and (30)).
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Appendix A. Anisotropic Forchheimer equation

From Eq. (6.3) of Knupp and Lage (1995), the Forchheimer equa-
tion for an anisotropic porous media is found to take the form

�1
qw

� �
rP ¼ mw 1þ mwqwCjðq � k�1qÞ

1=2h i
k�1q ðA:1Þ

where C ¼ ðdet cÞ1=3 with c ¼ cF=ðm2
wqwÞ (see paragraph preceding

Eq. (6.1) in Knupp and Lage (1995)), j ¼ ðdet kÞ1=3 (see paragraph
preceding Eq. (5.3) in Knupp and Lage (1995)), q [LT�1] is a vector
of volumetric fluxes and cF [–] and k [L2] are the tensors for the
Forchheimer inertia coefficient and permeability, respectively.

Noting that mw is the kinematic viscosity, found from
mw ¼ lw=qw, Eq. (A.1) can be rearranged to obtain

q ¼ � Fk
lw
rP ðA:2Þ

where

F ¼ 1þ qw

lw
det cF det kð Þ1=3 q � k�1q

� �1=2
� ��1

ðA:3Þ

When the principle axes of anisotropy are aligned with the
geometrical axes under consideration, the tensors simplify such
that

cF ¼
cFx 0 0
0 cFy 0
0 0 cFz

2
64

3
75 ðA:4Þ

and

k ¼
kx 0 0
0 ky 0
0 0 kz

2
64

3
75 ðA:5Þ



S.A. Mathias, Z. Wen / Journal of Hydrology 524 (2015) 53–61 61
and consequently, Eq. (A.3) reduces to

F ¼ 1þ qw

lw
cFxcFycFzkxkykz
� 	1=3 k�1

x q2
x þ k�1

y q2
y þ k�1

z q2
z

� �1=2
� ��1

ðA:6Þ

where cFx; cFy; cFz; kx; ky; kz; qx; qy and qz are the Forchheimer inertia
coefficients, permeabilities and volumetric fluxes in the x; y and z
direction, respectively.

For the axially symmetric problem of interest in this article,
cFx ¼ cFy ¼ cFr; kx ¼ ky ¼ kr and q2

r ¼ q2
x þ q2

y , where cFr and kr are
the Forchheimer inertia coefficient and permeability in the r direc-
tion. Consequently, Eq. (A.6) reduces further to

F ¼ 1þ qw

lw
c2

FrcFzk
2
r kz

� �1=3
k�1

r q2
r þ k�1

z q2
z

� �1=2
� ��1

ðA:7Þ
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