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ABSTRACT

Climate and land use change are the two primary factors that affect different components of hydrological cycle
as well as sediment transport in the watershed. Quantifying potential impact of these two stressors enables
decision makers to formulate better water resource management strategies to adapt to the changing environ-
ment. To that end, we have developed an integrated modeling framework employing an Agent-based approach
to simulate land use conversion that then serves as input to the Soil and Water Assessment tool (SWAT) in a
loosely coupled fashion. The modeling framework was tested on the Neshanic River Watershed (NRW), 142 km?
area in central New Jersey that contains mix of urban, agricultural and forested lands. An ensemble of 10
different global climate models (GCMs) for two different greenhouse gas emission scenarios including re-
presentative concentration pathways-4.5 and 8.5 (RCP-4.5 and 8.5) were employed to model future climate from
2020 to 2045. Land use conversion for 2040 was developed based on six driving factors including distance to
residential lands, agricultural lands, roads, streams, train stations, and forest using three land use transition
potential models and further, the best transition potential model accompanied with some local land use re-
strictions.

The study evaluated various components of hydrological cycle and sediment transport for the three different
scenarios one-at-a-time including climate change alone, land use change alone, and combined climate and land
use change. Results indicate that the changing climate will have a larger effect on the hydrologic cycle than
intensifying urban land uses in the study watershed. The climate change scenarios, either alone or in composite
with land use change, predict higher streamflow (32% and 36% increase over baseline, respectively), overriding
the effect of land use change which predicts a decline of 5% in streamflow. The increase in streamflow results in
an increase in sediment loading, presumably due to an increase stream downcutting. Conversely, the effect of
land use change (in this case the conversion of agricultural land to low density residential uses), is predicted to
decrease sediment load. When modelled in composite, the effect of changing land use (in this case the conversion
of erodible agricultural fields to suburban development) appears to override the adverse effect of climate change,
enhancing watershed resiliency by reducing sediment load and thereby improving health of the downstream
aquatic ecosystems.

1. Introduction

runoff, and snowmelt are going to affect seriously at both spatial and
temporal scales (Immerzeel, 2008; Labat et al., 2004). Additionally, a

Climate and land use change are the two primary stressors that
humanity is facing in the 21st Century (Pervez and Henebry, 2015;
Teshager et al., 2016; Zhang et al., 2018); and both of them have larger
implications on hydrological cycle as well as sediment transport in the
watershed (Wagena et al., 2016; Panagopoulos et al., 2015; Luo et al.,
2013; Boe et al., 2009). Due to increase in average global mean tem-
perature, different components of hydrological cycle including pre-
cipitation, evaporation, transpiration, infiltration, groundwater, surface
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warmer atmosphere will have greater water holding capacity leading to
intensification of hydrological cycle which will pose the risk of flooding
and droughts at locale to regional scale (Praskievicz and Bartlein, 2014;
Wu et al., 2012a). Increased surface runoff due to climate change poses
a threat of excessive land degradation in the upland areas in the wa-
tershed and significantly affects the sediment transport in the river
reach systems. Similarly, changing land use will alter the energy bal-
ance within the hydrological cycle (Ma et al, 2009) affecting

Received 2 January 2019; Received in revised form 31 May 2019; Accepted 13 July 2019

Available online 18 July 2019
0022-1694/ © 2019 Elsevier B.V. All rights reserved.


http://www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2019.123955
https://doi.org/10.1016/j.jhydrol.2019.123955
mailto:subhasis.giri@rutgers.edu
https://doi.org/10.1016/j.jhydrol.2019.123955
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2019.123955&domain=pdf

S. Giri, et al.

evapotranspiration (Mao and Cherkauer, 2009), interception
(Babamaaji, 2013), infiltration (Zierl and Bugmann, 2005), surface
runoff (Giri et al., 2018; Yan et al.,, 2013), and sediment transport
(Shrestha and Wang, 2018; Bussi et al., 2016) resulting a profound
impact on water quality and water supply (Giri et al., 2018; Cho et al.,
2009; Kundzewicz et al., 2007). Elevating the level of sediment in the
river reach systems has a negative impact towards environmental sus-
tainability including global biodiversity and ecosystems function (IPCC,
2014).

Future climate and land use change has profound implications for
the state of New Jersey as it faces severe flooding due to extreme events
(USEPA, 2016) that is further exacerbated by the highest percentage of
urban land cover in the U.S. (Lathrop et al., 2016). The average annual
temperature in the State has increased by 2°F since 1900 whereas the
average winter temperature has increased by 4°F since 1970 (Frumhoff
et al., 2007; USEPA, 1997). The average annual precipitation in the
State has increased by 5 to 10 percent while the major extreme pre-
cipitation events have increased 70 percent in the Northeast U.S.
(USEPA, 2016; NCSL, 2008). Additionally, New Jersey being the most
densely populated state provides an excellent case study of the multiple
effects of intensifying urban land uses.

Considering different stressors including climate and land use
change on different components of hydrological cycle and sediment
transport on watershed scale requires a holistic and multidisciplinary
approach to better understand the underlying cause and effect as well
as sustainable adaptation strategies to mitigate the undesirable effects.
Resiliency is known as capacity to adjust or develop adaptation stra-
tegies of a system to address external undesirable environmental
changes (Nelson et al., 2007; Folke, 2006). Better understanding of how
the changes in land use and climate will impact the hydrological cycle,
and especially sediment transport, will enable more informed wa-
tershed adaptation strategies to help make communities more resilient
to climate change. To that end, model simulation is proven to be an
effective tool (Woznicki et al., 2016; Giri et al., 2015). A variety of
models have been developed to assess the impact of climate and land
use change on watershed scale, however, Soil and Water Assessment
Tool (SWAT) has seen widespread application due to its process based
structure, ability to model hydrology, plant growth related process,
incorporate different urban and agricultural management practices,
representation of land use and meteorological parameters essential
from water balance prospective (Zhang et al., 2018; Giri et al., 2016a;
Ficklin and Barnhart, 2014; Giri et al., 2014; Mutenyo et al., 2013).

SWAT model has not only been used to assess the effect of climate
change on watershed hydrology and water quality (Shrestha and Wang,
2018; Yang et al., 2018; Reshmidevi et al., 2017; Woznicki et al.,
2016;Cousino et al., 2015; Ficklin and Barnhart, 2014; Chien et al.,
2013; Wu et al., 2012a), but also employed to evaluate the combined
effect of land use and climate change on hydrology and water quality
(Ahiablame et al., 2017; Bussi et al., 2016; Chen et al., 2017; Gabriel
et al., 2016; Ma et al., 2009; Mehdi et al., 2015; Molina-Navarro et al.,
2018; Neupane and Kumar, 2015; Paul et al., 2017; Pervez and
Henebry, 2015; Setyorini et al., 2017; Teshager et al., 2016; Zhang
et al., 2018) on watershed scale throughout the globe. In evaluating the
implications of the combined effect of future land use and climate
change, authors have generally projected future land use based on ei-
ther hypothetical scenarios (Molina-Navarro et al., 2018; Zhang et al.,
2018; Chen et al., 2017; Neupane and Kumar, 2015; Teshager et al.,
2016; Mehdi et al., 2015) or using global/national scale models
(Ahiablame et al., 2017; Gabriel et al., 2016; Pervez and Henebry,
2015). Hypothetical land use projection does not match with the real
land use change in the ground while global/national scale models lack a
nuanced consideration of local regulations or future land development
plans in a region.

Most of the prior research on modeling the combined effect of land
use and climate change on hydrology has focused on land development
scenarios related to agricultural land conversion (i.e. conversion of
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other land uses to agricultural land or between various agricultural land
practices). However, there is a great need to evaluate the combined
effects in urbanizing regions as well to formulate water resource man-
agement strategies adapted to a changing environment. To that end, we
have developed an integrated modeling framework in a coupled natural
and human system where the natural system is modelled using SWAT
and the urban land use conversion. To overcome the aforementioned
drawbacks for land use projection, we have been exploring land use
change models driven by socio-economical, regulatory as well as
neighboring land use factors using both Agent-based and Transition
potential modeling. The specific objectives of this study were to i)
evaluate the potential impact of climate change in the near future on
different components of hydrological cycle as well as sediment load on
a field and watershed scale; and ii) estimate the effect of land use
change only as well as combined climate and land use change on dif-
ferent water fluxes and sediment load in a Central New Jersey
Watershed.

2. Materials and methods
2.1. Study area

The study area (Neshanic River Watershed or NRW) is located in
Central New Jersey between U.S’s largest and 6th largest cities (New
York and Philadelphia, respectively) experiencing the effect of both
climate and land use change (Fig. 1). It is a headwater to Raritan Basin.
The NRW has been declared as impaired for aquatic life due to non-
point source pollution such as total suspended solids and other pollu-
tants (NJDEP, 2011). Apart from degraded water quality issues, NRW
has been influenced by water quantity fluctuation especially during the
low flow condition. The 142 km? watershed is evenly divided between
agricultural, urban and forest land (32 versus 30 versus 29%, respec-
tively) with smaller component of wetlands (8%), barren lands and
water. The land use map of the NRW can be found in the Supplementary
material (Fig. S1). The elevation in the watershed ranges from 20 m to
208 m above the mean sea level (Fig. 1). A recent study conducted by
Giri et al. (2016b) indicates an increase in urbanized land use is ex-
pected in the watershed in the coming years.

The watershed is located in the Piedmont physiographic region and
it is underlain by slightly folded and faulted sedimentary and igneous
rocks. A humid climate is observed in the watershed having hot and
humid during summer (average temperature of 27 to 30 °C) while cold
in winter (average low temperature of —7 to —5°C). The mean annual
precipitation is 1,292 mm according to National Climatic Data Center,
with precipitation occurring 120 days per year. During the summer,
thunderstorms are responsible for a majority of the precipitation in the
watershed. The average annual winter snowfall in the watershed ranges
from 120 to 770 mm. Well drained silty soils are found in the watershed
where major crops including hay, soybean, pasture, winter wheat, and
corn are grown. Minor crops include oat, barely, sunflower, sorghum,
and rye.

2.2. Conceptual framework of loosely coupled systems

This climate and land use change study was conducted in a loosely
coupled system (LCS) (Fig. 2). The LCS had two intra-systems and one
inter-system interaction. The Land Use Prediction modeling component
focusses on the ongoing land management and land use conversion
process (i.e., conversion of agricultural and forest into residential land).
The Hydrologic modeling component focused on the different compo-
nents of hydrologic cycle including surface runoff, streamflow, water
yield, groundwater recharge, lateral flow, evapotranspiration, soil
water, and percolation as well as sedimentation. These hydrologic
processes are dependent on the properties of topography, soil, land use/
land cover, and management. Urbanization and the resulting increase
in impervious surface affects different water balance components as
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Fig. 1. Location of Neshanic River Watershed with respect to United States (bottom) and New Jersey (top right) and the watershed at the center.

well as sediment transport potentially acerbating flooding/drought and
decreased downstream water quality. Climate change potentially
magnifies the coupling between these two systems leading to higher
storm runoff, increased watershed flashiness (rise and fall of streamflow
quickly during storm events) and sediment erosion and transport.

2.3. Loosely coupled modeling framework

The loosely coupled modeling framework consisted of three strands:
1) Hydrologic modeling framework, 2) Land use prediction framework,
and 3) Data analysis framework (Fig. 3).

2.3.1. Hydrologic modeling framework

2.3.1.1. Model description. The SWAT model was used to predict the
different components of the hydrological cycle as well as sediment
transport in the NRW. SWAT is a semi-distributed, physically based
watershed scale model developed by U.S. Department of Agriculture

(USDA) (Arnold et al., 1998; Gassman et al., 2007; Neitsch et al., 2011).
Different primary components of the SWAT model are hydrology, soil,
plant growth, weather, nutrients, pesticides, and land management
practices. The hydrologic component of SWAT is divided into two parts:
i) land phase hydrologic cycle and ii) routing phase hydrologic cycle.
The hydrologic modeling framework consisted of three different spatial
scales including hydrologic response units (HRUs), subbasin, and
watershed scale. HRUs are the unique combinations of soil, land use,
slope, and management within each subbasin (Arbab et al., 2019). A
combination of different HRUs forms subbasins and the summation of
subbasins forms a watershed. All the required inner algorithms of SWAT
for this study are provided in the model description section of the
Supplementary Material.

2.3.1.2. Model input data. The required inputs for SWAT model are
physiographic data, streamflow, sediment concentration, and
management operations. The topography of the watershed was
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Fig. 2. Schematic of Loosely Coupled Systems components in this climate and land use change study in the Neshanic River Watershed.

presented by fine scale digital elevation model (3m x 3m) (NJDEP,
2018). The land use was represented by 2012-NJDEP land use
(30m x 30m) data (NJDEP, 2012). The NJDEP land use was
classified into six broader categories including urban, agricultural
land, forest, wetlands, water, and barren lands. In order to represent
different crop lands within the agricultural lands in the watershed,
2017 Crop Data Layer (30m X 30m) from U.S. Department of
Agriculture National Agricultural Statistics Service was combined
with 2012-NJDEP land use data in ArcGIS environment (INASS,
2017). The Soil Survey Geographic Database (SSURGO) soil data from
USDA Natural Resources Conservation Services (NRCS) was obtained to
represent the soil characteristic in the watershed. The meteorological
data such as daily precipitation, minimum and maximum daily
temperature were obtained from three National Climatic Data Center
stations (Fig. 1) from 1990 to 2015.

The remaining meteorological data including solar radiation, re-
lative humidity, and wind speed was generated from SWAT weather
generator program. To accurately evaluate the fate and transport of the
streamflow and sediment, different management operations including
date and types of tillage, amount of fertilization, planting and har-
vesting date of hay, winter wheat, pasture, corn, soybean, oats, and rye
were prepared by interviewing local farmers and NRCS personnel.

Urban lands were represented in SWAT model based on the percent
impervious cover. The pervious part of the urban land was modelled as
lawn and the management operations for the lawn such as mowing and
fertilization were prepared after interviewing landscape professionals
and local residents in the watershed. In this study, SWAT 2012.10_3.18
was used for the modeling purpose and the SWAT model divided the
study area into 115 subbasins and 9117 HRUs. The HRUs within sub-
basin were created using the threshold of 1%:10%:10% for land use,
soil, and slope, respectively. Using these thresholds, land use area less
than 1% within the subbasin were eliminated while soil class less than
10% within each land use were eliminated, and slope class that did not
have at least 10% within soil were removed during formation of HRUs.

2.3.1.3. Climate change scenarios. Policymakers generally focus on
events occurring in the near term compared to the events in the

distant future as they look at the distant future events in more abstract
terms (Weber, 2006). Consequently, we selected the climate change
data in the near term (2020 to 2045) rather than for the end of the
century. Two greenhouse gas emission scenarios known as
representative concentration pathways (RCP-4.5 and RCP-8.5) were
selected. RCP-4.5 represents the mid range emission/moderate
reduction scenario while RCP-8.5 depicts high emission scenario/
business as usual (IPCC, 2014). The climate change scenarios under
RCP-4.5 and 8.5 were projected based on the SWAT simulation period
2021 to 2045 while for the base period was from 1991 to 2015.

Ten different Global Circulation Models(GCMs) from Coupled
Model Intercomparison Projects (CMIP5) including BCC-CSM1-1,
CANESM2, CCSM4, CSIRO-MK3-6-0, GFDL-ESM2G, INMCM4, IPSL-
CM5A-LR, MIROC-ESM, MPI-ESM-LR, and NORESM1-M were selected
for this study as these GCMs are appropriate for North America (Sunde
et al., 2018; Shrestha and Wang, 2018; Cousino et al., 2015;Culbertson
et al., 2016). The detail about the models such as modeling center can
be found in the Table S1 of the Supplementary Material. The daily
precipitation and minimum and maximum temperature based on each
GCM were downloaded for historical (1990-2015) as well as future
(2020-2045) for the study area from the United States Bureau of Re-
clamation (USBR). The total number of scenarios with combination of
two types of RCP, 10 GCMs, and two time periods was 40 (2 x 10 x 2).
This climate data used a statistical downscaling method known as daily
bias correction and constructed analogs (BCCA) to correct the sys-
tematic errors in GCMs and were downscaled to a spatial resolution of
1/8. More information regarding climate data and downscaling
method used in this study can be found from Brekke et al.(2013). The
remaining meteorological data including solar radiation, relative hu-
midity, and wind speed were estimated using SWAT weather generator.

Elevated CO, level increases plant productivity and decreases plant
water requirement due to partial stomatal closing which might reduce
the evapotranspiration (Cho et al., 2009; Barton et al., 2012). However,
the response of evapotranspiration to elevated CO, under high end
scenario is questioned and it is still under debate in the scientific
community (Molina-Navarro et al., 2018; Karlsson et al., 2015; Peng
et al., 2014). In this study, we have not changed the CO, concentration
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Fig. 3. Schematic of loosely coupled modeling framework in the climate and land use study in the Neshanic River Watershed.

of the various RCP scenarios due to the uncertainty involved.

All climate data were incorporated in the calibrated SWAT model
one-at-a-time and ran separately on a monthly time scale for two dif-
ferent time periods: i) 1990-2015 (historical) and ii) 2020-2045 (fu-
ture). First, the streamflow generated by each GCM for 1990-2015 time
period at USGS gauging station 01,398,000 (Fig. 1) was compared on a
monthly basis to the observed streamflow using both visually and
paired two sample t-test. Additionally, monthly streamflow from 10
GCMs were averaged to estimate the ensemble mean and the ensemble
mean of monthly streamflow was compared with the observed
streamflow by both visually and paired two sample t-test. The ensemble
mean approach was adopted to reduce individual biasness of GCM
which would ultimately reduce the uncertainty in the climate change
study (Sunde et al., 2018; Culbertson et al., 2016; Wagena et al., 2016).

2.3.1.4. Sensitivity analysis and calibration. Sensitivity analysis is
performed to determine the most influential parameters in watershed
modeling where modeler uses most sensitive parameters during model

calibration process. The most sensitive parameters for streamflow and
sediment were conducted by past studies in the same watershed
including Giri et al.(2018), Giri et al.(2016a), and Qiu and Wang
(2014). A total of 16 streamflow and five sediment sensitive parameters
were collected from the previous studies. Furthermore, these
parameters were used in the SWAT-CUP (Abbaspour 2012; Abbaspour
et al.,, 2007) along with the Sequential Uncertainty Fitting (SUFI-2)
algorithm (Abbaspour et al., 2004) for calibration and validation.

The streamflow and sediment were calibrated and validated using
the objective function of Nash-Sutcliffe efficiency (NSE) in SWAT-CUP.
Further, SWAT model performance was evaluated using three model
evaluation parameters including NSE, Percent bias (PBIAS), and Root
mean square error (RMSE)-observations standard ratio (RSR). The de-
tail about these model evaluation parameters can be found in the
Supplementary Material. Two years (2002-2003) of warm up period
was used to initialize model parameters for ideal simulation. The SWAT
model was calibrated using a monthly time step between 2004 and
2009 while it was validated for 2010-2014.
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The monthly streamflow data used for calibration and validation
were collected from U.S. Geological Survey (USGS) for the USGS gaging
station 01,398,000 (Fig. 1). The daily sediment concentration was
collected from USGS for the same USGS gauging station 01398000. In
order to convert the daily sediment concentration to monthly loads, the
USGS Load Estimator (LOADEST) was used (Wagena and Easton, 2018;
Giri et al., 2012; Love and Nejadhashemi, 2011). LOADEST is devel-
oped based on FORTRAN program by USGS to help researchers and
scientists to fill up the sparse water quality data for different analysis by
estimating the water quality load for the user specified time period
(Runkel et al., 2004). The USGS gauging station 01,398,000 is cap-
turing streamflow from half of the watershed area. Therefore, the op-
timized parameters developed during calibration and validation process
can be applied to the downstream watershed area due to having similar
physiographic characteristics (Tables S2 and S3 Supplementary Mate-
rial). Furthermore, this approach was successfully tested by Qiu and
Wang (2014) in the same watershed using the same USGS gaging sta-
tion for watershed restoration study using SWAT model. Other studies
around the globe (Sunde et al., 2018; Molina-Navarro et al., 2018; Luo
et al., 2013; Jha et al., 2007) also used similar techniques in calibrating
the SWAT model for climate change study where they optimized cali-
bration parameters using gaging stations located at center to three-
fourth of the watershed area depending on the availability of observed
streamflow.

2.3.2. Land use prediction framework

The human system was formulated in a land use prediction mod-
eling framework which consists of steps for (i) specifying the driving
factors of land use change, (ii) simulating the sub-models of land use
change predictions, (iii) calibrating the model with best Receiver
Operator Characteristic (ROC) value in agent-based model (ABM) with
respect to the drivers from the land use system and, finally (iv) simu-
lating the ABM (Fig. 3). The spatial land use output from the ABM is
linked (loosely coupled) to watershed system to estimate the impact of
land use change due to human decision making on water systems.

2.3.2.1. Model description. A transition potential map shows the
relative likelihood of transition of a particular pixel of particular land
use land cover (LULC) class which simulated based on the transition of
LULC in the calibration period (Camacho Olmedo et al., 2013; Mas
et al., 2014; Mozumder et al., 2016). The choice of the land use
transition LULC models is dependent upon the tradeoffs of each model
and the peculiarities of the study area.

This study compares three land use change modeling techniques,
Multi-Layer Perceptron (MLP), Spatial Logistic Regression (SLR), and
Similarity Weighted Instance-based Learning (SimWeight), to estimate
the future land use transitions. The MLP Neural Network technique is a
machine learning approach in simulating complex linear and non-linear
relationship between the various driving variables and the land use
changes (Bhatti et al., 2015; Onate-valdivieso and Bosque, 2010;
Pijanowski et al., 2002; Thapa and Murayama, 2012). The SimWeight is
another machine learning approach and requires less computationally
intensive simulation than the MLP (Sangermano et al., 2010a,b). Spatial
logistic regression analysis is a commonly used approach to estimate
the influence of driving factors on spatial land use trends. Logistic re-
gression incorporates binary dependent variables as a presence or ab-
sence of occurrence and suitability for discrete, categorical, or con-
tinuous explanatory variables (Atkinson and Massari, 1998; Lee, 2005).

All these models were implemented in TerrSet software developed
by Clark labs (2018). Driver variables used in all three models were:
proximity to roads, streams and train stations and proximity to agri-
culture, urban and forested areas. After each model was calibrated for
NRW study area for an initial period 1986-2012, the model was used to
predict land use change for 2040. The transitions of one land cover state
to another was identified through previously mentioned three modeling
techniques. We compared each model’s relative ROC statistics. The ROC
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is suggested as a reliable approach for model validation by several
studies (Pontius and Schneider, 2001; Dendoncker et al., 2007;
Arsanjani et al., 2013). The ROC assess the validity of model that pre-
dicts the location of conversion by comparing the actual change be-
tween 1986 and 2012 in a Boolean map and the suitability (fitted)
change between 1986 and 2012 (Swets, 1986; Pontius and Schneider,
2000; Verburg et al., 2002; Pijanowski et al., 2009; Tayyebi et al., 2010;
Clark Labs, 2018). The ROC varies between 0 and 1. Within the ROC
range, 1 shows a perfect fit and 0.5 shows a random fit. The larger ROC
values show the better association between explanatory variables and
dependent variable (Clark Labs, 2018).

2.3.2.1.1. Similarity weighted Instance-based learning. SimWeight is
an instant-based machine learning land use transition potential model
that is derived from the logic of the K-Nearest Neighbor procedure (Fix
and Hodges, 1951). The model was formulated by calculation of
weighted distances in land use variable (driving factors) space to
actual land use change instances based on two time period for the
land use classes. For each pixel in the raster map, the class membership
is calculated as defined by Sangermano et al. (2010a,b):

c 1

207 i (o

1% (€9}
where V is the number of closest land pixels (change + persistence) of a
pixel, c is the number of change pixels within the m nearest neighbors
and d is the distance to a change instance i. A large class membership
for the change class would mean that a pixel has environmental
conditions similar to those that have already changed, and therefore
it can be considered to have a high transition potential.

Variable importance weight is determined by comparing the stan-
dard deviation of the variable inside the land use areas that have
changed, to the standard deviation of the variable for the study area as
in defined by Sangermano et al. (2010a,b) in Eq. (2):

Membership,,,,, =

Relevance Weight = 1 — (SD in change/SD in study area) 2)

If the variable is influencing the change, then the standard deviation
(SD) of the variable inside the raster cells that changed would be
smaller than for the study region as a whole, therefore having a large
weight. Using this method, weights are calculated by SimWeight model
for each variable (Table 1). Then, the standardized variables are mul-
tiplied by the weight. Thus changes the scale of variable in a way
proportional to the importance of the variable to discriminate change. A
threshold of 0.01 was set in SimWeight model to remove variables that
have a very low weight.

2.3.2.1.2. Multi-Layer Perceptron (MLP). Neural networks in MLP
are non-linear. MLP use complex mathematical function that converts
input data such as land use raster map to a desired output, a land cover
classification (Clark labs, 2018). A typical MLP network contains one
input layer, one output layer and one or more hidden layers. Each layer
contains nodes (or neurons) and is connected by lines indicating
unequal connecting weights. The hidden layer nodes are critical in
use of interaction effects to the functioning of MLP. Research indicates
that a 3-layered MLP network can approximate any polynomial
function, and is capable of solving very complex regression and
classification problems (Clark labs, 2018). To determine MLP’s
prediction accuracy, the expected accuracy rate is assigned as a

Table 1
Independent variables and their relevance weights for the study area.

Variable Relevance Weight
Distance to urban areas 0.14
Distance to agricultural areas 0.99
Distance to forest 0.15
Distance to streams 0.12
Distance to train stations 0.17
Distance to roads 0.29
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function of the number of transitions being modeled along with the
number of persistence classes as follows (Clark labs, 2018):

EA)=1/(T+P) 3

where E(A) = expected accuracy, T = the number of transitions in the
submodel,

P = the number of persistence classes = the number of “from”
classes in the sub-model.

A measure of model skill (prediction accuracy) is then expressed as:

Q= (A-E(A)/(Q-EA) 4

where A = measured accuracy, E(A) = expected accuracy.

This measure varies from —1 to + 1 with a skill of 0 indicating
random chance.

The MLP algorithm was used with Natural Log transformation for
distance-based variables and the Evidence Likelihood method was used
to transform categorical factors. Selection of the distance based vari-
ables was based upon the fact that these variables are representatives of
important parameters for physical, biological and socio-economic en-
vironments and have been found important for LULC change modeling
studies (Guan et al., 2011; Sang et al., 2011; Arsanjani et al., 2013;
Sakieh et al., 2015; Nasiri et al., 2018). MLP model was developed and
transition potential maps were generated by quantifying the relative
importance of each variable to the land use change process. Transition
potential maps from MLP represent the potential of a given category for
transformation to another LULC type. The LULC change process was
predicted up to the year 2040.

2.3.2.1.3. Spatial logistic regression. To estimate land use conversion
probabilities, driving factors of land use conversion were estimated to
examine the probability of land use conversion during the period
1986-2012 as per suggested in Arbab et al. (2016). To examine the
change in spatial residential land use patterns, a spatial logistic
regression analysis was developed to estimate the influence of driving
factors on spatial land use trends. Logistic regression offers the
functionality to incorporate binary dependent variables as a presence
or absence of occurrence and suitability for discrete, categorical, or
continuous explanatory variables (Atkinson and Massari, 1998; Lee,
2005).

The empirically estimated relationship between the conversions of
residential development and the driving factors can be expressed as the
following logistic functional form:

expE A0

PY=1IX) = ——==
¢ %) 1 + exp@FX) 5)

where P(Y = 1|X) is the predicted probability value of the binary or
dichotomous dependent variable Y, where Y = 1 means if a cell in
raster map changes from a non-residential land use in 1986 to re-
sidential land use in 2012 and Y = 0, otherwise. This logistic function
has linear probability in a set of parameters by having the range of
probability between zero and one. The following linear logit transfor-
mation on both sides of Eq. (5) was used to estimate the {3 coefficients
(Menard, 1995):

a- Pk)

= By + Bk + Bk + ByXak + ByXak + BsXsk + PeXek (6)

Y = logit(p) = ln(L)

Y is the probability that the dependent variable (Y) is 1, p, is the
predicted probability of the k™ pixel of agricultural or forest land use
conversion to residential land, gjis the intercept, and
B1s By Bs, By Bs, andBgare coefficients for distance to the existing agri-
culture (x;), distance to the existing forests (x_), distance to the existing
residential areas (x3), distance to streams (x,), distance to major
highways (xs), and distance to trains stations (xg), respectively. These
coefficients measure the influence of each independent variable on the
variations in probability of land use conversion from non-residential
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land use to residential land use (Y).

2.3.2.1.4. Validation & Agent-based model. To examine more
carefully how we did with the specific task of predicting change to
land use conversion, we used a three-way cross tabulation between the
later land cover map, the prediction map and the map of reality. To
evaluate this, we calculated the ROC statistic (also known as the Area
under the Receiver Operating Characteristic Curve - or AUC). This
measure was used to determine how well a continuous surface
predicted the locations given the distribution of a Boolean variable.

We selected the model parameters to be used for ABM empirical
parametrization upon ROC values. This model was designed to simulate
land use decisions of agricultural and forest land owners to convert
undeveloped land to residential land and implemented in python pro-
gramming language. The agents’ conversion decisions varied with the
spatial distances from each neighboring land use over a period of 10
iterations (to roughly approximate a 10 year time period), where each
iteration was assumed to be a conversion event possibility. By mod-
ifying an approach from Benenson and Torrens (2004), each parcel
agent’s probability of conversion from developable state m to re-
sidential state r in each iteration was modeled as:

Prob;(S,, = S;) = S(IN(i)) 7

where N (i) represented parcel agent i’s neighbors and S represented
state of parcel i. The model used a Monte Carlo process (Hagerstrand,
1965; Wu, 2002) for generating a stochastic ABM model. To account
uncertainty, a probability function was implemented to condition the
residential conversions utilizing a random number generator (Batty,
2012; Arbab, 2014). For undeveloped parcels, the conversion decision
was based upon a comparison between the random number generated
and the probability value for each parcel. The random number gen-
erator rand (i) had a random distribution that was uniform between 0
and 1. The parcel agents adopted the following rule of land use con-
version in each iteration.

ifrand(¢,) < Psthen Ay +1 =1

where r represented the land use class of residential development. P
was the probability of conversion to residential development for each
parcel i, A was the conversion event and t was iteration. Agents first
assessed the parcel by comparing the probability with a random
number. If the value of probability was higher than the random
number, the agent converted the parcel into a residentially developed
parcel. If not, then the parcel remained in its current non-developed
state. The model with better ROC values was used to calibrate projec-
tions of residential land use conversions in ABM model.

The ABM modelling landscape consisted of property parcels, a de-
cision making unit for residential developers. The model assumed a
market where developable properties were available for residential
developers and selection and conversion of property parcels were in-
herently based upon the proximity based criteria of neighboring fea-
tures. The ABM model did not allow developers to build on protected
and preserved forest or agricultural lands (Fig. 2). The parameter value
of driving factors determined the emergent output of the ABM model.
For example, positive sign of a parameter showed that high value of
proximity leads to high conversion and negative parameter sign showed
inverse relationship between proximity and conversion.

2.3.2.2. Model input data

2.3.2.2.1. Land use. Land use data was extracted from the NJDEP
for the years 1986 and 2012 to analyze the change from 1986 to 2012.
The NJDEP land use data was further categorized into six broader
categories such as urban, forest, wetlands, agricultural land, water, and
barren land. The raster files were created in ArcGIS 10.3.1 using
Euclidian distance tool for distance to agricultural lands, distance to
forest and distance to residential lands.

2.3.2.2.2. Distance to streams. The digital hydrography stream
network was derived from NJDEP data.
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2.3.2.2.3. Distance to highways. The data consisted of major
highways including interstates, U.S. highways, state highways, and
major roads. This dataset was obtained from the Census 2000.
Generally, road features do not change over long periods of time,
therefore, this data was found suitable for our analysis.

2.3.2.2.4. Distance to train stations. The data on transportation was
extracted from New Jersey Department of Transportation (NJDOT) for
creating the raster file on distance to trains stations.

2.3.3. Data analysis framework

Different SWAT model outputs including temperature, precipitation,
snowfall, surface runoff, streamflow, water yield, groundwater, lateral
flow, evapotranspiration, soil water, percolation, and sediment yield,
and sediment load were extracted from various scenarios (base period,
historical RCP-4.5, historical RCP-8.5, Future RCP-4.5, and Future RCP-
8.5). These data were processed using ArcGIS environment, Matlab, R-
platform, and Microsoft Excel based on the requirements for better vi-
sualization and easy understanding.

3. Results and discussion
3.1. SWAT model calibration, validation, and uncertainty analysis

Based on the previous three studies in the same watershed (Qiu and
Wang, 2014; Giri et al., 2016a; Giri et al., 2018) as well as using SWAT-
CUP (Abbaspour et al., 2007) and its SUFI-2 algorithm (Abbaspour
et al., 2004), we found curve number, soil evaporation compensation
factor, hydraulic conductivity in the main channel, maximum canopy
storage, base flow alpha factor, deep aquifer percolation fraction, sur-
face runoff lag coefficient, groundwater delay time, groundwater revap
coefficient, available water capacity of the soil layer, manning’s n for
overland flow, manning’s n for main channel, threshold depth of
shallow aquifer, threshold depth for revap, snowmelt base temperature,
and snowpack temperature lag factor are the most sensitive parameters
for streamflow. The most sensitive parameters for sediment are ex-
ponent parameter for channel-sediment routing, linear parameter for
channel-sediment routing, channel erodibility factor, channel cover
factor, and universal soil loss equation support practice factor. The final
values of the calibrated parameters for streamflow and sediment are
presented in the Table S4 of Supplementary Material.

The model accuracy for streamflow is categorized as “very good”
based on the guideline developed by Moriasi et al.(2007) due to
NSE = 0.76, PBIAS = 9.52, and RSR = 0.49 for overall period
(Table 2). The hydrograph between observed and simulated streamflow
shows a very good agreement between the two in the watershed
(Fig. 4). However, the model underestimates the peak flow slightly
which may be attributed to flashiness of stormwater runoff in the wa-
tershed. A similar results of flashiness was also observed among the
three previous studies in the watershed by Qiu and Wang, 2014; Giri
et al., 2016a; Giri et al., 2018. This flashiness may be attributed due to
inability of SWAT model to incorporate different stormwater

Table 2
SWAT model evaluation parameters for streamflow and sediment in the
Neshanic River Watershed.

Constituents  Evaluation Overall Calibration Validation
parameters period period(2004 to period(2010 to
(2004 2009) 2014)
t02014)
Streamflow NSE 0.76 0.78 0.75
PBIAS 9.52 13.13 4.67
RSR 0.49 0.47 0.50
Sediment NSE 0.61 0.63 0.57
PBIAS 24.21 27.42 17.17
RSR 0.62 0.61 0.65
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infrastructure including detention basins, swale, ditch segments, de-
tention basin inflows, discharge pipe, and outfalls. The model evalua-
tion parameters for sediment suggests that SWAT model performance is
“satisfactory” in predicting the sediment load in the watershed
(Table 2). The time series of observed and simulated sediment load in
the watershed is presented in the Supplementary Material (Fig. S2)
which suggests that the overall prediction of sediment load by SWAT
model agrees with observed sediment load with exception of few under
predicted peaks. This trend may be due to the SWAT model’s inability
to capture the flashiness of the streamflow.

The primary source of uncertainty in climate change studies comes
from the projected climate data (Molina-Navarro et al., 2018; Trolle
et al., 2015; Jensen and Veihe, 2009). Therefore, we undertook an
uncertainty analysis by comparing the predicted monthly streamflow
from 1990 to 2015 of individual GCM from RCP-4.5 and 8.5 emission
scenarios against the observed streamflow data at USGS gauging station
(Fig. 1) in the watershed. The average 26-years monthly streamflow
shows reasonable agreement between observed versus individual GCM
(Fig. 5). In fact, the streamflow between observed and ensemble mean
depicts higher agreement. Furthermore, performance statistics in-
cluding NSE, PBIAS, and RSR between observed and ensemble mean
streamflow (Table S5 Supplementary material) shows satisfactory based
on the guideline developed by Moriasi et al.(2007). In general, a “V”
shape trend was observed for streamflow throughout the year where
one end of the vertex is represented by streamflow at the month of
January while the other end of the vertex shows the streamflow during
the month of December. The vertex represented at streamflow during
month of July. Additionally, NCDC simulated streamflow was plotted
with observed and ensemble mean which depicts closer trends of
streamflow with observed compared to ensemble mean (Fig. 5).

In general, individual GCMs as well as the ensemble mean of
streamflow over predicts the observed streamflow, especially during
summer and fall seasons. A similar trend was observed between in-
dividual GCM as well as ensemble mean versus observed streamflow for
RCP-8.5 emission scenario (Fig. S3, Supplementary Material).

In order to determine the significant differences between average
monthly streamflow from individual GCM as well as ensemble mean
versus observed streamflow from 1990 to 2015, a paired two sample t-
test (between individual GCM/ensemble mean versus observed
streamflow) for mean was conducted in R-platform. Monthly average
streamflow under RCP-4.5 emission scenario from individual GCMs
except CANESM2 shows an insignificant difference with observed
streamflow at least 1 percent level of significance (Table 3). Further-
more, the ensemble mean streamflow also depicts insignificant differ-
ence with observed streamflow. A similar result was also observed
under RCP-8.5 emission scenario (Table S6, Supplementary Material).
Due to presence of significant difference in average monthly streamflow
between CANESM2 versus observed streamflow under both RCP-4.5
and 8.5 scenarios, the CANESM2 was not included while calculating the
ensemble mean during RCP-4.5 and 8.5 emission scenarios from 2020
to 2045. Consequently, the results of each components in the hydro-
logical cycle as well as sediment transport in the future scenarios (i.e,
2020 to 2045) was calculated based on ensemble mean of all the in-
dividual GCMs except CANESM2. The performance of individual GCMs
except CANESM2 is more likely to perform better in the future condi-
tion compared to the CANESM2 which already performed poor during
current condition (1990 to 2015) (Teutschbein and Seibert, 2012).

3.2. Land use conversion based on agent-based probabilistic and transition
potential model

The land use conversion model results showed that SLR had a higher
ROC value than the other two land use prediction modeling techniques
(Table 4).

The parameter values were calibrated through spatial logistic re-
gression and incorporated into agents’ land use conversion decisions.
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Fig. 4. Simulated and observed streamflow hydrographs at United States Geological Survey gauging station 01,398,000 in the watershed for this climate and LULC
change study.
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Fig. 5. Average monthly streamflow of individual GCM, observed, and ensemble mean for RCP-4.5 scenario in the Neshanic River Watershed from 1990 to 2015. The
x-axis represents months starting from January to December.

Table 3

Comparison of average monthly individual GCM and ensemble mean versus observed stream flow from 1990 to 2015 under RCP-4.5 emission scenario.
GCMs Mean 1 Mean 2 Variance 1 Variance 2 Df t-Stat P-value
BCC-CSM1-1 1.19 1.37 0.38 0.10 11 —1.55 0.15
CANESM2 1.19 1.42 0.38 0.11 11 —-2.21 0.04""
CCsSM4 1.19 1.36 0.38 0.11 11 -1.27 0.23
CSIRO-MK3-6-0 1.19 1.34 0.38 0.11 11 -1.29 0.22
GFDL-ESM2G 1.19 1.25 0.38 0.14 11 -0.5 0.63
INMCM4 1.19 1.30 0.38 0.13 11 -1 0.34
IPSL-CM5A-LR 1.19 1.37 0.38 0.10 11 —1.47 0.17
MIROC-ESM 1.19 1.33 0.38 0.13 11 —-1.32 0.21
MPI-ESM-LR 1.19 1.31 0.38 0.16 11 -1.3 0.19
NORESM1-M 1.19 1.35 0.38 0.19 11 —-1.57 0.15
Ensemble Mean 1.19 1.33 0.38 0.12 11 -1.30 0.21

indicates significant with at least 1 percent level of confidence.
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Table 4
Receiver Operator Characteristic (ROC) value in
each land use prediction model.

Models ROC Value
MLP 0.277
Sim Weight 0.410
SLR 0.860

Table 5
Area of land use converted into residential land based on each model.

Model From agricultural land ~ From forest Total converted area
(ha) (ha) (ha)

MLP 142.99 166.08 309.08

Sim Weight 125.86 245.76 371.63

SLR based ABM  2,785.53 890.33 3675.86

The BX function representing conversion event is calculated using
the following equation:

BX
= 1.288 — 0.0015*agricy,, + 0.0008*forest;, + 0.0013*residg;s; + 0.0007

*streamgi; — 0.0002*highwayy,, — 0.00005*traing;s 9

The SLR BX function coefficients suggest that new residential con-
versions were not positively associated with proximity (i.e. the inverse
of distance from) to existing residential lands forests or streams.
Conversely, proximity to agricultural lands, highway and train stations
associated with residential conversions.

Compared to MLP and SimWeight, the SLR based ABM model re-
sulted in a significantly larger area converted to urban land (Table 5).
The different outcomes between machine learning methods and re-
gression based ABM is likely due to the difference in the underlying
construction of the land conversion models; the MLP and SimWeight
models are based on a grid cell geometry while the SLR ABM is based on
polygonal parcels (i.e., the entire ownership parcel may convert at a
single time step). While all three models displayed a preference for the
conversion of agricultural land to urban land uses, the ABM converts a
significantly higher amount of land overall (Table 5 and Fig. 6). The
ABM is more similar to a “build-out model” where all available agri-
cultural land (that isn’t protected as preserved farmland) and forest
land that isn’t protected by regulation is converted. Based on the higher
ROC value, as well as the larger amount of land use area predicted to
convert by 2040, the ABM results were used for land use change sce-
nario as well as combined climate and land use change analysis.

3.3. Potential effect of climate change on components of hydrological cycle

The future temperature projection in the NRW showed an increasing
trend compared to base period (Fig. 7a). The average annual tem-
perature increased from 9.4°C to 12.5°C and 12.7 °C, displaying a
33.3%, and 35.7% increase compared to base period under RCP-4.5 and
8.5 scenarios, respectively. The annual temperature cycle showed a
clear increasing trend in average monthly mean temperature compared
to base period throughout the year. The seasonal analysis of different
components of hydrological cycle and temperature shows the % of in-
crease/decrease in each parameters compared to base period (Table 6).
The seasonal analysis of temperature depicted the highest increase in
temperature compared to base period (178.8% and 201.9% for RCP-4.5
and 8.5, respectively) to occur during winter while the least rise (16.8%
and 17.9% for RCP-4.5 and 8.5, respectively) was during summer. Both
annual and seasonal analysis demonstrated overall warming of the
watershed with higher temperature under RCP-4.5 and 8.5 scenarios
compared to base period.
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The future precipitation projection in the NRW showed a slight
decreasing trend compared to base period (Fig. 7 b). Overall, the
average annual precipitation in the NRW decreased from 107.57 mm to
102.95mm and 103.79 mm, representing a 4.3% and 3.5% decrease
compared to base period under RCP-4.5 and 8.5 scenarios, respectively.
The annual precipitation cycle remained unchanged from January to
May while a shift in precipitation cycle was observed from June to
December. The most notable differences were a shift of precipitation
peak from June to August accompanied by a sharp decline in pre-
cipitation until October. The seasonal analysis of precipitation depicted
the highest reduction in precipitation (7.48% and 7.73% for RCP-4.5
and 8.5, respectively) during fall while the least reduction in spring
season (1.22% and 0.56% for RCP-4.5 and 8.5, respectively). Shifting of
this precipitation pattern accompanied with rising temperature may
increase the risk of drought, flooding, and water quality degradation in
the watershed (Mishra and Liu, 2014; Wu et al., 2012b). The findings of
increasing temperature and lesser precipitation in the future projected
scenarios is consistent with the results of other researchers including
Paul et al. (2017), Neupane and Kumar (2015), and Jha et al. (2007).

In response to an increased temperature and reduced precipitation
in the watershed, the snowfall decreased throughout the year for the
future climate change under both RCP-4.5 and 8.5 scenarios compared
to base period (Fig. 7c). The average annual snowfall reduced from
12.70 mm to 6.40 mm and 5.96 mm which depicts a decrease in nearly
50% and 53% compared to base period under RCP-4.5 and 8.5 sce-
narios, respectively.

As a result of decrease in snowfall and precipitation for future cli-
mate change scenarios under RCP 4.5 and 8.5 compared to base period,
a decline in surface runoff was observed during most months except for
August and November (Fig. 7 d). The increased surface runoff during
these two months was due to higher precipitation in both RCPs com-
pared to base period (Fig. 7b). The mean annual surface runoff de-
creased from 29.60 mm (base period) to 22.32 mm (RCP-4.5 and 8.5)
which represents a 24.40% reduction. A similar reduction in surface
runoff was observed by Culbertson et al. (2016) in Maumee River
Watershed in Ohio, United States under RCP-4.5 and 8.5 scenarios. The
seasonal analysis indicates that the maximum surface runoff reduction
was observed during summer while the minimum reduction was found
during fall (Table 6).

Despite lower precipitation, higher streamflow was observed in the
watershed for both climate change RCP scenarios compared to base
period (Fig. 7 e) due to higher yield (Fig. 7 f). The higher yield was
contributed by higher groundwater (Fig. 7 g) and lateral flow (Fig. 7 h)
in both RCPs compared to base period. The higher groundwater and
lateral flow may be due to increase in infiltration capacity of soil due to
increase in air temperature in future climate change. Increasing air
temperature leads to frost free soil in most of the year which increases
soil temperature, the resultant impact increases soil pore water holding
capacity leading to higher soil hydraulic conductivity which results into
higher infiltration and less surface runoff (Pradhan et al., 2019; Stahli
et al., 1999; Dunne and Black, 1971). A similar result was also observed
in the future climate change scenario by Culbertson et al.(2016) in the
Maumee River Watershed, Ohio. Additionally, Pervez and Henebry
(2015) found the increasing trend of lateral flow under climate change
in the Brahmaputra River Basin in South Asia. The average annual
streamflow increased from 2.21 m®/sec (base line) to 2.92 m®/sec and
2.93m%/sec (RCP-4.5 and RCP-8.5, respectively) which represents an
increase in streamflow of approximately 32% in both RCPs compared to
base period. The streamflow was correlated with water yield from both
RCPs in the watershed. The annual water yield was 40.65 mm for the
base period while it was 53.67 mm and 53.76 mm for RCP-4.5 and RCP-
8.5, respectively. This indicates an approximately 32% increase in
water yield in both RCPs compared to base period. A negligible dif-
ference in results between both RCPs may be due to consideration of
future climate change in the near term (2020-2045) in this study. The
increase in streamflow and water yield in both RCPs were consistent
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Fig. 6. Representation of land use in the Neshanic River Watershed based on (a) current-2012, (b) MLP-2040, (c) Simweight-2040, and (d) ABM-2040.

which was evident from the result. A 32% increase in streamflow due to
water yield may potentially elevate the flooding risk in the watershed.
Similar to the average annual streamflow and water yield, similar
seasonal trends were observed between the two where maximum in-
crease was found during fall and the minimum increase was noticed
during winter (Table 6). A higher groundwater was predicted
throughout the year for both RCPs compared to base period (Fig. 7 g).
In fact, an average increase in more than 200% of groundwater was
predicted for climate change under both RCPs compared to base period.
This result may be due to substantial reduction in snowfall in the wa-
tershed which resulted in reduction of surface runoff events during
winter and spring while facilitating infiltration. Furthermore, in-
creasing projected temperature increases soil temperature leading to
higher infiltration during the winter months (Culbertson et al., 2016).
This indicates the critical role of groundwater towards streamflow in
the watershed especially during low flow condition (summer season).
However, a detail analysis of groundwater components in the wa-
tershed is required to assure the contribution of groundwater to
streamflow. A similar increasing trend of groundwater was observed
due to climate change in the Batsto River Watershed located in the
Southern New Jersey (Daraio,2017). Similar to groundwater, an in-
creasing trend of lateral flow was predicted throughout the year (Fig. 7
h). Approximately, more than 95% increase in average annual lateral
flow was predicted in both RCPs compared to base period. The seasonal
analysis suggests that the maximum increase in lateral flow was during
fall while the minimum increase was during winter (Table 6). Daraio
(2017) observed increased streamflow due to climate change in the
Maurice River Watershed and Batsto River Watershed located in the
Southern New Jersey. Similarly, Wagena and Easton (2018) reported an
increase of streamflow in the range of 4.5-9% in the Susquehanna River
Basin located in Chesapeake Bay due to climate change. Additionally,
Hayhoe et al.(2013) found a positive shift in streamflow(by 5-10%) in
the river basins located in the northeast United States as a result of
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climate change. Furthermore, Ahiablame et al. (2017) predicted the
increase in streamflow between 8 and 48% by midcentury in the James
River Watershed located in North and South Dakota, United States.
Additionally, increase in streamflow was projected by other researchers
due to future climate change including Shrestha and Wang (2017),
Wagena et al. (2016), and Pervez and Henebry (2015) in different parts
of the world.

The evapotranspiration was projected to decrease substantially
throughout the year due to climate change (Fig. 7 i). The average 12-
month annual evapotranspiration was approximately 65mm and
48 mm for base period and climate change RCPs, respectively. This
indicates that the evapotranspiration was projected to decrease by at
least 25% in both RCPs compared to base period. The reduction in
evapotranspiration was primarily be due to lower future precipitation
(Neupane and Kumar, 2015; Kim et al., 2013) and this decreased eva-
potranspiration could have increased soil water and percolation (Fig. 7 j
and k) in the watershed for climate change under both RCPs. The
seasonal analysis depicts that the projected evapotranspiration was
least during winter while it was highest during summer. In contrast to
evapotranspiration, the average annual soil water and percolation were
projected to increase by more than 52% and 180%, respectively in both
RCPs compared to base period. The increase in soil water will reduce
irrigation for different crop production in the watershed while increase
in percolation will increase the groundwater recharge and ultimately
increases streamflow. Paul et al. (2017) and Neupane and Kumar
(2015) also found increased in soil water content and percolation, and
decrease in evapotranspiration in their climate change studies in dif-
ferent watersheds in the United States.

Additionally, the long term monthly as well as seasonal trends of
precipitation, streamflow, and sediment transport during the base
period (1991-2015) in the NRW is presented in Section 3.2 of the
Supplementary Material.
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Fig. 7. Average monthly and annual mean of different components of hydrological cycle as well as sediment yield in the Neshanic River Watershed. In the figure
caption, x axis represents month from January (J) to December (D) and the Avg stands for average of 12 months.

3.4. Consequence of climate change on sediment generation and sediment
load in the watershed

To assess the impact of climate change on sediment production at
subbasin level, SYLD of output.SUB file was used which depicts the
weighted average of sediment from all HRUs within each subbasin
before channel routing. In the base period condition, greater sediment
yield was observed at southeast edge of the watershed while low-
ersediment yield was found at north central side of the watershed
(Fig. 8a). Under RCP-4.5, the majority of subbasins were predicted to
have reduced sediment yield (Fig. 8b). The spatial pattern of sediment

12

generation/reduction under RCP-8.5 was similar to RCP-4.5 except
slightly more sediment generation subbasins were predicted (Fig. 8c).
As might be expected, the spatial distribution of sediment yield among
the subbasins was primarily dependent on topographic elevation of the
watershed. For example, the higher sediment yield was predicted at the
southeast as well as northwest subbasins in the watershed having
steeper slopes compared to other parts (Figs. 1 and 8 b). In contrast,
negative sediment generation was forecasted in most of the subbasins
located in the center of the watershed having lesser topographic ele-
vation. Additionally, most of the subbasins generating higher sediment
yield also displayed increasing surface runoff under the climate change
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Fig. 7. (continued)

scenarios compared to base period (Fig. S6, Supplementary Material).
Shrestha and Wang (2018) also found highest sediment generation in
subbasins having steepest topography compared to other parts of the
watershed using SWAT model during climate change study in Canada.

However, when sediment load was compared at the watershed
outlet after considering channel routing, a slight increase in sediment
load (more than 10%) compared to base period was observed for both
RCPs in climate change scenario (Fig. 9). This increase can be attributed
to greater channel and stream bed erosion due to higher streamflow
(approximately 32%) in the climate change scenarios compared to the
base period. Our findings are corroborated by the outcomes of previous
study in the same watershed by Qiu and Wang (2014). They found that
streams are the primary sources of sediment compared to different land
uses contributing nearly 60% of the sediment load in the watershed.
Furthermore, the monthly as well as seasonal trends between

Table 6

streamflow and sediment load during the base period (1991-2015)
shows that the streamflow is the primary driver of sediment generation
in the river (Fig. S5, Supplementary Material). When both RCPs were
compared, RCP-8.5 produced slightly more sediment load compared to
RCP-4.5 which may be due to greater numbers of sediment generation
subbasins in RCP-8.5 compared to RCP-4.5 (Fig. 8 b and c). Overall, the
climate change scenarios suggest increasing sediment load in the
streams (Fig. 9) which may adversely affect the health of aquatic eco-
systems. Wagena and Easton (2018) also found an increasing trend of
annual sediment load ranging from 26 to 31% in the Susquehanna River
Basin located in Chesapeake Bay due to climate change. Apart from
sediment load, primary components of hydrologic cycle due to climate
change only scenario compared to base period is also found from Fig. 9.

Seasonal and annual percent change of hydrological components, temperature, and sediment yield from base period. (Winter: December-February, Spring: March-

May, Summer: June-August, Fall: September-November).

Period Temperature (%) Precipitation (%) Snowfall (%) Surface runoff (%)
RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5
Winter 178.8 201.8 -4.6 -31 —44.3 —49.8 —-20.5 -22.3
Spring 37.8 38.7 -1.2 -0.6 -72.3 —65.6 —-30.7 -28.4
Summer 16.8 17.9 -39 -2.8 -33.0 -31.6
Fall 33.6 36.6 -7.5 -7.7 —74.4 -75.4 -14.8 -16.2
Annual 33.3 35.7 -4.3 —-35 —49.6 —52.0 —24.5 —24.4
Streamflow (%) Water yield (%) Groundwater (%) Lateral flow (%)
RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5
Winter 25.0 25.1 26.1 25.0 186.3 184.5 81.2 85.9
Spring 30.7 33.1 30.4 32.9 169.9 174.2 95.0 95.1
Summer 28.2 30.6 28.8 31.2 371.1 377.2 101.9 108.0
Fall 48.3 45.2 47.5 44.4 533.8 513.9 117.3 111.8
Annual 321 32.3 32.0 32.2 241.9 241.8 95.8 97.4
Evapotranspiration (%) Soil water (%) Percolation (%)
RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5 RCP-4.5 RCP-8.5
Winter -35.3 -32.4 28.0 28.1 129.0 133.0
Spring -34.0 -33.6 44.1 44.0 143.4 144.2
Summer —-21.6 -209 96.2 95.5 325.0 3325
Fall -19.8 -19.0 64.9 63.8 347.5 334.6
Annual -26.3 —25.5 52.9 52.5 186.3 187.3

13
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Fig. 8. Average annual sediment yield in fields in the Neshanic River Watershed: (a) Base line, (b) difference in sediment yield between RCP-4.5 and base line, and (c)

difference in sediment yield between RCP-8.5 and base line.

3.5. Potential effect of land use change on components of hydrological
cycles and sediment load

The land use change only based on ABM-2040 scenario projects an
increase of 24% in urban land area leading to an increase in surface
runoff (4%) (Fig. 10). Despite the increased surface runoff, a reduction
in streamflow and water yield (approximately 5%) was forecastdue to
reduction in both groundwater (by 39%) and lateral flow (18%).

This indicates the importance of subsurface flow in the watershed.

14

The reduction in groundwater and lateral flow in the land use change
scenario compared to base period was due to increase in impervious
surface as a result of increased residential areas. A previous study of
Giri et al.(2018) conducted in the same watershed where they fore-
casted water security based on projected land use of 2022 and found a
similar result of increasing surface runoff and decreasing soil moisture
pattern compared to base period due to lesser infiltration as a result of
urbanization. The evapotranspiration was projected to decline due to
conversion of a significant area of the agricultural lands and forest into
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Fig. 9. Comparison of primary components of hydrological cycle and sediment load in the climate change only scenario compared to base period in the Neshanic

River Watershed.

residential area even though additional lawns in the new residential
areas were taken into account while estimating evapotranspiration. A
similar decreasing trend of evapotranspiration was observed compared
to base period due to conversion of agricultural lands and forest into
residential areas in the same watershed for land use projected scenario
of 2022 (Giri et al.,2018). Additionally, a reduction in percolation was
observed in the land use change scenario compared to base period.
Finally, approximately 42% reduction in sediment load was predicted
in the land use change scenario compared to base period due to con-
version of 2,785 ha agricultural lands (Table 5) into residential areas in
the land use change scenario.

3.6. Potential effect of combined climate and land use change on
components of hydrological cycles and sediment load

The trends of different components of hydrological cycles and se-
diment load for the combined climate and land use change scenario are
similar to the trends found in the climate change only scenario. When
each components were compared among two emission scenarios (RCP-
4.5 and RCP-8.5), a negligible difference was observed between the two
emission scenarios.

The surface runoff in the combined climate and land use change
scenario was projected to decrease around 4% compared to base period
(Fig. 11). Despite increased impervious surface through increased re-
sidential area, lesser runoff was predicted due to lower projected pre-
cipitation in the combined climate and land use change scenario com-
pared to base period. This indicates that climate (i.e. reduced
precipitation) has greater contribution on hydrologic process compared
to land use. Despite lower surface runoff, higher streamflow and water

yield (36%) was predicted in the combined climate and land use change
scenario due to higher increase in groundwater, lateral flow, and per-
colation. Evapotranspiration was projected to decrease approximately
24% under combined climate and land use change scenario compared
to base period. This result was due to conversion of agricultural land
and forest into residential area combined with lesser precipitation.

Finally, the sediment load in the watershed was predicted to de-
crease roughly 30% in the combined climate and land use scenario
compared to base period which was due to conversion of most of the
agricultural lands towards urban land plus lesser surface runoff. The
reduction of sediment in this scenario was lower compared to land use
change alone due to offset of sediment reduction by climate change in
the coupled climate and land use change scenario.

3.7. Summary of results across all three scenarios

A composite summary of primary components of three scenarios
compared to base period is presented in Table 7. The ensemble GCM
predicts warmer temperatures and declining snowfall and precipitation
amounts leading to a projected decrease in surface runoff (as modeled
in SWAT) in climate change only scenario. Conversely, an increasing
surface runoff trend was predicted for the land use change scenario due
to an increase in impervious surface area. When modeled in composite,
the increased impervious surface from new urban lands was compen-
sated for by the reduction in surface runoff in the climate change sce-
nario. Streamflow and water yield are predicted to increase in the fu-
ture despite decreased precipitation and surface runoff due to an
increase in percolation and lateral flow compared to base period in both
climate change alone as well as combined climate and land use change

10
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Fig. 10. Comparison of different components of hydrological cycle and sediment load in the land use change scenario compared to base period in the Neshanic River

Watershed.
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Fig. 11. Comparison of different components of hydrological cycle and sediment load in the combined climate and land use change scenario compared to base period

in the Neshanic River Watershed.

scenario.

These results suggest the importance of sub-surface flow in the
watershed. Similar relationships of streamflow versus surface runoff
and subsurface flow were observed by Culbertson et al. (2016) and
Neupane and Kumar (2015) in climate change study in Ohio and South
Dakota watersheds, respectively.

The projected sediment load was slightly greater in climate change
only scenario compared to the base period which may be attributed to
channel erosion due to increase in streamflow. However, an opposite
trend of decreasing sediment load was predicted in both land use
change only as well as combined climate and land use change scenario
likely due to the extensive conversion of agricultural lands into re-
sidential areas.

4. Conclusions

Understanding the standalone as well as combined effects of climate
change and land use transformation are needed to formulate better
water resource management and adaptation strategies in a changing
environment. The integrated modeling framework we have developed
facilitates the assessment of the potential impact of climate and land use
change, either in isolation or in composite, on different components of
hydrological cycle and sediment loading.

We suggest that streamflow and sediment load serve as suitable
metrics for assessing watershed resilience, whether due to changing

Table 7

climate or land use. Our results predict the changing climate will have a
larger effect on the hydrologic cycle than intensifying urban land uses
in our study watershed. The coupled hydrologic-land use change
modeling suggests increasing urbanization will result in lower stream-
flow. The climate change scenarios, either alone or in composite with
land use change, predict higher streamflow; overriding the effect of
land use changes. In our study watershed, higher levels of streamflow
will likely exacerbate existing flooding issues and thereby serve to
lower watershed resiliency. Conversely, the climate and land use
change scenarios predict opposite effects on sediment load with the
climate change increasing sediment loading to the study watershed.
When modelled in composite, the effect of changing land use (in this
case the conversion of erodible agricultural fields to suburban devel-
opment) overrides the adverse effect of climate change, enhancing
watershed resiliency by reducing sediment load and thereby improving
health of the downstream aquatic ecosystems.

The integrated modeling framework we have developed is trans-
ferable to other watersheds providing practitioners a more effective
way to examine the implications of land use and climate change, either
alone or in composite.
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