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Abstract

Artificial neural networks (ANNs) have been applied within the field of hydrological modelling for over a decade but

relatively little attention has been paid to the use of these tools for flood estimation in ungauged catchments. This paper uses

data from the Centre for Ecology and Hydrology’s Flood Estimation Handbook (FEH) to predict T-year flood events and the

index flood (the median of the annual maximum series) for 850 catchments across the UK. When compared with multiple

regression models, ANNs provide improved flood estimates that can be used by engineers and hydrologists. Comparisons are

also made with the empirical model presented in the FEH and a preliminary study is made of the spatial distribution of ANN

residuals, highlighting the influence that geographical factors have on model performance.

q 2005 Elsevier Ltd All rights reserved.
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1. Introduction

The UK Flood Estimation Handbook (FEH) notes

that “many flood estimation problems arise at ungauged

sites for which there are no flood peak data” (Reed and

Robson, 1999, p. 12). In such cases, the hydrologist is

faced with the difficult task of estimating flood event

magnitudes from catchment properties and/or regional

climatology. The FEH recommends that, wherever

possible, such estimates should be based on the transfer
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of analogous data from sites that are hydrologically

similar in terms of catchment area, rainfall and soil type

i.e. ‘donor sites’. However, it is not always possible to

establish an appropriate set of donor sites, and

classification of sites into similar groupings can be

problematic. Even though attempts have been made to

classify catchments (for example, with artificial neural

networks; Thandaveswara and Sajikumar, 2000) the

FEH notes that there may be fundamental differences

between sites that would result in [a] the transfer of

inappropriate information and [b] the production of

inaccurate flood estimates.

Regionalisation techniques enable the extrapol-

ation of properties of flow regimes across
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homogeneous regions and the estimation of flow

statistics at ungauged sites (Institute of Hydrology,

1980). To date, one of the most extensive studies to

regionalise flows in Western Europe was conducted

within the framework of the Flow Regimes from

International Experimental and Network Data

(FRIEND) project (Gustard, 1993). This project, and

subsequent studies, highlighted the value of catch-

ment characteristics (such as hydrogeology and soil

properties) as descriptors of flows at ungauged sites

(Gustard and Irving, 1994). The three most widely

applied regionalisation techniques involve: (1) fitting

a probability distribution to a flow series, or

parameters to a flow duration curve, and then relating

the model parameters to physical catchment charac-

teristics (e.g. Smakhtin et al., 1997; Tucci et al., 1995;

van der Wateren-de Hoog, 1995); (2) relating index

flows with specific return periods (e.g. the mean or

median annual flood) to physical catchment charac-

teristics (e.g. NERC, 1975; Schreiber and Demuth,

1997; Vogel and Kroll, 1992); or (3) deriving the

parameters of an intermediate conceptual rainfall–

runoff model from physical catchment characteristics

and then simulating the required discharge sequences

(e.g. Ibrahim and Cordery, 1995; Pirt, 1983; Post and

Jakeman, 1996; Sefton and Howarth, 1998).

The FEH involves the use of an index flood

procedure to derive the flood frequency curve at

ungauged sites. The index flood is a middle-sized

flood for which the mean or median of the flood data

series is typically used (Grover et al., 2002). This

procedure is based on the assumption that donor sites

have the same flood frequency distribution but differ

in terms of the index flood. The flood frequency

distribution at the ungauged site is obtained from

multiplying the pooled growth curve (dimensionless

frequency derived from the data of the donor sites)

with the index flood of the ungauged site. In this

context, the index flood can be viewed as a scaling

factor for the growth curve. The FEH uses the median

flood to represent the index flood.

It is possible, with standard statistical regression

techniques, to produce index flood estimations based

on catchment descriptors—for example, derived from

catchment area, wetness and base flow index. The

FEH also provides algorithms for calculating the

index flood for a given site and offers different

algorithms for rural and urban catchments. However,
Reed and Robson (1999) state that flood estimates

‘made from catchment descriptors are, in general,

grossly inferior, to those made from flood peak data’.

The aims of the present investigation are thus

threefold: (1) to explore the potential application of

artificial neural network (ANN) solutions to the

problem of flood estimation in ungauged catchments;

(2) to compare ANN model prediction skill with that

of the two conventional statistical approaches referred

to earlier; and (3) to evaluate possible spatial biases in

ANN model output error.

ANNs have been used to perform hydrological

modelling operations for over a decade. Since the

advent of effective training algorithms for neural

networks in the mid 1980s (Rumelhart and McClel-

land, 1986), neural solutions have been applied to a

wide range of hydrological problems, such as rainfall–

runoff modelling and river discharge (or stage)

forecasting (for a review of forecasting applications

see Abrahart et al., 2004; Dawson and Wilby, 2001;

Govindaraju, 2000). There have, however, been

relatively few studies involving the application of

ANNs to flood estimation at ungauged sites. For

example, at the regional scale, Liong et al. (1994)

investigated flood quantile prediction for ungauged

catchments in Quebec and Ontario; Muttiah et al.

(1997) investigated 2-year peak storm discharge

predictions for river basins in the United States;

Hall and Minns (1998) related the scale and location

parameters of the Extreme Value Type 1 (EV1 or

Gumbel) distribution for annual floods to six

catchment characteristics in two flood regions of the

UK. In subsequent experiments, Hall et al. (2000)

used between four and twelve input catchment

characteristics to predict the same two EV1 parameter

outputs using data from sites in Sumatra and Java;

whereas Dastorani and Wright (2001) found that

seven catchment inputs were sufficient to predict the

index flood for selected catchments in the UK. This

paper discusses the application of ANNs to predict the

index flood for a much larger sample of selected

catchments in the UK. It also considers the estimation

of 10-, 20- and 30-year flood event magnitudes at such

sites. Given the range of record lengths available, the

20-year flood event was chosen for further discussion

as it is a convenient metric that is often used for the

purposes of comparison in other studies (for example,

see Reynard et al., 2004).



C.W. Dawson et al. / Journal of Hydrology 319 (2006) 391–409 393
The remainder of this paper is arranged as

follows. Section 2 provides a brief introduction to

ANNs with particular reference to the Multi-Layer

Perceptron (MLP). Section 3 describes the data sets

and Section 4 the methods that have been applied

for flood estimation at ungauged sites. Section 5

considers the error measures that were used to

evaluate model performance and Section 6 the

results, including a discussion of the geographical

distribution of model residuals. Finally, Section 7

provides conclusions and recommendations for

further work.

Fig. 1. Multi-layer perceptron.
2. Artificial neural networks

Artificial neural networks were first introduced

in the 1940s (McCulloch and Pitts, 1943). Interest

grew in these tools until the 1960s when Minsky

and Papert (1969) showed that networks of any

practical size could not be trained effectively. It

was not until the mid-1980s that ANNs once again

became popular with the research community when

Rumelhart and McClelland (1986) rediscovered a

calibration algorithm that could be used to train

networks of sufficient sizes and complexities to be

of practical benefit. Since that time research into

ANNs has expanded and a number of different

network types, training algorithms and tools have

evolved.

Given sufficient data and complexity, ANNs can be

trained to model any relationship between a series of

independent and dependent variables (inputs and

outputs to the network respectively). For this reason,

ANNs are considered to be a set of universal

approximators and have been usefully applied to a

wide variety of problems that are difficult to under-

stand, define, and quantify—for example, in finance,

medicine, engineering, etc. In the context of this

paper, ANNs are trained to represent the relationship

between a range of catchment descriptors and

associated flood event magnitudes. There is no need

for the modeller in this case to fully define the

intermediate relationships (physical processes)

between catchment descriptors and flood event

magnitudes—the ANN identifies these during the

‘learning process’. However, future work may involve

‘drilling’ into network models to extract and
interrogate such relationships (e.g. Wilby et al.

(2003); Jain et al. (2004); Sudheer and Jain

(2004))—something that is beyond the scope of the

current paper.

Although there are now a significant number of

network types and training algorithms, this paper will

focus on the Multi-Layer Perceptron (MLP). Fig. 1

provides an overview of the structure of this network.

In this case, the ANN has three layers of neurons

(nodes)—an input layer, a hidden layer and an output

layer. Each neuron has a number of inputs (from

outside the network or the previous layer) and a

number of outputs (leading to the subsequent layer or

out of the network). A neuron computes its output

response based on the weighted sum of all its inputs

according to an activation function (in this case the

logistic sigmoid). Data flows in one direction through

this kind of network—starting from external inputs

into the first layer (the predictors), that are transmitted

through the hidden layer, and then passed to the output

layer from which the external outputs (predictands)

are obtained. The network is trained by adjusting the

weights that connect the neurons using a procedure

called error backpropagation. In this procedure, the

network is presented with a series of training

examples (predictors and their associated predictands)

and the internal weights are adjusted in an attempt to

model the predictor/predictand relationship. This

procedure must be repeated many times before the

network begins to model the relationship. Interested

readers are directed to neural network texts such as

Bishop (1995) for more detailed coverage of such

topics.
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3. Catchments data set
3.1. Introduction

The data used in this investigation were obtained

from the FEH CD-ROM (Reed and Robson, 1999).

The FEH CD-ROM contains data for 1000 sites on

drainage paths in mainland Britain, Northern Ireland,

the Isle of Wight and Anglesey, which have

catchment areas of at least 0.5 km2. These data are

provided in the form of three separate files for each

site. File (#1 contains the annual maximum series

(AMS), File (#2 the peaks-over-threshold series

(sometimes covering a different period to the AMS),

and File (#3 a set of catchment descriptors for each

site. The AMS covers a range of years, some files

containing well over 100 years of data from the mid

1800s to the 1990s, while others contain only 5 or 6

years of data—usually from the 1970s and 1980s.

These data were processed in two stages. First,

catchment descriptors were extracted for each site.

Second, the AMS was used to estimate [a] the index

flood and [b] selected T-year flood events for each

catchment.
Table 1

FEH catchment descriptors

Abbreviation Parameter

DTM AREA Catchment drainage area (km2)

BFIHOST Base flow index

SPRHOST Standard percentage runoff

FARL Index of flood attenuation attributable to reservoirs

and lakes

SAAR Standard period (1961-1990) average annual rainfall

(mm)

RMED-1D Median annual maximum 1-day rainfall (mm)

RMED-2D Median annual maximum 2-day rainfall (mm)

RMED-1H Median annual maximum 1-h rainfall (mm)

SMDBAR Mean Soil Moisture Deficit for 1941–1970 (mm)

PROPWET Proportion of time when Soil Moisture Deficit

!6 mm during 1961–1990

LDP Longest drainage path (km)

DPLBAR Mean distance between each node (on a regular 50 m

grid) and catchment outlet (km)

ALTBAR Mean altitude of catchment above sea level (m)

DPSBAR Mean of all inter-nodal slopes in catchment (m/km)

ASPVAR Invariability of slope directions

URBEXT1990 Extent of urban and suburban land cover in 1990 (%
3.2. Catchment descriptors

The FEH CD-ROM contains a number of site

descriptors for each catchment, although closer

inspection revealed that not all descriptors were

available for each catchment. The 16 descriptors

shown in Table 1 were chosen as predictors for this

study as they were available for all catchments and

provided quantitative representations of catchment

characteristics (for information this table also

provides the mean value for each descriptor for all

850 catchments used in this study).
3.3. Estimation of at-site flood magnitudes

The AMS for each site was extracted from the data

and T-year flood events were estimated based on the

method of Shaw (1994) assuming a Gumbel Type 1

distribution. It is noted that other distributions could

be used but from experience most distributions yield

comparable results. As the purpose of this study was

to evaluate the effectiveness of ANNs in modelling

T-year flood events it did not matter which of the

comparable distributions was selected as the ANNs
Mean for all

catchments

Correlation with

20-year flood

event

Correlation with

index flood

410.77 0.61 0.62

0.50 K0.23 K0.23

36.86 0.27 0.27

0.97 K0.11 K0.10

1084.76 0.25 0.27

39.11 0.18 0.19

51.85 0.21 0.22

10.73 K0.15 K0.14

25.21 K0.43 K0.43

0.46 0.39 0.39

39.95 0.67 0.68

21.48 0.67 0.67

207.47 0.36 0.35

97.71 0.30 0.30

0.18 K0.38 K0.38

) 0.03 K0.13 K0.13
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would in all cases be modelling a pseudo T-year flood

event.

The annual maximum for a return period of T-years

is thus calculated as:

QT Z �Q CKðTÞSQ (1)

KðTÞ ZK

ffiffiffi
6

p

p
g C ln ln

TðXÞ

TðXÞK1

� �� �
(2)

In which �Q is the mean of the annual maximums,

SQ is the standard deviation of these maximums, K(T)

is a frequency factor and T(X) is the return period in

years.

To increase confidence in the modelling of the

T-year flood event the analysis was restricted to a

consideration of catchments that had 10 or more years

of annual maximum data. Several catchments that had

significant amounts of missing descriptive data were

also removed from the database reducing the number

of catchments available in the final modelling

operation from 1000 to 850.

The index flood was also calculated for each

catchment as the median of the AMS. In cases with an

even number of values the index flood was taken as

the average of the two middle values. The index flood

is a moderate flood event that occurs on average once

every 2 years but is, in contrast, derived directly from

the actual data set. It does not need to be estimated

from a theoretical frequency distribution which,

therefore, removes one potential source of error.

Table 1 shows the correlation between the

catchment descriptors and the estimated 20-year

flood event and the index flood at each site. As one

would expect, characteristics such as catchment

drainage area, longest drainage path, and mean

distance between each node and catchment outlet are

strongly correlated with both the 20-year flood event

and the index flood. The similarity of the results also

implies a very strong correlation between the 20-year

and index floods.
4. Tools and methods

Four different types of tool are compared in this

study. Two data-driven model building strategies

were used to develop working neural network flood
event predictors based on the use of split-validation

and cross-sample methodologies. Two sets of statisti-

cal solutions were also developed using step-wise

multiple linear regression and the FEH model. These

were intended to act as ‘benchmark standards’. The

first set of neural network solutions developed on the

full data set are compared with the step-wise multiple

linear regression outputs. The second set of neural

network solutions developed on urban and rural

partitions of the full data set are compared with the

FEH model outputs.

4.1. Neural network split-validation

The split-validation method (sometimes referred to

as cross-validation in the ANN literature) provides a

rigorous test of ANN skill (Dawson and Wilby, 2001).

It involves dividing available data into three sets: a

training set, a validation set, and a test set. The

training set is used to fit ANN model weights (for a

number of different network configurations and

training cycles), the validation set is used to select

the model variant that provides the best level of

generalisation, and the test set is used to evaluate the

chosen model against unseen data. In this case, the

850 data patterns that were available for analysis were

split randomly as follows; 424 (50%) catchments for

training, 213 (25%) for validation, and 213 (25%) for

final testing. The process of random selection

produced a reasonable sample of different catchment

types and sizes in each sub-set. Table 2 reports the

minimum, mean and maximum values of selected

catchment properties for the three sub-sets compared

with the full data set. Table 2 also indicates that

random splitting might not provide the most severe

test of model skill since the test data might not contain

the most extreme flood events for both the index flood

and the 20-year flood event.

Separate networks were trained to predict the 10-,

20-, and 30-year flood events and the index flood.

From previous experience network configurations

consisting of 3, 5, 10, 15, 20, and 30 hidden neurons

were trained using between 100 and 5000 epochs (in

steps of 100 epochs) in each case (e.g. Dawson and

Wilby, 2001). The training algorithm was ‘back-

propagation of error’, with a low learning rate of 0.1,

and a high momentum value of 0.9 (the maximum

setting for each parameter is 1.0). Following previous



Table 2

Statistics for selected catchment descriptors in split-validation data sets

Catchment attributes

Area (km2) Base flow

index

Average

annual rainfall

(1961–1990)

(mm)

Longest drai-

nage path

(km)

Urban extent

(1990) (%)

Index flood

(cumecs)

20-Year flood

event

(cumecs)

Minimum

Full data set 1.07 0.17 547 2.41 0.000 0.32 0.61

Training set 1.07 0.18 547 2.69 0.000 0.32 0.61

Validation set 3.10 0.17 557 3.83 0.000 0.37 0.61

Test set 2.30 0.18 555 2.41 0.000 0.43 1.36

Mean

Full data set 409.00 0.50 1082 39.88 0.027 87.86 149.70

Training set 409.58 0.50 1088 40.13 0.023 82.18 138.56

Validation set 411.81 0.49 1080 39.44 0.026 103.19 177.08

Test set 405.16 0.49 1074 39.84 0.026 82.80 142.02

Maximum

Full data set 9951 0.97 3473 280.96 0.432 951.06 1533.94

Training set 9951 0.97 3473 273.09 0.432 751.11 1288.80

Validation set 7490 0.97 2808 157.86 0.424 951.06 1533.94

Test set 9895 0.96 2576 280.96 0.424 572.23 1075.34
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studies, each predictor and predictand was standar-

dised to [0.1,0.9], such that extreme flood events

which exceeded the range of the training data set

could be modelled between the boundaries [0,1]

during validation and testing.
4.2. Neural network cross-sampling

To correct for deficiencies in the random

division of the sample data sets and to address

potential biases arising from urban and rural sub-

sets a cross-sampling technique was also employed

(sometimes referred to as cross-training). In this

case, the whole data set is split into S segments on

a random basis such that each segment contains the

same number of data points. Each ANN is trained

on SK1 of these segments and tested against the

remaining, unseen segment. This procedure is

repeated S times so that each data point in the

data set is modelled as an unseen test case once

and no points are ignored. Following Schalkoff

(1997), 10 segments were used. The final solution

is in each case evaluated on a full set of segments

which means that output statistics cannot be

directly compared with the split-validation training

method.
4.3. The benchmark models

Two further approaches were used to provide a

standard measure of performance based on conven-

tional and established methods. First, a step-wise

multiple linear regression (SWMLR) model was

developed on the split-validation data sets using a

mixture of forward and backward elimination pro-

cedures. This model was designed to predict the 10-,

20-, 30-year flood events and index flood. It was

developed on the training data set and evaluated on

the test data set. The validation data set was not used.

The results of these experiments are presented in

Section 6.1.

Second, the index flood was derived from

catchment descriptors using algorithms provided in

the FEH. Models were developed for both urban

catchments (those with an urban extent O0.025%)

and rural catchments. The skill of these models is

compared to the results for the cross-sampled ANN

applied to urban and rural partitions in Section 6.2.
5. Error measures

Because flood event magnitudes vary significantly

between catchments, the following dimensionless



Table 3

Optimal ANN configurations for each flood event evaluated on

validation data set for split-validation approach

Model Hidden neurons Epochs

Most accurate models

10-year flood 20 3200

20-year flood 20 2800

30-year flood 20 2600

Index flood 10 2400

Most accurate parsimonious models

10-year flood 5 1800

20-year flood 5 1800

30-year flood 5 1800

Index flood 5 2200
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error measures were employed in the evaluation of the

models: the Mean Squared Relative Error (MSRE),

Mean Percent Relative Error (MPRE), the Relative

Bias (RB), and the Coefficient of Efficiency (CE). The

Standard Error of the Estimate (SE) was also used as

this provides an indication of the spread of errors

produced by a model (measured in cumecs). The six

error measures are calculated according to the

following equations

MSRE Z
1

n

Xn

iZ1

QiKQ̂

Qi

� �2

(3)

MPRE Z
100

n

Xn

iZ1

abs
QiKQ̂

Qi

� �
(4)

RB Z
1

n

Xn

iZ1

QiKQ̂

Qi

� �
(5)

CE Z 1K

Pn

iZ1

ðQiKQ̂iÞ
2

Pn

iZ1

ðQiK �QÞ2
(6)
Table 4

ANN performance for flood events evaluated on split-validation test data

T-year MSRE CE S

10-year 2.26 87.09 5

20-year 2.50 85.60 6

30-year 2.66 84.77 7

Index flood 1.98 90.48 3
SE Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

iZ1

ðEK �EÞ2

n

vuuut
(7)

where Q is the observed flood event, Q̂ is the modelled

flood event, �Q is the mean of the observed flood

events, E is the error (i.e. QKQ̂), �E is the mean of the

errors, and n is the number of flood events that have

been modelled.

The MSRE and MPRE provide an indication of the

relative absolute accuracy of the models while RB

provides an idea of whether a model is over- or under-

predicting the flood event magnitudes. CE provides an

indication of how good a model is at predicting values

away from the mean. In this context, CE provides some

indication of how well the models perform in

catchments that posses either particularly low or

particularly high flood event magnitudes. The MSRE

ranges from 0 for a perfect model to N, and values

between 0 and 0.5 would be considered acceptable.

MPRE also ranges from 0 for a perfect model to N. RB

ranges from KN to CN (negative values indicate a

general over-estimation while positive values indicate

a general under-estimation of the model) and CE

ranges from KN in the worst case to C1 for a perfect

model. Shamseldin (1997) suggests a CE value of 0.9

or above to be ‘very satisfactory’, whereas above 0.8 is

‘fairly good’ and below 0.8 is ‘unsatisfactory’.
6. Results and discussion

6.1. Model development based on all data

6.1.1. Neural network split-validation method

The results for the split-validation method are

provided in Tables 3 and 4. Having tested a number

of ANNs on the training set, those configurations

shown in Table 3 (Most accurate models) were found
set

E (cumecs) MPRE RB

7.26 77.75 K0.1084

8.11 80.51 K0.0945

4.84 81.91 K0.0842

4.14 70.76 0.0480



Fig. 2. Comparative performance of different networks during validation and testing of estimated 20-year flood event.
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to be most accurate when evaluated against the

independent validation set using the MSRE and CE

statistics. Fig. 2 shows the comparative accuracy of

the network configurations for both the validation

and test data sets using the CE statistic for the 20-

year flood event model. While the 20 hidden-node

ANN (trained for 2800 epochs) provides the most

accurate model for the validation data, a 10 hidden-

node ANN (also trained for 2800 epochs) proves to

be most accurate at modelling the test data (shown by

the two maximum indicators in Fig. 2). This lends

weight to the argument that it is prudent to select

parsimonious models that are more likely to be able

to generalise than over-parameterised models that

may become tuned to noise within the training data.

However, although Fig. 2 shows that a 10 hidden-

node model is more accurate for the test data, in this

case it would be wrong to choose this model at this

stage as it is in conflict with the split-validation

approach (i.e. selection based solely on the validation

data). This argument can also be extended to the

number of epochs for which a network is trained.

Training a network for too long may mean the

network has become highly tuned to the training data

leading to an inability to generalise.
The general rule-of-thumb is to ensure that there

are ‘many more’ training data points than connec-

tion weights. This implies that networks should be

chosen with as few hidden nodes as possible, and

trained for a limited period. Applying this rule to

the validation data leads to the selection of the

alternative network configurations shown in Table 3

(Most accurate parsimonious models). These net-

works were then evaluated using the independent

test set and the results are presented in Table 4.

The ANN T-year flood event models are ‘fairly

good’ according to Shamseldin’s (1997) criteria

with respect to the CE statistic, and the index flood

model is ‘very satisfactory’.

Although the training data contains 20-year flood

events ranging from 0.61 to 1288.80 cumecs, the 90th

percentile of these data is 373.14 cumecs. That is, the

majority of the training data contains relatively low

magnitude flood events. Given the nature of the data,

one would expect this kind of distribution as the data

set will be dominated by smaller catchments. Thus,

during training the models become ‘fine tuned’ to

lower level flood events while higher flood events are

rarer. This problem is encountered in any data set

containing extremes, for example, river flow
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forecasting where data are dominated by the lower

flow flood events while the extremes (those flood

events that one is perhaps more interested in

modelling) are less common. Techniques to overcome

this problem include resampling from higher-level

flood events or restructuring the data set, by

eliminating a proportion of the lower flood event

data, so that a more even spread of flood events are

included. An alternative is to develop a number of

models based on different characteristics in the data

set (such as catchment size, flood event size, etc.).

This approach is investigated later by partitioning into

urban and rural catchments. Sivakumar (2005) refers

to these kinds of partitions as ‘thresholds’. An

alternative is to use a network that pre-classifies

data into different sets using a clustering technique

such as self-organising maps (Hsu et al., 2002).

Fig. 3 shows the accuracy of the 20-year flood

event model for the test data. There is one obvious

outlier identified as the River Severn at Haw. This is

one of the largest catchments in the data set with an

area of 9884 km2. It is unusual for a catchment of this

size to be classed as urban (urban extent is 0.0263%)

so one would expect much greater flood events to

occur than are actually recorded. However, there were

only 17 years of data in the AMS available for the
Fig. 3. ANN model of 20-year flood ev
years 1976–1992. This period includes some notable

droughts; 1976, 1984 and 1988–1992; and, as a

consequence, yields a relatively low estimated 20-

year flood event. In addition, the flow regime is

modified by an impounding reservoir, by abstractions

for public, industrial and agricultural supply, and by

effluent return (Institute of Hydrology, 1993). All

these factors lead to unexpected variations in river

flow compared with unregulated, natural catchments

with otherwise similar geological characteristics.

The problem in this case seems to be related to the

unique behaviour of an individual large catchment for

which there is only limited data within the training set.

The model has generalised in the case of limited high-

magnitude flood events but has been unable to

reconcile this extreme case.
6.1.2. SWMLR method

The SWMLR models developed for the different

return periods consistently selected the following

predictors; drainage area (DTM AREA), standard

percentage runoff (SPRHOST), soil moisture deficit

(SMDBAR), longest drainage path (LDP) and

invariability of slope directions (ASPVAR). In

addition, for the index flood the model also selected

base flow index (BFIHOST) and proportion of time
ents compared with test data set.



Table 5

SWLMR model performance for flood events evaluated on split-validation test data set

T-year MSRE CE SE (cumecs) MPRE RB

10-year 91.38 66.39 93.08 249.26 1.2606

20-year 86.64 65.23 106.50 244.48 1.2119

30-year 84.99 63.86 115.97 242.78 1.1732

Index flood 90.33 71.19 59.42 260.02 1.1442
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when SMD !6 mm (PROPWET). Firm conclusions

cannot be drawn from these selections as the nature of

the SWMLR model means that other (quite valid)

predictors may be excluded because they are strongly

correlated with those selected.

The poor results of this model are presented in

Table 5. These findings are particularly disappointing,

especially when compared to the high accuracies of

the neural solutions. In an attempt to improve the

performance of this method in predicting the 20-year

flood event the data were logged to reduce the affect

of extreme flood events. However, this led to

extremely poor results, including some grossly

inaccurate predictions. The SWMLR model is also

somewhat naı̈ve in assuming linear relationships

between variables and potentially useful variables

may have been discarded.
6.2. Model development based on urban and rural

partitions of the data set

To explore the potential power of data stratification

and to make more effective use of limited hydro-

logical records, ANN models were developed for the

20-year flood event and index flood using urban and
Table 6

Statistics for selected catchment descriptors in cross-sampling data sets

Catchment attributes

Area (km2) BFIHost SAAR (mm) L

Rural catchments (660 data points)

Minimum 1.07 0.23 547

Mean 374.30 0.50 1139 3

Maximum 6853.22 0.97 3473 26

Urban Catchments (190 data points)

Minimum 9.93 0.17 555

Mean 527.32 0.49 883 3

Maximum 9951.00 0.87 2183 28
rural splits using a cross-sampling method. ANN

model results for the index flood are compared with

those of the FEH model.
6.2.1. Neural network cross-sampling method

(20-year flood)

Having identified, with the split-validation

approach, the most ‘appropriate’ network model (i.e.

a network with five hidden neurons trained for 1800

epochs for the 20-year flood event model), this

structure was then used in a 10-fold cross-sampling

experiment. In this case the data were further split into

rural (those with an urban extent of less than 0.025%)

and urban catchments to see if any improvement could

be made by tuning models to particular catchment

types. Table 6 presents catchment statistics for the

rural and urban data used in the cross-sampling

approach. The results of the cross-sampled 20-year

flood event models are presented in Table 7 while

Fig. 4 shows scatter diagrams of ANN model

performance. In Table 7 and Fig. 4 Urban denotes

the ANN model trained and evaluated on urban

catchment data only; Rural denotes the model trained

and evaluated on rural data only; and All denotes the

model developed and evaluated on all the data (urban
DP (km) URBExt

(1990)

Index Flood

(cumecs)

20-Year Flood

Event

(cumecs)

2.41 0.000 0.32 0.61

9.76 0.007 95.94 162.54

5.52 0.025 951.06 1533.94

5.40 0.025 0.43 0.66

9.70 0.096 58.84 103.26

0.96 0.432 594.94 953.65



Table 7

Comparison of cross-sampled ANN models for 20-year flood events with derived values computed on annual maximum series

Catchments MSRE CE SE (cumecs) MPRE RB

Urban 5.21 83.94 63.25 92.25 K0.3347

Rural 18.27 83.37 92.51 129.50 K0.7394

All 15.39 83.03 87.24 145.02 K0.8505
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and rural catchments combined). In all cases, Table 7

shows that the 20-year flood event models are ‘fairly

good’ according to the CE statistic for all catchment

types.

Fig. 4a shows the performance of the urban model

during testing, and highlights four notable outliers:

two at relatively high values—the River Severn at

Haw and the River Ribble at Jumbles Rock; and two at

relatively low values—the River Cynon at Abercynon

and the River Colne at Denham.

The 20-year flood event for the River Severn was

over-estimated in the same way as described in the

split-validation approach above. Conversely, the

River Ribble is the one notable outlier that has been

underestimated by the model. In this case the

estimated 20-year flood event was 954 cumecs while

the ANN modelled 20-year flood event was 574

cumecs. This catchment has an area of 1049 km2, an

urban extent of 0.0259%, and so just falls within the

urban category. 24 years of AMS data were available

for this catchment from 1970 to 1993, so one can

assume that the estimated 20-year flood event is a

reasonable approximation to the observed flood event.

However, examination of the Hydrometric Register

(Institute of Hydrology, 1993) indicates that this

catchment is a regulated river with an impounding

reservoir and is used for public water supplies. When

one compares the estimated 20-year flood event for

this catchment with a similar catchment it is perhaps

not surprising that the model has underestimated this

flood event. For example, one such similar catchment

is the River Wear at Chester le Street. This catchment

has an area of 1005 km2 and an urban extent of

0.0247%. It is not used for storage or public water

supplies but the derived 20-year flood event is

363 cumecs—which is much lower than that of the

River Ribble.

At lower levels, the 20-year flood events for the

River Cynon at Abercynon and the River Colne at

Denham have been notably over-estimated by the
urban ANN model. The River Cynon is a small

catchment (103 km2) with a relatively high average

annual rainfall of 1766 mm (base flow index, 0.422;

longest drainage path, 28.69 km; mean slope:

145.76 m/km; urban extent: 0.0388%; mean altitude

above sea level: 270 m) and is described as having

17% forest and with open-cast coal extraction in

headwaters. Thirty-two years of AMS data were

available for this catchment. A similar urban

catchment to this is the River Irwell at Bury Bridge

which has a drainage area of 156 km2. In this case the

estimated 20-year flood event is 302 cumecs which is

more in line with prediction made by the model.

The River Colne is a medium sized catchment

(733 km2) with considerable suburban development

in the middle and lower reaches (base flow index,

0.623; average annual rainfall, 703 mm; longest

drainage path, 68.5 km; mean slope, 43.67 m/km;

urban extent, 0.0754%). It does appear to have a

particularly low derived 20-year flood event of

16.26 cumecs (based on 41 years of AMS data from

1953 to 1993). For comparison, the River Aire at

Armley is of a similar size (686 km2) and urban extent

(0.0743%), yet has a derived 20-year flood event of

194 cumecs—more in line with the 264 cumecs

predicted by the model. There are clearly some

other influences at work here that require further

investigation.

For rural catchment models there are two notable

outliers that have been underestimated—the River

Findhorn at Forres and the River Lochy at Camisky

(Fig. 4b). The River Findhorn is a medium sized

catchment (781 km2) with an urban extent of 0.0001%

(base flow index, 0.434; average annual rainfall,

1065 mm; longest drainage path, 100.13 km; mean

slope, 119.83 m/km; and has extensive blanket peat

cover that drains the Monadhliath Mountains). Thirty-

two years of AMS data were available for this

catchment and it is classified as natural (Institute of

Hydrology, 1993). In these circumstances, one would



Fig. 4. ANN 20-year flood events modelled.
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expect the observed data to be sufficient to provide a

reasonable estimation of the 20-year flood event. A

similar catchment to this—the River Dee at Polhol-

lick—with an area of 697 km2 and urban extent of

0.0001% (base flow index: 0.458; average annual

rainfall: 1231 mm; longest drainage path: 62.68 km;

mean slope: 224.44 m/km; and described as being a

mountain, moorland and pastoral catchment) has a 20-

year flood event of 501 cumecs compared with

1171 cumecs for the River Findhorn. This is also

described by the Hydrometric Register as natural and

thus provides a good comparison of the flood

magnitude that might be expected.

The River Lochy also appears to have an estimated

20-year flood event that is higher than expected. This

catchment has an area of 1256 km2 and an urban

extent of 0.0003% (base flow index, 0.386; average

annual rainfall, 2188 mm; longest drainage path,

83.14 km; mean slope, 249.63 m/km; and is described

as comprising mainly rough grazing and moorland

with some afforestation). There were only 13 years of

AMS data for this site covering the period 1981—

1993 and there were four annual maxima over

1000 cumecs in this limited period (the estimated

20-year flood event is thus open to some uncertainty).

For example, there was a recorded flood event in

January 1992 of 1540 cumecs—significantly higher

than the smallest annual maximum recorded here of

449 cumecs in 1988. The catchment is also subject to

the artificial influences of a reservoir. Compared with

catchments of a similar size (ranging from 1100 to

1400 km2), the next highest recorded 20-year flood

event is for the Wye at Erwood (980 cumecs) while

the average 20-year flood event for all catchments

between 1100 and 1400 km2 is 493 cumecs. These

outliers perhaps show the dangers of: (a) using donor

catchments to predict flood events at unseen sites, (b)

estimating T-year flood events from a limited number

of data points, (c) highly localised extreme events that

are not captured by the annual rainfall statistics listed

in Table 1.

The remaining row in Table 7 (All) enables

comparisons to be made with the split-validation

approach in the previous section. In this case, the

model has been trained on all catchment types and

evaluated against all catchment types. Fig. 4c shows

the results of this model when compared with the

estimated 20-year flood event. Note that the same
outlier rural catchments are again under-estimated by

the ANN model.

Comparing the results of this model with the 20-

year flood event split-validation method in Table 4

there is some worsening of model performance across

all statistics. This is due to the fact that the cross-

sampled model is being tested against the entire data

set. This is a far more stringent test of model

performance than the smaller test subset used in the

split-validation approach, which did not include such

extreme values (see Table 2).

The results show that there are still occasional

anomalies in model performance leading to some

significant over- or under-estimates. This may be

attributed to the limited data for estimating the 20-

year flood event. Conversely, it highlights the dangers

of using donor catchments that may provide signifi-

cantly different estimates of flood events than

observed, particularly if artificial influences are not

considered in the comparisons.

6.2.2. Neural network cross-sampling method

(index flood)

The FEH approach provides a method for

estimating the index flood from catchment descrip-

tors. The index flood is first calculated for rural

catchments as a function of area, base flow index,

standard percentage runoff, flood attenuation index

attributable to reservoirs and lakes, and average

annual rainfall. This can then be adjusted for urban

catchments by further calculations involving standard

percentage runoff and urban extent. Table 8 compares

the performance of the urban and rural algorithms

with the index flood estimated directly from the AMS.

The results show the urban model (Urban-FEH)

provides ‘very satisfactory’ results while the rural

model (Rural-FEH) is ‘fairly good’ according to the

CE statistic.

Table 8 also presents the results of the ANN index

flood models produced using the cross-sampling

approach (Rural-ANN, All-Rural-ANN, Urban-

ANN, All-Urban-ANN). The Rural-ANN model was

trained and evaluated using rural catchment data only

and the Urban-ANN model was trained and evaluated

using urban catchment data only. In order to see if

training networks using the entire data set could make

improvements, two further models were developed.

The All-Rural-ANN model was trained on all available



Fig. 5. Index flood event models for rural catchments.
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catchment data but evaluated on rural catchments

only; the All-Urban-ANN model was trained on all

available catchment data and evaluated on urban

catchments only. The All-Rural-ANN model involved

training 10 models using all the urban data and 90% of

the rural data before testing on the unseen 10% of the

rural data. This was repeated 10 times so that all the

rural data were eventually tested as unseen. The same

procedure was adopted for the All-Urban-ANN model.

In the case of the rural models, the ANN has

outperformed the FEH model according to both the

CE and SE statistics. This implies that the ANN model

is performing well across the range of index flood

magnitudes but less so for smaller flood events as

evidenced by the MSRE.

Fig. 5a highlights a problem with the FEH

approach. While the FEH model performs reasonably

well for low magnitude flood events, flood events

above 100 cumecs are consistently under-estimated,

and generally appear to worsen as the magnitude

increases. This conflicts with the findings of Ashfaq

and Webster (2002) who modelled 88 representative

catchments and reported that in general the FEH

method over-estimated flood quantiles. This problem

was also found to be more pronounced for higher

return periods and most pronounced in catchments

that experienced less then 800 mm average annual

rainfall i.e. in the south-east. However, the RB

statistic of the Rural-FEH model is negative

(K0.0424), which implies that lower level flood

events are in general terms being over-estimated

in compensation (closer inspection of these results

highlighted some particularly large individual relative

over-estimates at lower levels leading to this negative

RB statistic). This may reflect the non-linear nature of

the function that is better captured with the non-linear

ANN. There is some improvement in skill for

intermediate and large floods by the Rural-ANN and
Table 8

Skill of FEH and ANN models at estimating the index flood in rural and

Catchments MSRE CE S

Rural-FEH 0.9755 80.66 5

Rural-ANN 19.6984 88.47 4

All-rural-ANN 12.7302 87.82 4

Urban-FEH 1.5264 91.81 2

Urban-ANN 2.7217 84.54 3

All-urban-ANN 6.6685 90.59 2
All-Rural-ANN models (Fig. 5b and c), but this is at

the expense of the relative accuracy of the model

according to the MSRE statistic.

There is one notable outlier from the two ANN

models for the rural data set: the River Ouse at

Skelton. This is a large rural catchment of 3302 km2

with mixed geology (base flow index, 0.439; average

annual rainfall, 899 mm; longest drainage path,

149.96 km; mean slope, 70.17 m/km; urban extent

0.0103%). The River Tweed at Sprouston is of similar

size (3352 km2) and smaller urban extent (0.0028%)

yet has a much higher computed index flood than the

River Ouse (739 cumecs compared with 357 cumecs

for the River Ouse). The anomaly for the River Ouse

could be explained in terms of gauging errors for peak

flows or an observed record containing relatively few

major floods.

The Urban-FEH model performs relatively well

and is classed as a ‘very satisfactory’ model according

to the CE (Table 8). Although the Urban-ANN model

has a smaller RB than the FEH model (Table 8),

according to other diagnostics it appears to be

performing less well. This is probably due to the

limited amount of data that were available for training

the ANN model: with 190 urban catchments available

and a 10-stage cross-sampling approach, only 171

data points were available for training. To overcome

the problem of small sample sizes another ANN

model was trained, this time using all the available

data (All-Urban-ANN). This meant that from 850 data

points, the network was trained using 831 points (i.e.

all the rural data plus 90% of the urban data). This led

to a marked improvement in ANN performance

according to the CE statistic (now in the ‘very

satisfactory’ category at 90.59%) and SE statistic,

but a reduction in relative performance according to

the MSRE and MPRE. This is explained by the

different nature of the urban and rural catchment data
urban catchments

E (cumecs) MPRE RB

7.23 38.92 K0.0424

5.14 137.97 K0.9828

6.30 130.20 K0.9491

6.64 55.13 K0.3548

6.87 73.45 K0.0366

8.60 114.61 0.0462



Fig. 6. Index flood event models for urban catchments.
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sets as shown in Table 6. The mean index flood for

urban catchments is 594.94 cumecs, compared with

951.06 cumecs for rural catchments. The inclusion of

rural data in training the urban model reduces the

influence of smaller flood events by including a

greater number of large flood events. Thus, the All-

Urban-ANN has become less sensitive to smaller flood

events (the MSRE has increased) while its overall

performance has improved (CE has increased). Fig. 6c

shows that there has been some deterioration in the

estimate for the River Severn at Haw—an urban

catchment with a relatively large index flood. Because

the All-Urban-ANN model has been trained on a much

larger data set consisting of (now) mainly rural data,

there is a decline in performance for this urban

catchment.

Fig. 6 (a–c) also shows that all models appear to

under-estimate the index flood for the River Ribble at

Jumbles Rock. The 20-year flood event for this

catchment was also under-predicted by the ANN

models. The characteristics of this catchment are such

that the index flood is somewhat higher than one would
Fig. 7. Spatial distribution of index flood prediction error for 850 catchmen

FEH model prediction errors. (b) Neural network split-validation model pr

sampling and neural network rural cross-sampling model prediction error
expect. It is not surprising, therefore, that all three

models have under-estimated the index flood as they are

basing their estimates on these characteristics.
6.3. Geographical analysis of index flood predictions

The index flood predictions for the 850 catchments

were used to construct Thiessen polygon maps of the

model residuals. Error maps were developed on the

IHDTM geographical coordinate pairings related to

each catchment centroid—as provided in the FEH.

Two initial problems were experienced. Following

visualisation and testing operations IHDTM coordi-

nates were used instead of NGR coordinates due to the

requirement for a unique set of catchment input

points. Northern Ireland catchment centroids were

also found to be problematic and had to be re-

projected in a GIS: 39 of the 850 catchment

coordinates were registered to the Irish National

Grid—as opposed to the GB National Grid.

Fig. 7(a–c) shows index flood error maps developed

on the FEH model predictions; the neural network
ts in the United Kingdom of Great Britain and Northern Ireland. (a)

ediction errors. (c) Combined map of neural network urban cross-

s.
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split-validation model predictions; and a combined map

of both urban and rural neural network cross-sampled

model predictions. The maps are standardised to a

common scale and the spatial pattern on the different

maps appears to be in broad agreement. Low errors

occur throughout baseflow dominated catchment

regimes of the South-East. Relatively large errors

occur in North and South Wales and in Northern

England and the Scottish Highlands. This distinction

equates to the wetter and higher altitude regions of the

UK. The size and spread of individual catchments across

the map also reveals a disproportionate distribution of

input records with relatively few polygons in the most

challenging regions with highest rainfall. Thus, the

nature and extent of the residuals can be explained in

terms of broad scale geological and climatological

gradients suggesting that additional descriptors are

needed to complement those in Table 1.
7. Conclusions

The results of this study show that ANNs can be

used to estimate flood statistics for ungauged

catchments. The ANNs reproduce the index flood

with comparable accuracy to that obtained by the FEH

models. It should be noted that while ANNs have been

trained in this study to model T-year flood magnitudes

derived from the Gumbel distribution, they could just

as easily be trained to model floods derived from any

other distribution.

Although it is possible to use conventional statistical

approaches to build models for predicting T-year flood

events (such as SWMLR), the ANN proved to be

superior in this study. However, there are a few caveats

to be noted. First, the ANN is heavily data dependent.

This was highlighted by improvements in skill achieved

by training ANNs on the full available data set instead of

a limited (urban) data set. Second, the ANNs cannot

explicitly account for physical processes, reducing

confidence in model predictions. Finally, despite limit-

ing the analysis to those sites that had at least ten years of

record, the limited data at certain sites meant that some

T-year flood events and index floods could be grossly

under- or over-estimated. This is exacerbated when the

data include periods of long-term drought or above

average long-term rainfall. In these cases, the ANN may

be predicting the T-year flood event accurately, but, with
only limited observed data, evaluation of skill can be

problematic.

While this study demonstrates the feasibility of

using ANNs to model flood events in ungauged

catchments, there are still a number of areas of further

work. First, it would be useful to investigate different

ways of partitioning the data into categories other than

rural and urban (see Sivakumar, 2005); for example,

based on geology, size or climatic region (as high-

lighted by the geographical analyses). This would lead

to a series of models tuned to the idiosyncrasies of

particular catchment types. Second, in catchments

where the models appear to be significantly over- or

under-predicting estimated flood events, it would be

worth exploring anomalies in relation to a wider set of

catchment characteristics. Third, other ANN model

configurations could be evaluated alongside the

backpropagation feedforward network used herein

(e.g. radial basis function networks and support vector

machines). Finally, an investigation of ANN par-

ameters could yield further insights into the relation-

ships between catchment properties and flood

estimation in ungauged catchments.
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