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s u m m a r y

The conventional ways of constructing artificial neural network (ANN) for a problem generally presume a
specific architecture and do not automatically discover network modules appropriate for specific training
data. Evolutionary algorithms are used to automatically adapt the network architecture and connection
weights according to the problem environment without substantial human intervention. To improve on
the drawbacks of the conventional optimal process, this study presents a novel evolutionary artificial
neural network (EANN) for time series forecasting. The EANN has a hybrid procedure, including the
genetic algorithm and the scaled conjugate gradient algorithm, where the feedforward ANN architecture
and its connection weights of neurons are simultaneously identified and optimized. We first explored the
performance of the proposed EANN for the Mackey–Glass chaotic time series. The performance of the dif-
ferent networks was evaluated. The excellent performance in forecasting of the chaotic series shows that
the proposed algorithm concurrently possesses efficiency, effectiveness, and robustness. We further
explored the applicability and reliability of the EANN in a real hydrological time series. Again, the results
indicate the EANN can effectively and efficiently construct a viable forecast module for the 10-day reser-
voir inflow, and its accuracy is superior to that of the AR and ARMAX models.

� 2009 Elsevier B.V. All rights reserved.
Introduction human experts who have sufficient knowledge about the different
In Darwin’s concept of survival of the fittest, creatures must be
able to adjust to the environment for survival. Learning and evolu-
tion are two fundamental forms of adaptation. Learning refers to
the process of modifying behaviour to adjust to the environment
in different stages for an individual during its life. When learning
well an individual is capable of adapting to a similar environment.
In contrast with the learning of single individuals, evolution men-
tions the process of a population of parent species passing genes to
their offspring through reproduction, crossover, and mutation for
generations. Fig. 1 shows a comparison of an individual’s learning
and a population’s evolution. Among various research fields, artifi-
cial neural networks (ANNs) and evolutionary algorithms (EAs) are
typical applications of learning and evolution, respectively.

With the ability to process massive information and deal with
high non-linearity, ANNs have been widely studied and success-
fully applied to various fields, e.g., hydrology and water resources,
in recent years (Hsu et al., 1995; Sajikumar and Thandaveswara,
1999; Chang et al., 2005, 2007; Karunasinghe and Liong, 2006; Sa-
hoo and Ray, 2006; Chiang et al., 2007; Kim and Kim, 2008). Most
present artificial neural networks (ANNs), however, rely heavily on
ll rights reserved.

: +886 2 23635854.
aspects of the network and the problem domain (Abraham, 2004).
These generally presume a specific architecture and do not auto-
matically discover network modules appropriate for specific train-
ing data. The selection of network architecture has a significant
influence on the performance of ANNs. Too simple a network archi-
tecture might not meet the demand for accuracy, while a too com-
plicated architecture might reduce the generalization ability of
network due to over-fitting. As the complexity of the problem in-
creases, manual design becomes more difficult. The conventional
way to design network architecture involves a destructive algo-
rithm (Abrahart et al., 1998) and a constructive algorithm (Kwok
and Yeung, 1997). However, the application by designers of those
two algorithms to increase or decrease the hidden layers or neu-
rons is based on a predefined network architecture, which usually
misleads the search to a restrictedly structural local optimum
(Angeline et al., 1994; Castillo et al., 2007). The major challenge
of applying ANN is how to evolve unique neural network architec-
ture and its corresponding weight values for a specific problem.

The genetic algorithm (GA), a branch of EAs, was proposed by
Holland (1975) based on Darwin’s concept of ‘‘survival of the fit-
test”. GA regards optimization problems as natural evolutionary
species and transfers the search process into an evolutionary pro-
cess. Having the abilities of global search and evolutionary adapta-
tion properties, the GA is able to supplement the insufficiency of
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Fig. 1. Comparison of individual’s learning and population’s evolution.
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ANN. In such a way it would couple the evolution of the population
and the learning process of each individual, achieving better
adaptation of the whole environment to a generic fitness land-
scape. These investigations led to the birth of a new framework
generally referred to as evolutionary artificial neural networks
(EANNs). The creative evolutionary systems could have a major im-
pact on the effectiveness and efficiency of designing neural net-
works. Evolutionary algorithms are used to automatically adapt
the connection weights, network architecture and learning rules
according to the problem environment without substantial human
intervention. The evolution of connection weights is applied to im-
prove the adaptation ability of connection weights by global train-
ing based on predefined network architecture. The evolution of
network architecture can lead the training to adapt different opti-
mization problems. The objects to be evolved could be only net-
work topology or both network topology and connection weights.

The evolution of ANN’s architecture means a process of optimiz-
ing parameters of network architecture. The optimization of
parameters generally depends on the characteristics of problems,
and it is often true that using an ANN to optimize the best network
architecture is not easy, especially for highly non-linear data. A
better way is to introduce other algorithms of global optimization
(e.g., GAs) that would increase the opportunities to search the
near-optimal solution. For example, the conventional approach
for feedforward ANN is to predefine the network architecture
and then implement the iterated process of optimizing connection
weights. Different from traditional ANN requiring predefining the
network architecture, EANN is able to automatically search for
the best network architecture and near-optimal solution as well
by evolution and learning more efficiently and effectively. In other
words, EANN implements the GA to locate a good region in the
space (i.e., evolved network architecture) and then a local search
procedure (gradient search) is used to find a near-optimal solution
in this region (Yao, 1999).

The main purpose of this study is to propose an EANN for auto-
matically constructing the optimal network architecture and con-
nection weights of ANN to the investigated time series. The
Mackey–Glass chaotic time series is first taken as a theoretical ser-
ies to evaluate the efficiency, effectiveness, and robustness of the
constructed EANN. Then we apply the EANN to the forecasting of
10-day reservoir inflows of the Shihmen Reservoir and compare
the forecasted inflow with the lag-one autoregressive (AR(1)) and
autoregressive moving-average with exogenous inputs (ARMAX)
models.

The status of EANN

EANNs have been widely explored in last few years. Yao (1993,
1999) provided two excellent reviews of the different combina-
tions between ANNs and EAs. He roughly divided the combina-
tions into three evolutions of ANNs and then described a
framework for EANNs and pointed out an important concept:
‘‘Design of the optimal architecture for an ANN can be formulated
as a search problem in the architecture space where each point
represents an architecture”. There are several studies which have
explored the applicability of EANN in the hydrological sciences.
Cortez et al. (1996) used a genetic algorithm neural network
(GANN) to forecast time series. Abraham (2004) proposed an
effective evolutionary neural network, the meta-learning evolu-
tionary artificial neural networks (MLEANN) and applied MLEANN
to several different time series. Dawson et al. (2006) applied
JavaSANE, a package developed from a symbiotic adaptive neuro-
evolutionary (SANE) algorithm (Moriaty and Miikkulainen, 1998),
to evolving and optimizing individual neurons of a rainfall–runoff
network. Leahy et al. (2008) stated that a global optimization
methodology for ANN architecture and weights can be employed
successfully to a river level prediction. Chaves and Chang (2008)
recently presented an Evolving ANN Intelligent System (ENNIS)
for reservoir operation.

The parameters of ANN and GA, types and divisions of observed
or generated data, and criteria of performance evaluation in the
above studies and this study are tabulated in Table 1. The primary
research questions to be addressed in this paper are as follows:

1. How can the architecture of ANN (e.g., inputs, the number of
hidden layers, and the number of neurons in hidden layers)
be automatically optimized?

2. How can the inputs be appropriately selected among all possi-
ble ones?

3. How can the parameters of ANN’s architecture be encoded to
artificial chromosomes?

4. How can the chromosomes be encoded so that they can be per-
formed crossover with different lengths?

5. How well do EANNs perform in comparison to conventional
ANNs in terms of effectiveness, efficiency, and robustness?

Modeling the EANN

Artificial neural networks

An ANN is a network system composed of a set of intercon-
nected processing elements (neurons), with each element ex-
pressed by a function of the sum of weighted inputs as follows:

Yi ¼ fi

X
i

WijXj � hi

 !
ð1Þ

where Yi is the output of the ith neuron; fi is the transfer function of
the ith neuron; Wij is the connection weight between the ith and jth
neurons; Xj is the input of the jth neuron; hi is the threshold of the
ith neuron.

The architecture of multi-layer feedforward BPNN can be
roughly divided into three layers, including input layer, hidden
layer, and output layer (Fig. 2). The input layer acts as the receiver
of input data without a weighted sum. The hidden layer could be a
single layer or multiple layers. In addition to receiving the informa-
tion from all neurons of the input layer, each neuron of the hidden
layers sums weighted inputs and then delivers to the neurons of
next hidden layer or output layer. The output layer is a single layer
including one or several output variables.

The estimated output value of the output layer is compared with
a target output value by objective functions (or error functions). If
the error does not meet the criteria of the objective functions, then
the connection weights between any two feedforward-connected
neurons are modified. To search optimal connection weights and
biases, we may use the search algorithms to minimize the error
functions. Common search algorithms include gradient descent
method, Newton method, and conjugated gradient method.



Table 1
Comparison of three previous studies and this study applying EANNs.

Items Cortez et al. (1996) Abraham (2004) Dawson et al.
(2006)

This study

Types of ANN Genetic algorithm neural
network (GANN)

Meta-learning evolutionary artificial
neural networks (MLEANN)

Symbiotic adaptive
neuro-evolutionary
(SANE) algorithm

Hybrid-encoding evolutionary artificial
neural networks (HEEANN)

Types of data 91–349 generated data of time
series

a. 475 observations of wastewater time
series f(t)

b. 1000 generated data of Mackey–Glass
chaotic time series x(t)

c. 292 pairs of methane u(t) and carbon
dioxide y(t) time series

6-h streamflow and
rainfall
observations for
3 years

a. 1000 generated data of Mackey–Glass cha-
otic time series x(t)

b. 10-day reservoir inflow and rainfall obser-
vations for 39 years

Division of data Training and validation Training and testing Training,
validation, and
testing

Training and testing

Input variables 3–14 neurons (unspecified
variable)

a. f(t � 1), f(t)
b. x(t � 18), x(t � 12), x(t � 6), x(t)
c. u(t), y(t)

Predefined 3
streamflow
variables and 5
rainfall variables

a. Any selection of all variables between
x(t � 18) and x(t)

b. Constant or any selection of variables
between P(t � 2), P(t � 1), P(t), Q(t � 2),
Q(t � 1), and Q(t) for observed and stan-
dardized data

Number of hidden
layers and number
of neurons in
hidden layers

1 layer (3–14 neurons) Maximum number of neurons = 16 Maximum number
of neurons = 1000

Maximum number of hidden layers = 3;
maximum number of neurons = 15

Neuron connection Fully connected N/A N/A Fully connected

Transfer function N/A Tanh, logisitic, sigmoidal, tanh–sigmoidal,
log–sigmoidal

N/A Tanh–sigmoidal and linear

Output variables 1-h ahead data a. f(t + 1)
b. x(t + 6)
c. y(t + 1)

6-h and 24-h ahead
streamflow

a. x(t + 6)
b. Q(t + 1)

Learning rules Backpropagation algorithm Backpropagation algorithm, conjugate
gradient algorithm Levenberg-Marquardt
algorithm, quasi-Newton algorithm

Backpropagation
algorithm

Scaled conjugate gradient algorithm

Encoding scheme Binary indirect encoding Binary direct encoding N/A Binary hybrid encoding (direct encoding and
indirect encoding)

Encoded parameters Number of inputs, transfer
functions, learning rate, and
number of neurons in hidden
layer

Number of inputs, transfer functions,
learning algorithms, number of hidden
layers, number of neurons in hidden
layers, and connection weights

Neuron Inputs, number of neurons in hidden layer

Chromosome length 14 bits N/A N/A a. 31
b. 18

Initial population 20 40 N/A 20

Genetic operators Selection, crossover, and
mutation
– Roulette-wheel selection
– Crossover rate = 1
– Mutation rate = 0.02

Selection and mutation
– Rank selection
– Elite rate = 0.05
– Mutation rate = 0.4

Selection,
crossover, and
mutation

Selection, crossover, and mutation
– Elite number = 1
– Tournament selection
– Crossover rate = 0.5
– Mutation rate = 0.05

Generations N/A 40 200 10

Computing time N/A a. 288–1463 min
b. 62–696 min
c. 146–1176 min

N/A a. 3–223 min
b. 1.3–160 min

Iteration N/A N/A Random 50 times At least successive five times

Criteria of
performance
evaluation

MSE and SMSE RMSE RMSE, COE, MAE,
and COD

RMSE and CC

Note: N/A means ‘‘not available”.
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Genetic algorithm

As briefly mentioned above, the GA, by mimicking the evolu-
tionary process of natural genetic heredity, transfers the search
process of an optimization problem into an evolutionary process.
The parameters of an optimization problem are first encoded as
an artificial chromosome. By starting with a number of randomly
initialized chromosomes, the optimization process is then imple-
mented for each chromosome and the fitness of each chromosome
is evaluated by objective functions. If the optimal solution does not
meet the criteria of the objective function or the predefined itera-
tion times are not met, the optimization process is iterated through
reproduction, crossover, and mutation until the stop criteria are
satisfied. The key elements of the GA used in this study are briefly
given as follows.

Encoding: Encoding is the first step of GA. All the parameters of
a problem to be optimized have to be encoded as an artificial chro-
mosome, i.e., a string of genes with fixed length.
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Fig. 2. Schematic architecture of feedforward BPNN.
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Initialization: Randomness is the common way to initialize a
number of individual chromosomes expressing the population.

Fitness: Fitness may be regarded as the degree of evaluation
over the search process for the individual in every generation
whether it is satisfied with the objective function.
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Genetic operators

(1) Reproduction. Elite and selection of chromosomes are two
strategies of reproduction. In elite strategy a chromosome
with the best fitness is regarded as the elite among all per
generation. All features of the elite chromosome will remain
unchanged in the next generation. Selection means that
some of the chromosomes, except for the elite, with better
fitness will be put into the match pool awaiting the opportu-
nity of crossover.

(2) Crossover. Increasing diversity of genes is the purpose of
crossover. The way of crossover is to randomly select any
two of all parent individuals in the match pool, then
exchange some genes of each parent individual.

(3) Mutation. Mutation can avoid the optimal search trapped in the
local minimums of error function. A typical way of gene muta-
tion is to randomly select some genes of parent individuals, and
then change the values of the selected genes into different ones.
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Termination of genetic search
The evolutionary process of optimization search can be iterated

unless the termination criteria have been met.

Evolutionary artificial neural networks

This study is to evolve the network architecture of BPNN by GA
and optimize the connection weights by a gradient search. The de-
tailed steps of our framework are described as follows and shown
in Fig. 3.

Encoding of architecture
The encoding of ANN’s architecture can be roughly classified

into direct encoding scheme and indirect encoding scheme as
follows:

Direct encoding scheme:
The way to encode the connection of any two among all neu-

rons of an ANN is called direct encoding. In terms of network archi-
tecture, the connection between any two neurons is generally
expressed by a binary digit: 1 means connection and 0 no connec-
tion. Having complete information is the advantage of a direct
encoding scheme. However, if the network architecture becomes
more complicated, the chromosome length or connectivity matrix
would significantly increase and then cause inefficiency. Therefore,
direct encoding is more suitable for a small network.

Indirect encoding scheme:
An indirect encoding scheme involves only encoding some char-

acteristics of the network architecture such as the number of hid-
den layers or that of neurons. The search process would be more
efficient, however, if some important parameters of the network
architecture were pre-selected and encoded (Abraham, 2004).

Hybridized encoding scheme:
A hybridized encoding scheme, a combination of direct and indi-

rect encoding, is proposed in this study. The network is composed
of an input layer, multiple hidden layers, and an output layer; and
the network is fully connected. To automatically identify appropri-
ate inputs, a direct encoding scheme is used to encode the input
vector of the network, the first part of the chromosome. Indirect
encoding is used to encode the number of neurons in hidden layers,
the rest part of the chromosome. Fig. 4 shows a schematic encoding
of the network architecture for a fully connected feedforward ANN.
Fig. 5 illustrates an example of a feedforward ANN’s architecture
corresponding to its chromosome.
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Fig. 4. Schematic encoding
The details of the hybridized encoding schemes are described as
follows:

1. Direct encoding the inputs:
(1) Predefine the number of possible inputs (no_input).
(2) Randomly generate a series of 0 or 1, where ‘‘1” means

the input is selected while ‘‘0” means not selected, for
all the possible inputs.

2. Indirect encoding the number of neurons in hidden layers:
(1) Predefine a maximal number of hidden layers (no_maxlayer)

and a maximal number of neurons (no_gene) in hidden lay-
ers. It implies that the maximal string of genes from indirect
encoded the neurons of hidden layers is no_maxlayer�
no_gene.

(2) Randomly generate a number for the no_layer, which
should not be larger than the number of predefined maxi-
mal hidden layers. The generated number (no_layer) repre-
sents the number of hidden layers for an individual
chromosome.

(3) Randomly generate a series of 0 or 1 for the no_gene of each
layer. The total generated amount of the binary numbers is
no_layer�no_gene.

(4) Decode the binary numbers in each hidden layer into the
number of neurons in the hidden layer by the following
expression:

f ð1Þ � 2no gene þ f ð2Þ � 2no gene�1 þ :::þ f ðno geneÞ � 20

where f(i) = 0 or 1 (i = 1,2, . . .,no_gene).
(5) If all the generated numbers of neurons in different hidden

layers are zeros, steps 1–3 are repeated until at least one
gene is not zero.

Initialization of architectural chromosomes and network neurons
A number of network architectural chromosomes (no_indvid-

ual) are initially randomized. It should be noted that the length
of each chromosome would not be the same because of the
randomly generated number of inputs and hidden layers. Each
randomized chromosome is regarded as an individual network.
For each network, the transfer functions of neurons in the
hidden layers and output layer are defined as tan–sigmoid trans-
fer functions and linear transfer function, respectively. The ini-
tial connection weights for each constructed network are also
randomized.
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Fig. 5. An example of a feedforward ANN’s architecture corresponding to its chromosome.
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Construction of a feedforward ANN

1. Construct feedforward ANNs by the corresponding decoded
chromosomes one by one. The network architecture is deter-
mined by the following rules:
(1) If the number of hidden layers is randomized as one

(no_layer = 1) and the number of neurons in the layer is
not zero, there is only a hidden layer in the network.

(2) If no_layer = 2 and the numbers of neurons in both layers
are not zero, there are two hidden layers in the network.
However, if either one of the two numbers is zero, there
is only one hidden layer in the network.

(3) The above rules are applied when the architecture of the
network for the randomized number of hidden layers is
more than two.

2. Use the scaled conjugate gradient algorithm (SCGA) (Moller,
1993) as a learning rule to search for the optimal connecting
weights of the constructed ANN. SCGA is a supervised learning
algorithm with superlinear convergence rate and based upon a
class of conjugate gradient (CG) methods, which are well-
known numerical techniques used for solving various optimiza-
tion problems (Ham and Kostanic, 2001). In practice, the pro-
cess of CG makes good uniform progress toward the solution
at every time step and has been found to be effective in finding
better optimization than the standard BP algorithm (Chiang
et al., 2004).

3. Set an objective function (e.g., minimal error between target
and forecasted outputs of a network) and search the optimal
connecting weights for each constructed network by the SCGA
using the training set, then compute the value of the objective
function using the testing set.

Genetic operations

1. Set the number of generations (no_generation) and then per-
form the following genetic processes generation by generation.

2. Compute the values of the objective function for all chromo-
somes in the current generation and record the best one. Each
of the objective functions could be regarded as the fitness of
the specific chromosome.
3. Perform genetic operations for each generation. Parent chromo-
somes with better fitness have more probabilities to generate
offspring chromosomes. The genetic operators include repro-
duction, crossover, and mutation, described as follows:
(1) Reproduction: First, one or a few with better fitness (no_e-

lite) from parent chromosomes in the current generation,
called elite chromosomes, are selected and kept unchanged
in the next generations. Then two that are not elite chro-
mosomes are randomly selected by tournament selection
and one with better fitness is put into a match pool.

(2) Crossover: Set a crossover rate (prob_crossover) and define
the number of crossovers (no_crossover, should be an inte-
ger) as follows:

no crossover ¼ prob crossover � ðno individual-no eliteÞ
ð2Þ

Repeatedly select chromosomes for crossover in the match
pool for several times (no_crossover/2). To perform cross-
over, two chromosomes exchange their post-parts. That is,
one offspring chromosome is combined with a pre-part of
the first parent chromosome and a post-part of the second
chromosome, whereas the other offspring chromosome is
combined with a pre-part of the second parent chromo-
some and a post-part of the first chromosome. Fig. 6 illus-
trates a schematic crossover for two chromosomes.

(3) Mutation: Set a mutation rate (prob_mutation) and define
the number of genes to be mutated (no_mutation, also an
integer) as follows:
no mutation ¼ prob mutation
� ðno individual-no eliteÞ
� ðno inputþ no layerÞ ð3Þ
Repeatedly select chromosomes for mutation except elites.
One parent chromosome is randomly selected at a time.
Then a gene of the chromosome is randomly selected for
mutation, changing into a different binary number.

(4) Repeat step 2 for offspring chromosomes in the next gener-
ations until the termination criterion has been met.

(5) Iterate all steps for a number of times.
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Applications

Mackey–Glass chaotic time series

Mackey and Glass (1977) proposed the following first-order dif-
ferential-delay equation:

dxðtÞ
dt
¼ 0:2xðt � sÞ

1þ x10ðt � sÞ � 0:1xðtÞ ð4Þ

The time data generated by Eq. (4) are well known as the Mac-
key–Glass chaotic time series, being periodic when s is small and
chaotic when s > 17. Mackey–Glass time series are usually used
as a time series benchmark when investigating performance of
artificial neural network.

To evaluate the performance of the proposed EANN, this study
uses Mackey–Glass time series available from the data file of MAT-
LAB�, a widely used computer platform. The 1200 used data have a
mean of 0.9194 and a standard deviation of 0.2357. To reduce the
effect of noise, the first 118 and the last 82 data of the time series
were not used. Eight hundred of the 1000 data available are used as
training set and the rest two hundreds as testing set. It should be
noted here that the validation set is not necessary for EANN mod-
eling. Dawson et al. (2006) pointed out that the purpose of con-
structing one model on one dataset and using a second dataset
for conventional ANNs is to prevent an over-fitted solution; while,
for GA-based ANNs, constructing several models on one dataset
and using a second dataset is to select the best available model
from what might be a set of over-fitted solutions. To further ex-
plore this issue and to establish the degree to which the evolved
models are capable of being overfitted would require the second
dataset to be used directly in the neuro-evolutionary process.
Abraham (2004) used the same way of dividing the data sets into
training and testing sets for his meta-learning EANN.

Parameter settings
The parameters of EANN are described as follows:

1. Most of previous studies used the four input variables, x(t � 18),
x(t � 12), x(t � 6), x(t), to estimate the single output variable,
x(t + 6). Since direct encoding allows all possible variables as
inputs to ANN, this study uses all variables between x(t � 18)
and x(t) as input variables (i.e., x(t � Dt), where
Dt = 0,1,2, . . .,18) and x(t + 6) as output variables.

2. The maximal hidden layers are set to be 3 and the number of
neuron genes in each layer is 4 (i.e., the neuron range can be
0–15). The total number of neuron genes in three hidden layers
is not larger than 12 (i.e., 3�4).
…

Match pool

B

A

…

Match pool

B

A

Fig. 6. Schematic crossover
3. The population of chromosomes is initialized as 20, the same as
the study of Cortez et al. (1996).

4. The number of elites is set to be 1.
5. The crossover rate and mutation rate are set to be 0.5 and 0.05,

respectively.
6. The generations are set to be 10.
7. SCGA is used as learning rule of ANN and, to make sure the

search process could research optimal solutions, the training
epoch is set as 8000.

8. The root mean square error (RMSE), expressed in Eq. (5), is used
as the termination criterion. Three different RMSEs (0.001,
0.0005, and 0.0004, respectively) are set, where 0.0004 was
the smallest RMSE value used in Abraham’s (2004) (see
Table 2).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1ðxpðt þ 6Þ � xoðt þ 6ÞÞ2

N

s
ð5Þ

in which xp(t + 6) is the forecasting value at t + 6; xo(t + 6) is the
generated data at t + 6; N is the number of generated data.

9. To avoid over-fitting, the maximal connections of the
constructed network architecture are restricted to be less than
200.

Results and discussion

1. Table 3 shows the results of three arbitrary runs for EANN mod-
eling, under three different termination criteria, (a)
RMSE 5 0.001, (b) RMSE 5 0.0005, and (c) RMSE 5 0.0004 on
testing data set, respectively. It appears the EANN can effec-
tively obtain suitable networks. With the same termination cri-
terion, several other runs have been done and various network
architectures are obtained. The results indicate that the inputs
are different and the number of the hidden layers could be
one, two, or three. The difference is mainly due to the initial
randomness and genetic operations in EANN modeling. It
should be noted that the initial random selection of inputs
might leave out important inputs and prior information would
be helpful to determine the potential inputs at the phase of set-
tings. In this study, we aim at automatically identifying the
optimal architecture of ANN and a large number of input com-
binations have been generated and evaluated through GA pro-
cess, and the initially selected inputs without contributions to
meet the objective function in the first generation would be
changed into more important inputs after generations of
genetic operation.
Match point

efore crossover

fter crossover

Match point

efore crossover

fter crossover

for two chromosomes.



Table 2
Parameter settings of EANN modeling for Mackey–Glass time series.

Number of input genes (no_input) 19 Maximal hidden layers (no_maxlayer) 3
Number of neurons [gene] in each hidden layer (no_gene) 15 [4] Initial population of individual chromosomes (no_individual) 20
Number of elite chromosomes (no_elite) 1 Crossover rate (prob_crossover) 0.5
Training epochs 8000 Mutation rate (prob_mutation) 0.05
Learning rule Scaled conjugate gradient algorithm (SCGA)
Termination criterion (1) Generations (no_generation) 10

(2) RMSE value (training) (a) RMSE 5 0.0010
(b) RMSE 5 0.0005
(c) RMSE 5 0.0004

Table 3
Results of three arbitrary runs for EANN modeling under different termination criteria.

Termination criterion (a)
RMSE 5 0.001

Termination criterion (b)
RMSE 5 0.0005

Termination criterion (c)
RMSE 5 0.0004

The generation when termination criterion is
met

1st 2nd 2nd

Optimal inputs 18, 16, 15, 14, 12, 11, 6, 3, 2, 0 18, 17, 16, 13, 12, 11, 9, 8, 7, 6, 5, 4 17, 16, 15, 13, 12, 11, 10, 9, 7, 5, 3, 2
Optimal number of neurons in hidden layers 14 3-8-9 10
RMSE (training) 0.0009998 0.0004983 0.0003998
RMSE (testing) 0.0009306 0.0005505 0.0004266

Note:
1. In each run, EANNs are modeled for ten generations. The modeling is terminated once the termination criterion is met.
2. The number in the third row, e.g., ‘‘18”, means x(t � 18) .
3. The numbers in the fourth row, e.g., ‘‘3-8-9”, mean there are three hidden layers and the number of neurons in the first hidden layer is 3, in the second is 8, and in the third is 9.
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Fig. 7. Comparison between forecasted and generated time series for the arbitrary run under the termination criterion RMSE 5 0.0004 in Table 3.
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Table 4
The computation time (in minutes) of five arbitrary runs for EANN modeling under
different termination criteria.

Successive run Termination
criterion (a)
RMSE 5 0.001

Termination criterion
(b) RMSE 5 0.0005

Termination criterion
(c) RMSE 5 0.0004

Computing time (min.)
1st 8 87 57
2nd 6 180 223
3rd 10 57 184
4th 8 110 77
5th 3 67 161
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2. Another important point to be addressed is whether the opti-
mal architecture should be unique or consistent. It can be found
from the comparison of two results: The forecasting results of
RMSE 5 0.0004 are compared with those of Abraham’s study
(2004), whose termination criterion of RMSE is also 0.0004.
Under such a strict requirement of accuracy, it is however found
that there are still several optimal results, i.e., multi-optimal
solutions with different network architectures. A stricter termi-
nation criterion might be helpful for a more consistent result;
but it could not be assured of finding a unique optimal solution
unless we have known the exact global optimal solution.

3. There are chances that the initial population happens to include
a set of solutions close to the ‘‘stopping criterion”. For the termi-
nation criteria RMSE 5 0.001 in Table 3, the optimal results are
obtained in the first generation. In addition to the chance of the
initial population close to the termination criterion, it is also
because of powerful searching ability of SCGA.

4. Fig. 7 displays a comparison between the forecasted and gener-
ated time series for the arbitrary run under the termination cri-
terion (c) in Table 3. It appears that almost all pairs of
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Streamflow g

Taiwan 

Tanshui River Basin

Fig. 8. Locations of study ar
forecasted and generated data points are on the diagonal line,
which means nearly perfect forecasting has been achieved.
Therefore, the EANN can be regarded as having the ability to
forecast with higher accuracy.

5. In addition to effectiveness, the other two criteria used to
evaluate the performance are robustness and efficiency.
Robustness is the ability to find an optimum for every search
under restriction, while efficiency is the ability to take the
least time to search for the optimum. Table 4 shows the
results of five arbitrary runs for EANN under three different
termination criteria. It appears optimal network architecture
can be found for every run under its restriction, which means
the proposed EANN can be regarded as robust. It can also be
seen that the time to search for optimal network architectures
ranges from 3 to 223 min for three termination criteria (based
on a laptop with Intel Pentium M, 1.73 GHz CPU and 512 MB
RAM). Compared with the computing time in Abraham’s
(2004) study, the proposed EANN could be regarded as effi-
cient, in spite of the different evolutionary computation and
computer.

6. The parameters of GA inevitably require a number of trials to
increase the possibility of searching the global optimal solution.
The trials of parameters usually rely on the features of data. In
this study, the settings of the crossover rate and mutation rate
are determined after a number of trials. The maximum number
of hidden layers and maximum number of neuron in the hidden
layer might increase the effectiveness of the EANN model. How-
ever, they would also increase the possibility of over-fitting and
training time. With respect to the parameter of SCGA, we also
noticed that increase of training epochs to a certain number
(e.g., 8000 epochs in the case of chaotic series) would improve
the performance.
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Table 5
Parameter settings of EANN modeling for reservoir inflow time series.

Number of input genes (no_input) 6 Maximal hidden layers (no_maxlayer) 3
Number of neurons [gene] in each hidden layer (no_gene) 15 [4] Initial population of individual chromosomes (no_individual) 20
Number of elite chromosomes (no_elite) 1 Crossover rate (prob_crossover) 0.5
Training epochs 5000 Mutation rate (prob_mutation) 0.05
Learning rule Scaled conjugate gradient algorithm (SCGA)
Termination criterion (1) Generations (no_generation) 10

(2) Initial value of RMSE (testing) RMSE 5 60
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Reservoir inflow time series

Description of study area
Streamflow forecasting is of significant importance for planning

and operation of water resource systems. For hydrologic compo-
nents, there is a need for short-term (hourly or daily), mid-term
(10-days or monthly), and long-term (yearly) forecasts of stream-
flow events in order to optimize the systems or to plan for future
expansion or reduction. Mid-term streamflow forecasting is espe-
cially important for the operation of water supply systems over
drought seasons. Among the water supply systems, reservoirs
should be regarded as the most important and effective water stor-
age facilities, which have the functions of modifying uneven distri-
bution of water and allocating water resources. Precise forecasting
of seasonal inflows of reservoirs will benefit the reservoir opera-
tion and management.

The Shihmen Reservoir is located in the upper reaches of the Ta-
han River, a branch of Tanshui River in northern Taiwan. The wa-
tershed area of the reservoir is 763.4 km2 and the effective water
storage is 251.88 million cubic meters. The reservoir serves a num-
ber of purposes, including irrigation, hydroelectric power, fresh
water supply, flood prevention and sightseeing. Supplying water
to 28 districts and housing to 3.4 million people, the reservoir is
a very important water facility for the livelihoods of the people liv-
ing in northern Taiwan.
Table 6
Performance of AR(1) and ARMAX models.

Models Forecasting RMSE (training) RMSE (testing)

AR(1) Q(t + 1) 47.2 58.9
ARMAX(1, 2, 1) Q(t + 1) 46.8 59.2

Note:
1. AR(1) model: Q(t + 1) = 0.6186�Q(t) + e(t + 1), where e(t + 1) is an error term at
time t + 1.
2. ARMAX(1, 2, 1) model: Q(t + 1) = 0.7257�Q(t) + 0.1866�P(t) � 0.06515�P(t �
1) + e(t + 1) � 0.2239�e(t).
3. The time series for input were standardized before modeling for both AR(1) and
ARMAX models.
4. A time step is defined as ten days, so ‘‘t + 1” means ten days ahead.

Table 7
Cases settings with different inputs.

Inputs

Case 1 Random selection of P(t), P(t � 1), P(t � 2), Q(t), Q(t � 1), Q(t �
Case 2 P(t), P(t � 1), Q(t)
Case 3 Q(t)
Case 4 Random selection of PS(t), PS(t � 1), PS(t � 2), QS(t), QS(t � 1), Q
Case 5 PS(t), PS(t � 1), QS(t)
Case 6 QS(t)

Note:
1. P and Q mean observed rainfall and inflow, respectively. The superscript S means sta
2. Time step is defined as ten days.
3. The RMSE values as termination criterion could be decreased or increased if the optim
Locations of the study area and gauge stations are shown in
Fig. 8. The weighted average rainfalls over the watershed are com-
puted by Thiessen method and the reservoir inflow measurements
with time step of ten days are available from the gauging stations.
The data were collected from the gauging stations during the per-
iod from 1965 to 2003 and divided into a training set, 30 years, and
testing set, 9 years. The total numbers of data sets are 1080 ten-
days for training and 324 ten-days for testing, respectively.

Parameter settings
The parameters of the proposed EANN are described as follows

and tabulated in Table 5:

1. In order to compare with the performance of AR(1) and ARMAX
models, which are usually applied to periodical streamflow
forecasting, two sets of rainfall and inflow variables are taken
as the inputs of EANN. One set only includes inflow variables,
Q(t). The other set includes both rainfall and inflow variables,
P(t � Dt) and Q(t � Dt) (Dt = 0,1, . . .,Dtmax), where the time step
is 10 days and the value of Dtmax is arbitrarily set to be two. The
output variables of both sets are Q(t + 1). The value of Dtmax

could be either set arbitrary or based on prior information of
inputs.

2. SCGA is again used as a learning rule of ANN and the training
epochs are set to be 5000.

3. The termination criterion of EANN can be set by an RMSE value.
Similarly, to compare with the performance of AR(1) and
ARMAX models in Table 6, the RMSE values on a testing data
set are initially set to be 60 and then decreased or increased if
an optimal result is found or not found, respectively. In addition
to RMSE, Eqs. (6) and (7) are also used to estimate the correla-
tion and mean relative error between the forecasted and
observed inflow, respectively.

r ¼
PN

t¼1½Q f ðt þ 1Þ � �Q f ðt þ 1Þ�½Q oðt þ 1Þ � �Qoðt þ 1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1½Qf ðt þ 1Þ � �Q f ðt þ 1Þ�2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1½Q oðt þ 1Þ � �Q oðt þ 1Þ�2

q
ð6Þ

MRE ¼
1
N

PN
t¼1ðQf ðt þ 1Þ � Q oðt þ 1ÞÞ

Q oðt þ 1Þ
ð7Þ
Forecasting Initial termination criterion

2) Q(t + 1) RMSE 5 60
Q(t + 1) RMSE 5 60
Q(t + 1) RMSE 5 60

S(t � 2) Q(t + 1) RMSE 5 60
Q(t + 1) RMSE 5 60
Q(t + 1) RMSE 5 60

ndardization, i.e., PS and QS mean standardized rainfall and inflow, respectively.

al result is found or not found, respectively.
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Table 8
The best optimal results of the EANN modeling in six cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

The generation when termination criterion is met 2 3 1 1 4 7
Optimal inputs P: 1 P: 0, 1 Q: 0 PS: 1 PS: 0, 1 QS: 0

Q: 0 Q: 0 QS: 1 QS: 0
Optimal number of neurons in hidden layers 2-13 2-15 1-6 3-3 10-4-11 7-12-9
RMSE Training 44.9 45.2 46.4 43.6 41.5 43.5

Testing 58.9 58.5 58.8 55.3 55.4 53.1
CC Training 0.57 0.56 0.52 0.60 0.65 0.60

Testing 0.52 0.54 0.52 0.59 0.62 0.63
MRE Training 0.002 �0.005 0.015 0.018 0.012 0.010

Testing 0.122 0.056 0.041 0.062 0.088 0.030

Note:
1. Q and P in the 3rd row denote inflows and rainfalls, respectively. For example, ‘‘P: 0, 1” means the rainfall variables P(t) and P(t � 1), while ‘‘Q: 0” means the inflow variables
Q(t). QS and PS in the same row denote standardized inflows and rainfalls, respectively.
2.‘‘RMSE” in the 5th and 6th rows means ‘‘root mean square error”, ‘‘CC” in the 7th and 8th rows means ‘‘coefficient of correlation”, and ‘‘MRE” in the 7th and 8th rows means
‘‘mean relative error”.
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where Qf(t + 1) is the forecasted inflow at time t + 1; Qf ðt þ 1Þ,
the average of Qf(t + 1) over N; Qp(t + 1), the observed inflow at
time t + 1; and Qoðt þ 1Þ is the average of Qp(t + 1) over N; N is
the number of data.

Case settings
To investigate the performance of the proposed EANN, we de-

signed six different cases. Table 7 displays the case settings with
different inputs and the same forecasting and initial termination
criteria. The six cases can be divided into two groups: the inputs
with observed data (cases 1, 2, and 3) and those with standardized
data (cases 4, 5, and 6). Since standardization of seasonal time ser-
ies data is usually used to eliminate the effects of periodical trends,
the purpose of the second group is to investigate whether stan-
dardization could improve the performance of the proposed EANN.

The standardization of rainfall and inflow data can be attained
by Eqs. (8) and (9), respectively.

PS
ijðtÞ ¼

PijðtÞ � PjðtÞ
rPj
ðtÞ ð8Þ

Q S
ijðtÞ ¼

Q ijðtÞ � Q jðtÞ
rQj
ðtÞ ð9Þ

where PS
ijðtÞ is the standardized rainfall of the jth 10-days in ith

year; Pij(t), the observed rainfall of the jth 10-days in ith year;
PjðtÞ, the average of Pij(t); rPj
ðtÞ, the standard deviation of Pij(t);

QS
ijðtÞ, the standardized inflow of the jth 10-days; Qij(t), the observed

inflow of the jth 10-days in ith year; QjðtÞ, the average of Qij(t); and
rQj
ðtÞ is the standard deviation of Qij(t).
Results and discussion

1. Fig. 9 shows the ranges (black bar) of optimal RMSE values on
testing data for six cases. From the figure it can be also observed
that the RMSE value on testing data in every case is smaller than
that of ARMAX(1, 2, 1) model with standardized inputs, 59.15,
and the RMSE values in cases 2, 4, 5, and 6 are smaller than that
of AR(1) model with standardized inputs, 58.75. However, the
RMSE values in cases 4, 5, and 6 are much smaller than those
in cases 1, 2, and 3. The result reveals that standardization of
input data can improve the performance of the proposed EANN.
This could be because the standardized streamflow used as
inputs provides the flow anomaly (e.g., below or above average
flow) and supports information relevant to the dry or wet in cli-
mate scenario; as a result, they give better 10-day forecasts
than that of non- standardized flow as inputs.

2. Table 8 shows the best optimal results of the EANN modeling in
six cases. For example, in case 6 the termination criterion is met
in the seventh generation; the input is only the standardized
inflow at time t; there are three optimal hidden layers and
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Fig. 10. Comparison between forecasted and observed inflow time series for case 6.

Table 9
Percentage of improvement for the RMSE values on training and testing data of EANN modeling, compared with ARMAX(1, 2, 1) and AR(1) models.

Models ARMAX(1, 2, 1) EANN AR(1) EANN

Case 4 Case 5 Case 6

RMSE on training data 46.8 43.6 41.5 47.2 43.5
Percentage of improvement – 6.8% 11.3% – 7.8%
RMSE on testing data 59.2 55.3 55.4 58.9 53.1
Percentage of improvement – 6.6% 6.4% – 9.9%
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the number of neurons in the first hidden layer is 7, in the sec-
ond is 12, and in the third is 9, respectively. The optimal coeffi-
cients of correlation on the training and testing data sets are
0.596 and 0.633, respectively. The optimal mean relative errors
(MRE) are very small on both training and testing data sets (i.e.,
0.01 and 0.03). Fig. 10 (a) and (b) display the comparison
between forecasted and observed inflow time series for case 6
in Table 8. Since the performance of forecasting is our focus,
we pay more attention to the results of testing. From Fig. 10
(b) it can be seen the proposed EANN performs well on the test-
ing data set in the forecasting of low inflows. However, most of
high inflow forecasting, especially the streamflow more than
150 m3/s, shows underestimation. This is mainly because there
are only a few typhoon events with limited observed high flow
data to model and train the constructed networks.
3. The results in Table 8 also show that the case 5 (including the
rainfall data) could have better performance than the case 6
(excluding the rainfall data) in training phase, however, a
reverse result is obtained in the testing phase. Since the quick
response from heavy precipitation can be in a matter of few
hours for the catchment of size 763.4 km2, we believe the rain-
fall information in this study cases could be regarded as distur-
bance in forecasting the 10-day ahead reservoir inflow. It can
also been seen from that the RMSE of AR(1) is smaller than that
of ARMAX(1, 2, 1).

4. The percentage of improvement for the RMSE values on train-
ing and testing data of EANN, compared with ARMAX(1, 2, 1)
and AR(1) models with standardized inputs, is shown Table 9.
Since the cases with standardized input data have better per-
formance, cases 4, 5, and 6 are selected to compare with the
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above two models. Compared with the ARMAX(1, 2, 1) model,
the percentage of improvement in terms of the RMSE values
on training and testing data for case 4 is 6.8% and 6.6%; for
case 5 is 11.3% and 6.4%, respectively. Compared with the
AR(1) model, the percentages of improvement in terms of
the RMSE on training and testing data for case 6 are 7.8%
and 9.9%, respectively, which is quite valuable and uneasy
accomplishment for long-term hydrological time series fore-
cast. The results reveal that the admirable effectiveness of
the proposed EANN and standardization is beneficial to model-
ing for seasonal time series.

Conclusions

To pursue adaptivity and to increase the efficiency of optimiza-
tion systems, there has been an increasing interest in a new gen-
eral framework for adaptive systems, namely, Evolutionary
Artificial Neural Networks, where the modeling potentialities of
artificial neural networks have been matched with the adaptation
properties of the evolutionary algorithms. The need for adaptation
came out from several real-world applications in non-stationary
environments such as non-linear control tasks and time series
forecasting. This paper proposes a novel evolutionary neural net-
work for hydrological time series forecasting. The excellent perfor-
mance for forecasting of the Mackey–Glass chaotic time series
shows that the proposed EANN concurrently possesses efficiency,
effectiveness, and robustness. Furthermore, the forecasting of 10-
day reservoir inflows reveals again the excellent effectiveness of
the proposed EANN, and standardization is beneficial to modeling
for seasonal time series.

The proposed EANN in this study consists of the following
features:

1. The optimal architecture of feedforward ANN, including inputs,
hidden layers, and neurons in each hidden layer, can be auto-
matically searched. The automatic search algorithm has
improved on the drawbacks of the conventional approach that
requires predefining the network architecture and involves a
tedious trail-and error process.

2. Binary direct encoding and indirect encoding are hybridized to
encode the important parameters of network architecture into
an artificial chromosome. One part of the chromosome, genes
of inputs, is encoded by a direct encoding scheme, while the
other part, neurons in hidden layers, is encoded by an indirect
encoding scheme. A relatively short length of chromosome
and simple encoding scheme are the advantages of such hybrid
encoding schemes. The proposed EANN that allows evolving all
possible input variables is better than the conventional evolu-
tionary design of ANN, which only allows evolving the number
of inputs or unchanged inputs.

3. Since the number of hidden layers is randomly initialized, the
lengths of chromosomes in each generation cannot be the same.
After crossover between two parent chromosomes with differ-
ent lengths, the lengths of offspring chromosomes are also dif-
ferent. In comparison with some conventional evolutionary
designs of ANN which only allow mutation, the proposed EANN
can perform crossover with non-constant lengths of chromo-
somes in addition to mutation.
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