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s u m m a r y

While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently
applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the
coupled hydrogeochemical processes and because of the long execution time of each model run. To
resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used
the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This
study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a
synthetic case in which twenty-seven reactive transport models were designed to predict the reactive
transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near
Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameter-
ization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions
that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative
models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models
and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results
show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strat-
egy to achieve more robust model predictions relative to a single model. MLBMA works best when the
alternative models are structurally distinct and have diverse model predictions. When correlation in
model structure exists, two strategies were used to improve predictive performance by retaining
structurally distinct models or assigning smaller prior model probabilities to correlated models. Since
the synthetic models were designed using data from the Naturita site, the results of this study are
expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the synthetic
study and future real-world modeling are discussed.

Published by Elsevier B.V.
1. Introduction

Model averaging (or multimodel analysis) has been applied in
the last decade to groundwater modeling. Instead of using a single
model for prediction, model averaging approaches combine predic-
tions and associated predictive uncertainty of multiple competing
models in a weighted average manner. The predictive performance
of model averaging is expected to be better than that of a single
model, because model averaging considers model uncertainty,
which avoids the problem of underestimation of predictive uncer-
tainty when using the single model with consideration of only
parametric uncertainty. A variety of model averaging techniques
have been developed (Ye et al., 2010a), and they are mainly differ-
ent from each other in calculating the model averaging weights.
The Bayesian model averaging (BMA) method is used in this study.
BMA has been applied to a wide range of problems, including geo-
statistical problems (Ye et al., 2004, 2005, 2008a; Troldborg et al.,
2007; Lu et al., 2011, 2012; Neuman et al., 2012), groundwater flow
problems (Poeter and Anderson, 2005; Foglia et al., 2007, 2013; Ye
et al., 2008b, 2010b; Rojas et al., 2008, 2009; Singh et al., 2010a,b;
Riva et al., 2011; Chitsazan and Tsai, 2014), unsaturated flow prob-
lems (Wöhling and Vrugt, 2008), rainfall–runoff problems (Duan
et al., 2007; Vrugt and Robinson, 2007; Dong et al., 2013) and geo-
chemical reaction problems (Lu et al., 2013).

However, application of BMA to groundwater reactive transport
problems has been infrequent for the following reasons. First,
groundwater reactive transport modeling is complex with coupled
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components such as groundwater flow, solute transport, and bio-
geochemical reactions (Steefel et al., 2005). Because of the interde-
pendence of the model components, the uncertainty sources at
different levels need to be addressed in a hierarchical manner
(Wainwright et al., 2014). Recently, Tsai and Elshall (2013) and
Elshall and Tsai (2014) developed a hierarchical BMA approach
for groundwater flow modeling. The hierarchical BMA is theoreti-
cally general, and can be extended to groundwater reactive trans-
port modeling, although the extension has not been reported.
Another reason that hampers BMA applications to groundwater
reactive transport modeling is the long execution time due to the
coupling of the hydro-bio-geochemical processes. The high compu-
tational cost in each model run poses difficulty for evaluating the
model averaging weights. As discussed below, BMA requires eval-
uating high-dimensional integrals (in model parameter spaces) for
individual models. When the run time of a model execution is long,
the computational cost of the integrations is practically unafford-
able, despite the increasing computer capabilities and develop-
ment of parallel computing techniques. To resolve the problem,
Neuman (2003) and Ye et al. (2004) developed MLBMA, a maxi-
mum likelihood version of BMA, which uses the Laplace approxi-
mation to evaluate the integrations around maximum likelihood
parameter estimates by assuming that the likelihood function is
concentrated about its maximum (Ye et al., 2010c). MLBMA may
be inaccurate for multimodal and highly nonlinear problems.
Therefore, the validity of applying MLBMA to groundwater reactive
transport modeling is examined in this study.

This paper, for the first time, uses MLBMA to quantify model
uncertainty in groundwater reactive transport modeling. The paper
is focused on developing alternative reactive transport models, cal-
ibrating the models, and evaluating their probabilities. When
developing the alternative models, three different levels of model
uncertainty were considered, and each level corresponds to a
model component with competing model propositions. The hierar-
chical BMA provides a systematic way of analyzing different
sources of model uncertainty and of evaluating model probabili-
ties. In addition to evaluating the feasibility of using MLBMA for
groundwater reactive transport modeling, another goal of this
study is to examine predictive performance of MLBMA and individ-
ual models. Although model averaging often produces robust pre-
dictions compared to individual model predictions, it is not always
the case. Winter and Nychka (2010) showed in a mathematical
analysis that the mean squared error of model averaging can be
larger than that of the best model if certain criteria are not satis-
fied. Cavadias and Morin (1986) showed more than two decades
ago that weighting of discharge simulations from several hydrolog-
ical models resulted in reduced performance in comparison with
the best model in 20% of cases considered. Duan et al. (2007) found
that model averaging yielded reductions of daily root mean square
error and daily absolute error of the ensemble mean for several
state variables of prediction but not for all variables. This study
conducted similar evaluation of predictive performance using pre-
dictive bias, root mean squared error (RMSE) and logscore. While
predictive bias and RMSE consider only mean predictions, logscore
considers both mean and variance of predictions.

Predictive performance of MLBMA depends directly on poste-
rior model probability (i.e., model averaging weight), which in turn
depends on prior model probability, a quantitative expression of a
modeler’s belief on relative model plausibility based on expert
judgment. In comparison with other techniques of evaluating
model averaging weights, MLBMA has a unique feature of using
prior model probability to improve predictive performance (Ye
et al., 2005). This is achieved by compromising the assumption that
the model averaging weights estimated during model calibration
are still valid for model prediction. This assumption is question-
able, particularly when predicting conditions different from those
of the calibration, which is typical in reality. In this case, prior
information based on expert judgment can adjust the model
weights by reducing the influence from the calibration. Another
use of prior probability is to alleviate the impact of model correla-
tion on the evaluation of model weights. The influence of model
correlation on model averaging is an open question (Sain and
Furrer, 2010; Bishop and Abramowitz, 2013), and there is no for-
mal way to handle it. Ye et al. (2004) used an empirical way to
assign relatively small prior probabilities to correlated models,
but did not evaluate how this affects MLBMA predictive
performance.

The MLBMA application and predictive analysis were conducted
for a synthetic case of hexavalent uranium (U(VI)) reactive trans-
port modeling based on previous work at a site near Naturita
Colorado, where uranium contamination in groundwater has posed
a threat to the environment (Kohler et al., 2004; Curtis et al., 2004,
2006, 2009). A synthetic ‘true’ model was first developed using the
information and data for the site, and then used to generate the
synthetic data used in this study for model calibration and predic-
tive analysis. The development of alternative models considered
three uncertainty sources commonly encountered in practice, i.e.,
uncertainty in parameterization of model parameters (e.g., hydrau-
lic conductivity), uncertainty in configuration of model boundary,
and uncertainty in formulation of geochemical reactions. By postu-
lating three propositions for each of the three model components, a
total of 27 models were developed. Model calibration and para-
metric uncertainty analysis of the individual models were con-
ducted using the weighted least-squares based regression
software, UCODE_2005 (Poeter et al., 2005), which can be used to
implement MLBMA (Ye et al., 2008a).

The remaining part of the paper is organized as follows.
Section 2 briefly describes the BMA and MLBMA methods. Section 3
introduces first the true model and the 27 alternative groundwater
reactive transport models, then the model calibration and the eval-
uation of posterior model probabilities, last the examination of the
validity of applying MLBMA. The comparison results of model
averaging and individual models are presented in Section 4.
Conclusions are drawn is Section 5.

2. Bayesian model averaging and its maximum likelihood
version

The BMA and MLBMA methods are described briefly here to
make the paper self-contained. Details of BMA are described in
Draper (1995) and Hoeting et al. (1999), and specific information
on MLBMA is provided by Neuman (2003) and Ye et al. (2004,
2008a).

2.1. Bayesian model averaging (BMA)

Consider an interested quantity, D, which can be predicted with
a set of models M = (M1, . . ., MK), each characterized by a vector of
parameters hk, conditional on a discrete set of data, D. The posterior
distribution of D is (Hoeting et al., 1999)

pðD Dj Þ ¼
XK

k¼1

pðD D;Mkj ÞpðMk Dj Þ; ð1Þ

i.e., the average over all models of the posterior distributions
pðD D;Mkj Þ associated with individual models, weighted by the
model posterior probabilities pðMk Dj Þ. These weights are given by
Bayes’ rule in the form (Hoeting et al., 1999)

pðMk Dj Þ ¼ pðD Mkj ÞpðMkÞPK
l¼1pðD Mlj ÞpðMlÞ

; ð2Þ

where
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pðD Mkj Þ ¼
Z

pðD Mk; hkj Þpðhk Mkj Þdhk ð3Þ

is the integrated likelihood of model Mk, pðD Mk; hkj Þ being the joint
likelihood of this model and its parameters, pðhk Mkj Þ the prior den-
sity of hk under model Mk, and p(Mk) the prior probability of Mk. All
probabilities are implicitly conditional on the choice of models
entering into the set M.

For the specification of prior model probability, Kashyap (1982)
suggested that in the absence of any contrary information, the
models be assigned equal prior probabilities. Similarly, Hoeting
et al. (1999) stated that assuming all models a priori equally likely
is a reasonable neutral choice when there is insufficient prior rea-
son to prefer one model over another. However, Draper (1999) and
George (1999) questioned that, when several models yield nearly
equivalent predictions, giving them equal prior model probability
may tamper with the predictive power of BMA. In this study, we
evaluated the impacts of prior model probability on predictive per-
formance using three weighting strategies including uniform pri-
ors and adjusted priors to consider model correlation effects.

The posterior mean and variance of D are (Draper, 1995)

EðD Dj Þ ¼
XK

k¼1

EðD D;Mkj ÞpðMk Dj Þ; ð4Þ

and

VarðD Dj Þ ¼
XK

k¼1

VarðD D;Mkj ÞpðMk Dj Þ

þ
XK

k¼1

½EðD D;Mkj Þ � EðD Dj Þ�2pðMk Dj Þ; ð5Þ

respectively. The first term on the right-hand side of Eq. (5) repre-
sents within-model variance, and the second term represents
between-model variance which measures the model uncertainty.

2.2. Maximum likelihood Bayesian model averaging (MLBMA)

BMA defines the integrated likelihood pðD Mkj Þ of model Mk in
Eq. (3) and requires computing the integral through exhaustive
sampling of the prior parameter space hk for each model, which
is extremely computationally demanding especially for models
with a large number of parameters. One way to resolve this issue
is to use the Laplace approximation by evaluating the integration
around the maximum likelihood estimates (MLE) of the parame-

ters, bhk. This yields MLBMA as first proposed by Neuman (2003)
and employed by Ye et al. (2004, 2008a, and 2010c). In MLBMA,
pðD Mkj Þ can be calculated using either of two model selection cri-
teria, BIC or KIC. As KIC is more accurate than BIC (Ye et al., 2010c;
Lu et al., 2011) to approximate Eq. (3), KIC is used in this study to
approximate the model weight via

pðMkjDÞ ¼
expð�DKICk=2ÞpðMkÞPK
l¼1 expð�DKICl=2ÞpðMlÞ

; ð6Þ

where DKICk = KICk � KICmin is the difference between the KIC of
model Mk and the minimum KIC, KICmin. KIC is defined as (Ye
et al., 2008a)

KICk ¼ �2 ln½Lðbhk Dj Þ� � 2 ln pðbhkÞ � Nk lnð2pÞ þ ln jFkj; ð7Þ

where Nk is the number of estimated parameters associated with

model Mk; � ln½Lðbhk Dj Þ� is the minimum of the negative

log-likelihood function; and pðbhkÞ is the prior probability of hk eval-

uated at bhk; Fk is the observed Fisher information matrix (FIM), and
its elements are defined as (Kashyap, 1982)
Fk;ij ¼ �
@2 ln½Lðhk Dj Þ�
@hki@hkj

�����
hk¼bhk

: ð8Þ

Eq. (8) requires calculating the second order derivatives with
respect to the parameters at the MLE. To save the computational
time, the observed FIM is often approximated by the expected
one, which is estimated as (Kitanidis and Lane, 1985; Ye et al.,
2008; Lu et al., 2011),

Fk;ij � hFk;iji ¼ JTxJ; ð9Þ

where J represents the Jacobian of observations with respect to the
parameters, x is the weighting used in model calibration. The
expected FIM can accurately approximate the observed FIM when
the model is relatively linear in the region around the MLE of the
parameters.

Models associated with smaller values of KIC are ranked
higher than those associated with larger values. KIC is calculated
by UCODE_2005 (Poeter et al., 2005) in this study. KIC is derived
based on the Laplace approximation by assuming that the likeli-
hood function Lðhk Dj Þ is highly peaked near its maximum bhk

(Ye et al., 2008a, 2010c). If the assumption is not satisfied
(e.g., likelihood function having multiple peaks), KIC may not be
accurate. In addition, the expected FIM may not be an accurate
approximation in calculating KIC for highly nonlinear problems.
The validity of using KIC to our reactive transport models is
examined in Section 3.4.
3. Groundwater reactive transport models and model
probabilities

The predictive performance of MLBMA was evaluated using a
synthetic study designed based on the Naturita Uranium Mill
Tailing Remedial Action (UMTRA) site. This site had a uranium mill
where ore was processed to produce uranium concentrates. Water
used at the mill was discharged to ponds, and tailings were stored
on site. Although the mill tailings were removed in the 1980s and
contaminated soils were removed in 1990s, the shallow groundwa-
ter had been previously contaminated (Curtis et al., 2006). This
work developed a hypothetical ‘true’ model that was used to gen-
erate synthetic data and a set of simpler reactive transport models
to simulate the uranium reactive transport.
3.1. True model of uranium reactive transport

In the synthetic study, the true model was developed for a
three-dimensional, unconfined aquifer. It covers an area of
1.25 � 106 m2 and has three layers. Using the uniform cell size of
7.62 m in width and 7.66 m in length, the model area is discretized
into 310 rows and 69 columns. Within the model boundary (Fig. 1),
about 9760 cells are active for each model layer, and a total of
29,280 active cells in the three layers. The thickness of layer one
is not a constant in the simulation domain but it is thick enough
to keep all cells wet during the simulation; the thickness of layer
two is 0.3 m and layer three is 1.5 m. The unconfined aquifer is
bounded on the west and bottom by no-flow boundaries and by
the San Miguel River to the north, east and south. The aquifer is
recharged by the river from the southeast of the simulation domain
and discharges to the river north of the domain, as shown in Fig. 1.
The aquifer is subjected to two kinds of recharge. One is the natural
recharge from precipitation with recharge rate of 8.2 � 10�4 m/d
distributed uniformly in space and time, which is about 2% of the
annual precipitation of the Naturita area. The other is a constant
flux of recharge from two pond sources with the rate of
1.64 � 10�3 m/d. The natural recharge is located in the area of mill



Fig. 1. Simulated domain of the true model where the blue area represents the
river, the green area receives natural recharge, and the red area represents the two
ponds sources of contaminant recharge. The arrows show flow direction. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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tailings in Naturita site, and the two ponds are located inside the
natural recharge area, as shown in Fig. 1.

The hydraulic conductivity (K) fields of the aquifer have three
hydrofacies. Facies one is the most permeable with a K value of
9.14 m/d; facies two is moderately permeable with a K value of
3.05 m/d; and facies three is the least permeable with a K value
of 0.3 m/d. Based on available sample data from the Naturita study,
the volume proportions of the three facies are 0.3, 0.2, and 0.5,
respectively. Based on these volume proportions and the fitted
transitional probabilities, we used the TPROGs software (Carle,
1999) to generate the K fields of the three layers for the true model.
By keeping the total volume proportions of the three facies
unchanged, we distributed different proportions of each facies in
the three layers. For example, layer one has a large proportion of
the most and moderate permeable materials for easy infiltration
to lower layers; layer two, the thinnest layer, served as a
semi-confining layer and has most of its volume occupied by the
least permeable material. The generated K fields were then per-
turbed randomly to form the final K fields in the following proce-
dure. First, a random field, R, was generated for the entire
domain using sequential Gaussian simulation in GSLIB (Deutsch
and Journel, 1998). The mean of the random field is zero, and its
spatial correlation is quantified by an exponential variogram
model C(h) = 1.0exp(�h/10.0), where h is lag distance between
any two points. After the random field generation, the
TPROGs-generated K fields and k � R fields were added together,
where k equals to 1.8, 0.6, and 0.06 for the most, moderate, and
the least permeable materials, respectively. These k values were
determined based on field observations of hydraulic conductivity
to reflect that large K values have large variation. The spatial distri-
butions of the final hydraulic conductivity fields of the three layers
are shown in Fig. 2.

The transport simulation assumed three porosity values of 0.40,
0.35, and 0.25 corresponding to the three facies from the least
permeable to the most permeable materials. As is common in
stochastic subsurface hydrology, porosity is treated as a determin-
istic variable due to its small variability, and thus not perturbed. A
longitudinal dispersivity of 3.0 m was used. This relatively small
macrodispersion was used to avoid over-predicting mixing, which
could drive many reactions and affect the adsorption and transport
of U(VI) in the reactive transport modeling described below.

Synthetic surface complexation models (SCMs) were used in the
true model to simulate the adsorption reactions of U(VI). Similar to
the concept of reactive facies of Sassen et al. (2012), the U(VI)
adsorption reactions for the three facies were simulated by differ-
ent SCMs listed in Table 1. Each SCM in this synthetic model was
adapted from studies of the Naturita site (Davis et al., 2004;
Curtis et al., 2006) and from the Rifle UMTRA site (Hyun et al.,
2009). The reactions in Table 1 were selected to provide a variable
dependence of U(VI) adsorption on pH, carbonate activity and
adsorption site affinity. For example, to simulate U(VI) adsorption
reactions in facies one, the SCM consists of two reactions and two
different site types, i.e., weak site denoted as Rw_OH and strong
site denoted as Rs_OH. The values of the formation constant, logK,
for each reaction was manually adjusted to give U(VI) retardation
factor of 2 for facies one, 4 for facies two, and 12 for facies three,
using the average concentrations of the major ions in the uncon-
taminated groundwater and the U(VI) concentration of 1 lM. For
different facies, the site concentrations were also different, and
their values are shown in Table 1.

The model was simulated for two stress periods. Period one
simulated 57 years with recharge from both the precipitation and
the two pond sources; this simulated the Naturita site when the
uranium mill was operated. Period two simulated 5 years with
only recharge from the precipitation; this period simulated the
Naturita site when the contaminated soils below the former mill
tailings were excavated and transported offsite. The groundwater
flow model was simulated using MODFLOW 2005 (Harbaugh,
2005); the river was simulated using the river package. Both the
nonreactive and reactive transport models were simulated using
PHT3D (Prommer, 2006).

The true model run generated a total of 360 Cl and 360 U(VI)
concentrations as synthetic observations that were used for model
calibration. They were collected from 4 different simulation times,
year 57, 58, 60, and 62. At each time, they were collected from 30
locations (shown in Fig. 3) in each of the 3 layers, among which 12
locations were from existing observation wells at the Naturita site
and an additional 18 locations were selected along the flow path
lines, the upgradient area, and locations corresponding to different
K values in the three layers. The 720 true values of Cl and U(VI)
concentrations were then corrupted with measurement errors
whose coefficient of variation is 5%. The 720 noisy data were finally
used for the parameter estimation and multimodel analysis for the
following defined alternative models. UCODE_2005 was used for
the model calibration and uncertainty analysis such as evaluating
prediction variances.

3.2. Alternative models of uranium reactive transport

Three model components were considered uncertain: the
parameterizations of hydraulic conductivity (K) fields, the geome-
tries of the north and west domain boundaries, and the surface
complexation models to simulate the U(VI) adsorption. Three alter-
native parameterizations of the K fields were considered as the
competing model propositions. The first parameterization (Heter)
has heterogeneous fields. Using the true volume proportion of each
facies in each layer, a TPROGs realization of the facies distributions
was generated, and the spatial distribution of the K field in layer
one is shown in Fig. 4a. The similarity between this K field and that
of the true model (Fig. 2) presents a situation of detailed site char-
acterization, which may not be very common in practice. In this
parameterization, hydraulic conductivity is a constant within each
facies so that the alternative models are simpler than the true
model. The second parameterization (Zone) has two zones in layer



Fig. 2. Spatial distribution of hydraulic conductivity of the three layers of the true model.

Table 1
Surface complexation reactions and parameter values used in the true model.

Reactions logK Site concentration

Facies 1: 2 reactions and 2 sites
Rw_OH + UO2

2+ = Rw_OUO2
+ + H+ 2.8 7.48 � 10�3

Rs_OH + UO2
2+ + CO3

2� = Rs_OUO2CO3
� + H+ 10.0 1.53 � 10�4

Facies 2: 2 reactions and 2 sites
Sw_OH + UO2

2+ = Sw_OUO2
+ + H+ 2.7 3.21 � 102�

Ss_OH + UO2
2+ + 2CO3

2� = Ss_OHUO2(CO3)2
2� 22.0 9.92 � 10�4

Facies 3: 4 reactions and 3 sites
Tw_OH + UO2

2+ + CO3
2� = Tw_OUO2CO3

� + H+ 7.4 7.02 � 102�

Ts_OH + UO2
2+ + CO3

2� = Ts_OUO2CO3
� + H+ 9.2 2.93 � 10�3

Ts_OH + UO2
2+ + 2CO3

2� = Ts_OUO2(CO3)2
� + H+ 15.4

Tv_OH + UO2
2+ + 2CO3

2� = Tv_OUO2(CO3)2
�3 + H+ 16.4 1.17 � 10�4

Fig. 3. Simulated concentration (M) of Cl (top) and U(VI) (bottom) of layer one after 57, 58
12 locations shown in the legend are existing observation wells from Naturita site, and
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one and layer three as shown in Fig. 4b, but only one zone in layer
two. While several zonation patterns were considered when
designing the synthetic case, the one presented here produced
the best overall results in model calibration. The third parameter-
ization is denoted as Homo, in which each layer is homogeneous as
shown in Fig. 4c.

Three alternative boundary configurations were considered. The
first one (Bnd1) is the same as the true model (Fig. 4a), the second
one (Bnd2) is the same as the one used in Curtis et al. (2006) which
did not include the extended lobe in the north (Fig. 4b), and the
third one (Bnd3) has an extension in the northwestern bound
based on the second type of boundary as identified by the black
line in Fig. 4c. The first boundary configuration has the largest area,
because of the extended north and western boundaries of the
downgradient domain. The three boundary configurations
, 60, and 62 years. The 30 symbols represent the 30 locations of calibration data. The
the 18 plus symbols represent the new added locations.



Fig. 4. Configuration of three alternative boundaries (Bnd1, Bnd2, and Bnd3) and hydraulic conductivity fields of layer one for the three alternative parameterization models
(Heter, Zone and Home). Bnd3 has an extension in the northwestern bound based on Bnd2 as identified by the black line in (c).
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representing different conceptualizations of the north boundary
are based on the opinions of three hydrogeologists who have vis-
ited the Naturita site.

Three alternative surface complexation models were consid-
ered, and each model is applied to the entire simulation domain.
As shown in Table 2, each SCM contains only one reaction and they
are mainly different in the carbonate and proton stoichiometry of
the adsorbed complex. The alternative models are simpler than
the true model (Table 1) and model errors are potentially substan-
tial. However, our approach attempts to balance errors that arise
from both groundwater flow and geochemical reactions.
Considering more complicated SCM models is possible and war-
ranted in a future study.

A total of 27 alternative models were developed, and they are
all simpler than the true model. These alternative models are a
combination of the competing model propositions of the three
uncertain model components. The models were named by the
combination of their abbreviations of each proposition. For exam-
ple, model Heter_bnd1_scm1 has heterogeneous hydraulic con-
ductivity fields, boundary condition 1, and SCM1.
3.3. Model calibration and evaluation of model probability

For the 27 alternative models, the estimated parameters were
hydraulic conductivities specific to different models (i.e., three K
values corresponding to the three facies for the Heter model, five
K values corresponding to the five zones for the Zone model, and
three K values corresponding to the three layers for the Homo
model), one dispersivity for all the models, and one formation con-
stant (logK) for each SCM. The parameters were calibrated sequen-
tially in two steps. The first two types of parameters (K and
dispersivity) were estimated from Cl concentration data in nonre-
active transport modeling, and then the parameter logK of the SCM
reactions was estimated based on U(VI) concentration data in reac-
tive transport modeling. Porosity values were not estimated in the
calibration process. For the Heter models, the true porosity values
of the three facies were used. For the Zone and Homo models, the
Table 2
Alternative surface complexation reactions used in the alternative models. Each
reaction is applied to the entire model domain.

Model Reaction

SCM1 S_OH + UO2
2+ + 2CO3

2� = S_OHUO2(CO3)2
2�

SCM2 S_OH + UO2
2+ + CO3

2� = S_OUO2CO3
� + H+

SCM3 S_OH + UO2
2+ = S_OUO2

+ + H+
entire simulation domain has the same porosity value calculated as
the power mean of the porosity values from the true model.

Fig. 5a shows the sum of squared weighted residuals (SSWR) of
the 27 alternative models. The figure indicates that, overall,
Fig. 5. (a) Sum of squared weighted residuals (SSWR) of all the 720 observations;
(b) residuals of Cl, and (c) residuals of U(VI) for the three best models with the same
Heter parameterization and SCM1.



Table 3
Five different sets of prior model probabilities and their associated posterior model
probabilities for the four best models.
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heterogeneous models fit the calibration data better than the zone
and homogeneous models. This is not surprising since the param-
eterization of the heterogeneous models is similar to that of the
true model. However, not all of the heterogeneous models have
better calibration performance than the zone and homogeneous
models. For example, when the heterogeneous models were com-
bined with SCM3, they even have worse fit than the simplest
homogeneous models regardless of the model boundaries; the fits
of Heter_bnd⁄_scm3 models (⁄ represents 1, 2, and 3 here) are also
worse than the zone models when they were combined with Bnd1
and Bnd2. A possible reason is that SCM3 is the worst surface com-
plexation model to simulate the U(VI) reactions without consider-
ing variable carbonate concentrations. When SCM3 was combined
with the simple Zone and Homo models, the simple models may
have more flexibility to compensate the model error in SCM3 as
indicated by their physically unreasonable parameter estimates
of K and dispersivity.

Fig. 5a also indicates that, when Heter was combined with
SCM1 and SCM2, the good model fits are independent of the differ-
ent boundaries. The Zone and Homo models give better calibration
performance when they were combined with SCM2 than being
combined with other SCMs and it was found again that the differ-
ence between the combinations with different boundaries is not
very outstanding. This may imply that the boundary component
is the most uncertain model component, because all conceptualiza-
tions perform comparably well and it is not possible to identify the
better performing boundary condition without additional data,
recalling that there were no calibration data near the extended
boundary. In contrast, Heter and SCM2 are identified as the best
model propositions. The specific model uncertainty contribution
from each model component and its propositions is discussed in
detail below through a model probability hierarchy.

Based on the calibration results, the calculated KIC values of the
27 models have the same performance as the SSWR (the plot was
not shown here), i.e., the better fitting models with smaller SSWR
values have smaller KIC values. By giving the models equal prior
model probabilities (i.e., uniform prior), the KIC-based posterior
model probabilities of the 27 alternative models are shown in
Fig. 6 in a hierarchical way (Tsai and Elshall, 2013). The first level
of uncertainty results from the parameterization of K fields; the
second level results from the conceptualization of model bound-
aries; and the third level from the propositions of SCMs. Fig. 6 indi-
cates that the best model is the combination of Heter, Bnd1, and
SCM2 propositions; the resulting model has a probability of 66%.
The only other models having significant model probability are
Heter_bnd3_scm1, Heter_bnd1_scm1, and Heter_bnd2_scm1, with
probabilities of 21.43%, 9.77%, and 2.8%, respectively, as summa-
rized in Table 3. The branches starting from the Zone and Homo
components all have zero probabilities and they were not extended
to lower levels in Fig. 6.

Aggregation of model components in the hierarchical way
provides a systematic representation of the competing propositions
Hie
1

Heter
100%

Bnd1
75.77%

Bnd2
2.80%

B
21

SCM1
9.77%

SCM2
66%

SCM3
0%

SCM1
2.8%

SCM2
0%

SCM3
0%

SCM1
21.43%

Fig. 6. Posterior model probabilities for the three uncertain model components with unifo
zero probabilities and are not shown in the figure.
of different sources of model uncertainty, and allows recognizing
better propositions. For example, the best model, Heter_bnd1_scm2,
has the propositions of Heter, Bnd1, and SCM2; these propositions
exhibit higher posterior model probabilities than other competing
propositions, as exhibited in Fig. 6. The worst model
Homo_bnd3_scm1, identified by the largest KIC value, does not
have any propositions of the best model; the second worst model
Homo_bnd1_scm1 has only the Bnd1 proposition of the best
model. By analyzing the hierarchy of Fig. 6, the Heter component
in level one has 100% model probability, because this parameteri-
zation is similar to that of the true model. The Bnd1 model in level
two has 75.77% model probability, significantly higher than the
2.8% of Bnd2 and the 21.43% of Bnd3. This is expected for the
following reasons: (1) Bnd1 is the true boundary configuration,
(2) the northwest boundary of Bnd3 is close to the true boundary,
and (3) Bnd2 deviates the most from the true boundary configura-
tion. In level three, both SCM1 and SCM2 with carbonate reactions
have significant model probabilities and SCM3 has zero probabil-
ity, suggesting that carbonate plays an important role in the
simulation of the U(VI) adsorption. This is consistent with the true
SCM model (Table 1), whose reactions for the strong site for all the
three facies have carbonate in the surface complex and relatively
high values of formation constant (logK).

Examination of the four best models with nonzero model
probabilities listed in Table 3 shows that they all have the Heter
component. It indicates that, in this study, the Heter parameteriza-
tion outperforms the other two parameterizations. This is probably
due to the similarity between the heterogeneous field of facies of
the Heter parameterization and that of the true model. For a
heterogeneous field of facies that is dramatically different from
that of the true model, its performance may be worse than the
Zone and Homo parameterizations. The four best models consider
all the three boundary configurations, suggesting that the bound-
ary configurations are not influential to the simulations of current
U(VI) concentration data. As shown in Fig. 5b and c, the residuals of
rarchy
00%

Zone
0%

Homo
0%

nd3
.43%

SCM2
0%

SCM3
0%

Parameterization
models

Boundary
models

Surface complexation
models

rm prior model probabilities. The hierarchies under Zone and Homo models all have
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the three best models with the same Heter and SCM1 components
but different boundaries have similar magnitudes. This suggests
that in this study only heterogeneous models should be
pursued. If predictions are made at locations where boundary
influence is significant, more effort should be spent to reduce
model uncertainty in boundary conditions such as collecting more
data that are sensitive to the boundary configurations. At last,
three of the best models have the same model proposition of
SCM1, implying that the three models may give similar U(VI)
predictions.
3.4. Examine the validity of using MLBMA

The model probabilities calculated above are based on KIC that
was derived using the Laplace approximation by assuming that the
likelihood function is highly peaked at the calibrated parameter
values. This is usually the case for large calibration datasets. For
example, Kass and Raftery (1995) argued that, when the number
of calibration data is greater than 20 times of the number of cali-
brated parameters, KIC is accurate for calculating model probabil-
ities. Fig. 7 plots as an example the likelihood functions of the four
best models with respect to the reaction parameter of logK. The
figures indicate that the likelihood functions are highly peaked
about their maxima, and decline fast as the values move away from
the maxima. This suggests that KIC can be accurately used for our
reactive transport problem.

Although the observed Fisher information matrix was not eval-
uated due to the computational cost, it is likely that the expected
Fisher information matrix is an accurate approximation, due to rel-
atively low nonlinearity of the models. We used the Linssen’s mod-
ified version of Beales first measure (Seber and Wild, 2003; Hill and
Fig. 7. Likelihood functions of the four best
Tiedeman, 2007) to examine the nonlinearity of the reactive trans-
port models. Beales measure tests the model linearity with respect
to the parameter values. It evaluates the difference between the
model-computed and the linearized estimates of the simulated
values for the parameters generated on the edge of the 95% linear
confidence region of the parameters. Fig. 8d shows that the values
of Beales measure for the four best models are significantly below
the threshold of linearity, indicating that the four models are effec-
tively linear. Since the Beales measure may suffer from the prob-
lem of underestimating the model nonlinearity (Seber and Wild,
2003, p157), the issue of linearity is examined by plotting in
Fig. 8 the relation between the model simulations and model
parameter for the three best models. The figure shows that the
models are essentially linear, confirming the conclusion based on
the Beales measure. Because of the model linearity, KIC should
be an accurate approximation of the integrated likelihood, and
using the expected FIM to replace the observed FIM should give
an accurate evaluation of KIC. It should be noted that not all
groundwater reactive transport models are highly nonlinear,
depending on geochemical conditions, nonlinearity of geochemical
reactions, parameter combination in the reactions, and interactions
between the processes of flow, transport, and geochemical
reactions.
4. Assessment of predictive performance

The 27 calibrated models were used to predict the U(VI) con-
centrations for up to 200 years without the contaminant recharge
from the two ponds sources. The assessment of predictive perfor-
mance was conducted for the results of the best four models and
MLBMA. For the convenience of discussion, the previous model
models with respect to parameter logK.



Fig. 8. Variation of simulated U(VI) concentration with parameter logK for the three best models: (a) M1, (b) M2, and (c) M3 at observation locations. Beales measure of
model linearity for the four best models is shown in (d).
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notations are not used, and the four models are denoted as M1–M4
according to their model probabilities given in Fig. 6 from the
largest to the smallest. We compared their performance for two
prediction quantities: the U(VI) concentration in the top layer at
all the cells of groundwater discharge zone (i.e., the gray area
above the green area shown in Fig. 1), and the U(VI) concentration
in four monitoring wells located in the top layer of the groundwa-
ter discharge zone (Fig. 9). The area of groundwater discharge zone
is of special interest, because after 200 years this area contributes
the highest U(VI) concentration in the entire simulation domain
due to the joint influence of groundwater flow, solute transport,
and geochemical reactions.

The predictive performance was assessed using two measures,
predictive bias and predictive logscore (Good, 1952; Volinsky
et al., 1997; Hoeting et al., 1999). The predictive bias, as a measure
of predictive accuracy, is the difference between the simulations of
the four alternative models and MLBMA and that of the true model.
For evaluating the predictions of the entire groundwater discharge
zone, the root mean squared error (RMSE) was calculated, because
the predictive bias is a measure of point prediction and generally
not good for the entire modeling domain especially when the
domain areas are different like in this study with three different
boundary configurations.

The predictive logscore of an individual model Mk is defined as
the negative logarithm of the predictive density, i.e., (Hoeting et al.,
1999; Ye et al., 2004)

� ln pðbykjMk;DÞ ¼ �
X
byk2byk

ln pðbykjMk;DÞ ð10Þ
where byk is the vector of predictions based on model Mk and D is the
data for model calibration. The predictive logscore of model averag-
ing is defined as (Hoeting et al., 1999; Ye et al., 2004)
� ln pðbykjDÞ ¼ �
X
byk2byk

ln
XK

k¼1

pðbyk Mk;j DÞpðMk Dj Þ
" #

: ð11Þ
Based on Eqs. (10) and (11), the lower predictive logscore of model
Mk or MLBMA indicates higher probability that Mk or MLBMA can
predict y based on observation D. Therefore, smaller logscore corre-
sponds to better predictive performance. Logscore is negative if the
density, p, is larger than one. To save computational time, we
assume the probability density functions in Eqs. (10) and (11) are
Gaussian and this assumption seems to be valid given that the mod-
els are effectively linear as discussed in Section 3.4. For the individ-
ual models, the mean and variance were evaluated using
UCODE_2005; for MLBMA, the posterior mean and variance were
estimated using Eqs. (4) and (5). The predictive logscore considers
both the predictive bias and predictive uncertainty, and is better
than the measure of predictive bias. For example, a model with
small predictive bias and small predictive variance that does not
enclose the true value may have a larger logscore than another
model with relatively large bias but also relatively large variance
that covers the true value. The discussion below presents the log-
score averaged over the area of the groundwater discharge zone
and at the four monitoring wells with different results of model
predictions.



Fig. 9. Predictive bias of U(VI) concentration (M) in layer one of the four best models and by MLBMA. Well1 to Well4 are four monitoring wells for evaluation of predictive
performance. The natural recharge zone is enclosed by the two black lines.

1868 D. Lu et al. / Journal of Hydrology 529 (2015) 1859–1873
4.1. Prediction of U(VI) on an entire area

Fig. 9 shows the predictive bias of the simulated U(VI) fields in
layer one after 200 years for the best four models and MLBMA. The
area with the large difference for all the individual models and
MLBMA is located at the groundwater discharge zone, close to
the north boundary and downgradient from the natural recharge
zone delineated by the two black lines in Fig. 9. Comparing the pre-
dictive bias of the four individual models and MLBMA, the figure
indicates that the best-fitting model, M1, has the smallest overall
predictive bias with the highest prediction accuracy. The predic-
tion accuracy of MLBMA is between the best model and the other
three models because the MLBMA mean prediction is the weighted
average of the means of the four models. This finding is confirmed
by their RMSE listed in Table 4. The table shows that the RMSE of
predicted U(VI) concentration based on the best model is the
smallest with the value of 2.27 � 10�8 M and is about one third
of the RMSE of M4 that was the worst-predicting model. The
MLBMA has a RMSE value of 3.36 � 10�8 M, a little larger than,
but close to, that of the best model because the best model has a
large model probability (66%).

However, as measured by the logscore values shown in Table 4
MLBMA gives the best predictive performance. These logscore
Table 4
RMSE and logscore of the four best models and MLBMA averaged over the area of the gro

M1 M2

RMSE 2.27 � 10�2 6.36 � 10�2

Logscore 8.58 19.76

Table 5
Predictive performance of the four best individual models and MLBMA for the four evalu
highlighted in gray and the one giving better predictive performance has bold values.
values for the four models and MLBMA are averaged over the area
of the groundwater discharge zone. The table indicates that
MLBMA has the smallest logscore of �6.44 which is much smaller
than those of all the individual models. This suggests that MLBMA
can predict the integrated true value for the discharge zone with
larger probability than any individual models.

4.2. Prediction of U(VI) at four monitoring wells

The locations of the four monitoring wells are shown in Fig. 9.
The predictive bias and predictive logscore of the four individual
models and MLBMA at the four wells are listed in Table 5. Table 5
indicates that the best model, M1, has smaller predictive bias than
MLBMA for three of the four wells, but has larger predictive log-
score than MLBMA except for Well 1. The reasons for the different
predictive performance are illustrated in Fig. 10. The plots in the
left column of Fig. 10 illustrate the predictive bias of the four indi-
vidual models and MLBMA for the four wells. The plots in the right
column are the predictive logscore of M1 and MLBMA.

For Well 1, M1 gives much better prediction than the three infe-
rior models (Fig. 10a), making its predictive bias smaller than the
MLBMA. In addition, M1 gives reasonably large uncertainty bounds
which bound the true value; these two factors jointly make M1
undwater discharge zone for predicted U(VI) concentration (M) after 200 years.

M3 M4 MLBMA

4.58 � 10�2 6.69 � 10�2 3.36 � 10�2

11.20 19.06 �6.44

ated wells. The comparison is focused on the best model M1 and MLBMA results as



Fig. 10. Left column figures: predicted U(VI) concentrations (M) and their 95% linear confidence intervals of the four best models and MLBMA for the four monitoring wells;
the horizontal red lines represent true values of the predictions. Right column figures: Probability density functions (PDF) of U(VI) based on model M1 and MLBMA at the four
wells. The negative log of the PDF of the true value (red dashed line) measures the logscore. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Table 6
Predictive performance of the best model (M1) and MLBMA with five sets of prior model probability for the four evaluated wells. For each well, the values of the best bias and
logscore are in bold.
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predict the true value with larger probability than MLBMA as illus-
trated in Fig. 10b and by the smaller logscore value as shown in
Table 5. In summary, for Well 1, the best model gives better predic-
tive performance than MLBMA according to the two measures.

For Well 2, the alternative models over- or under-predict the
true value as shown in Fig. 10c, and M3 actually gives more accu-
rate prediction than the best model M1 (Table 5). By averaging,
MLBMA gives better predictive performance than M1 with smaller
predictive bias and smaller predictive logscore as well, as shown in
Fig. 10d. At this location, the model performing best in calibration
did not perform best for prediction. It is therefore better to use
MLBMA to consider all plausible models rather than using the best
model selected after model calibration.

For Well 3, as shown in Fig. 10e, all models over-predict the true
value and MLBMA has larger predictive bias than the
best-predicting and also the best-fitting model M1. It is however
noted that the 95% confidence interval of M1 is too narrow to cover
the true value. As a result, the probability of M1 to predict the true
value is negligible, as shown in Fig. 10f, and the predictive logscore
of M1 is much larger than MLBMA as shown in Table 5. At this loca-
tion, MLBMA gives better predictive performance in terms of pre-
dictive logscore but worse performance in terms of predictive
bias. To improve the predictive accuracy of MLBMA, additional
plausible models with different prediction abilities than the four
existing ones need to be developed.

For Well 4, as shown in Fig. 10g and h and Table 5, MLBMA gives
slightly larger predictive bias but smaller predictive logscore than
M1. While the predictive performance for Well 4 is similar to that
for Well 3, the reasons are different. As shown in Fig. 10g, the three
inferior models have very similar predictions, but they were trea-
ted as separate equally likely models and equal prior model prob-
abilities were assigned to them. This is tantamount to giving a
triple weight to three slightly different versions of the same model,
which weakens the predictive power of MLBMA. Specifically, the
prediction accuracy of MLBMA is deteriorated by the three inferior
models because of the high prior probabilities, and the predictive
uncertainty of MLBMA is overestimated by treating the three cor-
related models as mutually exclusive ones. The three models are
correlated due to the following reasons: (1) they have the same
SCM1, (2) they have the same K field parameterization, and (3)
the boundary conditions are not influential to the calibration and
prediction data.

As suggested by Neuman (2003), the effect of correlated models
on posterior model probabilities of MLBMA can be reduced by
adjusting the prior model probability in two ways. The first one
is to retain the structurally distinct models and to assign them
equal prior model probability. We denote this strategy as Prior 1
(Tables 3 and 6). Among the four models listed in Table 3, model
Heter_bnd1_scm2 is structurally distinct to the other three models
that have the same reaction component SCM1. Among the three
models with SCM1, model Heter_bnd1_scm1 is excluded, because
it shares the boundary configuration of Bnd1 with model
Heter_bnd1_scm2. For models Heter_bnd3_scm1 and
Heter_bnd2_scm1, either of them is structurally distinct with
Heter_bnd1_scm2, and the two cases are denoted as Priors 1-1
and 1-2, respectively, in Tables 3 and 6. For the two cases, only
the two retained models were left, each having the prior probabil-
ity of 1/2. This redistribution of prior probabilities brings an
increase in the posterior probability of the best model M1 (Table 3).
More importantly, it slightly improves predictive performance of
MLBMA compared to the case of uniform prior at all the four wells
with respect to both measures in that the values of predictive bias
and logscore in Priors 1-1 and 1-2 are smaller than those of the
uniform prior, as shown in Table 6. In addition, for Wells 2 and
4, the predictive bias of MLBMA is smaller than that of M1 (the best
model) for the two cases of Priors 1-1 and 1-2. This is illustrated in
Fig. 11 for Well 4 as an example. The figure shows that, when the
posterior probability of M1 increases substantially in Prior 1-2, the
posterior mean becomes closer to that of model M1 and smaller
predictive bias is resulted.

The other way to address the correlated models is to keep the
models but to reduce their prior model probabilities. Following
Ye et al. (2004), we grouped the correlated models together, and
the models in the same group were viewed equally likely. We
denoted this strategy as Prior 2. As shown in Table 6, the four
models are divided into two groups in two cases, denoted as
Priors 2-1 and 2-2, based on different grouping criteria. In Prior
2-1, the grouping is based on predictive performance of the
models. Since model Heter_bnd1_scm2 has different performance
than the other three models (Fig. 10), it is included in the first
group, and a prior probability of 1/2 is assigned to this model. Since
the other three models (Heter_bnd3_scm1, Heter_bnd1_scm1, and
Heter_bnd2_scm1) have similar predictive performance, they are
included in the other group, and each of the models receives a prior
probability of 1/6 (1/2 divided by 3). In Prior 2-2, the grouping cri-
terion is different and based on the boundary configuration. The
first group has models Heter_bnd1_scm2 and Heter_bnd1_scm2
that have the boundary configuration of bnd1. For the other two
models, since they have different boundary configurations, they
are included into two groups. Table 3 shows that, while the choice
of priors in Prior 2-1 increases the posterior probability of M1, the
choice of priors in Prior 2-2 decreases the posterior probability of
M1. As shown in Table 6, Prior 2-1 improves the predictive
performance of MLBMA, while Prior 2-2 decreases the predictive



Fig. 11. Probability density functions (PDF) of U(VI) at Well 4 based on the best model M1 and MLBMA calculated with five different sets of prior model probabilities listed in
Table 3. The negative log of the PDF of the true value (red dashed line) is the logscore. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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performance. This is illustrated in Fig. 11 for Well 4 as an example.
The figure indicates that, using Prior 2-1, the mean of MLBMA
becomes closer to the true value (i.e., a smaller predictive bias),
which results in a higher probability prediction of the true value
(i.e., a smaller predictive logscore). When using Prior 2-2, the
MLBMA mean becomes significantly different from the true value,
and predictive logscore becomes larger. This example suggests that
grouping correlated models based on their predictive performance
is better than grouping the models based on their structural differ-
ence for improving MLBMA predictive performance.
5. Conclusions and discussion

This work, for the first time, applied MLBMA to groundwater
reactive transport modeling and assessed the predictive perfor-
mance of MLBMA using 27 synthetic models of groundwater reac-
tive transport designed using the data and information of the
Naturita site. The 27 alternative models were a combination of
three uncertain model components, each of which had three
competing propositions. The three uncertain model components
were parameterization of hydraulic conductivity (which had
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heterogeneous, zonal, and homogeneous competing propositions),
conceptualization of domain boundary which simulated the
Naturita site with three different domains, and the surface com-
plexation models which had three different reactions to simulate
the U(VI) adsorption. The developed models represent three differ-
ent sources of model uncertainty for assessing predictive perfor-
mance of MLBMA in groundwater reactive transport modeling.
The models were based on the synthetic observations whose loca-
tions were from existing observation wells in Naturita site and
therefore the simulation and evaluation results presented in this
study are expected to provide guidance for the research at the
Naturita site.

We developed the alternative models and analyzed their
probabilities in a hierarchical way by classifying the three model
components into three levels. This aggregation of uncertain model
components provides a systematic representation of the compet-
ing propositions of different sources of model uncertainty, and
allows for recognizing the superior propositions. The results indi-
cated that (1) heterogeneous parameterization was absolutely
the best parameterization; (2) SCM1 and SCM2 with carbonate in
the reactions were better than SCM3 that does not include carbon-
ate in the U(VI) surface complex; and (3) each of the three tested
boundary configuration was represented in the set of best models
because the current calibration data were insufficient to discard
any boundary configuration.

By comparing the predictive performance of MLBMA with that
of the best model, the predictive logscore results showed that, in
most cases, the predictive performance of MLBMA is better than
the best model, suggesting that using MLBMA is a sound strategy
to achieve a more robust assessment of predictive performance
than using a single model. However, with regards to the measure
of predictive bias, this study showed that MLBMA produced the
larger predictive bias than the best model in most cases. For
MLBMA to work the best, it is important that the alternative mod-
els are structurally distinct and have diverse model predictions.
This conclusion is in line with the findings of Winter and Nychka
(2010). If the model simulations are similar, it is possible that
the models are correlated, e.g., the three alternative models in this
study all having SCM1 to simulate uranium adsorption. This prob-
lem is empirically addressed in this study by adjusting the prior
model probability to either eliminate certain correlated models
or assign smaller prior probabilities to correlated models; the latter
technique was shown to be better here. Using the new prior model
probabilities dramatically improves the predictive performance of
MLBMA in that MLBMA can predict the true value with higher
probability with negligible bias. More research is warranted to
resolve the issue of model correlation for model averaging analysis.
In the future study, we will apply MLBMA to a real-world problem
where the true model is unknown and the alternative models are
calibrated against the real observation data.

This synthetic study is subject to several limitations. First of all,
the high similarity between the heterogeneous facies of the Heter
models and the true heterogeneous facies may not be practically
realistic. If there is no sufficient data for site characterization, more
advanced methods of model calibration (e.g., using level set meth-
ods) is needed to achieve the level of similarity shown in this
study. It would be more interesting from a practical perspective
to consider different facies fields to investigate to what extent
the uncertainty in parameterization can be reduced. It is likely that
using a wrong heterogeneous field may be worse than using a
homogeneous or zonal field for numerical simulation. To test this
hypothesis however requires using more advanced methods of
model calibration to find appropriate spatial distributions of
hydrofacies fields, which entails a large number of model execu-
tions. It is beyond the scope of this study and not pursued in this
study. Another limitation of this study is that the low nonlinearity
of the reaction models is not ideal to investigate whether MLBMA
can be applied to highly nonlinear problems of groundwater reac-
tive transport modeling. Although Lu et al. (2013) applied MLBMA
to more complicated and nonlinear surface complexation models,
their flow and transport models are one-dimensional only, and
the interactions between flow models, transport models, and
chemical reaction models are relatively low. More nonlinear reac-
tive transport models will be developed in a future study to inves-
tigate the applicability of MLBMA to these models.
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