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Abstract 

Streamflow and baseflow dynamics are driven by complex, interconnected catchment 

properties. A national study was conducted to assess the relationship between surface flow, 

climate and intrinsic catchment attributes in Australia. Subcatchments were delineated based 

on Horton's 5th stream order and were characterised by identifying parameters that influence 

streamflow and flood behaviour. Because observational datasets like rainfall and streamflow 

commonly have a non-normal distribution, the method of L-moments was applied to several 

time series. Surface hydrology and baseflow patterns were represented by twenty indices, 

which were statistically summarised via principal component (PC) analysis, yielding six PCs. 

Forty catchment descriptors from the themes of climate, topography, surface condition and 

hydrogeology were used to investigate their link with runoff patterns. Among these is the land 

surface value, a newly defined index incorporating soil properties and land use to estimate 

the capacity for water infiltration. Each metric was explored via correlation and regression 

analysis against the surface hydrology PCs and their influence on runoff discussed. The 

predictive skill of the regression models is improved when non-perennial waterways are 

excluded. Although rainfall characteristics dominate streamflow behaviour, topographical and 

surface conditions also greatly impact on runoff, especially during low-flow periods. 

Keywords: Climate variability; Non-perennial streams; Surface hydrology; Topography; Soil 

field capacity; Water infiltration 



 

1 Introduction 

Streamflow behaviour and associated flood risk are influenced by a multitude of competing 

factors, both extrinsic (e.g. climate) and intrinsic (e.g. geology, soil, topography, land use and 

size). On a global scale, Beck et al. (2015) indicated that climate-related variables exhibited 

the strongest links to streamflow properties. Conversely, finer-scale studies suggested more 

nuanced links, highlighting the influence of soils (Trancoso et al., 2017; Zimmer and Gannon, 

2018) and topography (Karlsen et al., 2019). Further, although precipitation patterns 

dominate high-flow events, Carlier et al. (2018) demonstrated the importance of geology in 

attenuating flow volumes by modifying subsurface water storage and consequently the flow 

duration curve, ultimately also affecting baseflow properties. Similarly, Lacey and Grayson 

(1998) determined a strong link between baseflow and both geology and vegetation, whereas 

topographical features were deemed irrelevant. Despite the complex influence of inherent 

catchment attributes on low flows, climate-associated characteristics such as rainfall and 

humidity still tend to explain a large proportion of baseflow variability and recession (Peña-

Arancibia et al., 2010; van Dijk, 2010). Saft et al. (2016), in turn, emphasised that the 

partitioning of rainfall-runoff does not remain stationary, with the proportional runoff 

decreasing during drought periods. 

Catchments can be characterised by wide-ranging combinations of attributes. Stein et al. 

(2009) analysed Australia’s stream network based on 48 ecohydrological traits, ranging from 

climate, water balance, topography, substrate and vegetation. Kennard et al. (2010b) 

investigated 120 ecologically relevant metrics to assess flow regime types in Australia. 

Trancoso et al. (2017) explored 24 diverse biophysical properties to streamflow signatures in 

eastern Australia, emphasising the importance of soils on a regional scale. In a regional study 

of three tropical catchments in northern Australia, Erskine et al. (2017) focussed on 

geomorphological attributes to classify rivers in subcatchments. A New Zealand article 



categorised rivers according to climate, topography, geology and land cover characteristics 

(Snelder and Biggs, 2002). In Europe, Kuentz et al. (2017) compared 16 flow signatures with 

35 catchment descriptors, identifying the primary importance of geology for baseflow and the 

controlling influence of topography on streamflow flashiness. 

Whereas countries like New Zealand (Snelder and Booker, 2013) and the United Kingdom 

(National River Flow Archive; Dixon et al., 2013) have relatively dense and more evenly 

distributed stream gauge networks, Australia’s vast, dry interior is scarcely monitored. 

Similarly, rainfall data availability in Australia is significantly biased towards populated 

regions, with much higher observational network densities in the coastal southwest and 

south-eastern regions of the country (Jaffrés et al., 2018). Variables with poor translational 

properties, including catchment-specific streamflow characteristics, cannot be meaningfully 

applied to neighbouring drainage basins without extensive knowledge of relevant factors 

impacting on the attribute. For instance, rain shadows can produce vastly dissimilar runoff 

properties in two neighbouring catchments, potentially compounded by differing geology and 

land surface features. Hence, for large, nationwide studies of streamflow traits, reliance on 

alternative datasets is required. Albeit individually not fully representative of streamflow 

dynamics, these datasets can, in combination, provide information about flow characteristics 

and associated exposure to extreme flow events. 

The overarching aim of this study is to assess whether a set of catchment descriptors are 

sufficiently representative of surface flow characteristics to warrant their use in ungauged 

sites. To fulfil this objective, the subsidiary aims of this article entail: 

1) the derivation of forty metrics for every subcatchment throughout mainland Australia 

and Tasmania, covering the themes of climate, topography, land surface condition 

and hydrogeology; and 



2) to analyse their relationship with twenty streamflow variables – ranging from baseflow 

attributes to high-flow properties – at unregulated stream gauge sites across 

Australia. 

A description of each of the core datasets and any transposition or processing of data used 

is presented in section 2. The statistical results are summarised in section 3, whereas the 

relationship with aggregated streamflow properties is discussed in detail in section 4.  Several 

recommended avenues for future research are offered with the conclusions (section 5). A 

more detailed explanation of statistical methods (appendix A) and soil classification (appendix 

B) is provided in the supplementary file.  

 

2 Methods 

In the Australian landscape, land use, soil characteristics and permeability strongly influence 

overland flow and are therefore included in this analysis. For this study, Australian 

subcatchments were summarised by forty variables. The parameters chosen cover five 

themes: climate, topography, surface condition, hydrogeology and surface hydrology. Each 

theme comprises several variables obtained from processing one or more datasets. In 

contrast to some other studies (e.g. Merz and Blöschl, 2005; Wagener et al., 2004), metrics 

of geographic proximity were not considered. This exclusion was rationalised to avoid 

unwarranted bias of similarity derived solely from proximity. Many Australian catchments are 

ungauged, especially in more remote regions. Therefore, hydrological data were used 

independently to determine the relevance of selected catchment properties to streamflow 

response in ungauged drainage basins.  

Conventional use of statistical parameters on climate and hydrological datasets is 

confounded by their non-normal distribution. The method of L-moments describes the shape 

of a probability distribution without assuming normality (Hosking and Wallis, 2005). L-



moments were developed as a form of distributional analysis specifically for hydrological 

analysis (Castellarin et al., 2012). L-moments provide a more realistic estimation of extreme 

values from climate and hydrological data more typical of the Australian setting where 

extreme events in non-normal data distributions are common (Rahman et al., 2012). 

Consequently, L-moments (Hosking and Wallis, 2005) were derived to summarise these 

data, including rainfall, evaporation, mean sea level pressure (MSLP) and streamflow 

variables. For L-moments lr≥3 (where r is the moment of interest), L-moment ratios (τr = lr/l2) 

were also calculated. A detailed description of the derivation method is available in appendix 

A.1. L-moments are analogous to mean (l1), standard deviation (SD; l2), skewness (τ3) and 

kurtosis (τ4) and super-skewness (τ5). Henceforth, L-moment ratios τ3 to τ5 are also referred 

to as L-moments for simplicity.  

2.1 Surface hydrology 

Streamflow data from hydrological stations were incorporated to investigate the relationship 

between the catchment variables and flow characteristics. Average daily flow volumes from 

the Australian network of 4676 stream gauges were downloaded from Bureau of Meteorology 

(BoM) Water Data Online (WDO; http://www.bom.gov.au/waterdata/) website in July 2018. 

The network is heavily weighted towards well-defined river networks. In contrast, some large 

regions with low annual rainfall totals (e.g. the Nullarbor Plain and central Australia) have little 

to no data, possibly owing to the perceived low-risk of flooding to people and infrastructure. 

Further, the WDO database does not contain all stations publicly available from the relevant 

regional department. Eighteen stations from the Northern Territory were missing from the 

WDO database at the time of data download, even though those time series were available 

on the regional website (https://nt.gov.au/environment/water/water-information-

systems/water-data-portal). 

The quality of stream gauge data is highly varied and is dependent on numerous factors. For 

the purpose of this study, stations with long, reliable data records that are minimally impacted 

by anthropogenic changes were targeted. The BoM has compiled two lists of stations deemed 



of superior quality: The list of BoM hydrologic reference stations (HRS; 31 August 2020 

version; http://www.bom.gov.au/water/hrs/) catalogues 467 stations with long data record (≥ 

30 years), located in unregulated catchments that underwent minimal land use change. Of 

these stations, 460 are accessible from WDO (Table 1). A second, more extensive register 

was compiled by the BoM for modelling purposes to identify gauges with high-quality data 

that cover at least ten years (Zhang et al., 2013). Similarly to the HRS, selected sites were 

also characterised as unregulated and unimpaired (limited irrigation and non-intensive land 

use). This dataset is henceforth referred to as the unregulated modelling stations (UMS). Of 

the 786 UMS listed, 714 were accessible from WDO (Table 1). 

In total, 397 stations are contained in both HRS and the UMS datasets. A further 380 stations 

were contained only in HRS or the UMS, amounting to 777 stream gauges deemed of good 

quality. WDO stations were removed if the length of their record was less than fifteen years 

long or if they never recorded any flow. Records shorter than fifteen years are unlikely to 

include a large rainfall event, significantly underestimating the potential for flooding (Kennard 

et al., 2010a). Although more extensive time series are preferable to capture streamflow 

variability over longer timescales, the application of a more stringent threshold would further 

reduce the already limited spatial spread of the dataset because of the relative brevity of 

historic data records at many sites. Of the 777 HRS and UMS gauges, 27 had less than 15 

years of available data and were thus omitted from further analysis. The remaining river 

gauging stations (n = 750) were used in this study (Figure 1) to derive twenty surface 

hydrology variables.  

Table 1: Number of streamflow stations available from WDO per criteria. 

Source Criteria 
Number of accessible 

stations (WDO) 

WDO tabulated in WDO (n = 6518) 4676 

WDO ≥ 15 years of data in WDO 2821 

WDO and HRS tabulated as HRS (n = 467) 460 

WDO and UMS tabulated as UMS (n = 786) 714 

WDO and HRS / UMS 
≥ 15 years of data and listed as HRS and/or 
UMS 

750* 

*One station is situated on an island (A5130501, Kangaroo Island). Thus, that site does not have a corresponding match in the 

extracted subcatchments, because these are limited to mainland Australia and Tasmania (i.e. WDO n = 749). 



 

Figure 1: Distribution of unregulated, WDO-derived stream gauges in Australia with a minimum 

data record of 15 years. The colour scheme distinguishes non-perennial and permanent 

streams. Borders of states and territories are also shown. 

 

Surface flow data were summarised by considering data distributions for different regions 

across Australia. For example, flow data in Queensland (Figure 1) are typically characterised 

by high-flow (including flood) events, followed by extended periods with little to zero flows. 

Conversely, Victoria has consistent flows for most of the year, with only occasional peaks in 

flow. Consequently, a flow “peak” was defined as any event with a flow rate above the 80th 

percentile. In Australia, non-perennial streams are widespread, with flows ceasing at times in 

approximately 70% of river channels (Busch et al., 2020; Vidal-Abarca et al., 2020). Many of 

these seasonally dry, non-perennial streams are classified as intermittent waterways, fed by 

groundwater that permits more prolonged flows. Other non-perennial channels are more 

ephemeral in nature, only flowing briefly in direct and fast response to precipitation – without 

connectivity to groundwater (Busch et al., 2020; Vidal-Abarca et al., 2020). Because of highly 

sporadic flow at many gauged sites, twenty stations with a minimum record of 15 years 

returned 80th percentiles of 0 ML/Day. Hence, every flow event contributed a flow peak for 

those stations. For two peaks to be considered separate events, the flow had to return to 

below the 80th percentile (or to no-flow). If multiple peaks were registered within a 6-day 

window, only the main peak was selected.  

Maximum and minimum recorded flow, average peak value and average number of peaks in 

a year are among the variables derived from the hydrological data. The 1st to 5th L-moments 

of daily flow were also extracted. The 5th L-moment, super-skewness, is potentially relevant 

in instances of extreme skewness. For example, in some regions of Queensland, many 

streams are without flows for most of the year, and this pattern may be more noticeable in 



the 5th L-moment. The logarithmic log10(x + 1) forms were also produced for variables with 

positively skewed distribution (with the exception of 3rd to 5th L-moments). This equates to a 

total of twenty indices for surface hydrology (Table 2).  

Table 2: Surface hydrology and baseflow variables. 

Variable  Unit Description 

S
u
rf

a
c
e
 H

y
d
ro

lo
g
y

 

maximum surf ace f low m3/s highest observ ed f low v olume 

minimum surf ace f low m3/s lowest observ ed f low v olume 

av erage peak f low m3/s mean of  peak f lows during high-f low ev ents 

f low peaks per y ear  number of  annual f low peaks 

surf ace f low L-moment 1 m3/s mean f low 

surf ace f low L-moment 2 m3/s standard dev iation of  f low 

surf ace f low L-moment 3 m3/s skewness of  streamf low 

surf ace f low L-moment 4 m3/s kurtosis of  streamf low 

surf ace f low L-moment 5 m3/s super-skewness of  streamf low 

log maximum surf ace f low m3/s logarithm of  highest observ ed f low v olume 

log minimum surf ace f low m3/s logarithm of  lowest observ ed f low v olumes 

log av erage peak f low m3/s logarithm of  mean of  peak f lows during high-f low ev ents 

log number of  f low peaks  logarithm of  number of  annual f low peaks 

log surf ace f low L-moment 1 m3/s logarithm of  mean f low 

log surf ace f low L-moment 2 m3/s logarithm of  f low v ariability  

B
F

I 

basef low index (BFI)  index of  delay ed shallow subsurf ace f low 

summer BFI  av erage BFI during summer (Nov –Apr) 

winter BFI  av erage BFI during winter (May –Oct) 

ratio of  winter to summer BFI  ratio of  av erage summer to av erage winter BFI 

log ratio of  winter to summer BFI  logarithm of  ratio of  av erage summer to av erage winter BFI 

 

2.2 Hydrogeology 

This study used two hydrogeological types of variables as numerical inputs. The first, the 

dimensionless baseflow index (BFI), describes streamflow properties during low-flow periods, 

providing an estimate of water security. The second, subsurface permeability, measures how 

well subsurface rocks within a catchment transmit water. These two indices were chosen for 

their importance in controlling catchment flow behaviour and the relevance of the data 

obtainable from national datasets. The inconsistency of data availability throughout Australia 

restricted the use of other hydrogeology signatures (e.g. seasonal water table fluctuation, 

depth to water table, or seasonal lag response to rainfall). 



2.2.1 Baseflow index (BFI) 

Baseflow is long-term discharge to the river from natural storages including groundwater, soil 

moisture or bank storage (Hill et al., 2013). Baseflow is best defined as the component of 

streamflow that is not allocated to quickflow (e.g. overland runoff, interflow and direct 

precipitation). The BFI is the ratio of baseflow volume to total streamflow volume for a 

specified time period. Groundwater typically contributes the largest volume to baseflow. BFI 

is therefore an indicator of stream reliance on groundwater input.  

Baseflow is recognised as an important component of the total flood hydrograph, particularly 

in areas of high BFI and for smaller or frequent flood events (Hill et al., 2013). This is 

especially applicable when catchments contain aquifers with high yield (Brown et al., 2011).  

Many methods for BFI derivation exist, most of which involve analyses of hydrographs to 

separate the baseflow component. For Project 7 of the updated Australian Rainfall and Runoff 

guidelines, methods were developed to estimate BFI values for ungauged catchments from 

catchment characteristics such as geological conditions, soil type, climate and topography 

(Brown et al., 2011; Murphy et al., 2011). Those characteristics are used independently in 

the multivariate analysis of this study. Therefore, the BFI is calculated from the hydrographs 

available (streamflow data, section 2.1). Recursive digital filters are among the commonly 

applied approaches to derive baseflow characteristics (Singh et al., 2019; Su et al., 2016), 

including the low-pass filtering technique by Lyne and Hollick (1979). Their popularity at least 

partially stems from their ease of automation and the reproducibility of results. However, the 

pertinence of the Lyne-Hollick method is regionally dependent and may also vary for 

individual events (Kinkela and Pearce, 2014).  

Quickflow and baseflow components of streamflow were separated from hydrograph data by 

applying the recursive digital filter method (Lyne and Hollick, 1979): 

𝑓𝑘 = 𝑎𝑓𝑘−1 +
1 + 𝑎

2
(𝑦𝑘 − 𝑦𝑘−1)    , 𝑦𝑘 ≥ 𝑓𝑘 ≥ 0 



where fk is the filtered quick response at the kth sampling instant, yk is the original streamflow, 

a is the filter parameter and yk - fk is the filtered baseflow. A filter value (a) of 0.98 was adopted, 

following the recommendation by the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) and SKM (2010). The filter was applied to the streamflow data three 

times: 1) forward pass filtering (yk = original streamflow; initial quickflow, f1, set to zero), 2) 

reverse pass filtering to nullify any phase distortion of the data because of the forward pass 

of the filter (yk = filtered baseflow derived in step 1) and 3) forward pass filtering for further 

flow separation (yk = filtered baseflow calculated in step 2) (Lyne and Hollick, 1979). Short 

streamflow data gaps (≤ 7 days) were filled via linear interpolation. Longer gaps were treated 

as breaks in the data. Unbroken interpolated streamflow records covering a minimum period 

of four years were individually utilised to derive baseflow estimates for each gauging site. 

The BFI for that stream gauge was then obtained by dividing the combined total baseflow of 

all these periods by the corresponding total streamflow (Figure 2a). To obtain seasonal 

indices, the baseflow estimates were split into summer (November to April; Figure 2c) and 

winter (May to October; Figure 2d) periods, with BFIs derived by dividing the relevant 

seasonal total baseflow by the analogous total streamflow. The ratio of the two seasonal BFIs 

(ratio  of winter to summer BF; Singh et al., 2019) was also calculated (Figure 2b). The 

distribution of the resulting BFI ratios was distinctly right-skewed. Therefore, the logarithmic 

form was extracted as well. A total of 3691 stream gauges had sufficiently long, uninterrupted 

flow records to derive the BFI variables. The BFI was included in the surface hydrology 

analysis (Table 2) to determine subcatchment predictors significantly correlated with 

streamflow dynamics.  

Regulated releases make river levels artificially higher in the dry months. The calculation of 

baseflow indices in regulated rivers is thus problematic, with BFIs for such streams 

overestimating baseflow. The BFI may be computed from data spanning as little as two years 

(Meyboom, 1961), but if results are intended as direct inputs for rainfall-runoff or flood 

models, ten years of data or more are recommended (Hill et al., 2013). For hydrological 



studies such as this, it is preferable to include as many sites as feasible to maximise 

catchment characterisation without compromising the quality of the variables.  

 

Figure 2  

 

2.2.2 Subsurface permeability  

Permeability (k [m2]) is a property of soils, rocks and sediments. The attribute describes how 

quickly water flows into or through an aquifer or aquitard and the volume of such flux. This 

study focused on permeability of near-surface aquifers rather than hydraulic conductivity, 

because the latter can be derived from the former.  

Permeability allocation was obtained from the Australian Hydrological Geospatial Fabric 

(AHGF or Geofabric; http://www.bom.gov.au/water/geofabric/index.shtml) groundwater 

cartography product v2.1.1. This database contains the greatest detail for the Australian 

continent (cf. global datasets of Dürr et al., 2005; Hartmann and Moosdorf, 2012). The 

Geofabric contains a map of surface hydrogeological units based on the 1:1,000,000 scale 

surface geology map (Geoscience Australia, 2012). These units fall within the categories 

(hydrogeological complexes, nmax = 48) defined in the National Aquifer Framework (NAF; 

http://www.bom.gov.au/water/groundwater/naf). Table 3 shows a list of relevant complexes. 

Surface lithology most commonly reflects subsurface lithology at shallow depth. Hence, it is 

assumed that the surface lithology is representative of the shallow subsurface (<50 m). 

However, subsurface permeability is often very heterogeneous in nature and reliable 

estimates are difficult to obtain, even for individual subcatchments (Calver, 2001; Shanafield 

and Cook, 2014). 

Table 3: Geofabric lithologies and correlated regional saturated permeability groups (from 

Gleeson et al., 2011). 



Geofabric 
code (IAF) 

Lithologies from Australian Hydrological Geospatial Fabric 

(hydrogeological complexes) 

ks group 
number 

(refer to 
Table 4) 

1 Surficial sediment aquifer (porous media – unconsolidated) 3 

2 Upper Tertiary/Quaternary aquifer (porous media – unconsolidated) 1 

3 Upper Tertiary/Quaternary aquitard (porous media – unconsolidated) 2 

4 Upper Tertiary aquifer (porous media – unconsolidated) 1 

5 Upper Tertiary aquitard (porous media – unconsolidated) 2* 

6 Upper mid-Tertiary aquifer (porous media – unconsolidated) 1 

7 Upper mid-Tertiary aquitard (porous media – unconsolidated) 2 

8 Lower mid-Tertiary aquifer (porous media – unconsolidated) 1 

9 Lower mid-Tertiary aquitard (porous media – unconsolidated) 2 

10 Lower Tertiary aquifer (porous media – unconsolidated) 1 

11 Tertiary basalt aquifer (fractured rock) 8 

12 Tertiary sediments (fractured rock) 4 

13 Mesozoic sediment aquifer (porous media – consolidated) 5 

14 Mesozoic fractured rock aquifers 7 

15 
Jurassic (Great Artesian Basin (GAB) intake beds) (porous media – 
consolidated) 

5 

16 Mesozoic (GAB) (porous media – consolidated) 5 

17 Fractured and karstic rocks, local aquifers 6 

18 Fractured and karstic rocks, regional-scale aquifers 6 

19 Palaeozoic and Precambrian fractured rock aquifers (low permeability) 4 

20 
Palaeozoic and Precambrian fractured rock aquifers (consolidated and 
partly porous) 

7 

21 Late Permian/Triassic intrusives and volcanics fractured rock aquifers 8 

22 Late Permian/Triassic sediments (porous media – consolidated) 5 

23 
Palaeozoic and Precambrian fractured rock aquifers (low fracture 
density and very low permeability) 

4 

25 Water body Not used 

*In Geofabric, these data are part of IAF code 1 (ks group number 3). 

Surface lithology types were then allocated a permeability category (Table 3 and Table 4). 

Gleeson et al. (2011) collated 230 regional saturated permeability (ks) values from global 

calibrated groundwater models (predominantly from North America; none from Australia) to 

produce averages for generalised hydrolithology groups (Table 4). The mean permeability 

values are expressed as logarithmic permeability (log ks) in Table 4 and represent saturated 

permeability at a regional scale (>5 km). 

Table 4: Hydrolithology groups and permeability, ks [m2] (modified from Table 1 in Gleeson et 

al., 2011). 



ks group number Log ks [log(m2)] Description 

1 -10.9 Coarse grain unconsolidated 

2 -14.0 Fine grain unconsolidated 

3 -13.0 Undifferentiated unconsolidated 

4 -16.5 Fine grain siliciclastic sedimentary 

5 -15.2 Undifferentiated siliciclastic sedimentary 

6 -11.8 Carbonate 

7 -14.1 Crystalline 

8 -12.5 Volcanic 

For this study, the hydrogeological complexes of the Geofabric were allocated a ks value 

according to their lithological descriptions (refer to ks group numbers, Table 3 and Table 4). 

For example, both “Upper Tertiary/Quaternary Aquifer (porous media - unconsolidated)” and 

“Lower Tertiary Aquifer (porous media - unconsolidated)” are allocated as ks Group 1 (coarse 

grain unconsolidated) because they are termed aquifers as opposed to aquitards, denoting 

higher permeability and unconsolidated sediment.  

2.3 Topography and subcatchment delineation 

The continent-scale National River Basin Boundary (NRBB) dataset (Geoscience Australia, 

1997), based on topographical and hydrological interpretation, provides a commonly adopted 

definition of 233 river basins (catchments) across mainland Australia and Tasmania. 

However, the spatial scale of these river basins is too coarse to be sensitive to the full range 

of flood-related parameters used in this study. Therefore, the river basins of the NRBB 

dataset were further divided into subcatchments based on the Horton (1945) 5th-order stream 

definition and the National Topographic Vector Database (Geoscience Australia, 2006), 

resulting in subcatchments large enough to enable meaningful comparisons and small 

enough to allow for computing power and timeframe constraints. The upstream area of 6th 

and higher-order waterways (i.e. downstream subcatchments) does account for upstream 

subcatchment areas. 

The NRBB dataset was used as the primary layer to clip both the topographical vector 

database (Geoscience Australia, 2006) and the digital elevation model (DEM; Geoscience 



Australia, 2011) into 233 separate basins via the ArcGIS software (v9.3.1). An external buffer 

zone of 10 km was applied to each river basin when clipping the DEM to ensure reliable 

identification of the catchment margin. The buffer zone was specifically required because the 

NRBB dataset is not based on the DEM, with the applied basin boundaries therefore not 

necessarily agreeing with the elevation data. The centroid of each river basin was used to 

determine its appropriate Map Grid of Australia (MGA) zone (zones 50 to 56). The basin data, 

including DEMs (Geoscience Australia, 2011), were then projected into their relevant MGA 

zone.  

The GIS-based software package CatchmentSIM (version 3.0.3.1) was employed to divide 

the river basins into subcatchments on a Horton’s 5th-order stream basis and a raster 3’’ DEM 

(Figure 3). This involved the generation of streams within the software from stream initiation 

points derived from the existing mapped stream networks. The CatchmentSIM catchment 

breakup approach used a Horton stream ordering algorithm, which delineates subcatchments 

of a particular Horton order based on the vector stream network. Every segment of 6th- and 

higher-order streams is defined as a separate subcatchment. However, if multiple 5th- and 

higher-order streams entered the ocean within the same NRBB-defined catchment, these 

were treated as the same subcatchment by the software (Figure 3c). In total, 2816 

subcatchments were obtained.    

 

Figure 3 

 

In addition to the delineation of the river basin subcatchments, CatchmentSIM was also used 

to calculate topographical variables for each subcatchment. These derived datasets were 

reprojected from their MGA zone to a geographic coordinate system, the Geocentric Datum 

of Australia 1994 (GDA94), to enable merging into a single coherent national dataset. In total, 



eighteen CatchmentSIM indices were utilised in this study (cf. topography predictors in Table 

5).  

Table 5: The forty descriptors investigated for their link to surface hydrology (HG = 

hydrogeology; SD = standard deviation). 

Variable Unit Description 

C
li
m

a
te

 

average number of rain days  days average rainy days per year 

rainfall percentage in summer season % % rain that falls in Nov–Apr 

daily rainfall L-moment 1 mm mean daily (rain day) rainfall 

daily rainfall L-moment 2 mm SD of daily (rain day) rainfall 

daily rainfall L-moment 3 mm skewness daily (rain day) rainfall 

daily rainfall L-moment 4 mm kurtosis daily (rain day) rainfall 

summer season evaporation L-moment 1 mm mean daily evaporation (Nov–Apr) 

summer season evaporation L-moment 2 mm SD of daily evaporation (Nov–Apr) 

summer season evaporation L-moment 3 mm skewness daily evaporation (Nov–Apr) 

winter season evaporation L-moment 1 mm mean daily evaporation (May–Oct) 

winter season evaporation L-moment 2 mm SD of daily evaporation (May–Oct) 

winter season evaporation L-moment 3 mm skewness daily evaporation (May–Oct) 

summer season MSLP L-moment 1 hPa mean daily MSLP (Nov–Apr) 

summer season MSLP L-moment 2 hPa SD of daily MSLP (Nov–Apr) 

summer season MSLP L-moment 3 hPa skewness daily MSLP (Nov–Apr) 

winter season MSLP L-moment 1 hPa mean daily MSLP (May–Oct) 

winter season MSLP L-moment 2 hPa SD of daily MSLP (May–Oct) 

winter season MSLP L-moment 3 hPa skewness daily MSLP (May–Oct) 

T
o
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o
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area m2 subcatchment area 

total upstream area m2 
subcatchment area plus area of all upstream 
subcatchments 

slope ° average subcatchment slope 

hill slope ° average slope in hilly areas 

Horton's drainage density (HDD)  subcatchment stream density 

bifurcation ratio  
high value: large proportion of 1st-order streams  

low value: small proportion of 1st-order streams 

main stream length m length of main flow path 

main stream slope ° average slope of main flow path 

longest flow path length m length of longest flow path 

longest flow path slope ° average slope of longest flow path 

average flow length m average flow path length in subcatchment 

flow length SD m SD of flow path length in subcatchment 

channel skewness   
high value - asymetrical drainage pattern  
low value - symetrical drainage pattern 



maximum elevation m maximum elevation in subcatchment 

elevation range m elevation variation in subcatchment 

mean elevation m mean elevation in subcatchment 

median elevation m median elevation in subcatchment 

elevation SD m SD of elevation in subcatchment 

L
S

V
 land surface value  

high value – high runoff 
low value – high absorbance 

land surface value SD  variability of land surface values 

H
G

 average subsurface permeability log(m2) 
measure of subcatchment's ability to transmit 
water underground 

subsurface permeability SD log(m2) variability of subsurface permeability 

Basin boundaries of the nationally defined river basin dataset (Geoscience Australia, 1997) 

provided the initial spatial division for the analysis. In some instances (e.g. the Murray-Darling 

river basin), the defined river basins flow from one into another within a larger drainage 

network. Stream orders are reset within each river basin, despite channels being part of a 

continuing larger drainage network. This resetting affects determination of the bifurcation ratio 

in larger catchments incorporating multiple basins, because a large watercourse will be re-

assigned a stream order of 1 when flowing between basins. This effect highlights a limitation 

of using river basins to define the spatial areas for a nation-wide study. Likewise, the river 

basin boundaries in the Geoscience Australia (1997) dataset can adversely impact 

calculation of total upstream area for each subcatchment, when these river basins are part 

of a larger drainage network. Hence, the total upstream area may be underestimated. For 

the Murray-Darling River system, CatchmentSIM-derived upstream areas of affected 

subcatchments were manually adjusted to include relevant areas from adjacent basins. 

CatchmentSIM identifies main channel flow while ignoring braided and anabranching 

channels. Therefore, Horton’s drainage density (HDD), a measure of the total stream channel 

length per unit area, may be underestimated in low-gradient catchments 

2.4 Climate 

Rainfall data are available across Australia, with the BoM weather station network consisting 

of over 17,700 sites. All rainfall station records were accessed directly from BoM’s Climate 



Data Online (CDO; http://www.bom.gov.au/climate/data/) website in October 2017. By 

default, the CDO database only includes data that are deemed of acceptable quality – or 

were not yet quality-checked.  

Once downloaded, multi-day rainfall totals covering a 2- to 4-day period were transformed 

into a daily average over the relevant period.  Conversely, multi-day rainfall values over 5-

day or longer periods were removed to reduce a potential positive bias in annual rain days. 

Rainfall stations with at least 30 years of data (n = 8539, Figure 4a) were used to extract six 

variables for this study (Table 5). Two of these indices required the additional stipulation of a 

minimum of thirty years with near-complete (>350 days of) yearly rainfall records at individual 

stations, reducing the data subset to n = 7880. 

 

Figure 4 

 

Rainfall has a distinct, non-uniform seasonal pattern in many Australian regions. For instance, 

winter rainfall is prevalent in the southwest and Tasmania. Conversely, in most parts of the 

country (including northern Australia and the eastern coast of the mainland) rainfall is 

summer-dominant. Australia’s tropical regions are characterised by a summer wet season, 

defined by the BoM as November to April. This period was applied to define a rainfall 

seasonality variable. Rainfall for the period November to April was divided by the total yearly 

rainfall to obtain rainfall percentage in summer season. The index average number of rain 

days is defined as any day with a minimum precipitation of 0.2 mm. Both predictors were 

calculated from data of years with near-complete records (>350 days with data).  

Australian rainfall data are characterised by a large number of days without rainfall and a 

right-hand skew representing several extreme events. Four variables were derived by 



applying the method of L-moments based on the reduced rainfall dataset (rain days only). 

For each rainfall station, the first four L-moments were computed.  

The BoM network of stations with evaporation (n = 632) or MSLP (n = 930) data is significantly 

smaller than the rainfall dataset (Figure 4). After removal of records flagged by the BoM’s 

internal quality control, the remaining values were used if the station record exceeded two 

years (n = 532 for evaporation and n = 799 for MSLP, Figure 4b-c). The evaporation and 

MSLP data were split into summer (November – April) and winter seasons (May – October). 

The first three L-moments were then applied to both seasons separately, producing six 

descriptors for both evaporation and MSLP (Table 5). 

Values for each of the eighteen climate variables were assigned to individual subcatchments 

in a multi-step process: For every subcatchments with relevant station measurements, each 

climate statistic within the polygon was averaged to assign a single value to that 

subcatchment. A radial basis function interpolation was applied using ArcGIS v10.4 to 

allocate values to catchments without climate stations.  

2.5 Surface condition  

The surface effect of either absorbing or repelling water is the greatest impact soil, geology 

and land use have on catchment response to rainfall. The term ‘surface condition’ is used to 

incorporate the key variables of soil, geology and land use influencing flood response. To 

determine a numerical value useful in later statistical analysis, a method representative of 

Australian surface conditions (or the relative surface state between absorbent and repellent) 

was developed. The diverse soil descriptions were aggregated into a simple, relative-rank 

land surface value (LSV), incorporating key parameters such as permeability (texture) and 

absorbance (clay content and behaviour), depth of soil profile (incorporating geological 

outcrop) and anthropogenic land use effects (Figure 5). The simplicity of this ranking 

approach, in contrast to detailed soil description, aligns with the Australia-wide resolution of 

catchment-response analysis for this study. 



 

Figure 5 

 

To calculate LSVs, national soils and geology data were first assessed to allocate a field 

capacity score (FCS) based on soil classification, depth and texture (Figure 5). Field capacity 

is defined as the maximum bulk water content retained in soil at −33 J/kg of hydraulic head 

(Veihmeyer and Hendrickson, 1931). More generally, the term is used to indicate the volume 

of stored water within a soil profile necessary to initiate permanent surface pooling or runoff. 

This measurement is an indication of the potential for soil to absorb water. Low field capacity 

reflects limited ability to absorb water, whereas high field capacity suggests the reverse. Field 

capacity is controlled largely by soil texture and composition and these characteristics are 

accounted for in the soil classification, depth of soil profile and texture ranks as described in 

the Australian Soil Classification (ASC; Ashton and McKenzie, 2001; Figure 3). More detailed 

description of field capacity score determination is provided in section 2.5.1. 

Land use was characterised with a scoring range of -7 to +7. The land use score (LUS) was 

allocated on a scale from land use practices that improve or diminish soil field capacity. 

Section 2.5.2 outlines LUS determination in more detail. A final LSV was then assigned to 

the land surface based on the addition of field capacity and LUSs (section 2.5.3; Figure 6). 

 

Figure 6 

 

2.5.1 Field capacity score (FCS) determination 

Soil and geology throughout Australia were assessed by evaluating the soil classification and 

distribution of CSIRO’s Digital Atlas of Australian Soils (DAAS; 



https://www.asris.csiro.au/themes/Atlas.html#Atlas_Digital). The soil codes of the atlas 

classification (~3000 soil descriptions) were converted into the ASC as per Ashton and 

McKenzie (2001), grouping the data into thirteen soil types (Figure 5). 

Permeability and water holding property descriptions from widely used sources (Australian 

Soil Club; McKenzie et al., 2004; Victorian Resources Online) were utilised to conduct an 

initial assessment of soil field capacity to address the thirteen major soil groups. This 

evaluation assigned a rank score of 1 to 5 describing the permeability for the thirteen soil 

units by averaging the ranks used in the three available categorisation systems (Figure 5). 

Assigning FCS on the basis of the ASC (Ashton and McKenzie, 2001) alone has its 

limitations. General descriptions do not consider factors such as the depth of the profile to 

bed rock, which in some instances may be minimal. To account for this, the descriptions in 

DAAS were reviewed to determine the depth to rock and the amount of rock outcrop within 

each mapped unit. For each map unit the soil profile was classified as Class A (rock outcrop 

- geology), Class B (rock outcrop/skeletal shallow soil cover over rock), Class C (rock 

outcrop/moderated soil cover over rock) or Class D (soil) (Figure 5). To define the overall 

FCS, further assessment of the soil texture was also required. DAAS descriptions give 

thirteen classes of soil texture. These were converted to a rank score of 1 to 7, assigned on 

the basis of textural classes from the existing classification, as per Charman (1978).  

The three ranks derived from each of the three categories described earlier (i.e. soil 

classification, depth and texture) were combined into a three-point soil code with a sequential 

nomenclature. For example, a calcarasol with thick soil profile and calcareous earth texture 

would code 3D4. There are 676 possible permutations of code combinations but only 80 of 

these were identified across Australia. Hence, only these 80 codes or map units are used in 

further analysis (cf. Table B.1 for the full list of soil codes). 

Allocation of FCS for each of the 80 codes was based on interpreting a significance weighting 

for each component of the soil code by applying a priori knowledge of their context, 



composition and soil profile arrangement. For each soil code, the three ranked factors may 

have varying degrees of dominance, strong interactions or, in some instances, conflicting 

interactions. Therefore, the relative weighting of factors was considered for each individual 

code, resulting in nine characteristic weighting trends that formed the basis of FCS allocation 

(see appendix B2 for FCS allocation rationale). Final FCSs ranged from 1 to 7, with 1 

representing high field capacity and 7 low field capacity. 

2.5.2 Land use score (LUS) determination 

National land use data (version 4, 2005-06) were obtained from the national Department of 

Agriculture Scale Land Use (https://www.agriculture.gov.au/abares/aclump/land-use/data-

download). Detailed vector land use data for each state and territory (Figure 1) were merged 

into single coverage for the entire country. All land uses (Table B.3) were assigned a unique 

LUS value based on whether the land use would negatively affect field capacity (i.e. reduce 

field capacity: values 1 to 7), positively affect field capacity (i.e. increase field capacity: -1 to 

-7), or make no difference (0). A complete list of land use and allocated LUS is provided in 

appendix B3. 

2.5.3 Land surface value (LSV) determination 

Scores from the soil field capacity and the land use analyses were combined to allocate an 

LSV between -7 and +14 (Figure 6). This step reveals the impact of land use on field capacity 

as positive (low field capacity), negative (high field capacity) or neutral. There are several 

situations, however, when the end members of both soil/geology field capacity and land use 

may dominate the impact on absolute field capacity. Consequently, soil codes allocated an 

FCS of +7 (rocky areas excluding sandstones) or land use allotted an LUS of +7 (high-density 

urban and industrial areas) were assigned an LSV of +14. Conversely, land use allocated an 

LUS of -7 (water bodies such as dams and reservoirs) were assigned an LSV of -7 regardless 

of the FCS value. 



2.6  Numerical methods 

A principal component analysis (PCA) based on a correlation matrix and varimax rotation 

was performed on the twenty surface hydrology and BFI variables, reducing these to six 

surface hydrology principal components (PCs). The BFI was derived from surface water 

information, therefore reflecting streamflow conditions. Thus, the index was included with the 

surface hydrological data.  

One stream gauge is situated on an island (A5130501, Kangaroo Island). This site was 

excluded from further statistical analyses because the subcatchment delineation is limited to 

mainland Australia and Tasmania. A correlation analysis based the Pearson correlation 

coefficient was performed between each subcatchment variable and the six surface 

hydrology PCs representing streamflow, with the aim of determining the relative significance 

of the relationship between these descriptors (cf. section 2 and appendix A). The correlation 

analysis may identify significantly related indices but is unable to determine whether there is 

a causal link between the two variables. Hence, a "false positive" (type I error) may occur, 

especially when the total number of compared indices is high. The Šidák correction factor, αS 

(Šidák, 1967), was applied to reduce the false positive error rate: 

𝛼𝑆 =  1 − (1 − 𝛼)1/𝑛𝑝 

For np equal to forty catchment descriptors and significance level (α) of 0.05, a Šidák 

correction factor of 0.0013 is obtained.  Thus, the correlation is deemed significant at the 

Šidák correction level if the p-value does not exceed 0.0013.  The results provide context for 

the relative importance of each index in predicting streamflow dynamics.  

A multiple linear regression analysis was conducted using software XLSTAT. Its linear 

regression tool permits the extraction of the best model per predictor number, along with 

associated criteria such as Bayesian information criterion (BIC), the Akaike's information 

criterion (AIC) and adjusted R2 (R2
adj). The BIC penalises overfitting more heavily than the 



AIC, whereas the R2
adj is most lenient. Henceforth, the XLSTAT output will be referred to as 

the best regression model (BRM) results. 

An additional, more detailed regression analysis was then applied in MATLAB to explore all 

possible combinations with up to six input variables, similar to Saft et al. (2016). This 

computationally demanding method equates to 4.6 million regression models per PC. These 

6max-predictor regression models were then assessed using several criteria, including the 

adjusted R2 (penalising for extra predictors), AIC, the AICc (correcting for small sample-size) 

and the BIC. 

To evaluate the proportion of evidence for each predictor, the relative difference was 

calculated for the three criteria (AIC, AICc, BIC): 

∆AICi = AICi – AICmin , 

where AICmin is the model with the lowest (best) AIC value and i refers to the ith model. The 

model weights (w) for each PC were then calculated as follows: 

𝑤𝑖,PC  =  
𝑒

−∆AIC𝑖,PC
2

∑ 𝑒
−∆AIC𝑎𝑙𝑙,PC

2

 . 

Finally, the combined total proportion of evidence (TPE) of every predictor (p) was obtained 

for each PC by adding all weights of models that contained the predictor: 

TPE𝑝,PC =  ∑𝑤𝑝,PC 

A large proportion (76.7%) of the selected station network is located in non-perennial 

waterways and these sites therefore have a uniform low-flow of 0 m3/s. Yet, these locations 

are characterised by diverse catchment properties, their link to streamflow potentially masked 

by their non-perennial status that are intermittent to ephemeral in nature (cf. Vidal-Abarca et 

al., 2020). Thus, the correlation and regression analyses were repeated for a subset (n = 

175) that excludes all non-perennial systems. 



 

3 Results 

Six PCs summarise the twenty surface hydrology variables (Table A.2 and Figure A.1), 

accounting for a combined total of 91.4% of the variance. PC1 relates to the severity of 

extreme flow events. The probability of extreme flow events and baseflow attributes are 

characterised by PC2. The low-flow conditions are summarised with PC3, whereas the 

frequency of high-flow events is represented by PC4. PC5 explains the difference (ratio) 

between baseflow during summer and winter, whereas PC6 refers to general (seasonal and 

long-term) baseflow conditions. The correlation analysis between subcatchment variables 

and the six surface hydrology PCs (Figure 7) revealed distinct links between catchment 

characteristics and streamflow. These PC-specific connections are subsequently discussed 

in more detail.  

Among the applied criteria, the BIC most heavily penalises overfitting. Thus, the smallest 

BRM sizes are consistently attributed to the BIC. The difference in selected predictor 

numbers between the various selection criteria (AIC, BIC and R2
adj) is generally greater when 

the model strength is lower (i.e. lower R2
adj). In addition, the increase in fitting performance 

tends to plateau after about four predictors for most PCs, comparable to the result by Saft et 

al. (2016). However, the fitting pattern is PC- and sample-dependent. For PC1, the predictive 

gain is reduced after the inclusion of the second variable when all streams are considered, 

whereas the perennial stream subset exhibits a strong preference for six predictors (in 

agreement with the BIC-selected BRM). Conversely, the fitting performance for PC2 suggests 

a relatively large predictor number (minimum of seven), regardless of whether non-perennial 

sites are excluded. 

The 6max-predictor regression models yielded comparable TPE results independently of the 

applied criterion (AIC, AICc or BIC). For the better-performing predictors, BIC (Figure A.2) 



tends to have slightly lower TPE values. Subsequently, the lowest TPE result for individual 

predictors will be presented. 

3.1 PC1 

PC1 predominantly characterises extreme (maximum, mean peak and mean) flow conditions 

and flow variability (SD). Both the linear variables and their logarithmic counterparts are 

represented in PC1 (Figure A.1). This PC is more closely associated with climatic 

characteristics rather than intrinsic catchment properties. Fifteen (out of 18) climate metrics 

are significantly correlated with PC1 based on the more stringent Šidák correction factor (p-

values < 0.0013), including all MSLP indices (Figure 7). Among the non-climatic predictors, 

variability of subsurface permeability and LSV, average LSV and main stream slope are the 

variables with the strongest association with PC1. The BRM test in XLSTAT returned linear 

equations of distinctly different size (n) dependent on whether the AIC (n = 25) or BIC (n = 8) 

were applied as the decisive criterion (Table 6). Their respective R2
adj values are moderately 

high at 0.399 and 0.375. All predictors in the BIC model are also included in the more complex 

AIC selection. Among these are mean summer evaporation and MSLP, all winter MSLP 

characteristics, main stream slope and variability of subsurface permeability. 

The greatest TPE for PC1 was obtained by variability of subsurface permeability (0.999), 

followed by mean summer MSLP (0.916AIC), mean winter (0.470BIC) and mean summer 

evaporation (0.380BIC). 

3.2 PC2 

PC2 mainly embodies the probability of extreme flow events (L-moments 3-5) and, to a lesser 

extent, baseflow attributes.  Similar to PC1, the list of predictors significantly correlated with 

PC2 is also dominated by climate variables (16 indices). Slope-related attributes (including 

slope of the main stream channel) are among significantly linked intrinsic catchment 

properties (p-values < 0.0013). Compared with the other PCs, the BRM provided the most 



optimal results for PC2 in terms of both R2
adj (0.600 and 0.596) and level of agreement 

between the AIC- and BIC-preferred output (n of 19 and 15, respectively; Table 6). Both AIC 

and BIC mostly incorporated climate metrics, including annual rainfall days, rainfall 

percentage in summer, all MSLP variables and most evaporation characteristics. In addition, 

variability of elevation and subsurface permeability are deemed significant predictors of PC2. 

For PC2, six variables have TPE greater than 0.970 (variability of subsurface permeability, 

mean winter MSLP, MSLP variability in both seasons, the number of rain days and rainfall 

kurtosis), whereas the remainder have TPE below 0.030. 

3.3 PC3 

PC3, characterising low-flow conditions (represented by minimum flow), has the fewest 

number of predictors that are significantly correlated (p-values < 0.0013). These include 

slope, HDD, the bifurcation ratio and the number of annual rain days. The BRM indicates a 

relatively poor fit when a linear relationship between catchment characteristics and PC3 is 

assumed (Table 6). The BIC-preferred model size is four (R2
adj = 0.122) whereas the AIC 

produces a much more complex output without notable gain in explanatory power (n = 28; 

R2
adj = 0.167). The predictors in the BIC model are average slope, bifurcation ratio, main 

stream slope and annual rain days. 

The TPE for PC3 are dominated by bifurcation ratio, average slope, main stream slope and 

annual rain days (all above 0.990), whereas HDD reached a TPEBIC of 0.530. 

3.4 PC4 

A broad range of predictors is significantly linked to PC4, representative of the frequency of 

high-flow events (p-values < 0.0013). Twenty-eight catchment variables are significantly 

related to PC4 at the Šidák correction level (p-value < 0.0013; Figure A.1 and Table A.3). 

Notably absent from the 28 significant predictors are most rainfall indices (except for annual 

rain days). The R2
adj values of the BRM were quite high for both the AIC (R2

adj = 0.452; n = 



29) and BIC (R2
adj = 0.423; n = 15; Table 6). Stream density (HDD), LSV properties, annual 

rain days, rainfall skewness and various evaporation and MSLP features are among the 

significantly linked variables linked to PC4. 

Variability of evaporation in both seasons and summer MSLP explained most of PC4 (TPE > 

0.980), whereas HDD, LSV variability and rainfall kurtosis had TPE values ranging from 0.699 

BIC to 0.752BIC. 

3.5 PC5 

PC5 exemplifies the ratio of winter to summer BFI. Climate metrics are again the most 

prominent indices significantly associated with PC5 (p-values < 0.0013). Relevant non-

climatic, intrinsic predictors are limited to elevation characteristics and variability of 

subsurface permeability. Along with PC2, the BRM fits were among the poorest of the six 

PCs (Table 6). In addition, both AIC (n = 12; R2
adj = 0.143) and BIC (n = 4; R2

adj = 0.127) 

produced the smallest model size compared to the other PCs. The BIC-preferred model 

incorporated variability of subsurface permeability, skewness of winter evaporation and 

summer MSLP, and mean winter MSLP. 

For PC5, the skewness of winter evaporation (TPE of 0.837BIC) is the most relevant predictor, 

followed by subsurface permeability (0.441BIC) and mean winter MSLP (0.410BIC). 

3.6 PC6 

Baseflow conditions are summarised by PC6. Twenty-nine predictors are significantly 

connected to PC6 (p-values < 0.0013), including a wide range of climatic and in-situ 

properties. The BRM analysis produced a moderate fit for both AIC (R2
adj = 0.350; n = 28) 

and BIC (R2
adj = 0.303; n = 5). BIC-relevant metrics are maximum elevation, LSV variability, 

annual rain days, rainfall kurtosis and MSLP variability in winter. 



Annual rain days (0.989BIC) and maximum elevation (0.892BIC) have the highest TPE for PC6, 

with winter MSLP and LSV variability, summer rainfall proportion and rainfall kurtosis all 

having TPEs greater than 0.5. 
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Table 6: Best regression model results. The adjusted R2 (model size) values of the model with 

the lowest AIC and BIC values per PC are listed. 

Criterion PC1 PC2 PC3 PC4 PC5 PC6 

AIC 
0.399 

(25) 

0.600 

(19) 

0.167 

(28) 

0.452 

(29) 

0.143 

(12) 

0.350 

(28) 

BIC 
0.375 

(8) 

0.596 

(15) 

0.122 

(4) 

0.423 

(15) 

0.127 

(4) 

0.303 

(5) 

 

 

4 Discussion 

Forty subcatchment-specific metrics were investigated for their connection to Australian 

streamflow properties that were summarised with six PCs. All examined catchment variables 

exhibited significant links to surface hydrology (Table 7). Rainfall attributes have an 

overwhelming influence on extreme flow events and their likelihood. Conversely, low-flow 

periods are more dependent on in situ conditions, including topographical features and 

subsurface permeability. These results are thus in close agreement with previous studies that 

explored controls of streamflow patterns (e.g. Kuentz et al., 2017). 

Table 7: Results of correlation analysis between subcatchment variables and six surface 

hydrology principal components (SD = standard deviation). 

Variable 
Surface hydrology 

component affected 
Interpreted descriptor impact on flow 

conditions 
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(subcatchment) 
area 

high-flow probability; baseflow 
character 

Greater catchment areas typically result in 

greater volumes of flow, supporting more 
extreme flows and increased baseflow. 



Variable 
Surface hydrology 

component affected 
Interpreted descriptor impact on flow 

conditions 

total upstream 
area 

low-flow character; flood 
probability and severity  

Greater upstream areas typically result in 

greater volumes of flow, supporting more 
extreme flows and increased baseflow. 

slope 
flood probability; low-flow 
character 

Steeper slopes cause runoff to reach 
downstream regions faster.  

hill slope high-flow frequency; baseflow 
Hill slopes define the effects of upstream 

flows on the catchment  and influence both 
high- and low-flow properties.  

Horton’s drainage 
density (HDD) 

high-flow frequency; low-flow 
conditions and baseflow 

HDD is related to the capacity of a 

catchment to drain water downstream. 
Therefore, a greater HDD supports 

shorter-duration high-flow events, with 
rapid return to low flow.  

bifurcation ratio low-flow character 

Bifurcation, a measure of lower- and 

higher-order streams within a catchment, 
will cause less efficient flows at lower 
ratios. 

main stream 
length 

baseflow, low-flow conditions; 
extreme flow severity 

As longer streams are commonly 

attributed to larger catchment size, the 
likelihood of a catchment-wide rainfall 

event is reduced. In addition, longer 
exposure to evaporation reduces the 
surface water volume. 

main stream 
slope 

low-flow conditions; flood 
severity 

Steeper slopes encourage more rapid 
runoff. 

longest flow path 
length 

baseflow; high-flow probability  

As longer flow paths are commonly 

attributed to larger catchment size, the 

likelihood of a catchment-wide rainfall 
event is reduced. In addition, longer 
exposure to evaporation reduces the 
surface water volume. 

longest flow path 
slope 

flood probability; baseflow 
A steeper slope along the longest flow 
path suggests more rapid runoff. 

average flow 
length 

flood probability 
Similar to main stream length, the average 

flow length determines likelihood of 
catchment-wide rainfall event. 

flow length SD baseflow; flood frequency 

Flow length tends to vary more in 

subcatchments with little vertical relief, 
suggesting less efficient drainage in those 
basins. 

channel 
skewness 

flood frequency 

Channel skewness relates to the 

symmetry of a catchment, with higher 

skewness associated with less efficient 
flows into streams. 

maximum 
elevation 

flood probability; baseflow 

Higher maximum elevation tends to 

coincide with more frequent rain days in 
the elevated areas. Consequently, a 
greater number of flow peaks is commonly 
observed. 

Very high values of maximum elevation 
may suggest precipitation in the form of 
snowfall, encouraging runoff delay, which 
will adjust the peak conditions of flows. 



Variable 
Surface hydrology 

component affected 
Interpreted descriptor impact on flow 

conditions 

vertical range 
flood probability and 
frequency; baseflow 

Similar to the effects of maximum 

elevation. A greater vertical range tends to 
encourage efficient runoff.  

mean elevation flood frequency; baseflow 
Subcatchments with higher elevation tend 
to have greater baseflow yield. 

median elevation flood frequency; baseflow 
Subcatchments with higher elevation tend 
to have greater baseflow yield. 

elevation SD 
flood probability and 
frequency; baseflow 

Similar to the effects of maximum 

elevation. A greater variability in elevation 
tends to encourage runoff. 

L
S

V
 LSV flood frequency and baseflow 

LSV affects the amount of runoff by 

influencing rainfall infiltration. Higher LSVs 
suggest a greater proportion of rainfall 
being retained by streams, encouraging 
more extreme flows. 

LSV SD flood frequency; baseflow 

More variable LSVs suggest a complex 

landscape with localised increased 
infiltration of water. 

P
e
rm

e
a
b
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y
 mean subsurface 

permeability 
baseflow 

Subsurface permeability affects water loss 
and, thus, baseflow properties. 

subsurface 
permeability SD 

flood severity and probability; 
baseflow seasonality 

Similar to LSV SD, more varied 

subsurface permeability suggests a 
complex landscape with localised 

increased infiltration of water helping to 
reduce flow volumes. 

C
li

m
a
te

 

number of rain 
days 

flood probability and severity; 

high-flow frequency;low-flow 
conditions; baseflow 

An increased number of rain days affects 

pre-wetting (soil saturation state), which 

can change runoff profiles. Elevated 
baseflow is also promoted. 

rainfall 

percentage in 
summer season 

flood probability and severity; 

baseflow average and 
seasonality  

A larger proportion of summer season 
rainfall increases the risk of flood events. 

rainfall (1st L-
moment) 

flood probability and severity; 

baseflowaverage and 
seasonality 

Higher mean daily rainfall suggests an 
increased risk of flood events. 

rainfall (2nd L-
moment) 

flood probability and severity, 

baseflow average and 
seasonality 

The variability of rainfall will dictate the 

nature of rainfall events within individual 
catchments, affecting both high- and low-
flow signatures. 

daily rainfall (3rd 
L-moment) 

flood probability and severity; 
baseflow 

A highly skewed rainfall distribution is 

often a signal that the basin is prone to 
storm events and also produces positively 
skewed streamflow patterns. 

daily rainfall (4th 
L-moment) 

flood probability; baseflow 

Large positive kurtosis values indicate 

heavier tails. Hence, similar to skewness, 

this variable provides information about 
the probility of extreme rainfall events.  

evaporation in 

summer season 
(1st L-moment) 

flood probability and severity; 
high-flow frequency; baseflow 

Regions with higher evaporation will have 

significantly reduced runoff, because 
evaporation will reduce the available 
water. Lower evaporation rates are also 
indicative of wetter conditions.  



Variable 
Surface hydrology 

component affected 
Interpreted descriptor impact on flow 

conditions 

evaporation in 

summer season 
(2nd L-moment) 

high-flow frequency  

High evaporation variability suggests 

fluctuating evaporation rates (and, hence, 

sporadic cloud cover and rainfall), 
indicating varied losses of streamflow 
volume. 

evaporation in 

summer season 
(3rd L-moment) 

high-flow frequency 
Extreme evaporation promotes lower 
average flow levels. 

evaporation in 

winter season (1st 
L-moment) 

flood probability and severity; 
high-flow frequency; baseflow 

Regions with higher evaporation will have 

significantly reduced runoff because of the 
drop in water availability. Lower 

evaporation rates are also indicative of 
wetter conditions. 

evaporation in 

winter season 
(2nd L-moment) 

flood probability and severity; 

baseflow average and 
seasonality 

High evaporation variability suggests 

fluctuating evaporation rates (and, hence, 
sporadic cloud cover and rainfall), 
indicating varied streamflow volumes..  

evaporation in 

winter season (3rd 
L-moment) 

flood probability and severity; 
baseflow 

Extreme evaporation promotes lower 
average flow levels. 

MSLP in summer 

season (1st L-
moment) 

flood probability and severity, 

baseflow average and 
seasonality 

Low MSLP is often associated with 

monsoonal or cyclonic activity, when 
extreme floods become far more probable. 

MSLP in summer 
season (2nd L-
moment) 

flood probability and severity; 
high-flow frequency; baseflow 
average and seasonality 

Varied MSLP levels suggest a frequent 

passage of storm fronts, supporting a 
greater number of flow events and also 
promoting elevated baseflow. 

MSLP in summer 

season (3rd L-
moment) 

flood severity; high-flow 
frequency 

A more (mostly negatively) skewed MSLP 

distribution indicates a greater propensity 
for severe weather events, thus 
encouraging extreme streamflow. 

MSLP in winter 

season (1st L-
moment) 

flood severity; high-flow 

frequency; baseflow average 
and seasonality 

Reduced MSLP suggests the presence of 

a rain-bearing low or trough, promoting 
high-flow events. 

MSLP in winter 

season (2nd L-
moment) 

all: flood probability and 

severity; high-flow frequency;  
baseflow 

Varied MSLP levels suggest a frequent 

passage of storm fronts, supporting a 

greater number of flow events and also 
promoting elevated baseflow. 

MSLP in winter 

season (3rd L-
moment) 

flood probability and severity; 
high-flow frequency; baseflow 

Higher values suggest a greater inclination 

for fewer rain days, promoting intermittent 
or ephemeral stream behaviour and lower 
baseflow. 

Out of the forty catchment descriptors, upstream area and channel skewness were the only 

attributes not significantly correlated with one of the six surface hydrology PCs at the more 

stringent Šidák correction factor (0.0013) when the full dataset was investigated. 

Nevertheless, with p-values of 0.021 (channel skewness vs PC4) and 0.0016 (upstream area 

vs PC6), significant connections were still evident at more traditional cut-off levels. Further, 



upstream area is significantly correlated with four PCs (at the Šidák correction level) when 

non-perennial waterways are removed. Streams in upper catchments have a greater 

tendency to be non-perennial and their exclusions leads to greater prevalence of higher-order 

streams in relative terms. Consequently, upstream area becomes more pertinent.  

The link between channel skewness and PC4 is mainly attributable to the variable’s 

correlation with the average number of flow peaks in a year (p-value = 0.013). This link 

between channel skewness and annual number of flow peaks may partially be of an indirect 

nature, because both features are significantly related to topographical attributes pertaining 

to stream length (e.g. average flow length) and elevation (e.g. median elevation). Catchments 

with lower vertical relief or shorter stream lengths have a greater tendency for higher channel 

skewness. Higher channel skewness – synonymous with a more asymmetrical drainage 

pattern – results in less efficient flows into streams in some areas, thus impacting on local 

flow conditions. Hence, the inverse relationship between channel skewness and PC4 

suggests a greater propensity for more frequent flow peaks when channel skewness is low. 

The statistical findings are subsequently discussed separately for each PC. 

4.1 Extreme flow severity 

Higher mean daily rainfall (1st L-moment), rainfall variability and summer rain percentage are 

all strongly linked to extreme streamflow (represented by PC1; Figure 8a). Conversely, the 

number of rain days per year is negatively correlated with the occurrence of extreme flood 

events, with more rain days less likely to result in extreme flood events. Subcatchments with 

low numbers of rainy days per year tend to be associated with high mean daily rainfall (1st L-

moment) and, therefore, higher probability of extreme flow events. The positive relationship 

between seasonal mean daily evaporation (1st L-moment) and PC1 is expected, because 

evaporation is negatively related to the number of rain days (rain-free days have a greater 

propensity for cloud-free conditions and increased evaporation). The negative association of 

mean MSLP conditions (1st L-moment) with PC1 indicates the importance of low-pressure 



systems and the consequential enhancement of rainfall associated with these weather 

patterns (e.g. tropical lows, east coast lows and troughs). The relevance of mean summer 

MSLP is also reflected by its high TPE for PC1 (0.916AIC; Figure A.2). 

 

Figure 8 

 

Variability of subsurface permeability and LSV, along with average LSV, are the non-climatic 

metrics with the strongest association with PC1.  The 6max-predictor regression model test 

identified subsurface permeability variability as the index with the highest TPE (0.999). This 

attribute is negatively correlated with PC1, suggesting that greater variability in subsurface 

property permits a greater proportion of runoff to infiltrate underground, potentially reducing 

the severity of extreme flow events.  

Only one topographical trait (main stream slope) exhibits a correlation significant at the Šidák 

correction level (p-value < 0.0013; Table A.3).  However, several additional topographical 

descriptors relating to elevation (longest flow path slope, maximum elevation, vertical range 

and average slope) have p-values below 0.01. All five topographical indices are positively 

correlated with the annual number of rain days, whereas the three slope attributes have a 

negative relation to mean daily rainfall. Consequently, the negative correlation between these 

topographical variables and PC1 is partially attributable to the propensity for more frequent, 

light rainfall events (e.g. drizzly conditions) in elevated terrain compared with areas closer to 

sea level. In addition, a significant proportion of the strong relationships will stem from the 

applied method: Basins with stream orders greater than five were further subdivided into 

subcatchments (Figure 3). Thus, upper subcatchments will generally be characterised by 

higher topography, steeper slopes and usually also more varied elevation – in contrast to the 

lower subcatchments that will mostly typify a more uniform, low-relief landscape. Because 

upstream flows will ultimately accumulate and reach the lower subcatchment, higher flow 



volumes are expected in the latter, hence producing a negative relationship with 

topographical elevation, variability and gradient. 

4.2 Extreme flow event probability and baseflow properties 

PC2 embodies both the probability of extreme flow events (L-moments 3 to 5) and, to a lesser 

degree, baseflow attributes. When streamflow is highly variable (as reflected by larger values 

for L-moments 3-5), baseflow yield tends to be lower, particularly during summer.  

Comparable to PC1, PC2 is most strongly linked to climate indices (Figure 7). Consequently, 

most of the climatic description for PC1 (section 3.1) also applies to PC2. However, contrary 

to PC1, L-moments 3 and 4 of daily rainfall both exhibit significant, positively correlated 

relationships with PC2. This result is not unexpected when the robust link between rainfall 

and runoff is considered, with PC2, to a large extent, defined by streamflow L-moments 3 to 

5. Greater positive skewness and kurtosis both indicate heavier, more pronounced tails, 

translating to a greater prominence of days with extreme rainfall and elevated streamflow. 

The strong correlation between percent summer rainfall (November – April) and average daily 

flow describes non-perennial watercourses in areas with highly seasonal rainfall. Further, 

more extreme rainfall tends to be experienced in regions with predominant summer rainfall, 

a pattern confirmed by the correlation analysis. Consequently, a concomitant increase in 

potential extreme flows is expected (Figure 8b). 

To an even greater extent than for PC1, topographical descriptor main stream slope is also 

significantly connected to PC2, in addition to longest flow path slope, mean slope and 

elevation variability. Low vertical relief (general absence of steep slopes and dominance of 

flood plains), particularly if in conjunction with large area in steeper upstream subcatchments, 

can result in water backing up or flows slowing, especially when constriction points are 

present. Consequently, streamflow levels tend to be elevated for extended periods in areas 

of poor drainage, leading to a larger proportion of days with elevated flows (i.e. more highly 

skewed flow patterns). 



Among non-climate variables, LSV has the strongest connection with PC2 (p-value < 0.0013; 

Table A.3). High LSVs (particularly in conjunction with low subsurface permeability) denote 

a larger proportion of rainfall converting to runoff because of low infiltration rates. Hence, LSV 

is strongly associated with extreme flow probability.  

PC2 also strongly represents BFI (the higher the PC2 value, the lower the expected BFI). BFI 

has a strong negative association with evaporation, whereas regular rainfall (higher number 

of annual rain days) promotes baseflow by increasing soil saturation. In addition, steeper 

topography facilitates soil water drainage, encouraging elevated baseflow in these areas 

(Price, 2011).  

Hale and McDonnell (2016) have specifically linked subsurface permeability to longer mean 

transit time of baseflow, buffering the river system to rainfall variability. Here, we have found 

that subsurface permeability and its extent of spatial uniformity are negatively linked to mean 

seasonal and long-term BFI. Thus, greater subsurface permeability and heterogeneity 

thereof are suggested to result in reduced baseflow, potentially a reaction to increased 

infiltration to deeper groundwater systems. The correlation results for non-perennial streams 

confirmed the negative relationship between mean BFIs and subsurface permeability, 

whereas the link with variability of subsurface permeability was less conclusive. 

4.3 Low flow conditions 

A relatively small number of catchment variables is significantly linked to PC3 (low flow 

represented by flow minima) based on the Šidák correction level (Figure 7), although the 

number increases more than threefold when the more lenient threshold level is applied (α = 

0.05, Table A.3). 

In contrast to the preceding PCs, climate variables have a subordinate role in determining 

PC3 values and, accordingly, minimum flow levels, although the number of annual rain days 

is important (as also evidenced by its incorporation into the BRMs; Figure 8d). PC3 has the 

strongest connection with bifurcation ratio, with its link to HDD also significant at the Šidák 



correction factor (0.0013). Higher values for these morphometric parameters suggest a 

shorter time for the discharge to exit the catchment. Although this can amplify flood risk by 

increasing peak discharge, streamflow can also more quickly return to low levels after high-

flow events, thus encouraging lower flow minima and explaining the inverse relationship 

between bifurcation ratios and PC3. Previous studies in mountainous regions of Puerto Rico 

(Garcia-Martinó et al., 1996) and the south-eastern Unites States (Price et al., 2011) have 

also highlighted HDD as a key predictor of low-flow behaviour, with a reverse association 

between low flow and HDD, in agreement with our findings. However, contrary to our result, 

Price et al. (2011) have found a positive relationship between low flow and bifurcation ratio. 

The contrasting results can possibly be attributed to differences in low-flow definitions (low-

flow threshold over a certain period vs absolute flow minimum), along with dissimilarities in 

study scale and location. 

The connection with mean slope is more complex. Although steeper slopes encourage rapid 

runoff (thus permitting a more rapid reversion to low flows), these regions are also commonly 

associated with a greater number of rainfall days per annum. Such rainy conditions are not 

conducive to low flow minima, ascribed to the positive relationship between mean slope and 

PC3 (low flow conditions). 

The relatively poor performance of the PC3 regression models – and low number of 

predictors that are significantly correlated with this PC – can at least partially be ascribed to 

the large number of non-perennial streams (i.e. minimum streamflow values of 0 m3/s) in 

Australia. Of the 750 gauges used for this analysis, 76.7% are situated in sites of intermittent 

or ephemeral flow. The diverse catchment properties of these non-perennial settings result 

in overall poorer performance of the statistical tests. When the correlation analysis is 

repeated by omitting the non-perennial streams, upstream area and mean MSLP in winter (in 

addition to bifurcation ratio and HDD) exhibit a significantly positive relationship with PC3 (p-

value < 0.0013) and, thus, low-flow conditions, even though the statistical power is reduced 

by the smaller dataset (n = 175). Larger catchment areas will permit greater accumulation of 



flows, thus increasing the minimum runoff volume. Conversely, lower mean MSLPs suggest 

a higher propensity for rainfall in the cooler months, thus producing runoff during a period 

when a large proportion of Australia receives limited precipitation. Upstream area and 

bifurcation ratio are also among the indices incorporated into the reduced (perennial-only) 

BRMs, with the R2
adj for AIC (BIC) augmenting from 0.167 (0.122) to 0.344 (0.334). In 

addition, whereas the BIC model size remained unchanged (four, with upstream area 

substituting annual number of rain days), the AIC model decreased from 28 to 6, thus 

reducing likely overparameterisation. 

4.3.1 The problematic case of ephemeral waterways 

A large proportion of Australian streams is non-perennial in nature. Some of these 

watercourses are classified as intermittent, their seasonal flows sustained longer by 

groundwater supply. Ephemeral sites, however, are only recording flows for a brief duration 

(e.g. a few days) – immediately following significant precipitation. These extended periods of 

zero-flow have substantial impacts on a range of attributes. Specifically, the rainfall-runoff 

relationship can be altered considerably by antecedent conditions. Dry spells produce 

crusting of soils via chemical processes, hampering water infiltration in the absence of gentle 

pre-wetting – and enhancing erosion and flood risk. Surface crusting can also be produced 

by clay deposition after a significant flow event. Further, Zhang et al. (2017) highlighted that 

the Lyne-Hollick method, applied here, is not recommended for ephemeral streams because 

of the brief flow periods and prolonged absence of a slow flow component. Thus, when more 

reliable estimates are required for ephemeral systems, alternative baseflow derivation 

methods should be considered. 

4.4 High-flow frequency 

High-flow events (related to PC4) are defined as any periods when streamflow surpassed the 

80th percentile at that site. The frequency of high-flow events is predominantly dictated by the 

annual number of rain days, as also evidenced by the negative relationship between PC4 



and mean evaporation in both seasons (Figure 8c). Topography also greatly impacts on the 

high-flow recurrence interval because of the tendency for orographic enhancement of 

precipitation at higher altitudes. Catchments with higher and more varied elevation are 

predisposed to a greater number of high-flow events, aided by the faster passage of the 

runoff. This view is supported by the strong association between PC4 and HDD (positive) 

and flow distance (negative). HDD is a measure of how effectively runoff travels within a 

catchment. All these connections suggest short-duration high-flow events that occur more 

regularly in drainage basins with high PC4 values. Extreme runoff events are prone to be 

more significant (in terms of speed and instantaneous volume) in catchments with a greater 

capacity to transmit water, although the flow events also tend to be of shorter duration. 

Although the LSV metrics are not significantly correlated with PC4, they are both incorporated 

into the BRMs. In addition, the 6max-predictor regression models attributed the highest TPE, 

among non-climatic indicators, to the variability of LSV (0.742BIC). When the regression 

analysis was repeated with non-perennial streams removed (n = 175; Table A.5), the AIC 

(BIC) R2
adj for the BRMs improved from 0.452 (0.423) to 0.667 (0.551) despite the reduction 

in statistical power and a decrease in model size from 29 (15) to 26 (7). The non-perennial 

regression models incorporated mean LSV (inverse relationship) and variability of subsurface 

permeability (direct) regardless of whether the AIC or BIC was applied as the criterion, with 

mean LSV scoring a TPE of 0.432BIC.  

Lower LSVs and their variability (enhanced water infiltration or chance thereof) correspond 

to higher PC4 and greater number of flow peaks. This connection can be explained by water 

infiltration and, consequently, a more rapid reduction in streamflow. This permits water levels 

to drop below the 80th percentile faster and, thus, the potential for a new flow peak to arise. 

4.5 Seasonal baseflow difference 

PC5 summarises the seasonal BFI difference, represented by the ratio of the long-term winter 

to summer BFI values. Climate predictors dominate variables significantly associated with 



baseflow seasonality (Figure 8f). Among these predictors, the 3rd L-moment of winter season 

evaporation is the most prominent index based on the strongest (inverse) correlation and 

highest TPE (0.837BIC). The more extreme (right-skewed) the distribution of evaporation, the 

lower PC5 (ratio of summer over winter mean BFI). Evaporation reduces streamflow volume. 

Consequently, a more right-skewed evaporation pattern during the cooler months is expected 

to reduce winter baseflow yields, thus increasing the winter/summer BFI ratio. Variability of 

subsurface permeability has the second highest TPE (0.441BIC) for PC5, whereas elevation-

related attributes have the most significant (inverse) correlations among the non-climatic 

predictors. Because subsurface permeability is inversely linked to elevation attributes, a more 

variable permeability in headwater subcatchments encourages localised water infiltration 

where surface flow would otherwise be more dominant. Further, rainfall in Australian 

catchments tends to be summer-dominant. Hence, the proportion of runoff diverting to 

baseflow is expected to be greater in the winter period at most sites that permit water 

infiltration, thus potentially increasing the BFI ratio. 

Previous studies indicate that watersheds at higher altitudes tend to produce greater 

baseflow yields (e.g. Rumsey et al., 2015). These results are confirmed here, with the altitude 

parameters positively correlated with seasonal and overall mean BFI. Conversely, elevation-

related predictors are inversely linked to the winter/summer BFI ratio. The PC5 connection is 

stronger with summer than winter baseflow levels. Therefore, the derived negative 

relationship with the winter/summer BFI ratio is attributable to a more enhanced increase in 

mean summer baseflow with height (relative to winter conditions), thus reducing the ratio. 

When the correlation and BRM were repeated with the perennial watercourses (n = 175; 

Table A.5), PC5 showed the most striking improvement in predictive strength, the AIC (BIC) 

results increasing from 0.143 (0.127) to 0.542 (0.516) despite model sizes remaining nearly 

constant, changing from 12 (4) to 11 (4). For these additional models, upstream area and 

proportion of summer rain are important, whereas elevation attributes were not significantly 

related. These differences can be explained by several aspects. Firstly, the full dataset of 



750 gauges is much more disparate, encompassing a greater diversity in terms of climate 

and coastal proximity, making the derivation of a high-performing predictive model more 

challenging. Conversely, perennial streams are mostly limited to sites that are relatively near-

coastal – including ranges feeding these coastal catchments – and typified by wet conditions 

(Figure 1). These regions include southeast Australia and, to a lesser extent, the wet tropics 

and southwest Australia. Secondly, lower-order streams have a greater tendency to be non-

perennial and a comparatively large proportion of gauges in upper watersheds were thus 

excluded from the perennial subset. With higher-order waterways more prevalent in relative 

terms, upstream area becomes more relevant. And because the remaining sites are less 

diverse, the predictive power of the BRMs improved. 

4.6 Baseflow 

PC6 relates to winter baseflow and, to a lesser degree, long-term and summer BFI 

characteristics. The annual number of rain days has the weakest correlation with PC6 (p-

value = 0.730). Yet, this predictor has the highest TPE (0.989) and is also incorporated into 

both the AIC and BIC BRMs. In addition, the correlation does become significant at the Šidák 

correction level (p-value < 0.0013) when non-perennial streams are removed. 

Although atmospheric characteristics are important, the influence of topography and surface 

condition is more pronounced when streamflow is not extremely high. During extreme 

precipitation events, most rainfall will convert to runoff because of fully saturated soils, 

regardless of topography, whereas the catchment response will be more nuanced for less 

intense rainfall events. Variables that describe elevation are the most influential topographical 

features, with slope-related traits also significantly linked to PC6 and baseflow (Figure 8e). 

While some of these indices are also strongly connected to PC2, their relationship is 

reversed. BFI variability is positively related to these predictors. As baseflow attributes are 

incorporated into PC6 with a positive trend, and reversely with PC2, the connection of the 

elevation and slope descriptors and PC6 changed accordingly. 



Various catchment properties were previously linked to baseflow. For instance, Post and 

Jakeman (1996) related baseflow recession in Victoria with catchment shape and slope, 

confirming our result. Conversely, Lacey and Grayson (1998) determined that the BFI is 

independent of topographical features in Victoria, with baseflow more closely associated with 

geology and vegetation, two attributes not directly included in our investigation. However, 

mean subsurface permeability – an indirect representative of geology – exhibited significant, 

inverse correlation with PC6 (and BFI) regardless of whether non-perennial streams were 

excluded (Figure 7 and Figure A.3), substantiating the importance of geology. 

4.7 Frequency distributions 

The sensitivity of the L–moments method to climatic extremes in seasonally arid and 

monsoonal zones is uncertain. In the seasonally arid tropics, many of the daily rainfall and 

streamflow values are zero, with intense rainfall maxima often occurring after prolonged dry 

periods. The recorded values will have significant influence on the 3rd and 4th L–moments 

and kurtosis, but the influences of these factors on the 5th L–moment (super-skewness) needs 

more research. The 5th L–moment is predicted to reliably determine flood parameters (e.g. 

river level and flow velocity in situations when extreme flood peaks over base flow are 

observed). 

The method of L–moments is intrinsically related to the fundamental underlying frequency 

distribution that is used to describe the data. In Australia, a log-Pearson III (LP3) distribution 

was previously favoured to determine the frequency of intense rainfall events and is still 

widely used for Australian catchment studies (e.g. flood frequency analysis; Ball et al., 2019). 

The low probability (extreme rainfall) events are represented in the right-hand tail of these 

distributions and the nature of the tail varies between distributions. The generalised extreme 

value (GEV) distribution, fitted using L-moments, is now the recommended method to perform 

frequency analysis for rainfall in most circumstances (Ball et al., 2019).  Ball et al. (2019) also 

declared, however, that neither GEV nor LP3 may adequately embody rainfall patterns in 

regions affected by tropical cyclones (TCs).  The goodness of fit of the right-hand portion of 



the distribution (and in some circumstances, the left-hand portion of the distribution) may 

significantly influence the probability values obtained, and the positions of the L–moments for 

the distribution. Consequently, if flood frequency is to be added to flood heights and velocity, 

then research is necessary into the underlying distributions that best describe the Australian 

rainfall data. Because of the large size and disparate nature of the Australian landmass – and 

varied climate – no frequency distribution is expected to consistently perform best throughout 

the continent. Yet, regional adjustments of frequency distribution for national-scale studies 

are not necessarily recommended because of the difficulty in defining adequate similarity 

criteria for grouping catchments (and climatic zones) and the potential for reduced 

reproducibility of the scientific results. 

 

5 Conclusions 

A variety of variables were examined to distinguish catchment types within Australia that may 

influence runoff regimes. A diverse dataset, sourced from varied government agencies or 

sub-agencies, was collated for this project to derive forty catchment characteristics from the 

themes of climate, topography, surface condition (Table 5). Their links to streamflow 

behaviour (represented by twenty descriptors summarised by six PCs) in Australian drainage 

basins was scrutinised. Archive inconsistencies between agencies and states required 

numerical assessment and standardisation before analysis. Data collation aimed to provide 

a consistent and robust framework for the interpretation of catchments within Australia. The 

lack of geographically consistent, long-term rainfall and river runoff records throughout 

Australia required methods that accommodate inconsistencies in the datasets while still 

producing reliable and reproducible results. 

The correlation and regression analyses confirmed that climate variables tend to dictate 

streamflow behaviour, especially during high-flow periods. This outcome is in agreement with 

earlier studies that attributed a relatively small role to other index types such as soils and 



geological attributes (Beck et al., 2015).  During low-flow, however, intrinsic catchment 

properties like upstream area, bifurcation ratio, and average topographical slope within the 

catchment and along the main waterway become important (Smakhtin, 2001). 

Further investigations are required to define the relative roles of the climatic and 

geomorphological drivers, particularly in subcatchments where they significantly interact. 

Both factors ultimately control the frequency and severity of flood response across the 

Australian continent. A degree of uncertainty in clarifying the relative influence of these 

factors comes from limitations in data availability, because a large proportion of drainage 

basins remain ungauged. In addition, some catchment parameters, such as antecedent soil 

moisture and temporal aspects of water table data, were recognised as important, but their 

dynamic spatial and temporal variability disqualified their inclusion in this study. These 

dynamic catchment attributes pertain to individual events with large spatial or temporal 

variability (e.g. storm type and duration) and are highlighted as an area of future focus to 

refine flood studies. 

The difference in results – depending on whether non-perennial waterways are incorporated 

– illustrates that streamflow response to climatic and in situ properties is regionally highly 

varied. Thus, grouping of similar streams is recommended to create tailored regional models 

for stronger predictive performance. This notion was also discussed by Trancoso et al. (2017) 

who found regional- and scale-dependent connections between streamflow and catchment 

properties. 

Several caveats are associated with this study. Only linearity was considered (except for the 

logarithmic transformation of some variables) when exploring the connection between 

catchment characteristics and streamflow properties. However, some catchment descriptors 

are likely linked to streamflow in a non-linear fashion, providing avenues for further research. 

The extreme seasonality of climate and, accordingly, streamflow is also problematic. A large 

proportion (76.7%) of the examined streamflow gauges are situated in non-perennial 

waterways. Many of these watercourses are classified as ephemeral. Such sites typically flow 



only for brief periods and are thus typified by extended dry periods. In the absence of a 

sustained slow flow component, Zhang et al. (2017) highlighted that the Lyne-Hollick method 

is not recommended for ephemeral streams. Further, soil crusting is a common occurrence 

during prolonged dry periods, affecting surface permeability and, therefore, infiltration rates. 

In the absence of gentle pre-wetting prior to a significant rainfall event, these soil crusts 

enhance surface runoff, ultimately elevating flood risk. While these changes can be observed 

on a seasonal scale, Australia is also notorious for its interannual climate extremes (Jaffrés 

et al., 2018) and extended (multi-annual) periods of wet or drought conditions (Taschetto et 

al., 2016). This variability further complicates estimations of streamflow and groundwater 

recharge, thus also hampering management of water resources. A further issue is the biased 

data distribution, with the arid interior and tropical north underrepresented by the network of 

stream gauges. In addition, temporal records tend to be relatively brief, hampering the 

capture of extreme events with low recurrence rate. As data availability for exogenous factors, 

like rainfall, and intrinsic basin properties is more extensive, their association with streamflow 

properties can be utilised to infer catchment response to various flow scenarios. 

The study outcomes represent amalgamation, interpretation and summary of a large number 

of environmental descriptors that influence, drive and interact with the distribution of water 

across the Australian landscape. The parameters chosen for statistical analysis resulted from 

a multidisciplinary approach to statistical methods, combined with expert understanding of 

climatic, geomorphic and hydrological systems to best interpret the results. The strong 

connection between catchment properties and streamflow characteristics provide opportunity 

for regionalisation in the absence of a dense stream gauge network that leaves most 

subcatchments essentially ungauged. 
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of Australian Soils. This study was financially supported by Suncorp Insurance. The authors 

gratefully thank the two anonymous reviewers for their valuable comments and suggestions. 

 

Appendices A and B. Supplementary data 

Supplementary data to this article can be found online. 
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Figure Captions 

Figure 1: Distribution of unregulated, WDO-derived stream gauges in Australia with a minimum 

data record of 15 years. The colour scheme distinguishes non-perennial and permanent 

streams. Borders of states and territories are also shown. 

 

Figure 2: Spatial variations of a) long-term, b) summer and c) winter mean BFI, as well as d) the 

winter/summer BFI ratio. 

 

Figure 3: Stepwise progression of the subcatchment delineation with CatchmentSIM. a) The 

National River Basin Boundary (NRBB) is used to clip the topography with a 10 km buffer to 

account for differences in border estimates between the two datasets. b) The Horton's stream 

orders are determined for the vector stream network within the NRBB. The 5th-order streams 

are then used to c) divide the basin into subcatchments, with the boundaries defined by the 

topography. Each segment of 6th- and higher-order streams is delineated as a separate 

subcatchment. 

 

Figure 4: Distribution of weather stations with a minimum of a) 30 years of rainfall, and two 

years of b) evaporation and c) mean sea level pressure (MSLP) data. Rainfall stations are further 

grouped based on the number of years with near-complete (>350 days of) annual data. 

 

Figure 5: Flow chart for the calculation of the soil code, field capacity score (FCS), land use 

score (LUS) and land surface value (LSV). Australian Soil Classification (ASC), depth of soil 

profile rank and textural class are derived from Ashton and McKenzie (2001).  

 



Figure 6: Flow chart of the land surface value (LSV) determination method based on the field 

capacity score (FCS) and land use score (LUS). 

 

Figure 7: Correlation coefficients between the surface hydrology PCs and individual catchment 

characteristics (n = 749). Bars extending beyond the dashed lines are statistically significant 

at the Šidák correction level (p-value < 0.0013). 

 

Figure 8: Schematic diagrams of the relationship between streamflow and catchment 

descriptors. 

  



Highlights 
 Australian surface flow is compared to forty diverse catchment descriptors 

 Climate and rainfall characteristics dominate Australian streamflow behaviour 

 Topographical and surface conditions greatly influence low-flow properties 

 Non-perennial streams affect infiltration capacity and proportional runoff 

 Uniform application of methods is not always recommended, as catchments 

are diverse 
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