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Abstract 

For simulating flow in heterogeneous porous media it is computationally more efficient to define 

an equivalent effective (i.e., upscaled) medium rather than considering detailed spatial 

heterogeneities. In this paper, the effective unsaturated hydraulic conductivity (K) of soils 

exhibiting random variability, layering, or both is calculated based on numerical simulations of 

steady-state evaporation from a shallow water table. It is demonstrated that the effective K of 

randomly-varied soils generally falls between the harmonic and geometric means of the 

unsaturated hydraulic conductivities of the constituting soils. Layering and random variability 

when occurring concurrently magnify each other’s effects on effective K. As a result, the higher 

the degree of heterogeneity, the lower the effective K. Therefore, neglecting either random 

spatial variability or layering in numerical simulations can lead to significant overestimation of 

water flow in soils. 

 

Keywords:  Upscaling; Effective unsaturated hydraulic conductivity; Steady state evaporation; 

Soil layering; Random variability. 
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1. Introduction 

Sustainable management of subsurface water resources requires in-depth knowledge of vadose 

zone flow processes that are mainly governed by soil hydraulic properties (Vereecken et al. 

2007). However, the commonly observed high spatial variability (e.g., random variability, 

layering) of soil hydraulic properties makes this a challenging task. Therefore, the 

characterization of spatial variability effects on soil hydraulic properties has been of great 

interest for decades (Miller and Miller, 1956; Willis, 1960; Warrick et al., 1985, Sharma and 

Luxmoore, 1979; Warrick and Yeh, 1990; Tuli et al., 2001; Khaleel et al., 2002; Zhu and 

Mohanty, 2002; Lu and Zhang, 2004; Assouline and Or, 2006; Schlüter et al., 2012; Sadeghi et 

al., 2012a; Deng and Zhu, 2015). 

To improve the computational efficiency of numerical simulations and avoid potential challenges 

associated with detailed characterization of highly heterogeneous porous media, various 

upscaling approaches have been developed to estimate “effective” hydraulic properties of a 

hypothetically homogenous medium that is equivalent to the heterogeneous medium. Because 

the unsaturated hydraulic conductivity (K) as a function of pressure head (h) exhibits higher 

variability in complex heterogeneous media than the soil water characteristic, most of the 

proposed upscaling methods have been focused on K (e.g., King, 1989; Kitanidis, 1990; Saucier, 

1992; Renard and de Marsily, 1997; Neuweiler and Eichel, 2006; Neuweiler and Vogel, 2007, 

Samouelian et al., 2007; Hunt and Idriss, 2009).   

Mualem (1984) studied the anisotropy of unsaturated layered soils considering the well-known 

averaging law that holds for saturated conditions (Freeze and Cherry, 1979). He stated that 

effective K in a layered system equals to the arithmetic and harmonic mean of the individual 

hydraulic conductivities for flow parallel and perpendicular to the layers, respectively. Yeh et al. 
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(1985) confirmed validity of this general law based on a stochastic analysis framework. 

However, later Yeh and Harvey (1990) challenged these previous findings illustrating that the 

geometric mean is a better estimate for the effective K than the arithmetic or harmonic means.   

Preuss (2004) further tested the applicability of the harmonic mean as effective K. He applied the 

van Genuchten (1980) K(h) function to examine 1D (i.e., layering) and 2D heterogeneities and 

found that the harmonic mean yields reasonable approximations for unsaturated flow in 

relatively small domains, while the results were less accurate for larger scales. Tang et al. (2008) 

studied the flow characteristics of layered soils with the contour bar model based on the 

composite medium approximation (COMA) approach introduced by Preuss (2004). Their work 

was limited to layered soils with two different materials and by some means confirmed the 

validity of COMA for steady state conditions. 

The conclusions of Preuss (2004) have been also verified by Warrick (2005) and Sadeghi et al. 

(2014). Based on the steady state Darcy velocity, they studied effective K for several layered soil 

profiles consisting of repetitive layers with homogeneous sublayers of various thicknesses. They 

found that the effective K approaches the weighted harmonic mean of the sublayer unsaturated 

hydraulic conductivities only when the thickness of each main layer is relatively small. Results 

of Sadeghi et al. (2014) indicated a nonuniform and complex relationship for the effective K(h) 

function when sublayers exceeded a certain thickness. 

Applying the Gardner (1958) K(h) function, Zhu (2008) studied flow in randomly-varied soils to 

examine the validity of different averaging approaches for effective K. He concluded that for 

steady state vertical flow with vertical heterogeneity, the equivalent K falls between the 

harmonic and geometric means; for coarse-textured soils and higher degrees of heterogeneity K 

is closer to the geometric mean. Deng and Zhu (2015) investigated the anisotropy and effect of 
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domain size and layer composition in two- and three-layer soils. They suggested that a proper 

quantification of anisotropy is required for larger flow domains, where the application of the 

harmonic mean would result in significant errors. 

In most of the previous studies, including the work cited above, 1D heterogeneous systems were 

assumed to be either layered systems consisting of two or more homogeneous layers (e.g., 

Sadeghi et al., 2014), or a uniformly heterogeneous profile consisting of random spatial 

variability (e.g., Zhu, 2008). To our best knowledge, there is no study that considers both the 

effects of layering and random variability concurrently. Because natural layered soils also exhibit 

random variability, we explore effective K(h) functions for such systems in this study, which is 

an extension of the Sadeghi et al. (2014) approach that only considered layering effects. It is 

demonstrated that the neglect of random variability can potentially lead to significant errors 

when calculating the effective K(h) function for highly heterogeneous soils.  

2. Theoretical Background 

Isothermal steady state evaporation during stage II (i.e., the drying/evaporation front is below the 

soil surface), can be expressed with the Buckingham-Darcy law (Buckingham, 1907) considering 

the contributions of liquid and vapor flow to the unsaturated hydraulic conductivity:  

    
  

  
            

  

  
                                                                                (1) 

where h is the pressure head (the absolute value is considered for convenience), z is the vertical 

distance from the water table (WT) to the soil surface (i.e., z = 0 at the WT and z = WT depth at 

the soil surface), e is the steady state evaporation rate, Kl and Kv are the liquid and vapor 

hydraulic conductivities, respectively, and K = Kl + Kv.  
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Solving for z, Eq. (1) yields: 

   
    

      
   

 

 
                                                                                                               (2)  

Solution of Eq. (2) yields the pressure head distribution, h(z), above the WT (see Fig. 1 in 

Sadeghi et al., 2014). For a known evaporation rate (e), Eq. (2) can be solved to determine the 

vertical distance (Dmax) between the water table and the drying front (DF):  

      
    

      
   

    

 
                                                                                                          

(3) 

where hmax is the pressure head at the DF.  

An exact analytical solution to Eq. (3) is provided in Sadeghi et al. (2012b) for a simple power 

form of the K(h) function. For more complex K(h) functions (e.g., the van Genuchten-Mualem 

model), there is no exact analytical solution to Eq. (3). Nonetheless, Sadeghi et al. (2014) 

derived an approximate analytical solution to Eq. (3) for any arbitrary K(h) function assuming:  

                                                                                                                                     

(4) 

where he is the pressure head at which K = e. Equation (4) states that pairs of e - Dmax values 

coincide with the unsaturated hydraulic conductivity curve, K(h), which means that the steady-

state evaporation rate exhibits a measure for unsaturated hydraulic conductivity at the pressure 

head equal to Dmax. In summary, when h = Dmax, K = e. The applicability of this approach for 

coarse-textured media is due to the assumption of a symmetrical shape of 1/[K(h) + e] in the 

derivation steps, which is not accurate for fine-textured media. Sadeghi et al. (2014) indicated 

that the resulting K(h) curve holds for the entire Dmax domain, which means that for 
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heterogeneous soils it represents the “effective” unsaturated hydraulic conductivity of the entire 

heterogeneous profile. Therefore, this method provides a unique opportunity to directly calculate 

the effective K curve for various arbitrary heterogeneous soil profiles via forward steady-state 

simulations based on the Buckingham-Darcy law (Buckingham, 1907). This approach is 

computationally more efficient and much simpler than the conventional inverse solution 

approach based on Richards’ equation (Richards, 1931). In addition, this new method is not 

restricted to a specific mathematical form of the K(h) function, and therefore more appropriate 

than the inverse solution for layered soils, where the effective K(h) curve may substantially differ 

from the conventional unimodal K(h) functions (Sadeghi et al., 2014). 

3. Materials and Methods 

3.1. Investigated Heterogeneous Soil Profiles 

In this study, 1D heterogeneity perpendicular to the flow direction has been considered. Effective 

K(h) functions for one-, two-, and three-layer soil profiles were numerically simulated based on 

the Sadeghi et al. (2014) approach. For each layer, a distinct soil was used as reference. Each 

layer contained numerous increments of 0.1-cm thickness each with randomly-varied hydraulic 

properties. Hence, the total number of increments was variable depending on the extent of the 

liquid flow domain above the WT (i.e., Dmax). 

The van Genuchten (VG) (1980) hydraulic conductivity model was applied:    

     
                      

 

                                                                                                          

(5) 
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where  , n, and m are empirical model parameters with the assumption m = 1 − 1/n. Note that Kv  

was not considered in this study, because the analysis was limited to the liquid flow range 

following Sadeghi et al. (2014).  

Four coarse-textured soils with VG parameters listed in Table 1 were selected from literature as 

reference soils; Sand-1 from Smits et al. (2012), Loveland Sand from Anat (1965), Hygiene 

Sandstone from van Genuchten (1980), and Packed Sand from Minasny et al. (2004).  

Insert Table 1 

Miller and Miller (1956) similar-media scaling theory was applied to generate random variability 

for each increment by considering randomly-generated scaling factors. A lognormal distribution 

was used for generation of the random scaling factors. This assumption is based on actual field 

observations (e.g., Warrick et al., 1977; Kosugi and Hopmans, 1998) indicating that the spatial 

variability of soil hydraulic properties can be adequately represented by a single stochastic 

scaling factor, which commonly exhibits a lognormal distribution.   

Assuming validity of the Miller and Miller (1956) theory, Sadeghi et al. (2016) related the Miller 

and Miller scaling factor to the scale parameters of common unimodal soil hydraulic functions. 

The relationships for the VG model are given as: 

            
   

                                                                                                    

(6) 

where λ is the randomly generated scaling factor for each increment, and subscripts R and i 

denote the reference soil and soil at the increment i, respectively. This means that greater scaling 

factors increase the saturated hydraulic conductivity and shift the air entry pressure value closer 
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to zero, while the slope of the K(h) curve remains unchanged. This mimics a pore size 

distribution with higher mean but the same standard deviation. 

For the one-layer scenario, 4 one-layer profiles corresponding to the 4 reference soils (Table 1) 

were studied. All the increments were assumed to be randomly-varied via the random scaling 

factors and related to the reference soil through Eq. (6). The lognormal distributions applied for 

generation of the scaling factors were assumed to have a mean of 0 (Warrick et al., 1977; Kosugi 

and Hopmans, 1998) and standard deviations (SD) of 0.01 (i.e., negligible variability) and 0.1 

(i.e., significant variability). The “lognrnd” function embedded in the Matlab 8.0 statistics 

toolbox (MathWorks, Inc., Natick, MA, USA) was applied for generation of the random scaling 

factors. It should be noted that the randomness pattern was kept the same for all one-layer 

columns. 

For the two- and three-layer scenarios, we considered one specific layering for each scenario. For 

the two-layer scenario, a 40-cm layer of Loveland Sand on top of a 23-cm Sand-1 layer was 

considered. For the three-layer system, we used 100-cm Packed Sand on top of 15 and 20-cm 

Loveland Sand and Sand-1 layers, respectively. The random variability within each layer for 

both the two- and three-layer scenarios was also considered. Note that the layer thicknesses were 

chosen such that the relationship between effective K(h) and K(h) for all individual increments 

could be visually discerned in the graphs.  

3.2. Numerical Simulations 

Steady state evaporation for the heterogeneous profiles discussed above was numerically 

simulated with Eqs. (3), (5) and (6) with e as an arbitrary input parameter. Dmax(e) as an 

approximation for h(K) was calculated based on the following pseudocode (see also Fig. 1): 



  

10 
 

I. Let i = 0, 

II. Calculate hi+1 such that the following equation holds (h0 = 0):  

            
  

    
   

    

  
                                                                                              

(7) 

III. Let i = i + 1, 

IV. Repeat steps II and III until either hi+1 > hmax (i.e., h at which Kl = Kv) or Eq. (7) does not 

converge for hi+1 (this occurs for the final Δz because dh/dz → ∞).  

V. Calculate δ as: 

   
    

      
   

    

  
                                                                                                             

(8)          

VI. Calculate Dmax as: 

                                                                                                                                

(9) 

 

Insert Figure 1 

Note that the integrals in Eqs. (7) and (8) were solved with the “fzero” function in Matlab 8.0.   

The evaporation rate (e) was considered as an arbitrary input and kept constant for each 

individual simulation. However, simulations were performed for a wide range of e values to 

yield the effective K within that range. Sadeghi et al. (2014) suggested the upper limit of e 

applicable to homogeneous soils to be two orders of magnitude lower than Ks. Here we 

considered the limit to be two orders of magnitude lower than the geometric mean of Ks of all 

increments. The lower limit of e was assumed to coincide with 10
-7

 cm d
-1

, because the proposed 



  

11 
 

analysis applies only to the liquid flow domain. According to the K(hmax) values of the reference 

soils listed in Table 2, the lower limit falls within the liquid flow domain for all soils. 

Insert Table 2 

4. Results and Discussion  

4.1. Random Variability Effects  

Simulation results for the 4 one-layer soil columns are depicted in Figs. 2 and 3 for scaling factor 

standard deviations of 0.01 (i.e., negligible random variability) and 0.1 (i.e., significant random 

variability). The effective K-h data are equivalent to the e-Dmax pairs obtained from the numerical 

simulations. It is obvious that the Sadeghi et al. (2014) approach not only enables estimation of 

effective unsaturated hydraulic conductivity, but also allows quantification of the effect of each 

increment’s variability on the effective K(h) curve. The former is evident from Fig. 2, which 

shows that the e-Dmax pairs (effective K in the plots) coincide with the reference K(h) curve, and 

the latter is exhibited in Fig. 3. 

Figure 3 clearly shows that the effects of random variability on effective K investigated here is 

different from the effects of periodic variability studied previously (e.g. Warrick, 2005; 

Neuweiler and Eichel, 2006; Zhu and Warrick, 2012; Sadeghi et al., 2014). For cases of periodic 

variability with extremely small increments, the effective K approaches the harmonic mean of 

the individual K curves. This is contradicted by results for random variability depicted in Fig. 3 

that indicate that effective K falls between the geometric and harmonic mean even though the 

length increments are very small (i.e. 0.1 cm). Note that in natural systems the occurrence of 

random variability is more likely than periodic variability. 
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Zhu (2008) reported similar findings based on a general p-norm averaging scheme that was 

introduced by Journel et al. (1986) with an exponent p ranging from -1 to 1 such that p = 1, 0, 

and -1 represent the arithmetic, geometric and harmonic means, respectively. Our results are 

more general than results reported in Zhu (2008). We applied the more realistic VG model (our 

approach is generally amenable to any arbitrary K(h) function), while Zhu’s findings are based 

on the application of the Gardner (1958) exponential hydraulic conductivity function. 

Furthermore, Zhu (2008) only reported the fitting averaging power (−1 < p < 0), while the 

detailed effective K(h) relationship exhibited in Fig. 3 cannot be obtained with the p-norm 

averaging scheme. This demonstrates the utility of Sadeghi et al. (2014) approach, which has its 

own limitations for coarse-textured soils as discussed in Lehmann et al. (2015) and Sadeghi et al. 

(2015). 

Insert Figure 2 

Insert Figure 3 

Results of this study reveal a close relationship between the hydraulic properties of each 

increment and the resultant change in the effective K in that increment. As depicted in Fig. 4, the 

patterns of the spatial distribution of the scaling factors along the soil profile and the patterns of 

the slope of the effective K(h) curve on the logarithmic scale are similar, especially when the SD 

is small. The slope was quantified by the angle of the curve relative to the horizon within the 

range [−π/2, 0], where −π/2 and 0 correspond to vertical and horizontal lines, respectively. It 

should be noted that the effective K(h) curves in Figs. 2 and 3 resulted from the specific order of 

random increments, and hence, are associated with one of many possible realizations. 

It is evident that increments with scaling factors larger than 1 (corresponding to coarser soils) 

tend to increase the slope of the effective K curve, which means a higher rate of decrease of 
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effective K per unit increase of pressure head. On the other hand, increments with scaling factors 

smaller than 1 push the effective K curve towards the vertical line, which translates to a lower 

rate of decrease of the effective K per unit increase of pressure head. This trend becomes biased 

when the SD (i.e., random variability) increases, because a more vertical slope due to any fine 

increment propagates through many increments, while a more horizontal slope hardly spans 

more than a few increments. Coarser increments play an important role here as a highly negative 

slope (a jump) occurs right after any coarse increment (i.e., plateaus observed in the effective 

K(h) curve). A pronounced example for such case is the observed jump around K = 10 cm d
-1

 for 

Sand 1 in Fig. 3.   

Insert Figure 4 

As shown in Figs. 2 and 3, the VG model was fitted to the effective K(h) curve to more 

specifically determine where the effective curve falls between the reference soil and harmonic 

mean curves. The fitted VG curve was obtained with a fitting scaling factor, λeff. Similarly, a 

scaling factor λhm best describing the harmonic mean curve was calculated for each soil profile. 

Note that the geometric mean coincides with the reference curve (i.e., λ = 1).  

Figure 5 depicts the obtained λeff and λhm scaling factors for the 4 one-layer profiles. The range of 

the SD of the lognormal distributions was extended beyond 0.1 to better visualize the trend. 

Figure 5 shows that the effective K curve is almost centered between the geometric and harmonic 

means for the Loveland Sand and Hygiene Sandstone, while it is closer to the harmonic mean for 

Sand-1 and Packed Sand. This finding somewhat contradicts Zhu (2008), who concluded that 

“for coarse-textured soils and a more heterogeneous landscape, the equivalent hydraulic 

conductivity should move more towards the geometric mean”. This comparison further 

emphasizes the importance of the variability structure and also the interrelation between α and Ks 
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as also highlighted in Zhu (2008). While the Miller and Miller type variability studied here 

implicitly assumes a perfect correlation (r-squared = 1) between α and Ks (Eq. (6)), Zhu (2008) 

considered an imperfect correlation (r-squared < 1) between α and Ks. An evaluation of the 

validity of the Miller and Miller scaling theory and the interrelation between α and Ks for natural 

soils in Sadeghi et al. (2016) indicated that the perfect correlation between α and Ks does not 

necessarily hold in reality, and hence, the simultaneous scaling (i.e., equality of scaling factors 

for h and K, Eq. (6)) is not always a valid assumption. 

Insert Figure 5 

4.2. Concurrent Random Variability and Layering Effects  

Figure 6 depicts concurrent effects of layering and random variability on the effective K curve 

for the two- and three-layer soil profiles. The sole effect of layering is evident for a SD = 0.01 

(i.e., negligible random variability). As observed here and concluded in Sadeghi et al. (2014), the 

layering effect can be generalized as “Each layer’s individual curve contributes to the effective 

curve at h equal to the distance of the layer to the water table and the effective curve transitions 

from the individual curve of the bottom layer to the individual curve of the top layer when h 

exceeds the distance of the layer interface to the water table” (see Fig. 10 in Sadeghi et al., 

2014). When random variability is added (i.e. SD = 0.1), the effective curve shifts downwards 

and appears noisier.  

A close inspection of the λeff scaling factors obtained for the two-layer profile reveals that λeff for 

the bottom layer (Sand-1) remains almost unchanged when compared to the one-layer Sand-1 

profile, while λeff of the top layer (Loveland Sand) is larger than λeff of the Loveland Sand one-

layer profile. This moves the position of the effective K curve closer to the harmonic mean. As 
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evident from Fig. 6, this trend is more pronounced for the lower increments of the top layer (i.e. 

increments closer to the interface). This increase in λeff is also observed for the middle and the 

upper layers of the three-layer profile. To explore the generality of this behavior, we tested a few 

different arrangements of the random sublayers and observed the same behavior for all 

arrangements. 

These observations indicate that layering not only affects the effective K on its own, but also 

magnifies the random variability effect (i.e. shifting the effective curve further down). This 

means that the higher the degree of heterogeneity, the lower the effective conductivity. 

Therefore, neglecting either random spatial variability or layering in numerical simulations can 

lead to significant overestimation of water flow in soils. This is in agreement with findings of 

Botros et al. (2012). 

Insert Figure 6 

4.3. Comparison with the Simplified Evaporation Method  

It is well documented that, regardless of the type of the upscaling method, the estimated effective 

properties depend not only on the properties of the constituent materials, but also on the 

boundary conditions (Vereecken et al., 2007). Therefore, the effective K curves presented in this 

study are not necessarily valid for other flow processes such as infiltration or transient 

evaporation. This limitation is inevitable for layered profiles as it is not possible to define a 

“representative elementary volume” (REV) descriptive for the entire soil profile. For example, if 

we compare infiltration with evaporation from a deep groundwater table in a deep two-layer 

profile, the effective K for the infiltration process is equivalent to the K of the surface layer 

provided that it is thick enough, while the effective K for the evaporation process is equivalent to 
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the K of the bottom layer provided that the groundwater table is deep enough (i.e., the bottom 

layer encompasses the entire liquid flow domain).  

Unlike for layered soils, this restriction may not apply to soils with random spatial variability, 

because a REV can be usually defined for such soils (i.e., the heterogeneity structure is similar 

along the profile); hence the effective K obtained with the steady-state evaporation method might 

be valid for other flow processes besides steady state evaporation, which is investigated in the 

following. 

To evaluate the applicability of effective K for transient evaporation, the simplified evaporation 

method (SEM) (Peters and Durner, 2008) was applied to estimate the hydraulic properties of the 

4 randomly-varied one-layer profiles described above. The SEM is commonly applied for 

measuring the water characteristic and hydraulic conductivity curve in the laboratory. A 6-cm 

tall soil sample with 2 miniature tensiometers installed in 1.5 and 4.5-cm depths is commonly 

employed for this experiment. The soil column is first saturated and then exposed to the 

atmosphere for water to evaporate from the surface, while the change of mass (i.e. evaporation 

rate) is continuously recorded throughout the experiment. The soil water characteristic is 

obtained from the relationship between the average water content and the average pressure head 

known from the tensiometer readings. The unsaturated hydraulic conductivity curve is estimated 

from the relationship between evaporation rate and pressure head gradient based on the 

Buckingham-Darcy law (Buckingham, 1907). 

We applied the HYDRUS-1D numerical code (Simunek et al., 2008) to simulate transient 

evaporation from 6-cm tall soil columns randomly sampled from the studied randomly-varied 

soil profiles. For each soil we performed two evaporation simulations, one for SD = 0.01 and one 
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for SD = 0.1. The K(h) curve of the samples was then estimated with the SEM based on 

simulated values for average water content, tensiometer readings and evaporation rate.  

Figure 7 depicts a comparison of K(h) curves obtained with the SEM and the effective K(h) 

curve for the entire one-layer profiles obtained with the steady state method (Sand-1 has been 

excluded due to instabilities of numerical results for such a coarse and heterogeneous medium). 

Though there are evident discrepancies for Hygiene Sandstone, K(h) curves obtained with both 

methods compare reasonably well. These findings postulate that the effective K(h) curve for a 

random variability structure is relatively invariant with respect to boundary conditions and thus it 

can be applied for other flow processes besides steady state evaporation. The K(h) curve 

obtained with the steady-state method is smoother than the curve of the SEM, especially for the 

case of SD = 0.01. This is mainly attributable to the much larger sample investigated with the 

steady state method. According to homogenization theory, a soil sample can be assumed as 

homogenous if the sample size is much larger than the scale of the heterogeneity structure 

(Neuweiler and Eichel, 2006).  

Insert Figure 7 

4.4. Limitations due to 1D Heterogeneity  

All analyses in this paper are based on the assumption of a 1D heterogeneity structure. In other 

words, the presented effective K(h) curves are valid only for their respective 1D realizations with 

the specific order of random sublayers. A 1D structure rarely occurs in nature and 2D and 3D 

patterns would be more realistic. Considering that 2D and 3D media include many 1D 

realizations, it can be intuitively predicted that the steady-state evaporation method should result 

in smoother effective K(h) curves from 2D and 3D simulations. As an example, average effective 
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K(h) for 50 different realizations of random 1D patterns for Sand-1 and Loveland sand is 

depicted in Fig. 8. We would expect similar results from 2D and 3D simulations as shown in Fig. 

8, provided that lateral flow in negligible. Comparing Figs. 8 and 3, we predict that the location 

of the effective curve (i.e., λeff) would not be significantly different between 1-, 2- and 3-

dimensional heterogeneity structures. The effective K(h) curve would, however, be smoother for 

higher dimensions. 

Insert Figure 8 

5. Summary and Conclusions 

It has been demonstrated that the Sadeghi et al. (2014) steady state evaporation method enables 

estimation of the effective unsaturated hydraulic conductivity of randomly-varied and layered 

soils. Based on the forgoing analyses we conclude: 

I. The effective K is sensitive to the heterogeneity structure. For example, the effect of random 

variability on the effective K is different from effects of periodic variability. In case of 

periodic variability with extremely small increments, the effective K approaches the 

harmonic mean of the individual K curves, while the effective K of randomly-varied soils 

falls between the geometric and harmonic means.  

II. There is an intimate relationship between the hydraulic properties of each increment and the 

shape of the effective K(h) curve. An increment with higher scaling factor tends to incline 

the effective K to a horizontal line at h equal to the thickness of the specific increment, 

while increments with lower scaling factors pushes the effective K curve towards the 

vertical line.  
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III. Layering and random variability when occurring concurrently magnify each other’s effects 

on effective K. When random variability is added to a layered profile, the effective K(h) 

curve is shifted downwards. In addition, layering affects the effective K(h) curve not only on 

its own, but also magnifies the random variability effect to further decrease effective K. In 

other words, the higher the degree of heterogeneity, the lower the effective K. Therefore, 

neglecting either random spatial variability or layering in numerical simulations leads to 

significant overestimation of water flow in soils. 

IV. The effective K estimated based on the steady state method is a process-dependent property 

of layered systems (i.e., no REV). However, the effective K is process-independent for 

randomly-varied soils for which a REV can be defined and thus can be applied for other 

flow processes besides steady state evaporation. Here we only examined transient 

evaporation but further studies are required to assess the validity of this claim for other 

scenarios such as infiltration. 

The application of the presented approach to study effective hydraulic conductivity of 2D and 3D 

heterogeneity structures is part of ongoing research. 
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Figure Captions 

Fig. 1:  Sketch depicting the numerical simulation scheme and random variability for a one-layer 

system. Calculations were performed for i sublayers with thickness Δz, starting from the 

water table up to the drying front. Hydraulic properties for each layer were determined 

using a random scaling factor applied to a reference soil. The pressure head at each 

interface, hi, was calculated with Eq. (7). Calculations continued until h approached hmax. 

Location of the drying front, Dmax, was then calculated as iΔz + δ, where δ was solved 

using Eq. (8).    

Fig. 2:  Effective unsaturated hydraulic conductivity of one-layer soil profiles with random 

spatial variability generated from randomly-varied scaling factors based on a lognormal 

distribution with mean and SD of 0 and 0.01, respectively. 

Fig. 3:  Effective unsaturated hydraulic conductivity of one-layer soil profiles with random 

spatial variability generated from randomly-varied scaling factors based on a lognormal 

distribution with mean and SD of 0 and 0.1, respectively. 

Fig. 4:  Spatial distribution of scaling factors along the soil profile (left) compared to the angles 

β of the slopes of the effective K curves (on logarithmic scale in radians) for the 

Loveland Sand profile with a SD of 0.01 (top) and 0.1 (bottom).  

Fig. 5:  Overall position of the effective K(h) curve between the geometric and harmonic means 

of the K(h) curves of individual increments for one-layer soil profiles with various 

random variability (SD) levels.  

Fig. 6:  Effective unsaturated hydraulic conductivity of two- (top) and three-layer (bottom) soil 

profiles with random spatial variability generated from randomly-varied scaling factors 
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based on a lognormal distribution with mean equal to 0 and SD of 0.01 (left) and 0.1 

(right). 

Fig. 7:  A comparison of K(h) curves determined with the simplified evaporation method (SEM) 

and the steady state evaporation method. 

Fig. 8:  Effective unsaturated hydraulic conductivity of one-layer soil profiles with random 

spatial variability generated from randomly-varied scaling factors based on a lognormal 

distribution with mean and SD of 0 and 0.1, respectively. The effective K curves were 

obtained by averaging 50 different realizations of the random profile.  

 

 

  



  

http://ees.elsevier.com/hydrol/download.aspx?id=1072114&guid=11f5b57c-75dc-40a9-96cd-21115f3218ed&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072115&guid=05b9f443-3acb-451b-a1a0-30f3380110c0&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072116&guid=5c638f0b-05d3-49cc-be8f-545b10557c2b&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072117&guid=4a9345cc-693e-4aa6-9a1a-c26b3679fc5d&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072118&guid=b3c72af3-1e49-4316-b4ff-6711cc4da132&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072119&guid=46a7a9a1-e89a-4cfd-9a40-480b32d476cb&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072120&guid=b0813683-15cd-4b03-8b56-20a52c4c567b&scheme=1


  

http://ees.elsevier.com/hydrol/download.aspx?id=1072121&guid=91a116d8-2b2c-433d-be8b-f757a5ed2edd&scheme=1


  

28 
 

 

Research Highlights: 

 

- Effective K(h) curves for randomly-varied and layered soils were determined 

- Effective K(h) is sensitive to the heterogeneity structure 

- Effects of layering and random variability magnify each other 

- Neglect of layering or random variability leads to overestimation of water flow 
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Table 1: van Genuchten (1980) parameters for investigated soils. 

Soil Name α (cm
-1

) n Ks (cm d
-1

) 

Sand-1  0.0570 17.80 9158.4 

Loveland Sand  0.0490 9.79 945.3 

Hygiene Sandstone  0.0079 10.40 108.0 

Packed Sand 0.0290 4.64 43.7 
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Table 2: Pressure head, hmax, and hydraulic conductivity, K(hmax), at the upper boundary of the 

liquid domain (i.e. drying front). 

Soil Name 
hmax 

(cm) 

Kl (hmax) 

(cm d
-1

) 

Sand-1  31.63 4.49E−8 

Loveland Sand  53.70 6.42E−8 

Hygiene Sandstone  331.13 1.98E−9 

Packed Sand  199.92 9.07E−8 

 

 

 

 


