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Calibrating conceptual hydrological models is often done via the optimization of objective functions
serving as a measure of model performance. Most of the objective functions used in the hydrological lit-
erature can be classified into distance- and weak form-based objective functions. Distance- and weak
form-based objective functions can be seen respectively as generalizations of the square error and bal-
ance error. An analysis of the objective functions shows that: (i) the calibration problem is transformed
from an optimization problem with distance-based objective functions into a root finding problem for
weak form-based functions; (ii) weak form-based objective functions are essentially less prone to local
extrema than distance-based functions; (iii) consequently, they allow simple gradient-based methods
to be used; (iv) parameter redundancy can be assessed very simply by superimposing the contour lines
or comparing the gradients of two objective functions of similar nature in the parameter space; and (v)
simple guidelines can be defined for the selection of the calibration variables in a conceptual hydrological
model. The theoretical results are illustrated by two simple test cases. Weak form-based approaches offer
the potential for better-posed calibration problems, through the use of a number of independent criteria
that matches the dimension of the identification problem. In contrast with distance-based objective func-
tions, they do not have the inconvenience of solution non-uniqueness. Finally, the need for models with
internal variables bearing a physical meaning is acknowledged.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Calibration is recognized as an essential step in the operation of
conceptual, hydrological models. It is classically translated into an
optimization problem, whereby an objective function expressing
the goodness-of-fit of the model, must be minimized or maximized
depending on the definition. Although several authors have
pointed out the importance of seeing calibration as a multi-objec-
tive optimization exercise using variables and criteria of different
natures (Yapo et al., 1998; Gupta et al., 1998; Meixner et al.,
1999), it is still conducted as a single-objective optimization proce-
dure in a vast majority of practical applications. The same holds for
model performance assessment that is often performed using the
same type of objective functions as those used in the calibration
process. Such analyses are usually performed on the basis of
empirical considerations, for which formal foundations are lacking.
Although there is a commonly shared perception of the calibration/
validation exercise in the hydrological community, this lack of the-
oretical bases often does not allow reliable guidelines to be
derived.
ll rights reserved.
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The present paper focuses on two types of objective functions:
so-called distance-based and weak form-based (or integral) objec-
tive functions (see Section 2 for a definition). The purpose is to ana-
lyse the behaviour of such functions and to determine under which
conditions some may be better-suited than others. The choice of
the model variable(s) to be used in the calibration process is also
discussed. The behaviour of distance-based and weak form-based
objective functions is analysed theoretically and illustrated by
two simple case studies.

Distance-based objective functions represent the vast majority
of objective functions used in hydrological modelling (Kavetski
et al., 2006b; Schaefli and Gupta, 2007). Distances may be defined
for the original (Kavetski et al., 2006a) or transformed variables. In
Hogue et al. (2000, 2006) and Kavetski et al. (2006b), a logarithmic
transformation error is presented. The Nash–Sutcliffe Efficiency
(NSE) criterion (Nash and Sutcliffe, 1970), based on a Square Error
(SE) measure of distance, is definitely the most widely used objec-
tive function in hydrological modelling. It is a normalized variant
of the Least Square Estimator (LSE), and gives equivalent informa-
tion to that given by the Mean Square Error (MSE), or Root Mean
Square Error (RMSE). A number of theoretical justifications can
be provided for the NSE. For instance, the NSE optimum corre-
sponds to the Maximum Likelihood Estimator for a homoscedastic,
Gaussian distribution of model errors (Cacuci, 2003). This justifies
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its use in model performance evaluation and uncertainty assess-
ment techniques such as the GLUE approach (Beven and Binley,
1992; Beven, 1993; Romanowicz and Beven, 2006). The NSE can
also be seen as the sum of three indicators (Murphy, 1988;
Weglarczyk, 1998) involving the correlation coefficient between
the measured and modelled variable, as well as a measure of
conditional and unconditional bias. Gupta et al. (2009) provided
another decomposition of the NSE involving the correlation, the
bias and a measure of relative variability in the measured and
modelled signals.

The NSE is not the only possible measure of distance. In Perrin
et al. (2001) the Mean Absolute Error (MAE) is proposed. It can
be normalized into a dimensionless index such as the volumetric
efficiency (Criss and Winston, 2008). In Legates and McCabe
(1999), the Nash–Sutcliffe efficiency criterion is generalized by
replacing the square of the deviations with a power to be adjusted
by the modeller. The purpose is to balance the larger weight given
to large flow values (that are often measured with the larger
imprecision) by using a power smaller than 2 (Krause et al.,
2005). Taylor (2001) proposed alternative skill functions that in-
crease with better correlation or modelled variance while giving
those varying relative importance. To overcome the deficiency of
the original GLUE method in reflecting modelling uncertainty,
more formal derivations of likelihood functions (e.g., Schoups and
Vrugt, 2010) or empirical adaptations of the approach (Cappelaere
et al., 2003; Xiong and O’Connor, 2008) have been proposed.

Lin and Wang (2007) use the inverse of the SE and the NSE for
computing respectively the efficiency of chromosoms and the
objective function in a genetic, global optimization algorithm. Sev-
eral objective functions may also be defined for low flows or peak
flow events, so as to allow for multi-objective calibration (Madsen,
2000; Madsen et al., 2002). Multi-objective calibration may also be
carried out using variables of different natures (such as response
signatures, see Pokhrel et al. 2009; Seibert and McDonnell, 2002).
A review of multi-objective calibration approaches can be found
in Efstratiadis and Koutsoyiannis (2010). Conversely, multiple dis-
tance-based objective functions may be aggregated into a single
one (Madsen et al., 2002; Cappelaere et al., 2003; Schoups et al.,
2005). Additional information may be brought by integral criteria
such as the bias (Hogue et al., 2006; Schoups et al., 2005), volume
error (Madsen, 2000), also called Cumulative Error (CE) (Perrin
et al., 2001).

Distance-based objective functions are well-known to introduce
local minima in model response surfaces (Freedman et al., 1998;
Skahill and Doherty, 2006; Xiong and O’Connor, 2000). In
Freedman et al. (1998), distance-based objective functions such
as the Least Squares Estimator (LSE) and the Heteroscedastic
Maximum Likelihod Estimator (HMLE) are shown to introduce lo-
cal extrema in the objective functions of a sediment transport
model, thus introducing the need for global optimization or objec-
tive function exploration algorithms (see e.g. Brazil and Krajewski,
1987; Goldberg, 1989; Nelder and Mead, 1965; Skahill and
Doherty, 2006; Duan et al., 1992). Modelling experiments where
the LSE and HMLE were used to calibrate and validate different
models on the same data indicated that the choice of the objective
function plays a significant role on the final, calibrated parameter
values (Gan et al., 1997).

Weak form-based objective functions are somewhat less popu-
lar, as indicated by the inventory in Appendix A. The best-known
weak form-based objective functions are the Cumulative Error
(CE) (Perrin et al., 2001), also called Volume Error (Madsen,
2000), and the Balance Error (BE) (Perrin et al., 2001). The BE is
nothing but a scaled version of the CE. The variable used in the
CE and BE is usually the discharge at the outlet of the modelled
catchment. The optimal value of the BE or CE is zero. The BE or
CE may be used either as a constraint (typically, CE = 0) in a
single-objective optimization process or as an objective function
in a multiple objective calibration exercise (see e.g. Ruelland
et al., 2009). That the BE or CE is only a particular case and can
be generalized so as to generate a wider family of weak form-based
objective functions has been little investigated in the literature.
This is one of the aspects explored in this paper.

The question also arises of whether using additional variables
(such as model internal variables) allows the calibration problem
to be better constrained. This is of particular interest as new
sources of information are now available to account for storage
observations in conceptual modelling (e.g., Werth et al. 2009;
Winsemius et al., 2006).

The present paper deals with objective functions for conceptual
hydrological models that can be described by first-order differen-
tial equations. The main objectives are to (i) generalize the formu-
lation of weak form-based objective functions, (ii) analyze the
respective behaviour of distance-based and weak form-based
objective functions and the resulting degree of difficulty and reli-
ability in the calibration exercise, (iii) investigate whether certain
model variables (e.g. internal variables or output fluxes) bring
more information than others in the calibration of model
parameters.

In Section 2, distance-based and weak form-based objective
functions are defined and a mathematical justification is proposed
for them.

In Section 3, the behaviour of such objective functions when ap-
plied to conceptual models is analyzed. Weak form-based objective
functions are shown to be more monotone and less prone to local
extrema than distance-based objective functions. Simple rules for
detecting parameter redundancy are given and guidelines are pro-
vided for the choice of calibration variables.

Sections 4 and 5 provide two application examples. In Section 4,
a single reservoir model is considered and synthetic time series are
used in order to avoid any possible site-dependent bias. In Section
5, a three-reservoir model is applied to a Western African
catchment.

Section 6 is devoted to a discussion and concluding remarks.
Weak form-based approaches are shown to offer the potential for
better-posed calibration problems. This can be achieved by defin-
ing a number of independent functions that matches the dimen-
sion of the identification problem.
2. Objective function definition

2.1. Introduction

Consider a model in the form

dU
dt
¼ f ðU;u; tÞ ð1Þ

where U is the state variable, t is the independent variable (in
hydrological modelling, the time coordinate), u a parameter to be
calibrated, and f is a known function of U, t and u. The standard cal-
ibration approach consists in comparing the variable U or a function
F(U) of U with an observed variable V(t) over a certain domain
X = [t1, t2] and adjusting u in such a way that U (or F(U)) is «as close
as possible» to V. In what follows, the function F is assumed to be a
monotone function of U and u. This assumption is verified by many
models such as conceptual models, where F can be, for instance, ta-
ken as the discharge Q that is a function of water storage U (see Sec-
tion 4). In the general case, where F is not necessarily a physical
function but any scaling function, it is chosen monotone in order
to avoid several values of F(U) for a given value of U.

The question then arises of how the closeness between U (or
F(U)) and V should be assessed via an objective function. If the
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model is perfect, the output U or F(U) reproduces exactly the vari-
ations of the measured variable V, that is, U = V or F(U, u) = V for all
t over the time interval X (the issue of data accuracy and measure-
ment precision is not considered in the present work).In practice,
this is never the case and the purpose of the calibration procedure
is to bring the difference (U – V) or (F(U, u) – V) as close to zero as
possible. Two types of objective functions are examined hereafter:
distance-based and weak form-based objective functions.

2.2. Distance-based objective function

The distance-based approach is the most widely used in hydro-
logical modelling. In this approach, the objective function is de-
fined as one of the following two functions

J ¼ aþ bkekX ¼ aþ bkU � VkX ð2aÞ
J ¼ aþ bkekX ¼ aþ bkFðU;uÞ � VkX ð2bÞ

where a and b are respectively an offset and a scaling constant, e is
the modelling error, defined as the difference between the modelled
and observed variable, and the operator kk has the properties of a
norm (Courant and Hilbert, 1953):

uðtÞ ¼ 0 8t 2 X () kukX ¼ 0 ð3aÞ
kkukX ¼ jkjkukX 8k 2 R ð3bÞ
kuþ vkX 6 kukX þ kvkX ð3cÞ

In other words, the objective function J provides a measure of
the distance between the model output U or F(U, u) and the mea-
surement V. Property (3a) provides a fundamental justification to
the distance-based approach. If the model is perfect (that is, if it al-
lows the observed variable V to be reproduced exactly), the error e
is zero over X and the objective function J is a, which is the ex-
treme possible value. Conversely, if J is a, the model is perfect. In
practice, J is never equal to a because the model is not perfect.
However, J can be optimized by adjusting u suitably, hence the
need for optimization procedures.

If the data used in the calibration process is discrete (e.g. daily,
weekly or monthly hydrographs), the norm is computed using a
discrete sum. If the data can be considered a continuous function
of time, the norm is computed using an integral. In what follows,
only continuous functions of time will be considered for the sake
of conciseness. However, the conclusions drawn for such functions
remain valid for discrete model outputs.

Examples of distance-based objective functions are given in
Appendix A. The Nash–Sutcliffe Efficiency (NSE), the Square Error
(SE), the Root Mean Square Error (RMSE), the Mean Absolute Error
(MAE), the Volumetric Efficiency (VE) or the Generalized
Nash–Sutcliffe Efficiency (GNSE) presented in the appendix can
be recast in the form (2) via a proper definition of the constants
a and b. The NSE gives exactly the same information as the SE, only
the offset and scaling differs. The same remark holds for the MAE
and VE.

Note that:

(R1) Eq. (2a) is a particular case of Eq. (2b). Eq. (2a) provides a
measure of distance between the modelled state variable U
in the model and the measured one, V. It is recalled that,
in most applications of hydrological models, however, the
variable used in the objective function is not the state vari-
able U itself (e.g. the water depth in one of the model reser-
voirs) but a function of it (e.g. the output discharge).
Consequently, Eq. (2b) is the most widespread form of objec-
tive function used.

(R2) The function F in Eq. (2b) may also include a transformation
in the variables. For instance, in some applications the
logarithm, or square root of the discharge, is deemed a more
appropriate variable than the discharge itself because it
gives more weight to low flows.

(R3) The objective function may be defined for a specific range of
the observed (or modelled) variables. For instance, two dif-
ferent values of the objective function may be computed
over a given period, one for low flows and another one for
high flows (see e.g., Perrin et al., 2001). In this case, a weight-
ing function w(V) is used, which is nonzero only over a sub-
set of X and the norm can be written as

� �

kek ¼

Z
X

wðVÞjFðU;uÞ � V jpdt
1=p

; p > 0 ð4aÞ

kek ¼
X

i

wðViÞjFðUi;uÞ � Vijp
" #1=p

; p > 0 ð4bÞ
where w(V) is a weighting function, equal to 0 or 1 depending
on whether V is considered to belong to the category of low
[high] flows, and i is the record number. Eqs. (4a) and (4b)
are respectively the continuous and discrete versions of the
norm. In what follows, the continuous form (4a) will be used
for the sake of notation consistency, but the reader should
keep in mind that the discrete form (4b) may be used instead
without loss of generality. The conclusions derived using the
formulation (4a) also hold for the formulation (4b) of the
objective function.

(R4) In Eq. (4), any positive weighting function w may be used
over X. The simplest possible case is w = Const, but non con-
stant, positive functions of V, U, F(U) and/or t may also be
considered.

(R5) The distance-based objective functions presented in Appen-
dix A are particular cases of Eq. (4), where the norm of the
modelling error is defined as a power of its absolute value,
called a p-norm. In the NSE and SE objective functions, p = 2,
while p = 1 in the MAE and VE. In the GNSE, p may be set to
any value, which does not necessarily have to be an integer.
However, other definitions may be proposed for the norm.
For instance the maximum of the modelling error over the
domain X also verifies the definition (3a) for a norm:
kek ¼max
X
½jFðU;uÞ � V j� ð5Þ
Note that the power 1/p in Eqs. (4a and b) is not indispensable
but allows Eq. (3b) to be verified.

(R6) The calibration process is an optimization process.

2.3. Weak form-based objective function

The weak form-based approach uses the property

eðtÞ ¼ 08t 2 X ()
Z

X
eV dt ¼ 0 8vðtÞ ð6Þ

where v(t) is a function defined over X. In what follows, v is defined
as v = w|e|p�1 for the sake of similarity with Eq. (4). This leads to the
following definition for the weak form-based objective function

Jp ¼ aþ b
Z

X
wjejp�1e dt; p P 0 ð7Þ

where a and b are respectively an offset and scaling parameter, and
w is a positive weighting function defined over X. The Volume
Error/Cumulative Error (CE) and the Balance Error (BE) presented
in Appendix A are particular cases of Eq. (7) with p = 0 and
w(t) = 1. In contrast with the distance-based approach, the objective
function defined in Eq. (7) is not necessarily positive.
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The following remarks may be made:

(R7) Eq. (7) is a particular case of the integral expression in (6)
obtained for the specific choice v = w|e|p�1 of the weighting
function. Other formulations may be considered for v. The
formula proposed in (7) has the advantage that it bears sim-
ilarity with familiar distance-based objective functions (only
an absolute value operator needs to be modified).

(R8) The calibration procedure is transformed into a root finding
problem. The most desirable value for the objective function
is the offset value a.

3. Sensitivity analysis for conceptual models

3.1. Assumptions – preliminary remarks

Consider a model obeying Eq. (1). The specific form of (1) exam-
ined hereafter is

dU
dt
¼ RðU; t;uÞ � gðU;uÞ ð8aÞ

Uðt1Þ ¼ U1 ð8bÞ
where g is a known function of U and u, and R is a known function
of U, t and u. In conceptual models, R represents the recharge, or in-
flow, and g represents the outflow.

The following assumptions are made:

(A1) R and g are positive over X:
Rðt;uÞP 0 8t 2 X ð9aÞ
gðtÞP 0 8t 2 X ð9bÞ

(A2) The difference R – g is a decreasing function of U and a
monotone function of u:
@

@U
ðR� gÞ 6 0 8U ð10aÞ

sgn
@

@u
ðR� gÞ

� �
¼ Const 8u ð10bÞ

(A3) There always exists a positive, steady state solution, that is,
a value of U0 for which the outflow g is equal to the inflow R:
9U0 > 0; gðU0;uÞ ¼ RðU0; t;uÞ 8ðt;uÞ ð11Þ

(A4) U(t1) is positive:
Uðt1ÞP 0 ð12Þ

Assumptions (A1)–(A4) are typical of conceptual models (see Sec-
tion 4). When these assumptions hold, U is positive over the domain
X (see Section B.1 in Appendix B for the proof).

The sensitivity of U with respect to u is defined as s ¼ @U=@u.
The governing equation for s is obtained by differentiating (8) with
respect to u:

ds
dt
¼ @

@u
ðR� gÞ þ s

@

@U
ðR� gÞ ð13aÞ

sðt1Þ ¼ 0 ð13bÞ

where the initial condition s(t1) = 0 is derived considering that
U(t1) = U1 is known and does not change with u.

It can be shown (see Section B.2 in Appendix B for the proof)
that if @R=@u� @g=@u keeps the same sign for all t, s has the same
sign as @R=@u� @g=@u:

@R
@u�

@g
@u 6 0 8t 2 X

sðt1Þ ¼ 0

)
) sðtÞ 6 0 8t 2 X ð14aÞ

@R
@u�

@g
@u P 0 8t 2 X

sðt1Þ ¼ 0

)
) sðtÞP 0 8t 2 X ð14bÞ
3.2. Distance-based objective function

Consider a distance-based objective function using the defini-
tion (4) for the norm of the modelling error:

Jp ¼ aþ b
Z

X
w jFðU;uÞ � V jp dt ð15Þ

where U(t) obeys (8), F is a monotone function of U as mentioned in
Section 2.1 and w is a strictly positive weighting function over the
domain X. Then the derivative of the objective function with re-
spect to u is given by one of the following two formulae depending
on whether the function F involves the parameter u:

dJp

du
¼ bp

Z
X

wjFðU;uÞ � V jp�2½FðU;uÞ � V � @F
@U

s dt if
@F
@u

¼ 0 ð16aÞ

dJp

du
¼ bp

Z
X

wjFðU;uÞ�V jp�2½FðU;uÞ�V � @F
@U

sþ @F
@u

� �
dt if

@F
@u

– 0

ð16bÞ

Since the sign of s is constant (see Section 3.1) and F is assumed to
be monotone, the product @F=@U s keeps the same sign over X. Two
possibilities arise:
– F is not a function of u. In this case, Eq. (16a) is applicable. The

terms jFðU;uÞ � V jp�2 and @F=@U s in the integral keep a con-
stant sign over X, while the second term F(U) – V may change
sign. There is a possibility for @Jp=@u to cancel, which is a desir-
able property because the purpose of the calibration exercise is
to find an optimum of the function Jp.

– F is a function of both U and u. Then, Eq. (16b) is applicable. In
the case of conceptual models (see Section 4), the sign of
@F=@Usþ @F=@u is not necessarily constant because @F=@Us
and @F=@u may have opposite signs. Then both ½FðU;uÞ � V �
and @F=@Usþ @F=@u in the integral may change sign. In the
general case, the two terms do not cancel for the same value
of u, thus increasing the possibilities for the appearance of local
extrema.

In both cases, using a strictly positive weighting function w
minimizes the number of extrema for Jp.

3.3. Weak form-based objective function

Consider a weak form-based objective function defined from Eq.
(7):

Jp ¼ aþ b
Z

X
wjFðU;uÞ � V jp�1½FðU;uÞ � V �dt ð17Þ

with the same assumptions on F, U and w as in Section 3.2. Then

dJp

du
¼ bp

Z
X

wjFðU;uÞ � V jp�1 @F
@U

s dt if
@F
@u

– 0 ð18aÞ

dJp

du
¼ bp

Z
X

wjFðU;uÞ � V jp�1 @F
@U

sþ @F
@u

� �
dt if

@F
@u

– 0 ð18bÞ

As in Section 3.2, two possibilities arise:

– F is not a function of the parameter to be calibrated u. In this
case, @F=@u ¼ 0 and Eq. (18a) is applicable. Since @F=@Us keeps
the same sign over X the sign of @Jp=@x cannot change. No local
extremum can appear in the objective function.

– F is a function of both U and u. Then Eq. (18b) applies. The sign
of @F=@Usþ @F=@u is not necessarily constant, as shown in Sec-
tion 4. This may lead to local extrema in Jp. Nevertheless, the
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derivative of Jp as defined by Eq. (18b) is less prone to sign
change than that defined in Eq. (16b) because the term
wjFðU; jÞ � v jp�1 keeps a constant sign.

3.4. Choice of calibration variables

In the light of the expressions derived in Sections 3.2 and 3.3,
the following remarks may be made:

(R9) When calibrating a given model parameter, it is not advised
to use a variable, the calculation of which involves this
parameter. For instance, in a linear conceptual model, the
output discharge is defined as kU, where U is the water level
in the reservoir and k is the discharge coefficient. Using U as
a calibration variable for k is advisable, while using the dis-
charge kU to calibrate k may generate local extrema in the
objective function. Conversely, the discharge kU may be
used to calibrate the effective catchment area.

(R10) In many situations however, the only variable available for
measurement is not U but a function of U (for instance, the
outflowing discharge). In conceptual models, the internal,
state variable U of the model is almost never used in cali-
bration/validation procedures, while the discharge, that is
only a function of U, is used in almost all situations. Then
using a weak form-based objective function minimizes the
probability of finding local extrema compared to a dis-
tance-based objective function. Consequently, classical
gradient-based methods may be used with a larger proba-
bility of success to find the zero of the weak form-based
objective function than in finding the global optimum of
a distance-based objective function.

(R11) Owing to the presence of @F=@U and @F=@u in Eqs. (16b)
and (18b), using such a function F in the objective func-
tion, rather than the primary model variable U, has a
strong influence on the direction of the gradient of the
objective function in the parameter space. Using several
variables of different natures (or transformations of the
measured variables), such as water levels and discharges,
to calibrate the models, may be more beneficial and more
helpful in removing indeterminacy than using several
objective functions on the same variables. This was
already stated in Beven (2006) about the ill-posed charac-
ter of the calibration exercise.

(R12) Models with several reservoirs in series have a similar
behaviour with respect to the objective function. Indeed,
when a reservoir discharges into another, its outflow dis-
charge g(U, u) is the recharge R(U, t, u) of this second reser-
voir and Assumptions (A1–A4) still hold. Remarks (R9) and
(R10) also hold for the calibration of parameters governing
the internal fluxes between several reservoirs in a model.

3.5. Objective functions as indicators of parameter redundancy

Assume that two parameters u1 and u2 in the model are redun-
dant. In this case, for any given variation in u1, at least one alter-
native value can be found for u2 such that the modelling result
remains unchanged. In other words, in the parameter subspace
u1 � u2, there exists a relationship in the form

d½FðUÞ� ¼ 0 ð19Þ

Eq. (19) becomes

@FðUÞ
@u1

du1 þ
@FðUÞ
@u2

du2 ¼ 0 8t ð20Þ

Eq. (20) defines a hypersurface in the parameter space and a curve
in the subspace u1 � u2. On the hypersurface (20) one has
dJp ¼
@Jp

@FðUÞd½FðUÞ� ¼ 0 8p ð21Þ

which means that the objective function is constant along (20).
Consequently, the contour lines of the distance-based objective
functions (15) obtained with different values of p never intersect.
The remark also holds for weak form-based objective functions (17).

An easy way of detecting the redundancy in two model param-
eters is to plot the contour lines in the subspace u1 � u2 of two
objective functions (15) or (17) defined with two significantly dif-
ferent values of p (for instance, p = 1/2 and p = 2). If the contour
lines of these two objective functions do not intersect, then the
parameters can be suspected to be redundant.

Plotting the contour lines of the objective function requires a
systematic exploration of the parameter subspace. An alternative
to this approach consists in computing the dimensionless gradients
of the objective functions obtained with two different powers p
and q:

Gp ¼
L1

@Jp

@u1

L2
@Jp

@u2

2
4

3
5; Gq ¼

L1
@Jq

@u1

L2
@Jq

@u2

2
4

3
5 ð22Þ

where L1 and L2 are scaling factors for the parameters u1 and u2

(e.g. the typical ranges of variation of these parameters), and check-
ing colinearity via the determinant

D ¼ L1L2

kGpkkGqk
@Jp

@/1

@Jq

@/2
�
@Jp

@/2

@Jq

@/1

� �
ð23Þ

where the operator kk denotes the norm of the vector. The deriva-
tives of the objective functions with respect to the parameters
may be computed empirically from two values of Jp and Jq computed
using two slightly different values of the parameters. The closer D to
zero, the smaller the angle between the gradient vectors Gp and Gq,
the more (locally) redundant the parameters u1 and u2.

4. Application example 1: linear single reservoir model

4.1. Governing equations

Consider a single reservoir, rainfall–runoff model with a linear
discharge law:

dU
dt
¼ APðtÞc � kU ð24aÞ

Uðt1Þ ¼ U1 P 0 ð24bÞ

where A is the catchment area, c is the effective infiltration coeffi-
cient, k is the specific discharge coefficient, P(t) is the precipitation
rate, U is the volume of water stored in the model and kU is the out-
let discharge of the model. Note that Eq. (24a) can be written in the
form (8) by defining g(U, u) = kU. Classically, A is known and c and/
or k must be calibrated.

This model verifies Eqs. (9)–(11) of assumptions (A1)–(A4), con-
sequently U(t) is positive for all t.

The governing equation for the sensitivity is

ds
dt
¼ �ks� @ðkUÞ

@u
þ @ðAcPÞ

@u
ð25aÞ

sðt1Þ ¼ 0 ð25bÞ
Two possibilities arise:

(1) The parameter to be calibrated is the effective infiltration
coefficient c. In this case, u = c and Eq. (25a) simplifies into

ds
dt
¼ AP � ks if u ¼ c ð26Þ
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Eqs. (25) and (26) verify Eqs. (9)–(12) with AP > 0, therefore s is po-
sitive for all times.

(1) The parameter to be calibrated is the discharge coefficient k.
In this case, u = k and Eq. (25a) becomes

ds
dt
¼ �U � ks if u ¼ k ð27Þ

Eqs. (25) and (27) verify Eqs. (9)–(12) with �U < 0, therefore s is
negative for all times.

4.2. Distance-based objective functions

Assume that a distance-based measure is used for the objective
function. If the model is to be calibrated against field measure-
ments (or estimates) of the volume U of water stored in the catch-
ment, then F(U) = U and Eq. (16a) becomes

dJp

du
¼ bp

Z
X

wjU � V jp�2ðU � VÞs dt ð28Þ

As shown in the previous subsection, the sign of s is constant over
X. The particular case of the NSE or SE objective functions, (p = 2,
w = 1) yields the following formula

dJ2

du
¼ 2b

Z
X
ðU � VÞs dt ð29Þ

Assume now that the model is to be calibrated against the discharge
Q = kU at the outlet of the catchment. Then F(U) = kU and @F=@U ¼ k.
If the parameter to be calibrated is the coefficient c, then u = c and
@F=@u ¼ 0. If the parameter to be calibrated is the discharge coeffi-
cient k, then u = k and @F=@u ¼ U ¼ Q=k. Applying Eq. (16) yields

dJp

du
¼ bp

Z
X

wjQ � V jp�2ðQ � VÞks dt if u ¼ c ð30aÞ

dJp

du
¼ bp

Z
X

wjQ � V jp�2ðQ � VÞðksþ Q=kÞ dt

¼ �bp
Z

X
wjQ � V jp�2ðQ � VÞds

dt
dt if u ¼ k ð30bÞ

Note that the second equality in Eq. (30b) is obtained from Eq. (27).
Since s is not monotone over X in the general case, both Q � V and
ds/dt are liable to cancel over X and the objective function Jp in Eq.
(30b) may have more than one extremum. This is an illustration of
Remark (R10). In the particular case of the NSE or SE objective func-
tions (p = 2, w = 1), the following formulae are obtained

dJ2

du
¼ 2b

Z
X
ðQ � VÞks dt if u ¼ c ð31aÞ

dJ2

du
¼ 2b

Z
X
ðQ � VÞðksþ Q=kÞdt

¼ �2b
Z

X
ðQ � VÞds

dt
dt if u ¼ k ð31bÞ
4.3. Weak form-based objective function

Assume now that the objective function is defined using the
weak form-based approach.

If the model is to be calibrated against field measurements (or
estimates) of the volume of water stored in the catchment, then
F(U) = U and Eq. (18) becomes

dJp

du
¼ bp

Z
X

wjU � V jps dt ð32Þ

Since s keeps the same sign over X the derivative of Jp cannot cancel
if w is nonzero. Then the points for which Jp = a (a being the
optimum value for the objective function) define a line in the
parameter space (c, k). In the particular case (p = 2, w = 1), one has

dJ2

du
¼ 2b

Z
X
ðU � VÞ2s dt ð33Þ

If the model is to be calibrated using measurements of the outlet
discharge Q = kU, then F = kU, @F=@U ¼ k and Eq. (18) gives

dJp

du
¼ bp

Z
X

wjQ � V jp�1ks dt if u ¼ c ð34aÞ

dJp

du
¼ bp

Z
X

wjQ � V jp�1ðksþ Q=kÞdt

¼ �bp
Z

X
wjQ � V jp�1 ds

dt
dt if u ¼ k ð34bÞ

An interesting, particular case is that of the Cumulative Error (CE),
or Balance Error (BE) indicators (see Appendix A), obtained for
(p = 1, w = 1):

dJp

du
¼ bA

Z
X

ksdt ¼ bAk
Z

X
sdt if u ¼ c ð35aÞ

dJp

du
¼ �b

Z
X

ds
dt

dt ¼ �b½sðt2Þ � sðt1Þ� if u ¼ k ð35bÞ

Two remarks may be made:
(R13) It is visible from Eq. (32) that the derivative of the weak

form-based objective function cannot be zero, except in
the trivial case (U = V " t e X). If the objective function
is based on the outlet discharge Q = kU (Eq. (34)), the only
possibility for its derivative to cancel in the non-trivial
case (Q = V " t e X) occurs for k = 0, which is meaningful
only in the trivial case kU = V = 0 " t e X.

(R14) Comparing Eqs. (35a) and (35b) indicates that the CE and
BE indicators are extremely useful in calibrating the run-
off coefficient c but are almost useless in calibrating the
discharge coefficient k of the conceptual model. This
well-known result is confirmed by the following analysis.
The ratio of the gradients computed via Eqs. (35a) and
(35b) gives
dJp

dk
¼ K

dJp

dc
ð36aÞ
K ¼ sðt2Þ � sðt1Þ
k
R

X s dt
¼ sðt2Þ � sðt1Þ
ðt2 � t1Þks

ð36bÞ

where s is the average value of s over X. The numerator in
K remains bounded. If the input time series is sufficiently
long to be assumed stationary, the average value of s does
not depend on the length of the time interval t2 � t1. Con-
sequently the denominator is proportional to the time
interval t2 � t1. Therefore K tends to zero as the length of
the calibration interval increases. This means that the CE
and BE indicators are insensitive to the value of k when
long time series are used. Therefore, they cannot be used
to calibrate k when the variable is the outflowing
discharge.
4.4. Numerical experiments

The properties of distance- and weak form-based objective
functions are investigated using the following numerical experi-
ment. An artificial time series for the observed (measured) variable
V is generated using a nonlinear conceptual model with artificially
randomized input time series. The water level in the nonlinear



Table 1
Linear reservoir model. Parameters for the numerical experiment.

Symbol Meaning Value

A Catchment area 200 km2

C Infiltration coefficient in the nonlinear
model

0.5

K Discharge coefficient in the nonlinear
model

10�11 m�(1�3b) day�1

Pmax Maximum rainfall rate 60 mm day�1

T Length of the simulation 104 days
a Threshold for rainfall generation 0.9
b Exponent in the nonlinear rainfall–runoff

model
2.0

Dt Computational time step 1 day
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reservoir and the outflowing discharge of the nonlinear model are
considered as «reality», against which a linear conceptual model is
to be fitted. The steps in the generation of the times series are the
following.

(1) An artificial rainfall time series is generated at a daily time
step using the following model:

Pn ¼
Pmax

1� a
maxðRan� a;0Þ ð37Þ

where Pmax is a constant, Ran is generated randomly from a uniform
probability density function between 0 and 1, and a is a threshold
value between 0 and 1. Ran is generated every time step indepen-
dently from the realization at the previous time steps. The probabil-
ity for a rainfall Rn to be nonzero over a given day n is 1 � a.

(1) The generated rainfall signal is used as an input for a nonlin-
ear conceptual model obeying the following equation:

dW
dt
¼ AðCP � KWbÞ ð38aÞ

Wð0Þ ¼ 0 ð38bÞ

where A is the catchment area, C is an infiltration constant, K and b
are predefined constants (b – 1) and W is the amount of water
stored in the model. Eq. (38a) is solved numerically using an explicit
formula at a daily time step:

Wnþ1 ¼Wn þ AðCPn � KWb
nÞDt ð39Þ

where Pn is the average value of the rainfall rate between the time
levels n and n + 1. The explicit approach corresponds to the most
widespread implementation of conceptual models available in the
literature.

(1) The numerical solution Wn is used as the observed variable V
in the computation of the objective function. Two possibili-
ties are considered hereafter:

V ¼W

FðUÞ ¼ U

�
ð40aÞ

V ¼ AKWb

FðUÞ ¼ AkU

)
ð40bÞ

Eq. (40a) corresponds to the situation where the state variable W
can be field-estimated or measured and where the variable U in
the linear model (24a) is considered to bear a physical meaning.
Eq. (40b) correspond to the more widespread calibration technique
where the variable used in the computation of the objective func-
tion is the discharge at the outlet of the catchment.

Note that the governing Eq. (24a) for the linear reservoir model
is also solved numerically using an explicit formula

Unþ1 ¼ Un þ AðcPn � kUnÞDt ð41Þ

where c and k are the infiltration coefficient and the specific dis-
charge coefficient for the linear conceptual model. The main moti-
vation behind the choice of a nonlinear conceptual model to
generate the reference time series is that no combination of the
parameters c and k in the linear model (24a) allows the solution
W of Eq. (38a) to be reproduced exactly, which is precisely the case
when real-world time series are dealt with.

The parameters used in the present experiment are summarized
in Table 1.

Fig. 1 shows the contour lines obtained for two types of
distance-based objective functions. The first objective function
Jp,U is defined using the amount of water in the reservoir as in
Eq. (40a):
Jp;U ¼ 1�
R

X jU �Wjp dtR
X jW �Wjp dt

ð42Þ

The second objective function Jp,Q is computed from the outflow
discharges as in Eq. (40b):

Jp;Q ¼ 1�
R

X jQ � KWbjp dtR
X jKWb � KWbjp dt

ð43Þ

where the overbar denotes the average over X. Eqs. (42) and (43)
are nothing but the Generalized Nash–Sutcliffe Efficiency (GNSE)
presented in Appendix A. In hydrological modelling, it is more cus-
tomary to use the discharge as a calibration variable than the vol-
umes stored in the reservoirs. In Fig. 1, the values used for p are
1/2, 1 and 2.

Comparing the contour lines obtained using Eq. (42) (Fig. 1a, c,
and e) and those obtained using Eq. (43) (Fig. 1b, d, and f) illus-
trates Remark (R11). The objective functions based on the water
depth (or volume) and the objective functions based on the
discharge have radically different contour line shapes. Using two
different variables in the definition of the objective functions
brings in more information than using the same variables and
changing the value of the power p in the GNSE. Obviously, the opti-
mal parameters for the objective functions depend on the variable
used in the calibration process and, to a lesser extent, on the value
of the exponent p. The discharge MSE grows by a factor four when
switching the calibration variable from discharge Q to the internal
variable U, using the MSE objective function.

Remarks (R9, R10) are illustrated by the zero contour line in
Fig. 1d. It is visible from Fig. 1d that the derivative @J1=2;Q=@k can-
cels for small values of k around c = 1.0. This corresponds to the
change in curvature of the zero contour line next to the c-axis.
The objective function is not monotone with respect to k in this re-
gion of the parameter space. In the present case, however, this is
not too serious a problem because (i) the extremum corresponds
to a minimum in the objective function, and (ii) it is located far
away from the maximum of the objective function. However, in
the general case, this is a potential source for local extrema in
the objective function.

Fig. 2 shows the contour lines obtained for two types of weak
form-based objective functions. The first objective function Jp,U is
defined using the state variables U and W as in Eq. (40a):

Jp;U ¼
R

X jU �Wjp�1ðU �WÞdtR
X jW �Wjp dt

ð44Þ

The second objective function Jp,Q is computed from the outflow dis-
charges as in Eq. (40b):

Jp;Q ¼
R

X jQ � KWbjp�1ðQ � KWbÞdtR
X jKWb � KWbjp dt

ð45Þ

where the overbar denotes the average over X. Note that the
denominator in Eqs. (44) and (45) is similar to that in Eqs. (42)
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Fig. 1. Linear reservoir model. Contour lines for the distance-based objective
functions. Left: using measured storage W, Eq. (42); right: using measured outflow,
Eq. (43). Contour line spacing 0.2. Dashed lines: negative values; solid lines:
positive values; bold line: zero contour line. Optimum parameter values are those
for which the objective function is maximum.
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Fig. 2. Linear reservoir model. Contour lines for the weak form-based objective
functions. Left: using measured storage W, Eq. (44); right: using measured outflow,
Eq. (45). Dashed lines: negative values; solid lines: positive values; bold line: zero
contour. Optimum parameter values are those for which the objective function is
zero.

8 V. Guinot et al. / Journal of Hydrology 401 (2011) 1–13
and (43) and therefore the scaling is the same. In contrast with Eqs.
(42) and (43), the best model fit is achieved for Jp,U = 0 and Jp,Q = 0.
Also note that for p = 1 (Fig. 2d), Eq. (45) gives an information sim-
ilar to the Cumulative Error (CE) or Balance Error (BE).

Remarks (R9, R10) are illustrated by the zero contour line in
Fig. 2b. Indeed, the derivative @J1=2;Q=@k cancels for (k = 0.15,
c = 0.2). This corresponds to the curved contour in the bottom right
corner of the Figure. The objective function is not monotone with
respect to k in this region of the parameter space.

As in the case of the distance-based objective functions (42) and
(43), comparing Fig. 2a–f illustrates Remark (R11) on the comple-
mentary character of the information brought by objective func-
tions defined using different model variables. However, contrary
to distance-based objective functions, it is possible to find param-
eter combinations for which the objective functions defined by
both Eqs. (44) and (45) are optimal.

Remark (R13) on the strictly monotone character of the weak
form-based objective functions is also confirmed.

Fig. 2d confirms Remark (R14) that the specific discharge coef-
ficient k cannot be calibrated using CE or BE because the CE and BE
indicators have identical values for all k. At the same time, the CE
or BE indicators are extremely useful in calibrating the infiltration
coefficient because there is only one possible value of c for which
J1,Q = 0.

Moreover, the intersection of all the zero contour lines in Fig. 2
are very close to the optimum values for the distance-based objec-
tive functions using the discharge as a calibration variable (Fig. 1b,
d, and f). This indicates that the set of weak form-based objective
functions may yield a calibration result close to that given by the
commonly admitted distance-based approach, while eliminating
the local extremum problem associated with distance-based objec-
tive functions.

This example also illustrates the fact that optimum values ob-
tained from distance-based functions are often mutually exclusive
– a parameter set optimal for one criterion may be far from satis-
factory for another criterion –, which is not the case with weak
form-based functions.

5. Application example 2: a multiple reservoir model with
threshold function

The purpose of this example is to illustrate application of the
proposed redundancy test.

5.1. Model presentation

The Medor model (Hreiche et al., 2003) is a three-reservoir
model (Fig. 3) initially designed for hydrological modelling over
arid or semi-arid regions. A variation of this model has been ap-
plied recently to the modelling of karst catchments in the Mediter-
ranean area (Fleury, 2005; Tritz et al., 2011). The top reservoir
accounts for production. The input to this reservoir is the precipi-
tation rate P, the outputs are the evapotranspiration rate E and the
net precipitation rate I. E may be set equal to the potential rate,
computed from standard evapotranspiration formulae (Fleury,
2005), or interpolated from monthly data (Tritz et al., 2011). E is
limited only when the reservoir is empty (H = 0) and precipitation
are insufficient (P < E). I is zero until the water level H in the pro-
duction reservoir reaches the maximum value Hmax. In such a case,
the net input P � E is transferred instantaneously to the other two
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Fig. 3. Medor model. Structure, flow chart and notation.
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reservoirs. From a conceptual point of view, the production reser-
voir represents the soil layer, from which previously precipitated
water may be restituted to the atmosphere via evapotranspiration.
Note that when the soil reservoir is empty, it remains so until P � E
becomes positive again.

The net precipitation is routed to a fast response and a slow
response reservoir via a distribution coefficient x, 0(x 6 1. Each of
these two reservoirs obeys a linear discharge law. The output
hydrograph is the sum of the output discharges from the fast and
slow reservoir. From a physical point of view, the two reservoirs
may account for different flow routing paths over the catchment.
From the point of view of the transfer function of the model, such
a structure allows both the rapid recession part of hydrographs and
the slower fluctuations of the base flow to be accounted for via lin-
ear laws.

The governing balance equations are the following:

dH
dt
¼

P � E� I if H > 0
0 if H ¼ 0 and P � E < 0

�
ð46aÞ

dH1

dt
¼ xI � Q1

A
ð46bÞ

dH2

dt
¼ ð1� xÞI � Q 2

A
ð46cÞ

where H1 and H2 are respectively the water levels in the fast and
slow reservoirs. I, Q1 and Q2 are given by

I ¼
0 if H < Hmax

P � E if H ¼ Hmax

�
ð47aÞ

Q 1 ¼ Ak1H1 ð47bÞ

Q 2 ¼ Ak2H2 ð47cÞ

where k1 and k2 are the specific discharge coefficients of the two
reservoirs. The total outflowing discharge is computed as the sum
of Q1 and Q2.

5.2. Principle of the parameter redundancy test

It is first noticed that the total amount of water flowing to the
outlets of the reservoirs is strongly conditioned by the maximum
water level Hmax in the production reservoir. Indeed, I is nonzero
only when H reaches Hmax. The larger Hmax, the smaller the time
during which I is nonzero, the smaller the amount of water flowing
to the reservoirs H1 and H2.

Consider now the configuration of the model where the specific
discharge coefficient of one of the two reservoirs (say, k2) is zero. In
this case, the water may accumulate indefinitely in this reservoir,
while the outflowing discharge from this reservoir remains zero.
In other words, if k2 = 0, the reservoir H2 acts as a loss and only a
fraction xI of the total infiltration rates participates to the outflow.
Therefore, x also controls the outflowing discharge to some extent.

Clearly, Hmax and x exert a similar influence on the outflowing
discharge when k2 = 0. In other words, they are redundant with
respect to total discharge, for k2 = 0. Consequently, plotting two
different objective functions (18a) and (18b) with two different
values of p in the parameter space (Hmax, x) should yield non-
intersecting contour lines for the two objective functions.

5.3. Catchment and modelling data

The Medor model was used to simulate daily discharge at the
outlet of the Bani catchment (Fig. 4). This large west-African
catchment is characterized by a monsoon climate with a strong
north–south rainfall gradient, and considerable rainfall variability
since the mid-20th century. As a result, the flow at the Douna
gauging station (Fig. 4) fell by 68% from 1952–1970 to
1971–2000, with a decrease in the deep water recharge and in base
runoff contribution to the annual flood (Ruelland et al., 2009).
Some of the low-water periods were severe to the point that river
flow at Douna stopped at times during the 1980s.

The Medor model may seem too simple at first sight for an oper-
ation at a daily time step given the dimensions of the catchment
and the time scale of the discharge signal. However, experiments
carried out using models of varying complexity have shown that
complex transfer functions involving signal delay (such as the unit
hydrograph convolution approach) do not contribute to improve
model performance significantly (Ruelland et al., 2010). In a similar
fashion, using spatially distributed rainfall inputs and model
parameters was not seen to improve the quality of the simulated
hydrographs significantly. The inertia of the linear reservoirs in
the Medor model are seen to be sufficient to model the rainfall-dis-
charge transformation in a satisfactory way. This simpler model is
thus retained for the analysis.

The model was applied to the 1967–1985 period, for which the
discharge record was continuous at the Douna station. Daily rain
series were derived from 72 rain gauges covering the area
(Fig. 4). An average of 70 gauges (with a minimum of 66) were used
to interpolate daily rainfall maps by the inverse distance method,
which proved to perform best (Ruelland et al., 2008). Potential
evapotranspiration forcing consisted of monthly maps produced
by the Climatic Research Unit (University of East Anglia, UK) from
�100 stations spread over West Africa, using Penman’s method
and spline interpolation (New et al., 2000). Since potential evapo-
transpiration varies slowly over the year, monthly data were disag-
gregated evenly to the daily time step within each month. The first
five years of simulation were used as model warm-up, to eliminate
the influence of initial conditions. This five year period was deter-
mined from the order of magnitude of the specific discharge coef-
ficients in the model (from 2.5 � 10–3 to 2 � 10–1). Indeed, as
shown in Section B.3, a model with a specific discharge coefficient
k requires a warm-up period of at least a few times 1/k for the
influence of initial conditions to be eliminated. The parameters
used in the experiment are given in Table 2. The catchment area
A is known from previous studies (Ruelland et al., 2008), while
the specific discharge coefficient k1 is taken equal to the value that
allows the NSE index to be maximized.

5.4. Redundancy test results

Fig. 5 shows, in the (Hmax, x) space, the contour lines obtained
for the distance-based and weak form-based objective functions
computed from the discharge observations. The powers used in
Eqs. (43) and (45) are p = 1/2 and p = 2.

Fig. 5e is a superimposition of Fig. 5a and c, while Fig. 5f results
from the superimposition of Fig. 5b and d. In Fig. 5e–f, the dashed



Fig. 4. The Bani catchment at Douna: rainfall and discharge stations used.

Table 2
Multiple reservoir model. Parameters for the redundancy test.

Symbol Meaning Value

A Catchment area 104,000 km2

Hmax Maximum depth in the soil reservoir 0 – 1 m
k1 Specific discharge coefficient for reservoir 1 5 � 10–2 day�1

k2 Specific discharge coefficient for reservoir 2 0 day�1

T Length of the simulation 6935 days
x Reservoir distribution coefficient 0 – 1
Dt Computational time step 1 day
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Fig. 5. Multiple reservoir model. Contour lines for the objective functions. Left:
distance-based function, Eq. (43); right: weak form-based function, Eq. (45). Dashed
lines: negative values; solid lines: positive values; bold line: zero value. Optimum
parameter values are those for which the objective function in (b), (d) is zero. (e and
f): Dashed line: p = 1/2; bold line: p = 2.
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and solid lines are respectively the contour lines of the objective
functions for p = 1/2 and p = 2. Except in the upper left part of
the diagram, the contour lines do not intersect, which confirms
that the parameters Hmax and x become redundant over most of
the parameter space when k1 = 0 or k2 = 0.

6. Conclusions

Model performance assessment and objective functions classi-
cally used in hydrological modelling may be classified into dis-
tance-based and weak form-based objective functions.

Distance-based objective functions have the advantage that the
calibration problem is transformed into a straightforward, single-
criterion optimization problem. Their drawback is the possible
appearance of local extrema in the response surface of the model,
thus triggering the failure of classical gradient-based methods and
requiring the use of more computationally demanding global opti-
mization algorithms.

Weak form-based objective functions transform the calibration
exercise into a root finding problem.

The theoretical considerations in Sections 2–3 and the applica-
tion examples in Sections 4–5 lead to the following conclusions.

(C1) Weak form-based objective functions are more monotone
than distance-based objective functions when applied to
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conceptual hydrological models. Monotony can be proved
mathematically for models verifying Assumptions (A1–A4) in
Section 3.1.
(C2) The subset of zero values of weak form-based objective

functions form hypersurfaces in the parameter space. A
model with N parameters can be calibrated by defining N
weak form-based objective functions and finding the
intersection of the corresponding N hypersurfaces in the
parameter space. Since the weak form-based objective
functions are monotone, the intersection is unique. This
allows classical gradient-based algorithms to be used
without the need for more sophisticated optimum search
techniques. The N different objective functions may be
defined by using (i) different observation variables, (ii)
transformations of these variables, (iii) different values
for the power p used in the formulation of the weak
form-based function (see Eq. (7)). Note that the need for
a number of independent criteria matching the number
of parameters to be calibrated was already pointed out
by Gupta et al. (2008).

(C3) In contrast, distance-based objective functions yield mutu-
ally exclusive optimal parameter sets when different cali-
bration variables are used. Using weak form-based
objective functions allows this drawback to be eliminated.
This allows for multi-objective calibration without the
inconvenience of multiple solutions.

(C4) Distance-based objective functions being widely recog-
nized in the field of hydrological modelling, they could
also be used in combination with weak form-based objec-
tive functions in the framework of multi-criteria optimiza-
tion algorithms. A typical multi-criteria optimization
problem may then consist in maximizing the distance-
based objective function under the constraint that all the
weak form-based objective functions are zero.

(C5) Using the same type of objective function (distance-based,
see Eq. (48) or weak form-based, see Eq. (49)) with two dif-
ferent values of p yields two families of contour surfaces in
the parameter space. Non-intersecting families of contour
surfaces in the parameter space indicate redundancy
between two or more parameters.

(C6) The theoretical analysis in Section 3 and the application
example in Section 4 show that using the volume stored
in the reservoir as a calibration variable for the discharge
coefficient may be more appropriate than using the dis-
charge. Conversely, the outlet discharge may be a more
appropriate variable to calibrate an infiltration (or net
rainfall) coefficient via a weak form-based objective
function.

(C7) Assuming that weak form-based objective functions are to
be used, the calibration problem is best posed when the
hypersurfaces as defined in (C2) are as orthogonal to each
other as possible. Therefore, it is advisable to define such
objective functions using as many different model state
variables as possible (e.g. discharges between various res-
ervoirs in the model, volumes stored in the various reser-
voirs, etc.).

(C8) A necessary condition for (C5 and C6) to be applicable,
however, is that the internal variables and fluxes in the
model bear a physical reality and be field-measurable.
Due to hydrological/hydraulic variability, translating field
measurements (e.g. of soil moisture, or piezometric head
in aquifers) into variations of model internal variables is
not an easy task. This most probably calls for the definition
of a different kind of objective functions. For instance, the
trends (rising or falling; increasing or decreasing) of the
measured and model internal variables over certain
periods may be used in the form of indicators. Note that
internal variables may be useful even if not incorporated
into the objective function: they may be used to discrimi-
nate between different models (or different parameter sets
within the same model) giving similar values of objective
functions computed from the outflowing fluxes. Note that
extending the model to water quality variables has been
shown to reduce parameter uncertainy (Kuczera and
Mroczkowski, 1998).

(C9) The result of the calibration/validation process may be
biased if the model has not been run over a sufficiently long
warm-up period for the influence of possibly inaccurate initial
conditions to be eliminated (see Section B.2 in Appendix B).
The minimum length of the warm-up period is a function of
the parameters of the model. Consequently, it should not only
be defined a priori: an a posteriori check is needed once the
model has been calibrated.

The theoretical considerations presented in this paper are valid
for hydrological models obeying first-order differential equations.
Whether such conclusions also hold for models involving delay
functions (e.g. the GR3J model (Edijatno et al., 1999) that embeds
a unit hydrograph transformation) or other functions not verifying
exactly the governing assumptions in Section 3 is the subject of
ongoing research. Future research should also focus on (i) the
robustness of weak form-based objective functions compared to
the well-established distance-based approach and (ii) the effects
of data uncertainty on the behaviour of the objective function.
Although only conceptual models were considered in this study,
the approach might be applicable to the calibration of some phys-
ically-based hydrological models, e.g. when backwater effects are
insignificant, however such extrapolation should be subject to fur-
ther theoretical investigation.
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Appendix A. Classical objective functions

The functions are classified in Table A.1 into to Distance-based
(D) and Weak form-based (W) objective functions. a, b and p in
Table A.1 are respectively the offset constant, the scaling constant
and the power used in Eqs. (4) and (7).
Appendix B. Proofs

B.1. Sign of the solution U of Eq. (8)

Assume that Eq. (8) holds, with assumptions (A1–A4) verified.
From Assumption (A3), at any time t there exists U0(t) > 0 such that
dU/dt = 0 for U = U0. U0 verifies Eq. (11), that is:
gðU0;uÞ ¼ RðU0;u; tÞ ðB:1Þ
If U(t) is smaller than U0, then dU/dt = R � g is positive because of
Assumption (A2), and U can only increase at time t. Hence, U(t) is
either greater than U0 or increasing, and thus can never be negative
for t > t1 since U(t1) P 0 (Assumption (A4)).



Table A.1

Name Reference Formula Type a b p

Nash–Sutcliffe efficiency Nash and Sutcliffe (1970)
NSE ¼ 1�

R
X
ðU�VÞ2dtR

X
ðV�VÞ2dt

D 1 �½
R
XðV � VÞ2dt��1 2

Square error SE ¼
R
XðU � VÞ2dt D 0 1 2

Root mean square error Hogue et al. (2000)
RMSE ¼

R
X
ðU�VÞ2 dtR

X
dt

� �1=2 D 0 ½
R
X dt��1 2

Mean absolute error Perrin et al. (2001)
MAE ¼

R
X
jU�V jdtR

X
dt

D 0 ½
R
X dt��1 1

Volumetric efficiency/bias Criss and Winston (2008) Hogue et al. (2006)
VE ¼ 1�

R
X
jU�V jdtR
X

V dt

D 1 �½
R
X V dt��1 1

Generalized Nash–Sutcliffe efficiency Legates and McCabe (1999)
GNSE ¼ 1�

R
X
jU�V jpdtR

X
jV�V jpdt

D 1 �½
R
X jV � V jpdt��1 Any value

Volume error/cumulative error Madsen (2000)/Perrin et al. (2001) CE ¼
R
XðV � UÞdt W 0 1 1

Balance error Perrin et al. (2001)
BE ¼

R
X
ðV�UÞdtR
X

V dt

W 0 ½
R
X V dt��1 1
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B.2. Sign of the sensitivity s in Eq. (13)

The sensitivity Eq. (13) are rewritten as

ds
dt
¼ asþ b ðB:2aÞ

a ¼ @

@U
ðR� gÞ ðB:2bÞ

b ¼ @

@u
ðR� gÞ ðB:2cÞ

sðt1Þ ¼ 0 ðB:2dÞ

From assumption (A2), a is negative and b has a constant sign. The
case b = 0 leads to the trivial solution s = 0 and is not considered
hereafter.

Consider first the case b > 0. In this case, there exists an equilib-
rium value s0 ¼ �b=a for the sensitivity, with ds/dt = 0 for s = s0 in
Eq. (B.2a). Since a is negative and b is positive, s0 is always positive.
If s < s0, ds/dt = as + b > 0. Hence, s is either larger than the positive
value s0 or increasing. Since s(t1) = 0 (Eq. (13b)), ds/dt > 0 at t = t1

and s(t) > 0 for all t > t1.
Reasoning by symmetry leads to the conclusion that s(t) < 0 for

all t > t1 when b < 0.

B.3. Sensitivity to initial conditions and model warm-up period

The purpose is to study the sensitivity of model output to the
initial conditions. Consider the linear model where R and g are:

R ¼ P � ET ðB:3aÞ

g ¼ �kU ðB:3bÞ

If the purpose is to study the influence of initial conditions, the
parameter u is u ¼ U0. In this case, a and b in Eq. (B.2a) are given by

a ¼ �k ðB:4aÞ

b ¼ 0 ðB:5aÞ

Considering that the sensitivity of U with respect to the initial con-
dition is equal to 1 for t = 0, the solution of Eqs. (B.2a), (B.4a), and
(B.4b) is a decreasing exponential:

sðtÞ ¼ expð�ktÞ ðB:6Þ

The sensitivity of U (and therefore of any function F(U)) becomes
negligible after a simulation period equal to a few times 1/k. The
warm-up period, that is necessary to eliminate the influence of a
possible wrongly defined initial condition, should therefore be
taken equal to a few times 1/k. For instance, s(3/k) = 4.98%;
s(4/k) = 1.8% and s(5/k) = 0.7%. In other words, only 0.7% of the ini-
tial sensitivity to the initial conditions remains after a simulation
period 5/k.
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