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We investigate how data assimilation and post-processing contribute, either separately or together, to
the skill of a hydrological ensemble forecasting system. Based on a large catchment set, we compare four
forecasting options: without data assimilation and post-processing, without data assimilation but with
post-processing, with data assimilation but without post-processing, and with both data assimilation
and post-processing. Our results clearly indicate that both strategies have complementary effects. Data
assimilation has mainly a very positive effect on forecast accuracy. Its impact however decreases with
increasing lead time. Post-processing, by accounting specifically for hydrological uncertainty, has a very
positive and longer lasting effect on forecast reliability. As a consequence, the use of both techniques is
recommended in hydrological ensemble forecasting.
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1. Introduction

1.1. Addressing uncertainties in hydrological ensemble forecasting

Developing and improving operational hydrological ensemble
forecasting systems is a critical step toward better decision-mak-
ing and risk management. The skill of operational hydrological
ensemble forecasting systems is limited by two main sources of
uncertainty (Krzysztofowicz, 1999): meteorological uncertainty
and hydrological uncertainty. From a pragmatic point of view,
the need to properly account for these two main sources of uncer-
tainty arises because (i) a hydrological forecaster has no choice but
to rely on uncertain meteorological forecasts and (ii) even with
accurate inputs, hydrological forecasts will remain uncertain due
to our limited knowledge of initial conditions and the inherent lim-
itations of the forecast model used.

Meteorological uncertainty is commonly addressed by propagat-
ing an ensemble (or multi-scenario) input of weather forecasts. For
instance, several operational and pre-operational flood forecasting
systems across the globe have been set up to be forced by ensemble
numerical weather predictions (see Cloke and Pappenberger, 2009,
for a review). Addressing the hydrological uncertainty issue is less
common, although a general framework of probabilistic forecasting
that includes a hydrological post-processing method has been intro-
duced fifteen years ago by Krzysztofowicz (1999). Since then, a
number of other hydrological uncertainty processors have been
proposed (Montanari and Brath, 2004; Montanari and Grossi,
2008; Solomatine and Shrestha, 2009; Coccia and Todini, 2011;
Morawietz et al., 2011; Weerts et al., 2011; Ewen and O’Donnell,
2012; Pianosi and Raso, 2012; Smith et al., 2012; Van Steenbergen
et al., 2012; Yan et al., 2012), but their use is not widespread for
operational ensemble forecasting.

Although generally dealt with separately, statistical post-
processing and data assimilation (also called real-time model
updating in the engineering community) can be intrinsically
related in the hydrological forecasting framework. Both represent
techniques that may be used in a forecasting system to improve
the quality of the forecasts (i.e., to provide more accurate and
reliable forecasts) and to, ultimately, enhance the usefulness of
the forecasts in decision-making. Since forecasting deals with an
uncertain future, these techniques aim to bring additional informa-
tion to the forecast procedure and take into account the various
uncertainty sources (or at least the major uncertainty sources)
affecting the forecasting chain. This is usually achieved by merging
information from model and observations.

While data assimilation and post-processing share a general
goal, the techniques applied may differ in the practice of hydrolog-
ical forecasting. These differences usually draw the separation
between what is defined as data assimilation and what is defined
as post-processing in a modelling framework. The definitions used
in this study are the following: we use the term ‘‘post-processing’’
when using the hydrological uncertainty processor (Section 2.4),
whose primary purpose is to dress deterministic forecasts with
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uncertainty based on distributions of past model errors and, this
way, build probabilistic forecasts. ‘‘Data assimilation’’ refers to
techniques applied to perform the updating of the system before
it issues a deterministic forecast. Here it concerns the state updat-
ing of the hydrological model and a model error correction applied
to its output (Section 2.3).

The fact that data assimilation has the potential to improve
real-time streamflow forecasting is widely accepted (see Liu
et al., 2012, for a review). In contrast to probabilistic and ensem-
ble-based data assimilation methods (e.g., Weerts and El Serafy,
2006; Salamon and Feyen, 2010; Moradkhani et al., 2012; Vrugt
et al., 2013), deterministic updating schemes are designed to
improve forecasts without producing probabilistic outputs. They
may be easier to implement, mainly operationally, but at the price
of leaving the uncertainty quantification issue unanswered. In
these cases, the use of statistical post-processing methods together
with data assimilation procedures provides a way to reduce and
quantify the predictive uncertainty in the hydrological forecasts.

1.2. Integrating uncertainties in hydrological ensemble forecasting

‘‘Ensemble dressing’’ is an intuitive and operationally-appealing
method that allows integration of uncertainties from hydrological
modelling and meteorological (ensemble) forcing. The main
difference with other ensemble-based post-processors (e.g.,
Wang and Bishop, 2005; Fortin et al., 2006; Brown and Seo,
2010; Boucher et al., 2012; Brown and Seo, 2013) is that, for
ensemble dressing, hydrological modelling errors are assessed sep-
arately, and later combined with ensemble forecasts. Distributions
of modelling errors are obtained from long time series of simulated
and observed data (i.e., learning from the past), and then applied to
ensemble forecasts to obtain the total predictive distribution.

In recent studies, the use of ensemble dressing has been imple-
mented and tested to improve the skill of hydrological ensemble
forecasting systems. For instance, Reggiani et al. (2009) present a
Bayesian ensemble uncertainty processor for medium-range
ensemble flow forecasts in the Rhine river basin. Hopson and
Webster (2010) use an uncertainty processor based on the
k-nearest neighbors (k-NN) resampling method to dress probabilis-
tic medium-range forecasts for two large basins in Bangladesh.
Zalachori et al. (2012) compare different strategies based on pre-
and post-processing methods to remove biases in a streamflow
ensemble prediction system developed for reservoir inflow man-
agement in French catchments, while Pagano et al. (2013) present
a hydrological application of ensemble dressing for 128 catchments
in Australia.

The studies mentioned above are similar in that they focus on
post-processors for operational applications and on the overall
evaluation of the quality of post-processed forecasts. Like in the
studies that develop and test data assimilation techniques, most
of the forecast assessment is on the benefits (in terms of quality)
that post-processors or data assimilation may bring to forecast
quality (accuracy, reliability, sharpness, etc.) at fixed forecast lead
times. Little is known about the interactions between these two
components of a forecasting system and the impacts of imple-
menting both post-processing and data assimilation on the perfor-
mance of the forecasts along the forecast lead times.

1.3. Aim and scope of the study

This study aims to shed light on the interactions between data
assimilation and post-processing in hydrological ensemble fore-
casting. We address the following questions:

1. How does data assimilation impact hydrological ensemble
forecasts?
2. How does post-processing impact hydrological ensemble
forecasts?

3. How does data assimilation interact with post-processing to
improve the quality and skill of hydrological ensemble forecasts
over the forecast lead times?

We address these questions with the help of a large set of
catchments, making it possible to draw more general and robust
conclusions.
2. Data and methods

2.1. Data set

A set of 202 unregulated catchments spread over France was
used (Fig. 1). The catchments represent various hydrological condi-
tions, given the variability in climate, topography, and geology in
France. This set includes fast responding Mediterranean basins with
intense precipitation as well as larger, groundwater-dominated
basins. Some characteristics of the data set are given in Table 1.
Catchments were selected to have limited snow influence, since
no snowmelt module was used in the hydrological modelling
(Section 2.3).

Potential evapotranspiration (PE), precipitation, and discharge
data were available at hourly time steps over the 1997–2006 per-
iod. Temperature inputs originate from the SAFRAN reanalysis
(Vidal et al., 2010). PE was estimated using a temperature-based
formula (Oudin et al., 2005). Precipitation data come from a reanal-
ysis dataset recently produced by Météo-France based on weather
radar and rain gauge network (Tabary et al., 2012). River discharge
data were extracted from the HYDRO national archive (www.
hydro.eaufrance.fr).

2.2. PEARP, the Météo-France ensemble forecast

A short-range meteorological ensemble prediction system, the
Météo-France PEARP EPS (Nicolau, 2002), was used to produce
hydrological ensemble forecasts. The PEARP EPS runs once a day
at 18:00 UTC; it has 11 members, a 60 h forecast range, and a
0:25� (ca. 25 km in France) grid resolution. A spatial disaggregation
to an 8 km � 8 km grid, which includes bias correction, was
applied to the PEARP forecasts. Bias correction was applied to pre-
cipitation forecasts using a multiplying factor obtained from a
comparison between the mean of the PEARP ensemble and the
Météo-France SAFRAN reanalysis over a complete year (March
2005–March 2006). Details can be found in Thirel et al. (2008).
PEARP forecasts were available over the 2005–2009 period, but
only the period matching the observed data could be used here,
i.e. from August 2005 to December 2006.

PEARP forecasts were already used at the daily time step in
recent hydrological studies (Thirel et al., 2008; Randrianasolo
et al., 2010). Overall, they showed good quality over France at this
time step. The quality for short-term forecasting at hourly time
steps (with either raw and post-processed forecasts) is first
assessed here.

2.3. The GRP rainfall–runoff forecasting model

The GRP model is a continuous, lumped storage-type model
designed for flood forecasting. Its structure was derived from the
GR4J model (Perrin et al., 2003) and is composed of a production
function and a routing function. The production function consists
of a non-linear soil moisture accounting (SMA) reservoir and a vol-
ume adjustment coefficient. The routing function includes a unit
hydrograph and a non-linear routing store. The GRP model uses
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Fig. 1. Locations of the 202 French catchments used in this study (dots correspond to the gauging stations, and blue color is catchment areas). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Characteristics of the 202 catchments. P – precipitation, PE – potential evapotranspiration, Q – discharge.

Percentiles

0.05 0.25 0.50 0.75 0.95

Catchment area (km2) 31 108 245 653 3761
Mean annual precipitation (mm/y) 725 848 957 1158 1465
Mean annual potential evapotranspiration (mm/y) 645 668 701 745 828
Mean annual runoff (mm/y) 143 232 344 513 964
Q/P ratio 0.18 0.27 0.35 0.47 0.68
P/PE ratio 0.93 1.14 1.36 1.66 2.14
Mean elevation (m) 86 155 306 535 843
Discharge autocorrelation at 48 h 0.28 0.5 0.66 0.81 0.94
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catchment areal rainfall and PE as inputs; it is parsimonious with
three parameters to be calibrated against observed data: one in
the production function (the volume adjustment coefficient) and
two for the routing function (the base time of the unit hydrograph
and the total capacity of the routing store). In this study, the three
free parameters were calibrated for each catchment by minimizing
the root mean square errors (RMSE) during the first five years of
available data (1997–2001).

Importantly, the hourly version of the GRP model uses together
two data assimilation procedures for flood forecasting. The first
exploits the last available observed discharge to directly update
the routing store state, and the second exploits the last relative
error to correct the model output with a multiplicative coefficient.
More details about the forecasting model GRP and the two assim-
ilation procedures can be found in Berthet et al. (2009).
2.4. Hydrological uncertainty processor

We used a hydrological uncertainty processor (HUP) to evaluate
the conditional errors of the hydrological model. Only hydrological
uncertainty is considered by the HUP here since the model is run
with observed weather data. The meteorological uncertainty is
subsequently considered through the joint use of the HUP with
the PEARP forecasts, as described in Section 2.5. The HUP used here
is a data-based and non-parametric method that was applied by
Andréassian et al. (2007) to assess model simulation uncertainties
and compute empirical uncertainty bounds to flow simulations.
Here it is applied to produce probabilistic flow forecasts. The basic
idea is to estimate empirical quantiles of relative errors stratified
by different flow groups. The HUP is trained during the period
used for calibrating the parameters of the hydrological model



Table 2
Acronyms used for the different experiments used in this study.

Without data
assimilation

With data
assimilation

Without post-
processing

NoDA-NoPP DA-NoPP

With post-processing NoDA-PP DA-PP
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(1997–2001). Note that it is possible that this approach yield opti-
mistic uncertainty estimates, since errors are usually larger during
an independent period than during the calibration period. Since
forecast error characteristics vary with forecast range when data
assimilation is used, the HUP is trained at several lead times
separately.

For each catchment, the HUP is trained as described below:

Step 1. The hydrological model is run with observed weather data
as input and the time series of relative errors is evaluated:
Qfct=Qobs, where (Q fct;Qobs) are the pairs of discharge fore-
casts and observations.

Step 2. The time series is stratified into 20 groups according to the
magnitude of the Qfct . The limits of each group are fixed so
that each group contains the same number of values.

Step 3. Within each group, an empirical distribution of relative
errors is defined and 99 quantiles are estimated (corre-
sponding to the percentiles 1%, 2%, . . . , 98%, 99%).
Application of the HUP for another forecast period is
described by the last step:

Step 4. Once defined during the training period, the empirical
quantiles of relative errors can be applied to any forecast
discharge at a certain lead time. The limits of each group
are the same as those obtained during the training period.
Note that when data assimilation is not used, the empirical
quantiles of relative errors are the same whatever the fore-
cast lead time is. Given a discharge forecast Q fct , we first
determine the flow group Qfct belongs to; then Q fct is mul-
tiplied by the 99 quantiles of relative errors; the 99 values
obtained describe the predictive distribution at the consid-
ered time step and for a given forecast horizon. In cases of
extrapolation (i.e., when the forecast discharge is out of
the range of the flow groups defined during the training
phase of the HUP), values of relative errors from the near-
est flow groups (i.e., the lowest or the highest flow groups)
are used.

Preliminary studies carried out to compare this approach to
other similar post-processing approaches suggest that it can yield
similar results in terms of forecast performance, while being sim-
pler in its application.

2.5. Ensemble dressing method: an integrator of the meteorological
and hydrological uncertainties

The ensemble dressing method is used as an integrator of the
meteorological and hydrological uncertainties. It consists in two
steps. Firstly, each time an ensemble PEARP forecast is available,
the hydrological model is run with the ensemble forecast and the
HUP is applied, according to Step 4 of Section 2.4, to each of the
11 members of the ensemble for each lead time considered. Sec-
ondly, the 11 � 99 values obtained at each lead time are pooled
together and an empirical cumulative distribution is estimated.
From this distribution, 99 quantiles are retained as the members
of the dressed ensemble.

Application and evaluation of the ensemble dressing method for
the ensemble forecasts is done over an independent period, the
17-month period from August 2005 to December 2006.

2.6. Experiments

The hydrological ensemble forecast system combines meteoro-
logical and streamflow data from observation networks, the
Météo-France PEARP ensemble forecast, the GRP rainfall–runoff
model with its two data assimilation functions, the hydrological
uncertainty processor (HUP) and the ensemble dressing method.
Hereafter we will use the term ‘‘post-processing’’ to describe the
joint use of the HUP and the ensemble dressing method, while
the term ‘‘data assimilation’’ will refer to the two updating tech-
niques used in the GRP model.

In order to assess the benefits of data assimilation and post-pro-
cessing, considered together or separately, different configurations
of the forecasting chain were analyzed. Our experiments comprise a
chain without data assimilation and post-processing (NoDA-NoPP),
without data assimilation but with post-processing (NoDA-PP),
with data assimilation but without post-processing (DA-NoPP),
and with both data assimilation and post-processing (DA-PP). The
characteristics of the experiments and the acronyms used are given
in Table 2.

In particular, the NoDA-NoPP experiment corresponds to the
situation where the hydrological model is run in simulation mode,
i.e., without using recent streamflow observations for data assimi-
lation, and is then driven by the PEARP ensemble forecast when the
forecast is issued. When data assimilation is used, the state of the
routing reservoir of the hydrological model is first updated based
on the last observed discharge, and the second procedure is then
applied separately at each streamflow ensemble member. This
structured analysis allows us to identify the influence of data
assimilation and post-processing separately to assess the benefits
of both components when used together in the forecasting chain.

2.7. Forecast evaluation methods

The evaluation of the performance of probabilistic forecasts
should reflect the different facets of probabilistic forecasts. In this
study, the forecasts obtained from the four experiments set up
(Table 2) were evaluated with both deterministic and probabilistic
scores. We aimed to assess the influence of data assimilation and
post-processing on the following characteristics of ensemble fore-
casts: accuracy of the ensemble mean, overall sharpness and reli-
ability of the whole ensemble, and overall forecast quality of the
ensemble.

More specifically, we evaluated the accuracy of the ensemble
mean values with the relative bias (BIAS) and the normalized
root-mean-square error (NRMSE). To assess the overall reliability
of the forecasts, we used the Probability Integral Transform (PIT)
diagram (see e.g., Laio and Tamea, 2007; Thyer et al., 2009) and
an index that quantifies deviation from the ideal case, the alpha
score (Renard et al., 2010). The overall sharpness of the forecasts
was measured with an index based on the interquartile range that
we called normalized mean interquartile range (NMIQR). Finally,
we assessed the overall forecast quality of the whole ensemble
with the mean Continuous Rank Probability Skill Score (mean
CRPSS). The mean CRPSS is computed with the unconditional
streamflow climatology as the reference. These scores are pre-
sented in more details in Appendix A.

3. Results and discussion

3.1. Forecast accuracy

Fig. 2 shows the distributions of the two deterministic scores
used to assess forecast accuracy: the relative bias (BIAS) and the
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Fig. 2. Distributions of two deterministic scores, the relative bias (BIAS) and the normalized root-mean-square error (NRMSE), for ensemble streamflow forecasts from the
four experiments (see Table 2) and lead times 6 h, 12 h, 24 h and 48 h. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize the variety of scores over the 202
catchments of the data set.
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normalized root-mean-square error (NRMSE). Each score is com-
puted for lead times 6 h, 12 h, 24 h and 48 h and for all 202 catch-
ments. The distribution of the 202 values is summarized with
boxplots.

We note that forecast accuracy decreases with increasing lead
time for the four experiments. For NoDA experiments (NoDA-NoPP
and NoDA-PP), the loss of performance is quite limited: it is only
related to the decreasing performance of the PEARP ensemble pre-
cipitation forecasts. For DA experiments (DA-NoPP and Da-PP), the
decrease is stronger and the performances converge toward those
of NoDA experiments: the effects of the two DA procedures used
in the GRP forecasting model vanish with larger horizons; the
decrease in performance of the hydrological model is then added
to the losses in performance of the PEARP ensemble precipitation
forecasts. Fig. 2 also reveals that post-processing does not signifi-
cantly impact forecast accuracy, whether or not DA is used. DA
has a much stronger impact on the ensemble mean values than
post-processing, especially for shorter lead times and, to a lower
extent, for larger lead times. The two DA procedures used in the
GRP forecasting model have been designed to improve the perfor-
mance of deterministic forecasts and, as can been seen, they clearly
help improving the mean of the ensemble forecasts. Post-processing
on the other hand primarily aims to account for hydrological uncer-
tainty. Its capability to reduce overall bias and squared errors in the
mean of the ensemble forecasts is limited here. Nonetheless, for all
lead times, forecast accuracy is best when DA and PP are used
together, which indicates the benefits of the combined use of data
assimilation and post-processing.

3.2. Reliability

Fig. 3 presents the PIT diagrams obtained for each of the 202
catchments, when considering 24 h ahead ensemble forecasts. Since
similar figures were obtained for the other lead times (not shown).

From Fig. 3a and b, it can be seen that most of the curves are
almost horizontal straight lines, while they would follow the
bisector (black lines in the graphs) in the ideal case of reliable
ensemble predictions. Fig. 3a and b clearly reveal that the raw
ensembles are lacking reliability for all of the catchments. The
impact of post-processing on reliability is apparent when looking
at the results in Fig. 3c and d: the curves of the ensemble stream-
flow forecasts with post-processing follow the ideal situation much
more closely than the curves shown in Fig. 3a and b (ensemble
streamflow forecasts without post-processing). It means that the
overall reliability of the ensembles is clearly improved with post-
processing and this for both cases, with and without DA. A compar-
ison of solely Fig. 3c and d confirms also the positive impact of data
assimilation on the reliability of the ensembles: the PIT curves of
the dressed ensembles are substantially closer to the diagonal
(perfect reliability) when DA is applied.

The PIT diagrams convey a visual evaluation of the overall reli-
ability of probabilistic forecasts. To quantify it, we used the alpha
score, a reliability index that measures the deviation of the PIT
curves from the ideal situation. Fig. 4 presents the distributions
of the alpha scores obtained for each experiment over the 202
catchments. Results in Fig. 4 confirm the visual evaluation
obtained with the PIT diagrams: the two experiments that do not
account for hydrological uncertainty (NoDA-NoPP and DA-NoPP)
lack reliability. Their alpha values are almost always below 0.5,
while the alpha values obtained when hydrological uncertainty is
taken into account (NoDA-PP and DA-PP) are almost always higher
than 0.5. The benefits of DA is also apparent when comparing, on
one hand NoDA-NoPP and DA-NoPP, and on the other hand
NoDA-PP and DA-PP, although it can be also seen that DA alone
(comparing NoDA-NoPP to DA-NoPP) cannot correct under disper-
sion of the ensemble forecasts. Post-processing is then a necessary
step to achieve reliable forecasts in the forecasting chain analyzed.

These results suggest that for the 202 catchments studied the
spread obtained by propagating solely the precipitation ensembles
into the hydrological model is too small to properly reflect the
range of forecast errors. The deterministic data assimilation strat-
egy used here is effective in improving the reliability of the ensem-
ble forecasts, but it is not sufficient to correct the under dispersion
of the streamflow ensemble forecasts as revealed by the PIT
diagrams in Fig. 3 and the alpha scores in Fig. 4. This is a strong
indication that the hydrological uncertainty issue should be specif-
ically addressed in order to improve the overall reliability of hydro-
logical ensemble forecasts.
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Fig. 3. PIT diagrams of the 24 h ahead streamflow ensemble forecasts from the four (a)–(d) experiments (see Table 2). Each line represents one of the 202 catchments of the
data set.
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Fig. 4. Distributions of the alpha score reliability index for streamflow ensemble forecasts from the four experiments (see Table 2) and for lead times 6 h, 12 h, 24 h and 48 h.
Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize the variety of scores over the 202 catchments of the data set. Perfect score is 1.0.
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3.3. Sharpness

Sharpness is a desirable characteristic of any probabilistic fore-
cast. The sharper the forecast, the less uncertain it is, and thus the
more information is conveyed. The four experiments we used
made it possible to investigate how meteorological and hydrolog-
ical uncertainties interact and affect sharpness. Fig. 5 shows the
distributions of a sharpness index, the normalized mean interquar-
tile range (NMIQR), over 202 catchments.

It can be seen that the ensemble spreads of three experiments,
NoDA-NoPP, DA-NoPP and DA-PP, increase significantly with
increasing lead time, while it is more stable over lead times for
the experiment NoDA-PP. For NoDa-NoPP and DA-NoPP, the med-
ian value of NMIQR over the 202 catchments raises in a very close
behavior for both experiments, from around 0.05 for 6 h ahead fore-
casts to 0.13 for 48 h ahead forecasts. For the experiment DA-PP, the
increase in the median values is much more important: from 0.07 at
6 h to 0.32 at 48 h. These results indicate that forecast uncertainty
increases with increasing lead time as the result of increasing mete-
orological uncertainty alone (NoDA-NoPP and DA-NoPP) or as the
result of increasing meteorological and hydrological uncertainties
considered together and with DA (DA-PP). Comparing DA-NoPP
and DA-PP reveals the impact of post-processing: taking into
account hydrological uncertainty leads to more spread and less
sharpness in ensemble forecasts. Comparing NoDA-NoPP and
DA-NoPP shows that the propagation of meteorological uncertainty
has a rather similar impact on ensemble sharpness whether or not
DA is used to update the states of the forecasting model. Remark-
ably, the ensemble spreads obtained without DA but with post-pro-
cessing (NoDA-PP) is stable across the lead times with a median
value over the 202 catchments around 0.52. This is because statis-
tical post-processing reflects the large errors obtained when the
forecasting model does not use DA (see Fig. 2). In this case, the
spread obtained when taking hydrological uncertainty into account
is so large that the increasing spread of the PEARP ensemble fore-
casts with increasing lead time has no visible impact on the spread
of the post-processed ensemble: hydrological uncertainty domi-
nates meteorological uncertainty.

Not surprisingly, sharper forecasts are obtained when only mete-
orological uncertainty is taken into account (NoPP experiments).
This is to the detriment of reliability: ensemble forecasts with only
meteorological uncertainty are sharper but not reliable, reflecting
the presence of under dispersion (as shown in Section 3.2). The
use of post-processing (PP experiments) leads to ensembles that
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Fig. 5. Distributions of the normalized mean interquartile range (NMIQR) for streamflow
12 h, 24 h and 48 h. Boxplots (5th, 25th, 50th, 75th and 95th percentiles) synthesize the
are more spread out because they attempt to handle hydrological
uncertainty and reflect hydrological forecast errors. Ensembles are
thus less sharp but, on the other hand, achieve reliability. At this
point, it should be remembered that sharp but unreliable forecasts
should be considered with caution. Unreliable forecasts can convey
a wrong impression of certainty that results from having neglected
one or several important sources of uncertainty.
3.4. Mean CRPSS

The analysis of the impacts of data assimilation and post-
processing on two important characteristics of probabilistic fore-
casts, reliability and sharpness, showed that post-processing was
necessary to improve reliability, but at the cost of lower sharpness,
i.e., greater ensemble spread and uncertainty, even if sharpness
could be improved with the application of a data assimilation pro-
cedure. We now turn our attention to the mean CRPSS, a probabi-
listic score that provides an assessment of the overall quality of
ensemble forecasts.

Fig. 6 shows the distributions of the mean CRPSS over 202
catchments. We note that performance decreases with increasing
lead time for the two experiments with data assimilation: median
values of the CRPSS are equal to 0.84 (DA-NoPP) and 0.87 (DA-PP)
for 6 h range forecasts, and equal to 0.45 (DA-NoPP) and 0.57
(DA-PP) for 48 h range forecasts. Mean CRPSS values of the two
experiments without data assimilation decrease only slightly but
are much lower than values obtained with data assimilation
(median values around 0.10 for NoDA-NoPP and around 0.45 for
NoDA-PP). This is especially true for shorter lead times and, to a
lower extent, for larger lead times. Furthermore, the comparison
with the reference climatology shows that data assimilation alone
is sufficient to generate skillfull forecasts for more than 95% of the
catchments for lead times up to 24 h, but post-processing (DA-PP)
is necessary to achieve forecasts that have better overall perfor-
mance than climatology at 48 h.

These results show the general added value of data assimilation
and post-processing to the overall quality of ensemble forecasts.
When evaluating the overall quality of ensemble forecasts with
the CRPSS, the benefits in terms of reliability overcome the loss
of sharpness that results from accounting for hydrological uncer-
tainty. The streamflow ensemble forecasts that explicitly account
for both sources of uncertainty, meteorological and hydrological
uncertainties, through post-processing, while reducing as much
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Fig. 6. Distributions of the mean CRPSS for streamflow ensemble forecasts from the four experiments (see Table 2) and for lead times 6 h, 12 h, 24 h and 48 h. Boxplots (5th,
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as possible hydrological uncertainty, here through data assimila-
tion, are the most skillfull forecasts.

4. Summary and conclusions

We investigated the relative contributions of data assimilation
and post-processing to the skill of hydrological ensemble forecasts.
The study assessed the benefits of data assimilation and post-
processing with the help of four configurations of a short-range
hydrological ensemble forecasting system: without data assimila-
tion and post-processing (NoDA-NoPP), without data assimilation
but with post-processing (NoDA-PP), with data assimilation but
without post-processing (DA-NoPP), and with both data assimila-
tion and post-processing (DA-PP).

We applied deterministic and probabilistic scores to streamflow
forecasts of a large catchment set which brought into light the
main general conclusions listed below:

� We verify the well-known fact that short-range hydrological
forecasts benefit from data assimilation. Data assimilation has
a strong impact on improving the quality of the ensemble mean,
and a much lesser effect on the variability of the ensemble
members (i.e., their spread).
� The benefits of a simple yet efficient hydrological uncertainty

processor to improve the reliability and the overall quality
of the short-range hydrological ensemble forecasts were
demonstrated. Post-processing has a strong impact on forecast
reliability.
� The benefits of the combined use of data assimilation and

post-processing were demonstrated: both contribute to achieve
reliable and sharp forecasts, with impacts acting differently
according to the target lead time. The stronger impact on fore-
cast reliability comes from the use of post-processing. Adding
data assimilation to the system helps in improving sharpness
and reliability at all lead times, with higher gains in perfor-
mance at shorter lead times.

We acknowledge some limitations. It was only possible to
evaluate the forecasting chain over a 17-month period of ensemble
forecasts, since this was the common period between observations
and forecasts we had available. Furthermore, PEARP ensembles are
ran only once a day, which limits the number of hourly evaluation
pairs. For these reasons, it was not possible to evaluate flows over
specific flooding thresholds. However, with increasing data
archives, we expect that such an issue will be treated in future
work.
Our study considered only one data assimilation technique
(state updating with error output correction) and one post-
processing method (ensemble dressing with hydrological errors)
together with one rainfall–runoff model forecasting (GRP model).
There are several other techniques and models in the literature
that could also be tested using the methodology presented here.
For instance, a comparison between different configurations of
the method used, or different hydrological uncertainty processors,
including methods that take into account the autocorrelation of
errors (e.g., Schoups and Vrugt, 2010) could be investigated.
Besides, while a bias correction was applied to the PEARP forecasts,
a more sophisticated pre-processor (see e.g., Verkade et al., 2013)
could be used to further investigate how meteorological and
hydrological biases interact and contribute to the quality of the
final hydrological ensemble.

Also, the effectiveness of a data assimilation technique or a
post-processing method (and hence the choice of the procedures
to operate in a forecasting system) is affected by different sources
of uncertainties present in a flow forecasting system, including the
forcing data, initial conditions, parameter uncertainty and model
structural uncertainty. In our study, we followed the works of
Krzysztofowicz (1999) and focused on a decomposition of the total
uncertainty into meteorological and hydrological uncertainty.
Observational or parameter uncertainties were thus not explicitly
considered. Additional sources of uncertainty, may, however
affect the performance of data assimilation techniques and post-
processors, as well as the way they interact in the forecasting
system. Further investigations would be necessary to better assess
the extent to which this may affect forecast quality.

Although our findings may be related to the configuration used,
they are based on common techniques and on the study of a large
set of catchments, which helps in giving robustness and generality
to the results obtained. The study also shows that, for a given
system configuration, it is interesting to analyse how data assimi-
lation and/or post-processing techniques set up to improve fore-
cast quality affect the attributes of the forecasts and interact to
provide overall good forecasts. The aim of a forecaster may then
be to achieve a good combination of hydrological model, data
assimilation and post-processing procedures that results in an
overall good quality of his/her operational system (eventually over
specific space and time scales of interest), rather than to search for
the best data assimilation technique or post-processor available,
without taking into account how they will interact between them
and with the probabilistic forecasting system as a whole.

Despite those limitations, our results strongly suggest that data
assimilation and post-processing techniques based on hydrological
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uncertainty processors should be more widely tested to foster their
implementation in pre-operational and operational hydrological
ensemble forecasting systems and their use in real-time probabi-
listic forecasting. The use of both strategies is highly recommended
since they have complementary effects: data assimilation has a
very positive effect on forecast accuracy, and thus helps reduce
hydrological uncertainty, but its impact diminishes with lead time,
while post-processing, by accounting for hydrological uncertainty,
has a very positive and longer lasting effect on forecast reliability.
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Appendix A. Evaluation scores

The evaluation scores used in this article are defined and briefly
described below. For more details, the reader may refer to Wilks
(2011).

A.1. Relative bias

The relative bias (BIAS) is defined as the ratio between the mean
of deterministic forecasts and the mean of observations,

BIAS ¼
PN

k¼1QfctðkÞPN
k¼1Q obsðkÞ

ð1Þ

where QfctðkÞ;QobsðkÞ
� �

is the kth of N pairs of deterministic fore-
casts and observations.

Values higher (lower) than 1 indicate an overall overestimation
(underestimation) of the observed values.

A.2. Normalized root-mean-square error

The root-mean-square error (RMSE) is a widely used measure of
accuracy for point forecasts,

RMSE ¼ 1
N

XN

k¼1

Q fctðkÞ � QobsðkÞ
� �2

" #1=2

ð2Þ

where QfctðkÞ;QobsðkÞ
� �

is the kth of N pairs of forecasts and
observations.

The lower the RMSE, the better. For a perfect deterministic fore-
cast, RMSE = 0.

The normalized root-mean-square error (NRMSE) is obtained by
dividing the RMSE by the mean runoff. The use of a non-dimen-
sional score facilitates the comparison of the results obtained over
different catchments.

A.3. PIT diagram and alpha score

The Probability Integral Transform (PIT) diagram is a graphical
tool used to assess the reliability of probabilistic forecasts
(Gneiting et al., 2007; Laio and Tamea, 2007). The PIT diagram cor-
responds to the empirical cumulative distribution of the PIT values,
which are defined for each pair of forecasts and observations as the
value that the cumulative predictive distribution F reaches at the
observation, pobs ¼ FðQobsÞ. It is analogous to a cumulated version
of the rank histogram. If the forecasts are reliable, the PIT values
follow a uniform distribution on the interval [0,1] and the PIT
curve is close to the 1:1 line. Reliability of the probabilistic fore-
casts implies that the observations should not be preferentially
located in specific parts of the predictive distributions, but instead
should uniformly span the whole predictive range.

The alpha score is an index proposed by Renard et al. (2010) to
reflect the overall reliability of probabilistic forecasts. The alpha
score is directly related to the PIT diagram. It is defined as
1� 2A, where A is the area between the bisector and the PIT curve,

A ¼ 1
N

XN

k¼1

pobsðkÞ � pthðkÞ
�� �� ð3Þ

and where pobsðkÞ;pthðkÞ
� �

is the kth of N pairs of observed and the-
oretical PIT values.

The alpha score ranges from 0 to 1. 0 indicates poor reliability
while values close to 1 indicate perfect reliability.

A.4. Normalized mean interquartile range

To assess the sharpness of probabilistic forecasts, we defined
the mean interquartile range (MIQR) as the mean of the interquar-
tile range of forecasts over the evaluation data. The interquartile
range, defined as the range between the upper quartile (75th per-
centile) and the lower quartile (25th percentile) of a distribution, is
a robust measure of the spread of a distribution. MIQR is computed
as

MIQR ¼ 1
N

XN

k¼1

Q 75
fctðkÞ � Q 25

fctðkÞ
� �

ð4Þ

where Q25
fctðkÞ;Q

75
fctðkÞ

� �
is the kth of N pairs of quartiles of the

forecasts.
Similarly to the NRMSE, we divided the MIQR by the mean run-

off to obtain a non-dimensional score.

A.5. Mean CRPS and mean CRPSS

For a forecast–observation evaluation pair, the Continuous Rank
Probability Score (CRPS) (e.g., Matheson and Winkler, 1976;
Gneiting et al., 2007) measures the quadratic distance between
two cumulative distribution functions, the cumulative predictive
distribution FðxÞ and a Heaviside function based on the observed
value 1 Q obs 6 xf g):

CRPSðF;Q obsÞ ¼
Z 1

�1
FðxÞ � 1 Q obs 6 xf gð Þ2 dx ð5Þ

The mean CRPS, CRPS, is the average value of the CRPS over the
N pairs of evaluation data:

CRPS ¼ 1
N

XN

k¼1

CRPSðkÞ ð6Þ

The mean Continuous Rank Probability Skill Score (CRPSS) is a
skill score based on the CRPS. Skill scores (SS) are used to assess
the relative quality of two forecasting systems. They are generally
defined as:

SS ¼ 1� ScoreA

ScoreB ð7Þ

where ScoreA and ScoreB are the scores of the forecasting system A
and B respectively. The forecasting system B is usually termed the
reference forecast.

Climatology is commonly used as a reference. To compute the
mean CRPSS with the unconditional climatology as the reference,
an unconditional streamflow ensemble forecast is first obtained
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from the empirical distribution of all observed discharges over the
evaluation period, and then used for all forecast occasions.
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