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Drones are transforming the way we sense and interact with the environment. However, despite their
increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition
for generating high-resolution maps. Motivated by the increasing demand for innovative and high perfor-
mance geophysical observational methodologies, we posit the integration of drone technology and opti-
cal sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a
recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies.
Specifically, drone’s vibrations do not hinder surface flow observations, and velocity measurements are
in agreement with traditional techniques. This first instance of quantitative water flow sensing from a
flying drone paves the way to novel observations of the environment.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Surface waters influence the way the landscape evolves, ecosys-
tems develop, environmental risks arise, and epidemics propagate
(Tucker and Bras, 1998; Boulton et al., 1998; Chow et al., 1988;
Mari et al., 2012). Due to the complexity of surface water pro-
cesses, a unique observational method for identifying and quanti-
tatively monitoring flows is yet to be found (Hrachowitz et al.,
2013). Traditionally, surface flows are invasively monitored using
current meters (Tazioli, 2011), tracing systems (Planchon et al.,
2005), and acoustic doppler instrumentation (Yorke and Oberg,
2002). Water control structures, such as weirs and spillways, can
also be used to estimate flow discharge (Chanson, 2004).

Even if the efficacy of such methods has been demonstrated in
the technical literature (Leibundgut et al., 2009), their use is lim-
ited to easy-to-access environments. In addition, the measurement
accuracy can be affected by the severity of natural rainfall events
and by systematic errors associated with sensors interfering with
the flow. To address some of these challenges, considerable efforts
have been devoted toward the development and refinement of
remote methods, including hand-held radars (Fulton and
Ostrowski, 2008), microwave sensors (Plant et al., 2005), and
satellites (Tarpanelli et al., 2013). These approaches have highly
benefitted the realm of hydrological observations; however, most
of them are only applicable to large scale channel flows, may be
expensive, and may not be suitable to frequently monitor water
bodies.

To mitigate such issues, several methods based on the remote
acquisition and analysis of flow images have been proposed and
implemented in the last two decades (Fujita et al., 1997). Specifi-
cally, in (Muste et al., 2008), images of large scale riverine ecosys-
tems are analyzed through high-speed cross-correlation to obtain
surface flow velocity maps. These surface flow velocity maps can
be complemented with information on the bathymetry to allow
for flow discharge estimations (Hauet et al., 2008). Such optical
observational methods are challenged by practical difficulties, such
as the need for collecting ground reference points GRPs (Tauro
et al., 2014a), and, therefore, flow data are often not available at
ungauged sites, such as extra-urban areas, large-scale lakes and
glaciers, coasts, and river estuaries. Despite practical limitations,
optical methods are inherently suited to enable continuous and
remote observations over diverse water bodies, spanning from rills
to large scale rivers. Notably, the potential of image-based meth-
ods has been assessed on a mountainous stream (Tauro et al.,
2012a), a semi-natural hillslope (Tauro et al., 2012b), and a large
scale river (Tauro et al., 2014a).

Here, we propose a novel, fully remote approach for surface
flow observations that overcomes practical difficulties related to
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the implementation of optical methods in difficult-to-access envi-
ronments. Specifically, we put forward the integration of optical
observational techniques and drones for non-invasive quantitative
flow measurement. With more than six billion dollars a year spent
in research and development around the world (Palermo, 2014),
drones have transformed our capacity to remotely sense and access
the environment Clarke (2002), Cohen (2007), Eltner et al. (2015)
and Pérez-Alberti and Trenhaile (2014). For instance, in the last
decade, drones have empowered multiple fields of science by
enabling data collection in hostile environments, such as volcanoes
(McGonigle et al., 2008) and ice sheets (Shelley et al., 2014), and by
providing footage over extended areas, such as forests (Cohen,
2007) and natural reserves (Schiffman, 2014). Just as aerial and
satellite sensing have transformed scientific observations, allowing
the resolution of large-scale physical processes (Jensen, 1983;
Famiglietti et al., 2015), the pervasive use of drones is set to revo-
lutionise geophysical sciences through the rapid and refined mea-
surement of small to medium scale phenomena.

In the realm of hydrology, drones have the potential to enable
remote and distributed flow measurements in difficult-to-access
water environments during adverse hydro-meteorological events.
In our vision, a drone is deployed in natural environments and is
remotely piloted (or, alternatively, guided through GPS waypoint
trajectory) above the water body of interest upon request/need
of the operator. An onboard camera oriented with its axis perpen-
dicular to the water surface captures videos of the flow, whereby a
ground user identifies a region of interest through a wireless mon-
itor in real time. Once the ground user selects an area of interest,
the drone is set to the hovering mode, and the platform station-
keeps above the region while taking high-resolution videos of the
water surface. Pictures extracted from the drone footage can be
processed off-line through several optical-based algorithms to esti-
mate the surface velocity field.

To demonstrate the potential of our approach, we present the
design and preliminary assessment of a novel aerial sensing plat-
form. The platform features a low-cost recreational drone
equipped with a miniature camera and a system of lasers to remo-
tely assign metric dimensions to images (remote photometric cal-
ibration in the rest of the note) without the acquisition of GRPs. To
assess the feasibility of the hovering capability of the drone for reli-
able flow velocimetry, we execute preliminary experiments on an
ad hoc developed outdoor controlled facility at University of Tus-
cia. Finally, we perform surface flow observations in a small scale
stream (less than 1 m wide and a few centimeters deep) in the Ital-
ian Alps. Interestingly, few noninvasive techniques are currently
available to monitor small scale surface flows in natural environ-
ments. We remotely capture and calibrate videos of the stream
from the drone and apply the Large Scale Particle Image Velocime-
try (LSPIV) high-speed cross-correlation algorithm (Hauet et al.,
2008) that extracts usable flow velocity maps from the motion of
stream floaters. Such drone-based surface flow velocity estimates
are compared to benchmark values from a current meter to
demonstrate the validity of airborne flow velocimetry.

Our method is expected to help in hydrological monitoring in
ungauged areas by providing information on the kinematics of sur-
face waters. Differently from standard drone-based monitoring
where image mosaicing techniques are used to assemble maps
(Immerzeel et al., 2014), our approach treats captured videos as
quantitative data and analyzes them to measure the surface flow
velocity. These observations could leverage current knowledge on
the contribution of surface flows to the overall hydrological
response of natural systems. Further, continuous technological
advancements in battery life and camera storage capacity may fos-
ter observations at the catchment scale and in large scale and yet
ungauged water systems, thus opening novel research avenues in
hydrology.
The rest of the technical note is organized as follows. In Sec-
tion 2, the aerial sensing platform, experimental settings, and
image-based procedures are presented. In Section 3, we report
experimental findings for the hovering assessment and the air-
borne flow velocimetry. In Section 4, we discuss the advancements
of the proposed approach. Section 5 is left for conclusions.
2. Materials and methods

Here, we present the aerial sensing platform utilized in the
experiments. Further, we provide details for the hovering assess-
ment and the airborne flow velocimetry experiments.

2.1. Aerial sensing platform

The aerial sensing platform features a DJI Phantom 2 quadrotor
(http://www.dji.com/) mounting a Zenmuse H3-2D gimbal and a
GoPro Hero 3 camera oriented with its axis along the perpendicu-
lar. This configuration allows for compensating the drone vibra-
tions about the pitch and roll axes, while minimizing distortions
in video capture due to the inclination of the camera axis with
respect to the field of view (FOV). Remote photometric calibration
is enabled through four green lasers (532 nm in wavelength and
less than 5 mW in power) installed at the four corners of the fuse-
lage along the drone’s yaw axis. The platform is less than 1.5 kg in
weight and its overall cost is €1300.

The relative distances of the laser pointers are measured upon
assembly of the sensing platform with a precision caliper. This sys-
tem of lasers has the twofold objective of: (i) focusing points at
known distances in the FOV for remote image calibration and (ii)
indicating possible elevation and attitude changes during hovering
from the relative distance of the laser traces in the images (Tauro
et al., 2014a). With respect to (i), the traces of the lasers in cap-
tured videos are used to estimate pixel dimensions in metric units.
With respect to (ii), inaccurate hovering leads to images that depict
slightly different FOVs. However, high-speed cross-correlation
should be applied on images displaying consistent regions of the
fluid domain (Raffel et al., 2007). To this aim, lasers can be instru-
mental to automatically identify portions of footage captured
while the drone is hovering at a given location. In fact, the traces
that lasers determine on the ground vary, based on the elevation
and attitude of the drone; therefore, sequences of images display-
ing similar traces can be directly processed for surface flow veloc-
ity estimation.

2.2. Hovering assessment

A preliminary experiment assessment is conducted to assess
the feasibility of using a commercial low-cost platform for airborne
flow velocimetry. The aerial sensing platform presents limited
hovering capability (vertical: �0:8 m and horizontal: �2:5 m
(http://www.dji.com/)). Therefore, airframe changes in attitude
and elevation may lead to variable image FOVs (Fujita and Hino,
2003; Fujita and Kunita, 2011). To evaluate such FOV variations,
we fly the platform in the hovering mode above a large scale grid
in an outdoor facility at the University of Tuscia, Italy. We perform
a 22 s flight, whereby the onboard GoPro frame rate is set to 60 Hz
and the FOV to medium (focal length equal to 21 mm). The exper-
iment is conducted at dusk and during light air wind conditions
(2.19 km/h wind speed) (http://www.wmo.int).

Hovering capability is assessed by estimating the relative vari-
ations in the pixel area of the grid cells captured by the drone dur-
ing the flight. Slight variations in the pixel areas of the grid cells
during the flight would suggest that changes in the drone’s eleva-
tion and attitude can be mitigated with minimal image processing,



Fig. 1. Sketch of the experimental setup. Analysis of the squares of the grid was
used to assess the ability to capture stable videos.

242 F. Tauro et al. / Journal of Hydrology 540 (2016) 240–245
and, therefore, drone-based videos are compatible with accurate
surface flow observations. To provide a reliable assessment, the
experimental time is set to 22 s, whereas airborne flow velocime-
try tests only last up to few seconds (given the high camera frame
rate, video data recorded in few seconds are largely sufficient for
accurate measurements).

2.2.1. Hovering assessment outdoor facility
The drone is flown above a 5� 5 m2 flat grid assembled in the

outdoor laboratory at University of Tuscia, Italy, out of a dark opa-
que ground cloth and a structure of white strings. The strings are
laid to create 1� 1 m2 squared grid cells. The dark cloth minimizes
reflections and enhances the visibility of the white strings against
the background. Fig. 1 presents a schematics of the setup. The
drone is deployed to hover above the center of the grid. The
dashed1 red rectangle in Fig. 1 shows the FOV captured by the
onboard camera. The laser-focused rectangle is indicated in yellow.

2.2.2. Image-based hovering evaluation
Captured video data are preliminary corrected for the camera

lens distortion. The video fish eye distortion is removed through
the freely available GoPro Studio 2.0 Software. Then, the video is
converted and decompressed to extract Full HD frames. Image pro-
cessing entails a preliminary phase in which frames are converted
to grayscale based on luminance information and then converted
to binary by imposing a threshold. Image segmentation is then
applied on binary images to retain essential features.

To estimate the pixel area of the grid cells, an artificial binary
template depicting a representative node of the grid is created.
Normalized cross-correlation is performed between the template
and images extracted from the experimental video. By retaining
locations presenting high values of the cross-correlation coefficient
and repairing false correlations, the pixel locations of the grid
nodes are obtained. Image-based algorithms (Coolidge, 1939;
Hunter, 1958) are utilized to compute the areas of the grid cells
and the area of the rectangle identified by the four lasers.

2.3. Airborne flow velocimetry

To ultimately demonstrate the potential of drone-based flow
observations, surface flowmeasurements are conducted over a less
than 1 m-wide and 11 cm-deep mountainous stream in the Rio
Cordon natural catchment, Italy (Tauro et al., 2012a).

2.3.1. Airborne flow velocimetry study site

The Rio Cordon drains a 7:68 km2 natural basin located in the
Dolomites, Northeastern Italy. The stream is a tributary of the Fior-
entina stream that in turn flows into the Rio Cordevole. The catch-
ment drainage network extends for approximately 19 km at an
average slope of 47.85%. Tests are executed at a local gauging sta-
tion, which is equipped with water gauges, a coarse sediment
grille, and a diversion pool for water and finer material. The gaug-
ing station is located at 1763 m above sea level where the area

drained by the stream is approximately 5 km2 large. At the time
of the experiments, a nearby meteorological station recorded a
wind speed of 0.9 m/s.

2.3.2. Airborne flow velocimetry procedure
The drone is flown above an artificially channeled stream reach

located in the proximity of a stream gauge. The selected stream
reach is a rectilinear tract with a concrete rectangular section that
extends for approximately 10 m. Surface velocity is measured
1 For interpretation of color in Fig. 1, the reader is referred to the web version of
this article.
using both artificial and natural tracers. Ten repetitions are per-
formed for each type of tracer. Similar to (Tauro et al., 2013a,b),
artificial tracers are high-visibility in-house fabricated particles
synthesized from biocompatible and buoyant children-friendly
dough. Particle size ranges from 0.5 up to 1 cm, and beads are
red, yellow, orange, and green in color. Also, experiments are con-
ducted using natural leaves as tracers. In both classes of experi-
ments, the drone captures Full HD videos at 60 Hz frame rate. On
average, the FOV extends for 9� 5 m2.

Drone-based data are compared to benchmark flow velocities
obtained using an OTT C2 small current meter. Current meters
yield accurate and repeatable open channel flow measurements
up to a few centimeters from the water surface and, differently
from more costly non-contact radars, are widely used by research-
ers and practitioners in environmental monitoring. In the experi-
ments, the instrument is set to the time measurement mode,
whereby the number of impulses recorded in 10 s are counted
and related to flow velocity. The velocity is measured at a cross-
section of the stream a few centimeters upstream the subarea used
for comparing the drone tests. Benchmark values are obtained by
measuring the flow at 0.5 m from the right stream bank (that is,
in the center of the stream) and 3 cm underneath the water surface
and averaging over three repetitions. Obtained values are relative
to the uppermost layer of the stream (top 30% of the stream depth),
where the velocity is less influenced by wind effects and, therefore,
it is likely higher than surface velocity.

2.3.3. Airborne flow velocimetry video processing
Similar to Section 2.2.2, drone-based videos are fish-eye undis-

torted and sequences of Full HD images are extracted. Similar to
the image-based hovering evaluation, lasers’ traces onto the
stream surface are utilized to manually identify stable image
sequences within videos captured from the drone. The lasers afford
remote photometric calibration of experimental images. Specifi-
cally, the pixel distance between lasers traces is manually esti-
mated in several frames and validated with respect to objects of
known dimensions that are visible in the field of view.

Untrimmed images depicting the transit of the tracers are pro-
cessed using the high-speed cross-correlation edPIV software (Gui,
2013), where frame acquisition rate is set to 60 Hz, interrogation
window size to 32� 32 pixels, and grid size to 16� 16 pixels. On
average, the pixel area displaying the surveyed stream reach corre-
sponds to 20% of the picture. Surface flow velocity maps are devel-
oped by averaging velocity estimations in time over the sequence
of images analyzed in the experiment.

Due to imperfect hovering of the drone during image acquisi-
tion, image portions lying outside the stream presented non-null
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velocities. To remove such false readings, the average velocity of
nodes outside the stream is automatically computed and sub-
tracted from the entire set of velocity values. Given the stability
of the aerial platform and the short duration of experimental
flights, airframe vibrations do not excessively impact velocity esti-
mation. In particular, velocities estimated without subtracting val-
ues of nodes outside the flow are 5–8% larger than measurements
herein reported. Comparison between measurements executed
with the two classes of tracers is performed by considering a sub-
area of the stream that is consistently captured in each video. Then,
time-averaged velocities are computed over the frame sequence
and the maximum value of the velocity field in the subarea is used
for comparison.
3. Results

3.1. Hovering assessment

Analysis of images recorded during the hovering test demon-
strates that the platform stability is compatible with airborne flow
velocimetry. During the flight time, consistent portions of the grid
are captured by the camera. Specifically, the 11 grid cells enclosing
colored markers in the left panel of Fig. 2 are always visible in
frames during the flight. Colored markers inside such grid cells
indicate the average pixel area of each cell over the flight time.
Squares 2, 5, 6, 9, and 10 present smaller areas than squares on
the left hand side of the grid, suggesting that the drone is closer
to the left portion of the grid.

In Fig. 2 (right), the time series of the areas of the grid cells (col-
ored dots) and of the laser focused rectangle (black dots) are
shown. Due to illumination conditions, the trace of the four laser
beams on the grid is not always visible (76% of the total number
of frames depicted four laser traces). Notably, the cell areas slightly
vary in time, with a maximum coefficient of variation of 0.89%. On
the other hand, external vibrations lead to a coefficient of variation
as large as 2.94% in the time series of the area identified by the
lasers. This is due to the fact that lasers are directly installed on
the drone fuselage, whereas the camera gimbal efficiently miti-
gates the drone’s vibrations, thus abating the coefficient of varia-
tion to less than a third of its value. We remark that improved
stability is crucial for correlation-based flow velocity estimation,
where the similarities between consecutive images are used to
infer the displacement of depicted objects. Therefore, slight
changes in the image FOV due to the drone’s vibrations while
hovering suggest that reliable cross-correlation is feasible.
3.2. Airborne flow velocimetry

Proof of concept velocity observations in the Rio Cordon show
the potential of the drone-based approach for surface flow mea-
surement. Aerial platform velocities measured in the subarea
located in between the dark cross-sectional stripe and the dark
inclined stripes (approximately 0:76� 0:83 m2), Fig. 3 (left), are
in line with benchmark values, Table 1. Underestimations with
respect to the impeller flowmeter readings may be due to the fact
that the flowmeter is slightly below the water surface (3 cm out of
the total depth of 11 cm), where wind effects are negligible and
velocities are expected to be larger than surface flows.

With regards to the two sets of drone measurements in Table 1,
differences between them are not statistically different as deter-
mined through one-way ANOVA (F ¼ 2:43 and p ¼ 0:14). The
slightly higher uncertainty obtained in case of natural floaters is
attributed to the fact that they were heavily deployed in the stream
and, therefore, involved longer flights. Therefore, since the hover-
ing performance of the drone is reduced over longer flight times,
the use of natural tracers yields the higher standard deviation in
Table 1.

As shown in the velocity map in Fig. 3 (left), the aerial platform
is successful in monitoring extended portions of the stream and the
flow physics across the stream is accurately captured, Fig. 3 (right).
Maps from the drone are slightly affected by local water reflections
and areas of poor illumination, since the onboard camera offers
extended FOVs with diffused, rather than direct, illumination.
4. Discussion and remarks

Here, we propose a novel surface flow observation concept
based on a stand-alone sensing platform that integrates drone
technology and optical methods. Not only are image data captured
from the platform, but a system of lasers enables remote photo-
metric calibration, thus circumventing the need for time-
consuming and expensive field campaigns for GRPs acquisition.
Specifically, in this study, a laser system is utilized for pixel calibra-
tion and for flow velocimetry analyses. Indeed, the stationarity of
the time series of the area identified by the lasers is used to isolate
stable sequences for flowmeasurements, whereby small variations
are associated with instances of stable hovering.

Notably, the laser apparatus paves the way for unsupervised
rapid observations in large scale hydrological systems. Indeed,
instances of airborne flow velocimetry currently rely on the acqui-
sition of fixed objects in the FOV for photometric calibration and
for video stabilization due to imperfect hovering (Detert and
Weitbrecht, 2015; Tauro et al., 2015a, 2016). On the other hand,
the use of the laser system will leverage pixel calibration in the
absence of fixed reference objects, thus enabling low cost observa-
tions in large scale systems, such as estuaries and limnological
environments. In such large scale settings that may exceed the
maximum distance range allowed by the remote control, a priori
planned GPS waypoint navigation may facilitate observations.

Beyond pixel calibration and video stabilization, analysis of the
laser’s traces in the FOV can be used to complement onboard built-
in altimetry measurements. For instance, a smaller area corre-
sponds to a higher distance of the drone from the ground and, thus,
to the drone increasing its vertical position. Therefore, changes in
the area and shape of the laser’s traces on the ground can help in
estimating the altitude of the drone with respect to the ground,
thus opening the way for refined photometric calibration and
enhanced measurement accuracy.

The presented system is inherently suited for real-time analysis
in ungauged environments. Data acquisition is feasible in rather
limited intervals of time (few seconds) and surface flow velocity
map generation is an unsupervised process that can be afforded
in 5–10 min. In addition, given the limited cost of the equipment
and its ease of implementation (medium flight skills can be
achieved after some hours of training), the approach is versatile
and likely sustainable for most research groups. With regards to
the use of tracers, even if highly-visible artificial tracers enable
rapid velocity estimations, their use requires either the presence
of operators or installation of remotely-operated devices to deploy
the particles (Tauro et al., 2012a).

The dependence of LSPIV measurements on the presence of
homogeneously distributed tracers may pose a significant techni-
cal challenge to practical implementations of the proposed
approach. To overcome this issue, we envision the development
of machine learning techniques to automatically de-noise pictures
(Tauro et al., 2014b) and to emphasize floaters’ contrast against the
image background. Alternative image-based flow velocimetry algo-
rithms that yield the trajectory of individual floaters, such as par-
ticle tracking velocimetry, should be explored (Tauro et al.,
accepted). In the case of floods or severe events, naturally-



Fig. 2. Left, experimental grid for assessing the drone’s hovering capability. Colored markers inside each square indicate the average area in pixels. Right, time histories of the
area of each of the 11 squares visible during the flight (colored dots), and of the area of the rectangle focused by the laser beams (black dots). Raw data are smoothed through
a local regression filter with weighted linear least squares and a parabolic model. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 3. Left, representative surface flow velocity maps from the aerial platform based on the use of natural floaters. The yellow star indicates the location at which
measurements with the impeller flowmeter are taken. Right, time-averaged cross-sectional profiles corresponding to the green, red, and blue cross-sections highlighted in the
map. Shaded areas indicate standard deviations. The yellow dashed box in the left panel highlights the subarea used for measurement comparison. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Velocity measurements performed on the natural stream. Symbols vm and r stand for
average maximum velocity and standard deviation, respectively. Average maximum
velocities and standard deviations from the drone are obtained from LSPIV time-
averaged maps by averaging over the yellow dashed subarea reported in Fig. 3.

vmðm=sÞ rðm=sÞ
Flowmeter 2.54 0.09

Drone
Artificial tracers 2.29 0.09
Natural tracers 2.15 0.27
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occurring debris and sediments may be sufficient to obtain surface
flow velocity measurements (Tauro et al., 2015b).

The proposed approach may be readily implemented to provide
fully remote and rapid flow discharge estimates in inaccessible
areas and large scale ecosystems. For instance, in (Chiu, 1987;
Chiu, 1988; Farina et al., 2014), an entropy-based method is pro-
posed to estimate flow discharge based on the maximum velocity
observed on the stream surface. This approach establishes a linear
relationship between the maximum surface velocity and mean
velocity in natural rivers (Chiu, 1991; Xia, 1997). The integration
of such entropy-based approach and drone-enabled distributed
surface velocity observations may lead to flow discharge estimates
in complex environments. Further, application of image mosaick-
ing and FOV reconstruction techniques may enable surface flow
velocity gauging over large water areas.
5. Conclusions

In this work, we demonstrated the potential of integrating an
aerial platform and optical sensing for surface flow measurements
in natural environments. We designed the aerial platform to enable
completely remote measurements, thus circumventing the need
for on site surveys that are typically required by traditional mea-
surement techniques, and enabling novel observations in inacces-
sible areas. By investigating the hovering capability of the aerial
platform during a flight of more than 20 s, we found that the
approach is suitable for remote flow observations. Further, surface
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flow velocity measurements performed from the drone on a small
scale mountainous stream were in good agreement with data from
on site flow sensing systems.

We expect drones to be a forward-looking addition to the
experimental toolbox currently available to hydrologists and geo-
physicists. As technology progresses toward better performing
drones, current limitations, such as imperfect hovering capabilities,
constrained flight time and payload, will be easily overcome, and
this approach should enable new avenues in hydrological observa-
tions. Future studies will be devoted to the application of the pre-
sented methodology to the kinematic characterization of
alternative environmental settings, such as channel and rill flows.
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