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Hairsine and Rose developed a mechanistic, one-dimensional, precipitation-driven erosion model that,
since its appearance, has been validated by several sets of experimental results. The model allows any
sediment particle to be present in one of three zones, viz., the flow zone, the deposited layer, or the ori-
ginal soil. The model has the general form of a two-region model, in which advection is the only transport
process. For the special case of a soil composed of a single particle size and for overland flow that occurs
at a steady rate and with a uniform depth, it is possible to derive fully explicit analytical solutions to the
model. Details of the solutions for a slightly generalized mathematical form of the model are provided.
The Goldstein J function, which appears commonly in two-region model solutions, was modified to
accommodate some of the solutions presented. The form of the model analyzed indicated that, based only
on sediment concentrations in runoff water, it is not possible to distinguish one mechanistic feature of
the Hairsine-Rose model, i.e., that raindrop-induced detachment of the undisturbed soil moves directly
into the flowing water. From the point of view of the model, it is equally plausible for raindrop impact to
move sediment directly into the deposited layer.

Overland flow
Raindrop detachment

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Hairsine and Rose (1991) presented a model, hereafter termed
the HR model, for erosion where the only mechanism causing
detachment of soil particles from the bed is impact by raindrops.
Their model further developed the original theory of Rose et al.
(1983a), which was successfully applied to sediment discharge
data from the Walnut Gulch experimental watershed by Rose
et al. (1983b). An essential development leading to the HR model
was the incorporation of a mechanistic description of the shielding
effect of eroded soil particles that settle out of the flow and form a
deposited layer on top of the original soil surface. Erosion of the
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original soil is then moderated by the existence of the deposited
layer, or shield, since its presence requires the removal of this sed-
iment before any of the original soil can be accessed. Consequently,
the energy of the raindrop impact is then partitioned between
eroding both the shield and, depending on the shield thickness,
the original soil.

As the ability of raindrop impact to cause erosion decreases
with the overland flow depth and because flow-driven erosion
mechanisms are neglected, the HR model only applies to shallow
flows that are below the threshold streampower for sediment
entrainment. Hairsine and Rose (1991) considered soil particles
to be present in one of three locations, viz., in the original soil layer,
in the deposited layer or in the water. The particles are motionless
in each of the two possible soil layers, and are advected when in
the water. Raindrop impact provides the only means of dislodging
particles. The model is presented and described further in
Section 2.

Several analytical studies and experimental analyses of the HR
model have appeared. In their original paper, Hairsine and Rose
(1991) provided the steady-state solution for the suspended sed-
iment concentration under conditions of a constant excess rainfall
rate. They assumed that the kinematic approximation to overland


http://dx.doi.org/10.1016/j.jhydrol.2010.06.016
mailto:andrew.barry@epfl.ch
mailto:g.sander@lboro.ac.uk
mailto:seifeddine.jomaa@epfl.ch
mailto:b.c.p.heng@lboro.ac.uk
mailto:jp58@cornell.edu
mailto:ian.lisle@canberra.edu.au
mailto:bill.hogarth @newcastle.edu.au
mailto:bill.hogarth @newcastle.edu.au
http://dx.doi.org/10.1016/j.jhydrol.2010.06.016
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol

400 D.A. Barry et al./Journal of Hydrology 389 (2010) 399-405

Nomenclature

a v/D T!

a, coefficient of detachability of the original soil ML

aq coefficient of detachability of the deposited soil ML

b P(ag — @o)[Mar T™"

c v/D T™!

d Pag [Mgr T

D overland flow depth (constant) L

f Pa, ML2T!

F defined by Eq. (27)

g Pa, ML 2 T~!

H heaviside function

HR model of Hairsine and Rose (1991)

I, modified Bessel function of the first kind of order n

] Goldstein J function

Jmod modified Goldstein J function

L flume length L

(7 inverse Laplace transform operator

My mass2 per unit area of sediment in the deposited layer
ML~

Mgr mass of redeposited soil per unit area sufficient to pre-

vent erosion of the original soil ML ™2

M mass per unit area of sediment in the water column
ML~2

p M, ML 2

P precipitation LT™!

q My ML 2

qr volumetric water flux per unit width (constant) L°T~!

s Laplace transform variable T~!

sgn sign function

t time T

u qgD LT

w several definitions, used in convolution integral solu-
tions

X position L

Greek

o defined by Eq. (18)

ol defined by Eq. (25)

Ol defined by Eq. (25)

B beii (£—3)

N dirac delta function

% particle setting velocity LT

flow applied and used a steady-state water flux which increased
linearly with position along the flow path. A form of the steady-
state solution (assuming a uniform overland flow depth) was
applied by Proffitt et al. (1991) in order to deduce model param-
eters. Sander et al. (1996) assumed that the flow depth and
downgradient water flux were both constant and that spatial
variations were negligible in comparison to temporal variations,
i.e., they dropped the spatial derivative in the model. Their ana-
lytical approximation was able to reproduce the experimental
data of Proffitt et al. (1991). The solution of Sander et al. (1996)
involved a numerical element in that the problem was converted
to a system of ordinary differential equations, which was solvable
analytically, but required the numerical calculation of eigenvalues
and eigenvectors. Under the same assumptions as Sander et al.
(1996), Parlange et al. (1999) derived approximations for short
and long time behavior of the model, which were both straight-
forward to compute and in good agreement with numerical sim-
ulations. Hairsine et al. (1999) extended the approach of Hairsine
and Rose (1991) and provided an event-based (i.e., no spatial
dependence) description of sediment sorting due to the erosion
process. The HR model assumes that rainfall detachment of sedi-
ment particles is not particle-size selective. However, the model
predicts that sorting occurs due to finer sediments settling out
of the water column more slowly than coarse sediments and
hence are transported further, although at steady-state the set-
tling velocity distribution of the deposited and original soil were
predicted to be identical (Hairsine and Rose, 1991). Hogarth et al.
(2004a) presented an asymptotic space-time approximation
motivated by a Laplace transform-based expansion that is
increasingly valid for larger times. Their approximation was
shown to compare well with the accurate numerical solutions
of Hogarth et al. (2004b). Hogarth et al. (2004b) also clearly dem-
onstrated the important role played by particle settling velocities
in model prediction. Laboratory, i.e., small scale, experiments val-
idating the HR model have been reported (e.g., Heilig et al., 2001;
Gao et al., 2003), with good agreement found. Tromp-van Meer-
veld et al. (2008) modified slightly the analytical approximations
of Parlange et al. (1999) to account for the effects of infiltration
on deposition rates and analyzed data sets collected using the
EPFL erosion flume. This brief survey shows that the HR model

has been investigated in detail theoretically and has been vali-
dated using different experimental data sets.

Despite the numerous studies on or making use of the HR mod-
el, there have been no exact solutions published which are valid for
all space and time. In this paper we present the first exact solutions
to their model. The assumptions required to simplify the model so
as to obtain these are (i) steady overland flow, (ii) constant water
depth, and (iii) that the soil consists of a single particle size.

2. Theory

The HR model has been described previously, so only a brief
summary is presented here. From the outset, the simplification of
a single particle size is applied, since this is the main assumption
that leads to the analytical solutions presented below.

The form of the HR model presented by Lisle et al. (1998) is
convenient since it uses the mass per unit area of sediment in
the water, M, [ML™2], and the mass per unit area of sediment
in the deposited layer, My [ML™2], as dependent variables. Note
again that the model considers the development of a deposited
layer, as time passes, which moderates the level of erosion of
the underlying original soil layer. The model’s governing equa-
tions are:

OMs G OM; v ag — a,

ot TDax DT Mgy PMa + aoP, @
oMy v aq

W*EMS—M—WPMUI, (2)

where t [T] is the time, x [L] the position, g; [L*T"!] the total
volumetric flux per unit width of the domain, D [L] the depth
of the overland flow, v [LT~!] the particle setting velocity, aq
[ML3] the coefficient of detachability of the deposited soil, a,
[ML3] the detachability of the original soil, Mgy [ML™2] the mass
of redeposited soil per unit area needed to block completely ero-
sion of the original soil layer, and P [LT '] is the precipitation
rate. The water advection rate, qy/D, is assumed to be constant
as both gy and D are taken as constants. The erodible soil is in
the region x >0. Water flows into this zone from x <0, where
the soil bed is considered to be non-erodible. Indeed, the model
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assumes in addition that at time zero there is a water layer flow-
ing at a steady rate across the soil surface, the latter becoming
erodible for times greater than zero.

The second term on the right side of Eq. (1) vanishes if a4 = a,,
however the values will be different if the cohesion of the original
soil and that of the deposited layer are different. Given the
processes that take place such as bed compaction or disturbance
by means other than rainfall impact, it is reasonable to expect
a4 # a, under many circumstances. This inequality is fundamental
to the HR model. During an erosion/deposition event, erosion of
the original soil is halted at any locations where My/Myy attains
unity.

Eqgs. (1) and (2) are solved subject to:

M,(0,t) =0, 3)
M(x,0) = 0, (4)
Mq(x,0) = 0. (5)

Egs. (3)-(5) mean that there is initially no deposited layer or sus-
pended sediment in the overland flow, and that sediment-free
water enters the region containing the erodible soil, beginning at
x=0.

To ease the clutter of notation that would otherwise appear in
the solution, Egs. (1)—(5) are replaced (and slightly generalized)
by a version with simpler notation:

op  Op

§+ua=—ap+bq+ﬂi(x), (6)
Ol

S = cp - dq + gH(x), 7)
p(0,t) =0, (8)
p(x,0) =0, 9)
q(x,0) =0. (10)
where H is the Heaviside function, defined as:

0, x<0,
H(X):{l, x> 0. an

This function in Eqgs. (6) and (7) forces the solution to zero where
x < 0. Definitions of the variables follow directly given that Eqs.
(1)-(5) correspond, respectively, to Eqs. (6)-(10). Egs. (1) and (2)
have a=c. In mathematical terms no significant simplification
comes from enforcing this condition, so it is relaxed to generalize
the solution slightly.

Egs. (6)-(10) have the form of the so-called two-region (mo-
bile-immobile) model, although without the diffusion term nor-
mally found in models of this type (e.g., Coats and Smith, 1964;
Lindstrom and Stone, 1974; Mironenko and Pachepsky, 1984; Li
et al., 1994; Haggerty and Gorelick, 1995; Griffioen et al., 1998;
Choi et al., 2000; Ekberli, 2006; Lu et al., 2009; Silva et al,,
2009). Apart from the lack of diffusion, the other main character-
istic of the model in Eqs. (6) and (7) that distinguishes it from the
two-region model is that the coefficients a, b, ¢ and d are not
equal. Thus, existing solutions for two-region models cannot
directly be applied to the present problem. Generalized solutions
that consider an arbitrary transport operator, e.g., Walker
(1987), provide solutions in the form of integrals that solve Egs.
(6)-(10). While examples of such integral solutions to (6)-(10)
are given within this paper, so too are fully explicit series
solutions.

In Eq. (7) an additional term not present in Eq. (2), gH(x), has
been added. The HR model assumes that all sediment particles
eroded from the original bed enter the water column. This addi-
tional term, not present in the HR model, models the transition
of particles from the original bed directly to the deposited layer.

Depending on the energy transmitted by a raindrop impact and
the density of the sediment, for instance, motion of any given par-
ticle could be minute, such that this modification to the HR model
would be reasonable. This question is returned to briefly in
Section 3.

Because of superposition, there is no need to solve Egs. (6)-(10)
with both f and g non-zero simultaneously, so two problems are
solved in the following, setting g and f in turn to zero. In terms
of the HR model, setting g to zero (f non-zero) means that material
eroded from the original soil moves into the water phase only,
whereas setting f to zero (g non-zero) means that this material
moves only into the deposited layer. In reality, probably both these
situations occur simultaneously.

The Laplace transform method is used to obtain the solutions.
Let s be the Laplace transform variable (transform with respect
to t) and let transformed functions be denoted by an overbar.
The solution to Eqgs. (6)-(10) in the Laplace space is:

_ bg f1H(x) Xz

P(X,S) = {MJFE}W“ —exp [—ah(s)]}, (12)
) = 5 gpxs) + E (13)
where

E(s):s+a75i—cd. (14)

2.1. Solution for g =0

2.1.1. Solution in the form of an integral
For g =0, Egs. (12) and (13) become, respectively:

) G +11)h(s> {1-exn [-7h6)]} 1o

Consider first the solution for Eq. (15). The Laplace transform in-
verse (1) of 1/[sh(s)] is:

| 1| d ot
w(t) =< L_h(s)} = ad—be 1+exp 5 (a+d)
a?—d—o? . t t
X [T sinh <oc§> — cosh (oc§> }, (17)
where
o? = (d — a)* + 4bc. (18)

The inverse Laplace transform of exp [—2h(s)] is given by Eq. (48) in
Appendix A. Appendix A contains a table of several forward and in-
verse Laplace transforms that are used throughout this paper.
Therefore, by the convolution theorem for products of functions
(e.g., Spiegel, 1965):

7 {shlm exp {_%fl(s)] } _ {/ﬁfw(t—'z:) exp [_d<7_§>]
Bl Do e (o)

(19)
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The combination of Eqs.(15),(17),and (19) gives the solution for p as:

R
fwle-2) s [ we- e [-afz-2)]
Tbc X {ZW}M} (20)

The solution for g, from Eq. (16) is constructed in the same manner
as p. In this case function w is given by:

{2a+(a+d—oc)exp {— (a+d+oc)}

N[ =

W(t)zm
—<a+d+rx>exp {—%(a+d—a)”. (21)

Thus, the solution for q/[cfH(x)] is given by the right side of Eq. (20),
with w defined in this case by Eq. (21).

Case of ad = bc

It can be seen from Eq. (17) that this case leads to division by
zero, and so it must be considered explicitly as a special case. Con-
sider p first. The function w in Eq. (17) simplifies to:

1

w(t) = a+d

{dt+ d[l —exp(— (a+d))]}, (22)

while Eq. (19) essentially remains the same, except that bc is re-
placed by ad. The solution is given by Eq. (20) with bc replaced by
ad, and with w defined by Eq. (22).

For q/[cfH(x)], the solution is given by the right side of Eq. (20),
with bc replaced by ad, and with w given by:

W(t):ald{t_l —exp[—t(a+d)]}. (23)

a+d
2.1.2. Series solution
The denominator, sh(s), of Eq. (15) can be expanded in partial
fractions as:

,1 = d + %= d + %= d 7 (24)

sh(s) oS  oq(0y — o )(S+0u)  oa(0n — 02)(S+ o)

where

{al}:<a+d{+}fx>/2 (25)
0Olp —
factorize Eq. (18). The Laplace inversion of the second term in Eq.
(15) thus reduces to the inversion of the three terms on the right
side of Eq. (24), with each term multiplied by exp[—xh(s)/u]. By then
setting x =0 in these inversions results in the inverse of the first
term in Eq. (15). This approach to obtaining fully explicit solutions
is used repeatedly below.

As is evident from Eq. (24), only a single inverse Laplace trans-
form is needed, i.e., that given by Eq. (50) in Appendix A. Then, the
inversion of Eq. (15) is:

px.t) d a-d+a _
fH(x) 7ad—bc'/(_d)_oc(oc+d+a)j(a+a)
—%éj(a—a), (26)

where

P t X X 2bc

ZF(m) = exp —i(d+m)} —H(t—a)exp _ﬂ<a_d7m>
d+m X 2bc x d—-m X
S Dl D) e

The inverse transform of g is calculated from Eq. (16) in the same
manner. The required partial fraction expansion is:

s(s +11)}3(5) B oclclxzs + o (ot — oc11)(s +0i)
et 2
so, again, Eq. (50) is utilized. The final result is:
gg(g ad] be” Ot s ara T At
e — 57 @-2). (29)

Case of ad = bc

The special case of ad = bc is considered next. The solution is
presented in terms of a and d rather than b and c. Eqs. (18) and
(25) give, for this case:

oy =a+dand oy =0. (30)
The partial fraction expansion in Eq. (24) becomes:
d d
i S+ _ a - ; a n ! (31)
sS’(s+a+d) (a+d’s (a+d’Gs+a+d (a+ds

Here, an additional inverse transform is needed to invert the func-
tion that results from the final term on the right side of Eq. (31). The
required inverse transform is given by Eq. (53) in Appendix A. The
solution that results is:

px,t) a ~ d 1 X
e~ (@rap TGl +d{t_8H< )

xexp[-al —d(t-1)] gn{d(ta—?rln(w)}- (32)

The partial fraction expansion arising in the inverse transform for q
in Eq. (16) is

1 B 1 1 1
P6+a+d) (ardistatd (a+d’s @rds
This expression is very similar to that for p, Eq. (31), so that the in-

verse transform for q differs from Eq. (32) only in the coefficients of
each term on the right side. The result is:

q(x.0) e P\ LI PR Y11
0 (a+d)2[ (20 +d) - 7(—d)] + - {r H(t-2)

(33)

n u

com[-aX-alec- ) S han). e

2.2. Solution for f=0

The two Laplace-domain solutions, Eqs. (12) and (13) become,
respectively:
_ b H =
p(xs)zs(sfd)%{lf p[fgh(s)]}/ (35)
_ _ bcg Hx) . Xy gH(x)
A% = o g s {1-eo[-Lho)]}+ g (36)



D.A. Barry et al./Journal of Hydrology 389 (2010) 399-405

2.2.1. Solution in the form of an integral

For ad # bc, and due to the equivalence of Egs. (15) and (34), the
solution for p/gH(x) is simply b/c times the right-hand side of Eq.
(19) with w(t) given by Eq. (21). For ad = bc the same statement ap-
plies, but with w given by Eq. (23).

For g, as in Section 2.1.1, essentially all that changes is the w
function used in Eq. (20). The functions needed to obtain the solu-
tion from Eq. (20) are given here (with a summary of all the solu-
tions given in Table 1). Also, there is an additional term in the
solution corresponding to the final term on the right side of Eq.
(36). Solutions will be written with q/[gH(x)] on the left side, so:

403
while for ad = b, it is
at  exp(—dt) dexp[-(a+d)t] a(a+2d)
w(t) = + - - . 39
O=a7d" d @td?  da+d? (39)

2.2.2. Series solution

As in Section 2.2.1, the solution for p(x,t)/[bgH(x)], as is apparent
from Eqs. (12) and (13), is, for ad # bc, simply the right side of Eq.
(29). Similarly, for ad = bc, the solution for p(x,t)/[bgH(x)] is given
by the right side of Eq. (34).

For q, considering ad # bg, it is seen from Eq. (36) that the par-

g1 _ 1 —exp(-dp) (37)  tial fraction expansion of [s(s + d)*h(s)] " is needed. It is:
s(s+d) d ’
should be added to the right side of Eq. (20) for each of the two fol- 1 I 1
lowing solutions for . s(s+d)?h(s) danoas oo —d)(o — 02)(S + o)
For ad # bc, the w function is found from the inverse of 1
27 . . _
bc/[s(s + d)“h(s)], with the result: d(oy —d)(oz —d)(s + d)
1
bc exp(—dt) _ ) 40
w(t) :d(ad—bc)+ d o (0 — d)(02 — 01)(S + 0t2) 40
t a—-d+a . . .
— exp fj(d +a- 0()} m From Eq. (40), it is apparent that the inverse of the corresponding
exponential terms in Eq. (36) involve two entries in the transform
+exp |- t (d+a+ rx)} a_di_“7 (38) pairs given in Appendix A, viz., Egs. (49) and (50). Then, the inverse
2 a(d +a+ o) of Eq. (36) is:
Table 1
Summary of equations solved and analytical solutions.

Laplace transform  Solution Section Remarks

equation solved

Eq. (15) Eq. (20) 2.1.1 g =0 (all entries to the partition below are for this case), integral solution for p, w from Eq. (17), ad # bc. Solution
for the water phase sediment concentration. Physical interpretation for all solutions with g=0: Sediment
mobilized from the original soil moves only to the water phase, in accordance with the HR model.

Eq. (16) Eq. (20) 2.1.1 g =0, right side gives the integral solution for g/[c¢fH(x)], w from Eq. (21), ad # bc. Solution for the deposited layer
concentration. The physical interpretation corresponds to that given in the entry above for Eq. (15).

Eq. (15) Eq. (20) 2.1.1,Case ofad =bc g =0, integral solution for p, w from Eq. (22), ad = bc. Solution for the water phase sediment concentration. This
case is given for mathematical completeness. For the HR model, it corresponds to a non-erodible original soil,
which is physically implausible.

Eq. (16) Eq. (20) 2.1.1,Caseofad =bc g=0, right side gives the integral solution for q/[cfH(x)], w from Eq. (23), ad = bc. Solution for the deposited layer
concentration. Again, this solution is given for completeness as, in terms of the HR model, ad = bc is physically
implausible.

Eq. (15) Eq. (26) 2.1.2 g =0, series solution for p, ad # bc. Solution for the water phase sediment concentration. Same interpretation as
given for Eq. (15) above (first entry in this table).

Eq. (16) Eq.(29) 2.1.2 g =0, series solution for g, ad # bc. Solution for the deposited layer concentration. Same interpretation as given
for Eq. (16) above (second entry in this table).

Eq. (15) Eq. (32) 2.1.2,Caseofad=bc g=0, series solution for p, ad = bc. Solution for the water phase sediment concentration. Same interpretation as
the above entry for ad = bc.

Eq. (16) Eq. (34) 2.1.2,Caseofad=bc g=0, series solution for g, ad = bc. Solution for the deposited layer concentration. Same interpretation as the
above entry for ad = bc.

Eq. (35) Eq. (20) 221 f=0(all the solutions to the end of the table are for this case), right side gives the integral solution for p/[bfH(x)],
w from Eq. (21), ad # bc. Solution for the water phase sediment concentration. Physical interpretation for all
solutions with f= 0: Sediment mobilized from the original soil moves only to the deposited (shield) layer. This is
in contrast to the HR model where sediment moves from the original soil only to the water phase.

Eq. (35) Eq. (20) 221 f=0, right side gives the integral solution for p/[bfH(x)], w from Eq. (23), ad = bc. Solution for the water phase
sediment concentration. As for the case above, this case is given for mathematical completeness. It corresponds
to a non-erodible original soil, which is physically implausible.

Eq. (36) Eq. (20) 221 f=0, right side gives the integral solution for q/[gH(x)], w from Eq. (38), ad # bc. Solution for the deposited layer
concentration. The physical interpretation corresponds to that given in the entry two rows above for Eq. (35).

Eq. (36) Eq. (20) 2.2.1 f=0, right side gives the integral solution for q/[gH(x)], w from Eq. (39), ad = bc. Solution for the deposited layer
concentration. Physical explanation follows that given two rows above.

Eq. (35) Eq. (29) 2.2.2 f=0, the right side of Eq. (29) gives the series solution for p(x,t)/[bgH(x)], ad # bc. Solution for the water phase
sediment concentration. Same interpretation as given for Eq. (35) above (first entry in this sub-section of this
table).

Eq. (35) Eq. (34) 222 f=0, the right side of Eq. (34) gives the series solution for p(x,t)/[bgH(x)], ad = bc. This case is for the water phase
sediment concentration, but is physically implausible as explained above.

Eq. (36) Eq. (41) 222 f=0, series solution for g, ad # bc. Deposited layer concentration for the case where the sediment from the
original soil is transferred only to the deposited layer.

Eq. (36) Eq. (43) 222 f=0, series solution for g, ad = bc. Solution for the deposited layer concentration. Again, this solution is given for

completeness as ad = bc is physically implausible.
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For ad = bc, Eq. (40) becomes:
LU SRR S 1
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The inversions for the terms appearing on the right side of Eq. (42)
are, respectively, Egs. (49), (53), (50) and (50), respectively. The
resulting expression for q(x,t) is:

Z(’ifg)f)) _5{1 _H(t_g) exp [ a——d(t——)}lo(Zﬁ)}
L P )
y f; n [d“a* 5)]%1,1(2/3)}
1

i [dsff(za +d)+

%(Zd +a)7(-d)]. (43)

3. Discussion

The model in Egs. (6) and (7) can aid in the question of identi-
fiability of the HR model parameters and, indeed, how such a mod-
el is validated. Concerning validation, in particular, apart from very
small scale laboratory experiments, soil erosion experiments are
usually carried out using flumes set up to measure sediment and
water fluxes at the end of the flume, i.e., in the notation used here
experiments measure a quantity proportional to up(L,t), where L is
the flume length. Consider setting f= 0 in Eq. (6) and allow the con-
stant g to become time-dependent such that Eqs. (6) and (7) be-
come, respectively:

op op
ar T Uz =~ +ba, (44)
0 ep g+ o(t) + aH) (45)

Here, sediment is supplied from the original soil to the deposited
layer, whereas in the HR model sediment is supplied only to the
water phase. Thus, it is, in physical terms, quite different from the
HR model. The Laplace-domain solution of Eqs. (44) and (45) sub-
ject to Egs. (8)-(10) is

?1(;(;)) - %{1 ~exp [ LR . (46)
Hieo = s i U oP [ ahO)]} 5 @7)

Observe that Eq. (46) is identical to Eq. (15), which was obtained for
the case g =0, i.e., sediment was supplied only to the water phase.
But, Eq. (47) differs from Eq. (16) by the final term, i.e., 1/(bs). Solu-
tions to Eq. (47) are therefore the same as those for Eq. (16), with an
additional term fH(x)/b. This means that experiments that do not
measure both p and q (i.e., for p, sediment concentrations exiting
the flume and, for g, the deposited layer) are unable to say defini-
tively, in the absence of other information, whether the HR model
form is correct. In other words, a model validated based only on

sediment concentrations in the runoff cannot distinguish whether
the original soil sediment has been moved directly into the flow,
or has been moved to the deposited layer, and from there to the
flowing water.

4. Conclusion

In a mechanistic model, parameters are determined, ideally,
independently, and the model used to make predictions. Soil ero-
sion is a complex process, and is an extremely challenging system
in which to make measurements, in consequence making model
validation subject to uncertainty. Solutions for a slightly general-
ized HR model have been presented. The model generalization,
however, makes clear that the mechanisms included in the model
cannot be validated solely on sediment concentration data col-
lected in runoff. Rather, experimental measurements of the depos-
ited layer would provide an additional means to analyze whether
the form of the model is correct. The reason for this is that the
HR model assumes that, when considering the original soil, eroded
sediment is transferred to the water phase and from there to the
deposited layer. Certainly for large particles, this assumption
would be open to question. An alternative model would be for
the original soil sediment to move directly to the deposited layer.
As an example, the extreme case where this is the only possibility
was solved, with the solution revealing that the model prediction
of the deposited layer changes, whereas the sediment concentra-
tions in the runoff do not.
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Appendix A. Laplace transform pairs and the modified Goldstein
J function

In this Appendix results used to derive the analytical solutions
are listed. Some additional transform pairs are included for those
interested in solving similar problems. A modification of the Gold-
stein J function was found to be necessary, as is discussed below.
The function h(s) is defined in Eq. (14).

Laplace Real domain function Equation
domain
function
exp [~h(s)3] H(t ) exp [~a%—d(t~ )] (48)
x[\/25% n2p) + 6(t =)
exp [~h(s)3] (
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In Eq. (50), Jmoa is a modification of the Goldstein J function

(Goldstein, 1953). Note that original J function arises naturally in



D.A. Barry et al./Journal of Hydrology 389 (2010) 399-405 405

two-region problems such as that in Egs. (6)-(10), see, for example,
Goltz and Roberts (1986), Barry and Parker (1987), Veling (2002),
De Smedt et al. (2005). However, it is necessary to modify it as
per the following definition:

o0 A}
Inoa9:2) = exp(-y ~2) Y lsgn]'(5) 12v52) (54)
n=0
where the sign function, sgn, is defined by:
-1 y<0
sgn(y)=40, y=0 (55)
1, y>0.

The modified J function is necessary to account for negative argu-
ments, which can occur in the solutions reported here. The J func-
tion of Goldstein (1953) is recovered by setting sgn(y)=1 in Eq.
(54), i.e., it is defined by:

J(y,2) = exp(-y - 2) Z (y> 1.(2Vy2). (56)
Goldstein (1953) also gave the alternative definition:

i( ) 1,(2v52). (57)

n=0

J(y,2) =1 —exp(-
The corresponding definition for J;,,04(V, z) is

Q) . (58)

oo

~2)) [sgn(z
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The third J function definition of Goldstein (1953):

.]mod(y Z) =1- exp

J@,2) =1 exp(—2) /0 exp(—9)lo(2/72)dy (59)

remains unchanged, i.e., ] = J;,0q in this case.
Limiting values of J,,04(y, z) are, as for the J function:

]mud(y7 0)= exp(_y)vjmod(ovz) :]mod(y> OO) = lvjmad(oovz)
=0. (60)

To these limits, the following limits for J,,04(y, z) can be added:

.]mod( 7_00) =

OOJmOd(—OO,Z) = 00. (61)
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