
Journal of Hydrology 539 (2016) 392–405
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
Soil moisture deficit estimation using satellite multi-angle brightness
temperature
http://dx.doi.org/10.1016/j.jhydrol.2016.05.052
0022-1694/� 2016 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: lu.zhuo@bristol.ac.uk (L. Zhuo).
Lu Zhuo a,⇑, Dawei Han a, Qiang Dai b

aWEMRC, Department of Civil Engineering, University of Bristol, Bristol, UK
bKey Laboratory of Virtual Geographic Environment of Ministry of Education, School of Geography Science, Nanjing Normal University, Nanjing, China

a r t i c l e i n f o s u m m a r y
Article history:
Received 6 February 2016
Received in revised form 5 May 2016
Accepted 23 May 2016
Available online 28 May 2016
This manuscript was handled by Corrado
Corradini, Editor-in-Chief, with the
assistance of Magdeline Laba, Associate
Editor

Keywords:
SMOS brightness temperature
Soil moisture
Local linear regression (LLR)
Artificial neural networks (ANNs)
Soil moisture deficit (SMD)
Hydrological modelling
Accurate soil moisture information is critically important for hydrological modelling. Although remote
sensing soil moisture measurement has become an important data source, it cannot be used directly in
hydrological modelling. A novel study based on nonlinear techniques (a local linear regression (LLR)
and two feedforward artificial neural networks (ANNs)) is carried out to estimate soil moisture deficit
(SMD), using the Soil Moisture and Ocean Salinity (SMOS) multi-angle brightness temperatures (Tbs) with
both horizontal (H) and vertical (V) polarisations. The gamma test is used for the first time to determine
the optimum number of Tbs required to construct a reliable smooth model for SMD estimation, and the
relationship between model input and output is achieved through error variance estimation. The simu-
lated SMD time series in the study area is from the Xinanjiang hydrological model. The results have
shown that LLR model is better at capturing the interrelations between SMD and Tbs than ANNs, with out-
standing statistical performances obtained during both training (NSE = 0.88, r = 0.94, RMSE = 0.008 m)
and testing phases (NSE = 0.85, r = 0.93, RMSE = 0.009 m). Nevertheless, both ANN training algorithms
(radial BFGS and conjugate gradient) have performed well in estimating the SMD data and showed excel-
lent performances compared with those derived directly from the SMOS soil moisture products. This
study has also demonstrated the informative capability of the gamma test in the input data selection
for model development. These results provide interesting perspectives for data-assimilation in flood-
forecasting.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Although soil moisture comprises only 0.01% of the total amount
of water on our planet, its existence plays an important role in influ-
encing the water and energy exchanges at the land surface/atmo-
sphere interface. There is abundant evidence that hydrological
processes are significantly conditioned by a river catchment’s ante-
cedent wetness state (Massari et al., 2014; Tramblay et al., 2012).
In particular the surface soil wetness is an important variable in
hydrological modelling because it controls key processes such as
runoff and evapotranspiration, and is a vital parameter for flood
modelling (Draper et al., 2011; Han et al., 2012)

The Earth thermal emission at microwave bands depends
essentially on the soil temperature and the soil water content
(Al-Yaari et al., 2014; Rodríguez-Fernández et al., 2015). Recent
research activities indicate rising interest in the operational
monitoring of the global soil moisture remote sensing. In particu-
lar, the data acquired by lower microwave frequencies (e.g., L-
band at 1.20–1.41 GHz), both active and passive, have been utilised
to provide detailed surface soil moisture fluctuations in recent years
(Calvet et al., 2011). The launch of the Soil Moisture and Ocean Salin-
ity (SMOS; (Kerr et al., 2001))mission in November 2009 and the Soil
Moisture Active/Passive mission (SMAP; (Entekhabi et al., 2010)) in
January 2015 clearly demonstrates the significance and determina-
tion of an advanced global surface soil moisture monitoring system.
SMOS is the first mission dedicated to monitoring direct surface soil
moisture and sea surface salinity on a global scale (Kerr et al., 2010),
and has a longer period of data record since its launch in 2009.
Therefore, SMOS is chosen in this study.

The SMOS soil moisture operational algorithm utilises a direct
or forward model and an optimal estimation method: a radiative
transfer model (e.g., LMEB model is used in the SMOS algorithm
(Wigneron et al., 2007)) is applied to estimate L-band brightness
temperatures (hereafter Tbs) for a set of physical parameters, soil
composition, and moisture content and vegetation opacity (Rodrí
guez-Fernández et al., 2015). In order to estimate soil moisture,
the simulated Tbs are compared with those measured by SMOS
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using an iterative process to minimise the difference between
them. This approach then requires in-situ observation data for soil
moisture evaluation (Al-Yaari et al., 2014; Al Bitar et al., 2012).
However most areas do not have in-situ sensors because they are
expensive to set up and impractical to maintain; and they are
too sparse for catchment-scale studies (Al-Shrafany et al., 2013;
Srivastava et al., 2013b, 2013c; Walker et al., 2004; Wang and
Qu, 2009). Since the presence of vegetation can reduce the bright-
ness temperature sensitivity to soil moisture, in the aforemen-
tioned method decoupling the effects of soil and vegetation on
brightness temperature can pose a major challenge for useful
application under such circumstances.

In order to retrieve accurate soil wetness information that can
be directly used in a hydrological model and avoid aforementioned
shortcomings, a data-driven model is desirable, which could effec-
tively link the inputs to the desired output and is not computation-
ally intensive. This can be achieved by building an inverse model
that provides soil moisture information (i.e., soil moisture deficit
(SMD) in this study, which is a key soil moisture variable in hydro-
logical models (Zhuo et al., 2015a)) directly from a given set of
satellite measured Tbs. Among the data-driven models, nonlinear
regression models such as Local Linear Regression (LLR) and Artifi-
cial Neural Networks (ANNs) are widely recognised and used as
efficient inverse models. Therefore both LLR and ANNs are used
in this study.

The foremost objective of this study is therefore to build an
inverse model for the first time that can simulate the relevant
hydrological SMD data directly from the SMOS brightness temper-
atures using various nonlinear modelling techniques. In this study,
the SMD is estimated instead of the normal soil moisture because
in hydrological modelling the excess runoff is closely linked with
SMD, but not directly with the normal soil moisture (i.e., the volu-
metric soil moisture). The SMD refers to the amount of water
needed to bring the soil moisture back to field capacity. Since
SMD is directly relevant to hydrology, it is the main purpose of this
study. SMOS is the first radiometer in space with full-polarisation
and multangular capabilities (Rodríguez-Fernández et al., 2015).
Hence, a dedicated retrieval scheme has to be studied. An LLR
model and two ANN models are trained and tested for their valu-
ation in SMD retrieval. The modelled SMD values using different
techniques are then compared against the Xinanjiang simulated
SMD as the target. Furthermore, a well-proven and widely applied
computing algorithm called the gamma test (GT) is employed to
find the optimal combination of data inputs for SMD calculation.
Noori et al. (2011) and Remesan et al. (2008) applied the GT data
selection method in hydrological studies, for daily solar radiation
estimation and monthly streamflow prediction, and both reported
positive performances. In contrast to the conventional allocation
method of the training and the testing data, the M-test is adopted
to find the optimal training dataset which has sufficient informa-
tion for training any regression models. This will avoid wasting
time and effort in allocating excessive training data or using inad-
equate training data. Therefore, no predefined training and testing
data will be specified at the early stage of the study. Finally, the
SMD estimates from the aforementioned nonlinear methods are
compared with those directly derived from the SMOS soil moisture
products (i.e., two different SMOS products are used: one is from
the SMOS Barcelona Expert Centre (SMOS-BEC) (SMOS-BEC,
2015) and the other is from the Centre Aval de Traitement des
Données SMOS (SMOS-CATDS) (Jacquette et al., 2010)).
2. Study area and data

Pontiac is a medium-sized catchment (1500 km2) in the Vermil-
ion River, located in the central Illinois area of the U.S. The
catchment’s topography is flat and mainly used for cultivation pur-
pose as illustrated in Fig. 1b (Bartholomé and Belward, 2005;
Hansen et al., 1998). Based on the Global Soil Regions map
(USDA, 2005), its soil is predominately Mollisols. The catchment
is dominated mainly by hot summer continental climate (Peel
et al., 2007). The layout of the Pontiac catchment is shown in
Fig. 1a along with the location of its flow gauge, river network,
and the North American Land Data Assimilation Systems Phase 2
(NLDAS-2) grid points (i.e., the marked grid points are located at
the central of each 0.125� � 0.125� NLDAS-2 grids). The spatial
variations of an extracted SMOS Tb dataset (H polarisation) at an
incidence angle of 32.5� is shown in Fig. 1c (it has been trans-
formed into NLDAS-2 grid spacing at 0.125� for easier analysis).
It can be seen from this retrieved image, the central catchment
area has lower Tb values (i.e., relatively wetter soil), while the
western upper and lower parts show slightly higher Tb values
(i.e., relatively drier soil). This could partially be explained by the
location of the river network as indicated in Fig. 1a: the majority
of the water concentrates at the central area (i.e., the mainstream)
and then flows to the catchment outlet (so the soil can be replen-
ished with water more easily); whereas the soil around the small
substream areas has less water availability and tends to be drier.
It should be noted that soil moisture does not solely correlate with
the variation of brightness temperature but also with other factors
such as vegetation cover, local soil properties, and surface
roughness.

The Xinanjiang (XAJ) model’s hydrological forcing is obtained
from the NLDAS-2 (Mitchell et al., 2004). The datasets comprise
precipitation (Daly et al., 1994) and potential evapotranspiration
at the 0.125� spatial resolution and daily temporal resolution (con-
verted from hourly resolution). Both datasets have been trans-
formed into the catchment-scale using the weighted average
method to operate the lumped XAJ model. Readers are referred
to Xia et al. (2012) and Zhuo et al. (2015c) for a full description
of the NLDAS-2 data products. The observed daily flow data for this
study is provided by the U.S. Geological Survey. The observations
cover a total period of 24-months from January 2010 to December
2011. The reason for using these two-year data is due to the dis-
continuity of flow observations in the selected catchment.

2.1. SMOS data

SMOS retrieves the thermal emission from the Earth at the fre-
quency of 1.4 GHz in both polarisations and for incidence angles
from 0� to 60�. It is dedicated to providing global surface soil mois-
ture information at an accuracy of 0.04 m3/m3 (Kerr et al., 2012).
SMOS has a Y-shaped antenna structure, which comprises 69 small
antennas (a diameter of 16.5 cm) and 4.5-m long arms to perform
interferometry and synthesise an aperture of �7.5 m (McMullan
et al., 2008; Rodríguez-Fernández et al., 2015). The projection of
the synthesised beam on the Earth surface is generally presented
as an ellipse whose axis ratio and orientation depend on the
observed point position (Rodríguez-Fernández et al., 2015). The
retrieved observations have a spatial resolution of 35–50 km
(Kerr et al., 2010). SMOS follows a sun-synchronous polar orbit
with a global coverage at the equator crossing the times of
6:00 A.M. at the local solar time (LST) (ascending) and 6:00 P.M.
(LST, descending).

In order to estimate SMD from SMOS Tbs, the Level-3 brightness
temperature data from the CATDS is used (Jacquette et al., 2010).
This daily global brightness temperature data contains SMOS Tbs
in the reference frame of 0.25� EASE grid (Brodzik and Knowles,
2002) on the Earth surface. It provides Tbs measurements acquired
at all incidence angles in a given day (averaged in 5� – width angle
bins) which have been transformed into the ground polarisation
reference frame (i.e., H, and V polarisations). Hence, the quantity



Fig. 1. (a) Geographical location of the study area with river network, flow gauge and NLDAS-2 grids; (b) GIS extracted GLC2000 land-use map; (c) spatial variations of the
retrieved SMOS brightness temperature (in kelvins) data on 13/01/2010 at the ascending overpass, with the H polarisation and incidence angle of 32.5� for the catchment area
(it has been transformed into NLDAS-2 grids at 0.125� � 0.125� grid spacing for easier analysis).

394 L. Zhuo et al. / Journal of Hydrology 539 (2016) 392–405
of the input data can be as high as 24 (12 angle bins per polarisa-
tion), with the centre of the first angle bin at 2.5� in both polarisa-
tions (Rodriguez-Fernandez et al., 2014). In this catchment, the
only angle range that gives the most available record of data is
from 27.5� to 57.5� (i.e., 7 for H and 7 for V polarisation), which
is therefore chosen for the model development. In order to better
understand the sensitivity of SMOS Tbs to the SMD, the Pearson
correlation coefficients (r) are calculated and illustrated in Fig. 2.
It can be seen that the correlation decreases for H polarisation
when the incidence angle rises (from r = �0.55 to r = �0.45);
whereas the correlation for V polarisation is more stable and fluc-
tuates around 0.6–0.65. This phenomenon agrees with the general
trend of the theoretical effect of H–V polarisations at different inci-
dence angles (Wei et al., 2014).

Additionally, the Level-3 soil moisture products from the CATDS
(SMOS-CATDS) and the BEC (SMOS-BEC) are also obtained for a
comparison study. The main difference between these two prod-
ucts is that they are made from different data inputs. The SMOS-
BEC utilises the Level-2 Soil Moisture User Data Product (UDP) gen-
erated by ESA as its Level-3 data inputs, while SMOS-CATDS goes in
a rather unusual way by using brightness temperature products in
the Fourier domain (L1B) as input for the Level-3 processor. The
detailed comparison between these two products is beyond the
scope of this paper, and the interested readers are referred to



Fig. 2. Correlations r between the SMOS multangular brightness temperatures with
H and V polarisations and the XAJ SMD.
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Elsa et al. (2013) and SMOS-BEC (2015) for full descriptions. All
acquired SMOS products cover the period between January 2010
and December 2011 and have been converted into a catchment-
scale dataset by the weighted average method. Furthermore, they
have been re-scaled by mapping the mean to zero and the standard
deviation to 0.5. This normalisation step is able to equalise the rel-
ative numerical difference among the input variables and better
aid the GT feature selection routine (Remesan et al., 2008). It is
noted that the re-scaled data is only for the GT routine and the
M-test, and normal data are used for SMD estimation.

3. Methodology

3.1. XAJ model

The XAJ model developed by Zhao (1980, 1992) and Zhao and
Liu (1995) is a widely used conceptual rainfall–runoff model. The
model has been proven in many publications to be effective for
both operational and offline simulation purposes in humid, semi-
humid regions (Chen et al., 2013; Shi et al., 2011; Zhao, 1992;
Zhao and Liu, 1995; Zhuo et al., 2015b, 2015c) as well as dry areas
(Gan et al., 1997) around the world. The main hypothesis used in
the model development is the runoff generation on repletion of
its storage capacity, which means that runoff is not generated until
the soil water reaches the field capacity (Zhao, 1992). In this study,
the XAJ model is used for SMD estimation through an improved
soil moisture accounting scheme (Zhuo and Han, 2016a, 2016b).
Further details on calibration and validation of the XAJ model
and the SMD are discussed by Zhuo et al. (2015a) and Zhuo et al.
(2016).

3.2. Gamma test and M-test

An appropriate selection of the incidence angles of the SMOS
observations is important to ensure the best SMD estimation. In
this study, a well-developed GT algorithm (Koncar, 1997;
Stefánsson et al., 1997) is adopted because it has been proven to
be efficient in selecting model inputs (Durrant, 2001; Jaafar and
Han, 2011; Noori et al., 2011; Remesan et al., 2008; Tsui et al.,
2002). It is a near-neighbour data analysis routine which allows
efficient estimation of the minimum mean-squared error (MSE)
that can be achieved when modelling the input-output data using
nonlinear models. This calculation is called the gamma statistics
and represented as C. The inspiration of GT came from the Delta
test (Pi and Peterson, 1994). Only a brief introduction on GT is pro-
vided here and the interested readers are referred to the aforemen-
tioned papers for further explanations. For simplicity a case is
introduced where a set of data samples is given in the form of:

fðxi; yiÞ; 1 6 i 6 Mg ð1Þ
where the input vectors xi 2 Rm are confined to a closed bounded
set C 2 Rm, and without loss of generality, the outputs yi 2 R are
scalars. The vectors x comprise predictively useful information that
controls the output y. The only assumption made is that the under-
lying relationship of the system is from the following equation:

y ¼ f ðx1 . . . xmÞ þ r ð2Þ

where f is a smooth function and r is an indeterminable variable
that is regarded as noise. Without loss of generality, the mean of
the r distribution is assumed to be zero (because any constant bias
has been considered in the unknown function f) and that the vari-
ance of the noise Var(r) is bounded. The domain of a potential model
is now restricted to the class of smooth functions which have
bounded first partial derivatives. TheC is an estimate of the model’s
output variance that cannot be accounted for by a smooth data
model.

The GT is based on N½i; k�, which are the kth (1 6 k 6 p) nearest
neighbours xN½i;k�ð1 6 k 6 pÞ for each vector xi (1 6 i 6 M). p is a
fixed integer. GT is calculated from the Delta function of the input
vectors:

dMðkÞ ¼ 1
M

XM
i¼1

jxN½i;k� � xij2 ð1 6 k 6 pÞ ð3Þ

where |. . .| is Euclidean distance, and the related gamma function of
the output values:

cMðkÞ ¼
1
2M

XM
i¼1

jyN½i;k� � yij2 ð1 6 k 6 pÞ ð4Þ

where yN½i;k� is the corresponding output value with xN½i;k�. To com-
pute C a least-squared regression line for the p points
(dMðkÞ; cMðkÞ) is built as in the following equation:

c ¼ Adþ C ð5Þ

where C is the intercept on the vertical axis (i.e., d = 0), as can be
explained as:

cMðkÞ ! VarðrÞ in probability as dMðkÞ ! 0 ð6Þ
This gives an estimation of the optimal MSE value achievable

utilising a modelling method for unknown smooth functions. The
derived gradient A is also a useful indicator in showing information
on the complexity of the system under investigation (the larger the
A value the more complexity the model is required). The merit of
GT is that it can provide valuable guidance about the system
regardless of the subsequent modelling technique choice. A formal
mathematical proof of the GT can be found in Evans and Jones
(2002). In practice, the GT can be carried out through the winGam-
maTM software (Durrant, 2001).

A general practice in nonlinear modelling (e.g., LLR and ANNs) is
to divide the dataset into two parts, i.e., training and testing. How-
ever many studies hastily adopted the size of their training dataset
without proper examination, and this could result in unsatisfactory
modelling performance. Therefore in order to determine the best
training data size that can give a stable and reliable C statistics,
an M-test is carried out. The M-test is accomplished by computing
the C for increasing M value (indicating the effect of the training
data size) and through analysing the resulting graph to determine
whether the C approaches a stable asymptote (this way is easier
than defining a complex algorithm). Such a procedure is useful in
avoiding wasteful model-fitting attempts when the MSE from the
training phase is already smaller than the Var(r), and hence pre-
venting the overfitting problem.
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3.3. Nonlinear models

The modern statistical approach to nonlinear model building
has led to techniques such as LLR, support vector machines, princi-
pal component analysis, feedforward ANNs, and radial basis func-
tion networks. In this study, the LLR and the ANNs are used. Only
brief theoretical backgrounds relevant to the study are explained.
3.3.1. Local linear regression (LLR)
LLR is a widely researched nonparametric regression methodol-

ogy that has been applied in low-dimensional forecasting and
smoothing problems (Liu et al., 2011; Pinson et al., 2008;
Remesan et al., 2008; Sun et al., 2003). However to our knowledge
it has rarely been used in soil moisture estimation, especially those
simulated from the remote sensing technology. The advantages of
LLR are that it can locally provide reliable statistical modelling
based on a small amount of data sample, is less computationally
demanding, and is able to give accurate estimations in regions of
high data density in the input space. Furthermore, LLR can make
an initial prediction with only three data points, and any newly
updated data are used for further predictions. LLR performs local
linear regression through the pmax nearest points to a query point,
to give a linear model in the locality of the query point. This pro-
cess is repeated across the training data to produce a piecewise lin-
ear model. One of the methods of choosing pmax is called influence
statistics and is explained below (Durrant, 2001; Remesan et al.,
2008).

Given a neighbourhood of pmax points, the following linear
matrix equation needs to be calculated

Xm ¼ y ð7Þ

where X is a pmax � d matrix of the pmax input points in d dimen-
sions, xi (1 6 i 6 pmax) are the nearest neighbour points, y is a col-
umn vector at the length pmax of the associated outputs, and m is
a column vector of parameters that has to be determined to provide
the best mapping solution from X to y, such that

x11 x12 x13 � � � x1d
x21 x22 x23 � � � x2d

..

. ..
. ..

. . .
. ..

.

xpmax1 xpmax2 xpmax3 � � � xpmaxd

0
BBBB@

1
CCCCA

m1

m2

..

.

md

0
BBBB@

1
CCCCA

¼

y1
y2

..

.

ypmax

0
BBBB@

1
CCCCA

ð8Þ

The rank of the matrix X is the number of linearly independent
rows, which affects the existence or uniqueness of the solutions for
m.

If the matrix X is square and non-singular then the unique solu-
tion to Eq. (7) is m ¼ X�1y. However if X is not square or singular,
Eq. (7) needs to be modified and m is determined by minimising
the following equation:

jXm� yj2 ð9Þ

as has been proved by Penrose (1955), the distinct solution to this
problem is:

m ¼ X#y ð10Þ

where X# is a pseudo-inverse matrix (Penrose, 1955, 1956).
One of the various methods available to organise the input

training data is the k-dimensional tree (k-d tree), with a time com-
plexity in the order O (M log M). A k-d tree is a space partitioning
data structure for organising points in a k-dimensional space so
that the LLR algorithm can be implemented using the least number
of direct evaluations (Remesan et al., 2008).
3.3.2. Artificial neural networks (ANNs)
ANNs are models that learn from a training data set mimicking

the human-learning ability (Zurada, 1992). They are able to iden-
tify noisy data and approximate multivariate nonlinear relations
among the variables (Ahmad et al., 2010). They have been widely
used in many disciplines, including water resources and hydrology
research such as for river level forecasting, rainfall runoff mod-
elling, daily evaporation estimation, rainfall forecasting and
groundwater modelling (Dehghani et al., 2014; Han et al., 2007;
Ireland et al., 2015; Islam et al., 2012; Srivastava et al., 2013a;
Tehrany et al., 2014). Multilayer feedforward neural networks
(NNs) are universal approximators (Hornik et al., 1989) and
explored in this study to determine their effectiveness in relating
a number of inputs to the SMD. Specifically, an ANN can exploit
the synergy of different input variables due to its truly multivariate
nature and its nonlinear capabilities (Aires et al., 2011). The super-
vised ANN is the most widely applied ANN, where the inputs are
presented to the ANN along with the targeted output. For each
neuron in the hidden layers, the input vector (including a unity ele-
ment, the bias) is multiplied by a vector of weights using a scalar
product. Although the most commonly used learning algorithm
in ANN is the backpropagation algorithm (fitted with gradient des-
cent and gradient descent with momentum), it is often time-
consuming for a practical point of view as it requires low learning
rates for stable learning. Whereas algorithms such as conjugate
gradient, quasi-Newton, and Levenberg-Marquardt provide alter-
native ways which are faster yet efficient. Two-hidden-layers have
been thought as the most effective ANN architecture (Jones, 2004),
therefore, it is used in this study. For each input vector containing a
combination of SMOS Tbs, there is an associated target containing
an SMD value. The output of the ANN is compared with the desired
value, and the weights are adjusted by minimising a cost function
(i.e., MSE). The minimisation has been achieved by the Broyden–F
letcher–Goldfarb–Shanno (BFGS) neural network training algo-
rithm (Fletcher, 2013), and the conjugate gradient training algo-
rithm (Bishop, 1995). The BFGS algorithm is a variable metric or
quasi-Newton method, where the quadratic error function evalu-
ated at w near to the minimum w⁄ is considered as the following
equation:

EðwÞ ¼ Eðw�Þ þ 1
2
ðw�w�ÞTHðw�w�Þ ð11Þ

By differentiating Eq. (11), the location of the minimum w⁄ can
be calculated as:

g � rEðwÞ ¼ Hðw�w�Þ ¼ 0 ð12Þ
The minimum w⁄ can therefore be calculated as:

w� ¼ w� H�1g ð13Þ

where the vector �H�1g is the Newton direction and when validated
at any w on a quadratic error surface, it will direct to the minimum
of the error function w⁄.

For the conjugate gradient training algorithm, to achieve con-
secutive conjugate search directions, the gradient g � rEðwÞ of
the error surface at the next point must be a minimum in the cur-
rent search direction dj, which is achieved when:

djþ1Hdj ¼ 0 ð14Þ

where H is the Hessian matrix appraised at the point wj+1. This
direction search method is called conjugate. Full mathematical
descriptions of the two training algorithms used in this study can
be found in the aforementioned literature.
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4. Results

In this study, four performance indicators are used: Pearson
product moment correlation coefficient (r), Mean squared error
(MSE), Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970),
and Root Mean Square Error (RMSE).

4.1. Time series plots of XAJ SMD and SMOS soil moisture observations

We have selected the days on which both the SMOS-BEC and
the SMOS-CATDS have available soil moisture data. This selection
is to make a fair judgement between the two products because
during the same time period SMOS-CATDS has more available data
than SMOS-BEC. The time series plots of the XAJ SMD and the two
soil moisture products are presented in Fig. 3. It can be seen that
the SMD demonstrates a high variability with seasons, with nadir
(lower SMD indicates wetter soil) often occurring in winter where
evapotranspiration demand is the lowest. On the other hand dur-
ing the summer season, the hot temperature and increased evapo-
transpiration lead to an overall drier surface soil (i.e., high SMD).
For the two satellite soil moisture products, it is clear to observe
that they are slightly discriminated from each other. In order for
a better visualisation, two enlarged time series plots (i.e., during
a winter period and a summer period, respectively) are presented
in Fig. 4. Interestingly during the winter period (Fig. 4a) when
the soil is frozen, SMOS-BEC observations are significantly less
available than the SMOS-CATDS’s. In order to appraise the hydro-
logical values of the SMOS-CATDS frozen soil moisture data, the
correlation coefficient is calculated against the XAJ SMD
(r = �0.76). This high correlation value indicates that even under
the frozen condition, some of the satellite retrieved Tbs data are
still useful for soil moisture estimation. Due to the limited avail-
ability of the SMOS-BEC data during the winter season, its correla-
tion is not calculated here. During the summer period (Fig. 4b),
data availability for both products is higher than in the winter per-
iod, and their soil moisture values are closer to each other. It can be
seen from both products in the two enlarged plots that the summer
soil (averagely around 0.15 m3/m3) is generally drier than the win-
ter soil (averagely around 0.25 m3/m3), which agrees with the XAJ
SMD fluctuations. The results of SMD estimation directly from the
two SMOS soil moisture products are presented in the later section
of the paper.
Fig. 3. Time series plots of the XAJ SMD and the two SMOS soil moisture products
4.2. SMD estimation using SMOS brightness temperature as input

4.2.1. Input data selection
As discussed in Section 3.2, an appropriate selection of inci-

dence angles of the SMOS brightness temperature observations is
necessary to ensure the best SMD retrieval. In this study, data
selection is carried out by using a full embedding (embedding
means a selection of inputs from all the possible inputs) calculation
with the gamma (C) from the GT as a metric. This approach tests
every combination of data inputs to determine which combination
yields the smallest absolute gamma value. If there are m scalar
inputs then there are 2m � 1 possible embeddings (i.e., 16,383
embeddings in this case). Although this method is more time con-
suming, it is more comprehensive. The full embedding result is
demonstrated by a histogram plot in Fig. 5, which shows the fre-
quency of embeddings with a given gamma statistic. It can be seen
that the histogram tends to be a Gaussian distribution, indicating
that the choice of embedding is largely driven by statistical varia-
tions in the data (Jones, 1998). The best inputs combination is from
the embedding that gives the lowest gamma value, which is the
combination of H polarisation at the incidence angles of 32.50�,
37.50�, 47.50�, 52.50�, 57.50� and V polarisation at the incidence
angles of 27.50�, 32.50�, 37.50�, 42.50�, 57.50�. Although Fig. 2
shows that incidence angle 27.50� at H polarisation is more corre-
lated with the SMD, it may contain some duplicated features with
other angles (called redundancy) and is therefore excluded. There
is a similar reason for those angles that also have a high correlation
with the SMD, but are not selected after the full embedding test.
The gamma statistic given by this combination is C = 0.048, and
the gradient utilised to calculate the gamma statistic is 0.51 (A)
which roughly indicate that the output SMD is a relatively simple
function of the ten Tbs inputs. A model with low C and low A is
considered to be the best scenario for modelling. Therefore using
the selected ten brightness temperature data solely should be effi-
cient in modelling the SMD variations.

The quantity of the training data to predict the desirable output
is again analysed by the M-test, which is useful in deciding
whether there is sufficient data to provide an asymptotic gamma
estimate and subsequently a reliable model. The results of the M-
test are presented in Fig. 6. To select the most suitable training-
data length, a trade-off between the best gamma and standard
error results, and the longest testing-data length is made. As a
(indicated as SMOSSM in the y-axis label) from CATDS and BEC, respectively.



Fig. 4. Two enlarged time series plots of the XAJ SMD and the two SMOS soil moisture products (indicated as SMOSSM in the y-axis label) from CATDS and BEC, respectively:
(a) between Day 413 and Day 457 (a winter period), and (b) between Day 581 and Day 625 (a summer period).

Fig. 5. The histogram of the full embedding calculation, with the gamma (C) from the gamma test as a metric.
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Fig. 6. M-test results. It indicates an asymptotic convergence of the gamma (C) to a value of 0.061 at 356 data length, and the corresponding standard error at the convergent
point is 0.0062.
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result, the 356 data length produces the best trade-off result. The
corresponding gamma and standard error are 0.061 and 0.0062,
respectively. The small values of both statistics illustrate that the
gamma test is relatively accurate. The results of the aforemen-
tioned tests give a clear image that it is possible to build a nonlin-
ear predictive model utilising 356 data points.

4.2.2. SMD estimation using LLR model
After selection of the input data, the LLR model is trained

(between the 1st–356th data points) and tested (between the
357th–434th data points) on the simulated SMD data from XAJ.
It is important to choose the optimal number of nearest neighbours
(pmax) in LLR so that the best model performance can be achieved.
This has been identified by the trial and error method. The proce-
dure is carried out by repeating the training and testing processes
for another four times over different training-testing data combi-
nations using the 4-fold cross-validation (i.e., shifting the data by
108 each time) so that there is a total of five training-testing data
combinations (including the training-testing data combination
obtained from the M-test). In this way, all the data are tested at
least once instead of just using the original testing data. The trial
and error results (not normalised) are presented in Table 1. It is
observed that theMSE varies with different pmax values and divided
groups, indicating that both factors are important in controlling
the LLR modelling performance. The generally low MSE values
observed in group 1 clearly reveal the usefulness of the M-test. It
Table 1
Trial and error results of finding the best number of nearest neighbours (pmax) in the LLR

pmax Group 1 Group 2 Group 3

Training Testing Training Testing Training Testing

1 8.1E�05 1.3E�04 1.4E�04 1.4E�04 1.0E�04 8.4E�0
2 7.6E�05 1.1E�04 1.2E�04 1.4E�04 6.4E�E�05 9.0E�0
3 7.1E�05 7.6E�05 1.0E�04 1.1E�04 6.0E�05 9.2E�0
4 6.1E�05 8.6E�05 9.6E�05 1.1E�04 7.5E�05 1.1E�0
5 7.3E�05 7.9E�05 1.1E�04 1.0E�04 1.1E�04 1.1E�0
6 6.7E�05 1.0E�04 1.2E�04 1.4E�04 1.4E�04 6.8E�0

Note: The performance is measured by the mean squared error (MSE is in the unit of m2).
can be tested at least once. Group 1 comprises the training data of 1–356, and testing d
testing data of 327–434; group 3 comprises the training data of 109–434, and testing dat
of 108–215; group 5 comprises the training data of 1–216, 326–434, and testing data of 2
model.
is still difficult to judge the most appropriate pmax value based on
those individual case results. Therefore, it is necessary to average
them so that a smooth trial and error curve can be obtained
(Fig. 7). The close MSE values between the testing and the training
demonstrate that the LLR model is quite stable in simulating the
SMD values from the selected Tbs inputs. The LLR model with pmax

at three generally gives the lowest MSE value and is therefore
implemented hereafter.

The performance of the LLR technique is measured by three glo-
bal statistics (NSE, r, and RMSE). Fig. 8 shows the scatter plots of the
LLR computed and the XAJ simulated SMD during the training and
testing periods. LLR shows a rather satisfactory performance
(NSE = 0.88, r = 0.94, RMSE = 0.008 m) during the training phase in
estimating the SMD. The majority of the data points are saturated
around the 45� line (dotted line) indicating that the model is well
trained. Points far above the bisector line signify over-estimation
whereas points far below the dotted line mean under-estimation.
The training outcome illustrates the degree to which the LLR model
explains SMD variation as a function of the ten Tbs inputs, while
the effectiveness of the model is judged during the testing phase.
It is clear to see that the LLR model performs very well during
the testing phase (NSE = 0.85, r = 0.93, RMSE = 0.009 m). A large
number of saturated data points around the dotted line signifies
that there is a surprisingly excellent match between the modelled
SMD and the XAJ SMD. The used LLR algorithm has been double
checked by disrupting the SMD target in the testing datasets and
model.

Group 4 Group 5 Mean

Training Testing Training Testing Training Testing

5 8.4E�05 1.1E�04 1.1E�04 7.3E�05 1.0E�04 1.1E�04
5 6.8E�05 5.6E�05 8.9E�05 7.0E�05 8.3E�05 9.3E�05
5 6.9E�05 1.0E�04 1.0E�04 6.7E�05 8.1E�05 9.0E�05
4 7.8E�05 1.4E�04 1.1E�04 6.4E�05 8.3E�05 1.0E�04
4 9.3E�05 1.6E�04 1.2E�04 8.8E�05 1.0E�04 1.1E�04
5 1.3E�04 2.0E�04 1.2E�04 9.2E�05 1.2E�04 1.2E�04

The datasets (i.e., 434 in total) have been divided into five groups so that all of them
ata of 357–434 from the M-test; group 2 comprises the training data of 1–326, and
a of 1–108; group 4 comprises the training data of 1–107, 216–434, and testing data
17–325. The mean MSE results are used to determine the optimal pmax value in LLR



Fig. 7. Trial and error result to find the optimal pmax value in the LLR modelling.

Fig. 9. The statistical plot of the XAJ simulated SMD and the models estimated SMD
during the testing phase. The boxes indicate 25–75% percentiles. The whiskers
extend from 5% to 95% percentile values. The red line represents the median value
of the data. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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changing the input file, and its performance remains the same.
Therefore, it is believed that LLR model is rather suitable for esti-
mating SMD from Tbs. Fig. 9 shows that the median of the XAJ sim-
ulated SMD is higher than the LLR modelled. Nevertheless, the LLR
model performs well for both low and high SMD values as the
5/25% and 75/95% percentiles of the XAJ and the model estimated
SMD match well.
4.2.3. SMD estimation using ANN models
The LLR model is then compared with two ANN models (i.e., the

BFGS training algorithm ANN and the conjugate gradient training
algorithm ANN, respectively). The feedforward network used in
this work has two hidden layers. Various tests have been done to
determine the optimal ANN architecture. In the ANN conjugate
gradient model, above 5 neurons in the hidden layer, the results
do not improve anymore, therefore 10-5-5-1 ANN structure is
adopted. For the ANN BFGS model, the feedforward 10-8-8-1
Fig. 8. SMD simulated by the LLR model. It shows the scatter plots of the LLR computed
RMSE is in the unit of metre.
ANN is found to be the most suitable. The size of the sufficient
training dataset has been determined as 356 through the M-test,
and the target MSE has been identified as 0.061 (normalised) to
avoid the potential overtraining problem. Scatter plots of the two
ANN models during the training and testing phases are illustrated
in Fig. 10, and their statistical performances are indicated accord-
ingly in the figure. It is seen in the statistics summary table
(Table 2), that the SMDs estimated by ANNs are inferior to the esti-
mates by the LLR model for both the training and testing parts.
Box plots comparing the spread of the ANN estimated SMDs with
and the XAJ simulated SMD during the training and testing periods. It is noted that



Fig. 10. SMD simulated by the ANN models. (a) shows the scatter plots of the conjugate ANN computed and the XAJ simulated SMD during the training and testing periods;
(b) presents the scatter plots of the BFGS ANN computed and the XAJ simulated SMD during the training and testing periods. It is noted that RMSE is in the unit of metre.

Table 2
Summary of the model performances.

Training Testing

NSE r RMSE (m) NSE r RMSE (m)

LLR 0.88 0.94 8.0E�3 0.85 0.93 9.0E�3
ANN-conjugate 0.74 0.86 1.2E�2 0.64 0.81 1.4E�2
ANN-BFGS 0.77 0.88 1.2E�2 0.60 0.79 1.4E�2
SMOS-BEC 0.55 0.74 1.5E�2 0.34 0.60 1.8E�2
SMOS-CATDS 0.53 0.73 1.5E�2 0.35 0.61 1.8E�2
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the XAJ simulated are also shown in Fig. 9. The plot indicates that
both ANN models do not capture the extreme low SMD values well
(the 5% whiskers), but they perform acceptably in estimating
extreme high SMD values (the upper 95% whiskers). In addition,
both ANN models are comparatively poorer in modelling high
SMD values (75% percentile) than LLR. The ANN-BFGS is able to
simulate low SMD well (25% percentile), while the ANN-
conjugate shows less capability in this aspect. On the other hand,
the ANN-conjugate’s simulation is able to produce the closest
mean SMD value to the XAJ’s, while the ANN-BFGS’s mean is more
deviated. Generally, the statistics results of the study indicate that
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the SMD predictive capability by the ANN-conjugate is stronger
than the ANN-BFGS.

4.3. SMD estimation using SMOS soil moisture as input

To further evaluate the proposed method, a comparison study is
carried out to derive the SMD directly from the two SMOS soil
moisture products. LLR model is adopted for this purpose because
this is a mono-variable regression problem (i.e., to derive from one
of the SMOS soil moisture products into the SMD). If ANN is used it
will have only one input node which makes the ANN model inef-
fective. The quantities of the training and the testing data are again
analysed by theM-test. TheM-test results show that the most suit-
able training data period for the SMOS-BEC and the SMOS-CATDS is
1st–216th and 1st–220th, respectively, and the rest of the data are
Fig. 11. SMD estimation using LLR model and SMOS soil moisture input: (a) from S
used as the testing dataset. The optimal number of pmax in LLR
model is found to be 13 in both data input cases. The SMD estima-
tion results are illustrated in Fig. 11. The goodness of fit is indicated
by NSE, r, and RMSE statistics. The statistical performances between
the two cases are close to each other, indicating there is no signif-
icant difference between the two soil moisture products. The poor
results during both the training and the testing phases reveal that
those soil moisture products generated using the in-situ soil mois-
ture networks and the numerical weather modelling outputs as the
evaluating target are not hydrologically suitable. Although both
ANN models are not capable of surpassing the LLR technique, their
SMD estimations are still much better than those derived from the
SMOS soil moisture directly (as shown in Table 2). Therefore, the
proposed method using the SMOS multi-angle brightness temper-
atures is a more efficient way.
MOS-BEC; (b) from SMOS-CATDS. It is noted that RMSE is in the unit of metre.
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5. Discussion and conclusions

This paper describes a novel approach for the first time to esti-
mate hydrological SMD directly from the SMOS multi-angle bright-
ness temperatures with both the H and V polarisations using
nonlinear modelling techniques. A well-proven gamma test is also
employed to further improve the input data feature selection pro-
cess. The use of LLR and ANNs with the BFGS NN training algorithm
and the conjugate gradient training algorithm have been presented
in this study. Both the radial BFGS ANN training algorithm and the
conjugate gradient training algorithm perform well in estimating
the SMD data, yet both fail to achieve the highest possible results.
On the other hand, the training and testing results demonstrate that
the LLR model is surprisingly good at capturing the interrelations
between SMD and Tbs over ANNs. All the SMD values estimated from
the proposed nonlinear methods achieve outstanding accuracies
compared with those derived from the standard SMOS soil moisture
products (both from the SMOS-BEC and the SMOS-CATDS).

The results from the LLR model are quite puzzling due to a large
number of data points perfectly matching with the predicted SMD
values, in both the training phase and the testing phase. One obvi-
ous suspicion is the model overfits the training data, however this
has been excluded using the combination of the training data and
the testing data because an over-trained model cannot perform
well in the testing phase. Our explanation is such a phenomenon
is caused by two nearby points which have identical or almost
the same SMD values. This happens if the distance between them
is very small, and is more likely to happen with LLR model which
is local in comparison with other global models such as ANN. A
local model breaks the whole data points into local groups. For a
special case when pmax = 1, a value to be estimated at a certain
point will be totally decided by its nearest neighbour. If its nearest
neighbour is close enough a zero error could be achieved. However
if the local data points are very sparse then its nearest neighbour
will be quite far away, and the estimated value will have a large
error. This explains why there are so many points on the perfectly
matched line, while there are still many data points off it. The over-
all results indicate that the LLR technique has a huge potential to
provide hydrologists with valuable information on the application
of satellite brightness temperature for SMD estimation, which has
not been explored before. The current study could form the basis
for efficient satellite data assimilation into real-time flood forecast-
ing systems. The LLR model evaluated in this paper is numerically
very efficient and is capable of retrieving SMD fast enough to be
assimilated into such systems.

In this study the ‘ground truth’ is based on the SMD simulation
from the XAJ model. One may argue that a hydrological model’s
soil moisture state variable has no physical meaning and its pur-
pose is purely to facilitate a model’s flow simulation, hence it has
no direct connection with the real-field soil moisture. Moreover,
as Keith Beven states in Beven (2012) there are many models with
different parameter values which could produce equally good flow
simulations (called the equifinality effect) because those models
are all optimised with the same flow simulation. As a result, mod-
els with similar flow simulation accuracy could have very distinct
values in their soil moisture state variables. To explore this argu-
ment, we have carried out some numerical experiments to demon-
strate that although the absolute SMD values could vary greatly
between different model parameter sets, their response patterns
to soil moisture changes are almost identical because they are dri-
ven by the same precipitation and evapotranspiration processes
with the identical physical response mechanisms. Therefore, the
SMD pattern is the true reflection of the soil moisture changes in
the real field, and this justifies the usage of SMD derived from
the hydrological model as the ‘ground truth’ for assessing soil
moisture data quality. However, the SMD and the real-field soil
moisture represent different aspects of the soil moisture condition.
A regression formula is needed to convert the satellite observations
into hydrological SMD as shown in Figs. 8 and 10 (to derive hydro-
logical SMD from the SMOS raw data using ANN and LLR) and
Fig. 11 (to convert from the SMOS soil moisture product into
hydrological SMD). To make a fair comparison, the regression for-
mulas with the similar complexity are used in both cases.

The accuracy of the SMD estimation is largely dependent on the
relationship of the training dataset with the target output. The
presence of erroneous values and under/over estimation in the
training dataset hampers the model performance. Although larger
training data sizes generally yield better results, it is challenging to
decide what size is large enough, especially when the analysed
data period is short. At the moment, the rule of two-third data
for training and one-third data for testing is still popular albeit
such a method lacks consideration of the data characteristics. In
addition, there is no commonly recognised method for input data
feature selection and quality check, which has hampered many
modelling developments. This is because some input data sets
carry duplicated features (high redundancy), which can make the
model over-complicated (over-fitting). Also, if the inherent errors
in the input data exceed the model’s capability, it is rather difficult
for the model to perform well, even the model itself is good
enough. This study demonstrates the informative capability of
the GT and the M-test in the input data selection for nonlinear
model constructions. It is hoped that this approach could be gener-
alised to benefit various research areas including hydrology, mete-
orology and where input data feature selection is needed.

The mismatch between the satellite footprint and catchment
scale is an important issue that should be considered in the hydro-
logical application of soil moisture products. In this study, the chosen
catchment has a compatible size with the satellite footprint, there-
fore the mismatch is not an issue in this case. The effect of larger
or smaller catchments should be explored in future studies. Since
the adopted LLR model is data based, the optimal model could
change for various soil type, catchment size, land cover and climate
regions. The proposed scheme has to be applied to individual catch-
ments with their ownmodel development for SMD estimation. With
more studies using the proposedmethod, it could be feasible to build
a look-up table in which users can search for the model structure
and parameters so that it can be utilised in ungauged catchments
as well. Finally, it should be noted that the SMD produced from this
paper cannot be directly used in agricultural management or other
disciplines because there is no universal soil moisture product for
all purposes. Nevertheless, for any specific application field, the pro-
posed method can be easily adopted to it by changing the targeted
soil moisture (e.g., to change SMD to volumetric soil moisture to
be used in agriculture).
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