
Accepted Manuscript

EnKF coupled with groundwater flow moment equations applied to Lauswiesen
aquifer, Germany

M. Panzeri, M. Riva, A. Guadagnini, S.P. Neuman

PII: S0022-1694(14)00979-2
DOI: http://dx.doi.org/10.1016/j.jhydrol.2014.11.057
Reference: HYDROL 20072

To appear in: Journal of Hydrology

Received Date: 2 July 2014
Revised Date: 18 November 2014
Accepted Date: 21 November 2014

Please cite this article as: Panzeri, M., Riva, M., Guadagnini, A., Neuman, S.P., EnKF coupled with groundwater
flow moment equations applied to Lauswiesen aquifer, Germany, Journal of Hydrology (2014), doi: http://
dx.doi.org/10.1016/j.jhydrol.2014.11.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jhydrol.2014.11.057
http://dx.doi.org/http://dx.doi.org/10.1016/j.jhydrol.2014.11.057
http://dx.doi.org/http://dx.doi.org/10.1016/j.jhydrol.2014.11.057


  

EnKF coupled with groundwater flow moment equations applied to 

Lauswiesen aquifer, Germany 

M. Panzeri
1
, M. Riva

1,2
, A. Guadagnini

1,2
, and S.P. Neuman

2
 

 

1
Dipartimento di Ingegneria Civile e Ambientale, Politecnico di Milano, Piazza L. Da Vinci 

32, 20133 Milano, Italy 

2
Department of Hydrology and Water Resources, 

University of Arizona, Tucson, Arizona 85721, USA 

 

Details of the corresponding author:  

Marco Panzeri 
Ph.D. 

Department of Civil and Environmental Engineering 

Politecnico di Milano, Milan (Italy) 

Phone: 0039 02 2399 6256 

Fax:   0039 02 2399 6298 

Email: marco.panzeri@polimi.it  



  

Abstract 

We describe a field application of a new data assimilation method recently proposed by 

Panzeri et al. (2013, 2014). The method couples a modified Ensemble Kalman Filter (EnKF) 

algorithm with stochastic moment equations (MEs) governing space-time variations of 

(theoretical ensemble) mean and covariance values of groundwater flow state variables 

(hydraulic heads and fluxes). Whereas traditional EnKF entails Monte Carlo (MC) 

simulations and suffers from inbreeding, our approach obviates both. Synthetic case studies 

have shown the ME-based approach to be computationally efficient and accurate when 

compared to MC-based results. Here we use our ME-based method to assimilate drawdown 

data recorded during cross-hole pumping tests in the heterogeneous alluvial Lauswiesen 

aquifer near Tübingen, Germany. Our results include an estimate of log transmissivity 

distribution throughout the aquifer and corresponding measures of estimation error. We 

validate our calibrated model by using it to predict drawdowns recorded during another 

pumping test at the site and compare its performance with that of standard MC-based EnKF. 

 

Keywords: Data assimilation; Ensemble Kalman Filter; Stochastic moment equations; Field-

scale application; Aquifer characterization; Cross-hole pumping tests  



  

1. Introduction 

To render groundwater flow models reliable one must base them firmly on data. 

Regardless of whether or not these models are linear in hydraulic heads, the latter always 

depend in a nonlinear fashion on hydraulic conductivities or transmissivities. One way to 

condition models on data is via batch inverse approaches such as those examined by 

Zimmerman et al. (1998) or reviewed more recently by Hendricks-Franssen et al. (2009) and 

Zhou et al. (2014). The rapid expansion in recent decades of monitoring networks delivering 

high-resolution head measurements in real time through remote connections has generated 

widespread interest in assimilation methods capable of updating models on the basis of real-

time data sequentially rather than in batch mode. Sequential data assimilation tends to be 

computationally more efficient than traditional batch inverse approaches. Most if not all 

sequential data assimilation techniques are developments on a linear filter first proposed by 

Kalman (1960). The purpose of this original Kalman Filter (KF) was to estimate states of 

linear dynamical systems on the basis of noisy temporal measurements. KF entails recursive 

computations of (a) a forecast step, in which the mean and the covariance matrix of a system 

state vector are propagated in time until new measurements become available, and (b) an 

analysis step, in which system states (and more recently model parameters) are updated on 

the basis of new data. Gelb (1994) proposed an Extended Kalman Filter (EKF) to account for 

model nonlinearities. EKF does so by linearizing model dynamics in each forecast step. This 

renders EKF (e.g., Eigbe et al., 1998; Aanonsen et al., 2009; Liu et al., 2012; Zhou et al., 

2014) (a) inaccurate in cases of highly non-linear models and highly variable parameters due 

to rapid increase in covariance linearization error with time; and (b) computationally 

demanding when applied to realistically large and complex models associated with large 

sensitivity and error covariance matrices. 



  

One way to assimilate data sequentially into nonlinear models is through the use of 

Ensemble Kalman Filters (EnKF) introduced by Evensen (1994) and modified by Burgers et 

al. (1998). Traditional EnKF entails generating a random sample of system state realizations 

through Monte Carlo (MC) solution of nonlinear dynamics equations during each forecast 

step, and subsequent updating of system states (and, optionally, parameters) on the basis of 

their MC sample mean and covariance matrix. The approach is conceptually simple and 

relatively easy to implement, rendering it popular among climate and other environmental 

modelers. Of direct relevance to this paper are synthetic EnKF studies related to subsurface 

flow and transport. One of these is the work of Chen and Zhang (2006) who studied the 

impact of MC sample size, type of measurements and timing of data assimilation on the 

quality of estimated model parameters; another is that of Hendricks-Franssen and Kinzelbach 

(2008) who explored the effects of uncertain recharge rate and transmissivity on EnKF 

performance. The latter authors proposed empirical strategies to circumvent, or minimize, 

filter inbreeding which causes EnKF to increasingly underestimate parameter estimation 

variance as data assimilation progresses in time. Liu et al. (2012) and Zhou et al. (2014) 

published detailed reviews of data assimilation and inverse modeling techniques in 

hydrogeology with special emphasis on EnKF. In the context of subsurface hydrology, Liu et 

al. (2008) used EnKF to estimate the spatial distribution of hydraulic conductivities and 

transport model parameters (i.e., longitudinal dispersivity and the parameters of a dual-

domain mass transfer model) on the basis of hydraulic head and tracer concentration data 

collected at the MADE site in one year. EnKF hydraulic conductivity estimates were found to 

be consistent with kriged values based on flow meter measurements, which were not 

considered during data assimilation. Hendricks-Franssen et al. (2011) used EnKF to model 

variably saturated subsurface flow with river-aquifer interaction in the Limmat Valley aquifer 

near Zurich, Switzerland, from January 2004 till December 2007. They then used the 



  

calibrated model to predict system dynamics from May 2009 till September 2010. Here too 

the ability of the model to predict hydraulic heads improved as assimilation progressed. The 

authors also found that overly frequent parameter updates caused model predictive capability 

to deteriorate due to filter inbreeding and numerical instability. Kurtz et al. (2014) used EnKF 

to investigate the impact of assimilating hydraulic and thermal data jointly on the estimation 

of system states and parameters of the Limmat Valley aquifer. They were able to assimilate a 

large amount of groundwater level and temperature data from the year 2007 and verify their 

model against numerous such data from 2011. 

A review of EnKF in the context of petroleum reservoir engineering was published by 

Aanonsen et al. (2009). Haugen et al. (2006) used EnKF to update permeability and porosity 

values of a North Sea reservoir model based on a five year production record. Sequential 

estimates of parameters were compared with batch estimates over the entire five-year period, 

showing that the former reproduces observed state variables better and better as time 

progresses, improving upon earlier hand calibration. Bianco et al. (2007) used EnKF to 

estimate spatially varying model permeabilities and porosities based on three years of 

production data at the Zagor oil field off the West African shore. Sequential estimates of 

parameters based on 50, 100 and 135 MC realizations were compared with values available 

prior to data assimilation, once again reproducing observed state variables increasingly better 

as time progressed. Predictions of reservoir behavior over a subsequent 23-year time horizon, 

obtained with parameter estimates based on 50 Monte Carlo realizations, were better than 

those obtained upon relying on information available prior to data assimilation. Other 

examples of EnKF data assimilation in reservoir models, coupled with parameter estimation, 

are found in Zhang and Oliver (2011) and Emerick and Reynolds (2011). 

In our view the term ensemble is a misnomer in the context of MC-based EnKF. We 

say so because in statistical mechanics and mathematical physics an ensemble, or statistical 



  

ensemble, is typically defined as a very large (theoretically infinite) number of copies of a 

system. Each of these copies represents a system state so that the ensemble coincides 

effectively with the probability distribution for the system state under consideration (e.g., 

Gibbs, 1902). A new assimilation method we developed recently (Panzeri et al., 2013) is in 

our view validly termed EnKF precisely for this reason. Our method differs from MC-based 

EnKF in that it replaces MC sampling with direct computation of statistical ensemble 

moments. It does so by solving, in an approximate manner, exact (nonlocal, 

integrodifferential) equations that govern the space-time evolution of ensemble means and 

covariances of hydraulic heads and fluxes (Guadagnini and Neuman, 1999; Ye et al., 2004). 

Coupling such (ensemble) moment equations (MEs) with EnKF obviates the need for 

computationally intensive batch geostatistical inverse analyses of the kind described, in the 

context of ME, by Riva et al. (2009). In our synthetic studies (Panzeri et al., 2014) ME-based 

EnKF proved to be free of inbreeding issues, accurate and computationally efficient. In this 

paper we use our new ME-based approach to assimilate drawdown data recorded during 

cross-hole pumping tests in the heterogeneous alluvial Lauswiesen aquifer near Tübingen, 

Germany. Our results include an estimate of log transmissivity distribution throughout the 

aquifer and corresponding measures of estimation error. We compare our results with those 

obtained using standard EnKF based on various numbers of Monte Carlo realizations and 

validate our calibrated model against drawdowns recorded during another pumping test at the 

site. 

2. Experimental site and available data 

The Lauswiesen experimental site is located in the Neckar river valley near Tübingen, 

Germany. System characterization is based on information recorded at a set of monitoring 

and pumping wells. Local investigations reveal a relatively regular upper clay, having a 

thickness of 1 - 2 m, overlying conductive Quaternary sand and gravel deposits which in turn 



  

rest on a layer of Keuper marl. The latter is usually taken to define an impervious bedrock 

boundary of the Quaternary sand and gravel aquifer. The aquifer has a saturated thickness of 

about 5 m and is characterized by a relatively stable free surface which is mainly controlled 

by the Neckar river water level. All boreholes penetrate the aquifer down to bedrock. Details 

of site hydrogeology are given by Riva et al. (2006) and references therein. 

Our study focuses on the north-eastern part of this site, which covers an area of 

approximately 25 × 25 m
2
. We consider transient drawdown data collected during three out 

of five cross-hole pumping tests conducted in fully penetrating wells B1 - B5. These and the 

site are depicted in Figure 1. Each test entailed pumping one of the five wells at a constant 

rate and observing drawdowns in the remaining four wells. Water levels, measured with 

transducers and recorded with data loggers (Martac and Ptak, 2003; Riva et al., 2006 and 

references therein), were allowed to recover fully before the start of each test. Following 

Neuman et al. (2007), we treat flow during each test as being horizontal and account for 

variation of saturated thickness by correcting the drawdown, s, according to (Jacob, 1944) 

2

2
c

s
s s

b
= −  (1) 

where c
s  is corrected drawdown and b is average initial saturated thickness.  

Pumping test results reveal reciprocity gaps (see Bruggeman,1972; Delay et al., 2011 

and references therein) between normalized drawdown curves observed when pumping from 

well B5 but not the other wells. Delay et al. (2011, 2012) suggest that reciprocity gaps 

between vertically-averaged heads monitored during two consecutive tests can be caused by 

various factors including (a) non-linear dependencies of local hydraulic parameters, (b) 

occurrence of internal boundaries within the domain, (c) inertial effects that develop through 

open conduits within the host rock matrix, (d) changes in aquifer properties between 

subsequent pumping tests, (e) contribution of the matrix pressure in monitored wells when 



  

the behavior of the aquifer is conceptualized as a dual-continuum, (f) vertical trends in 

aquifer properties, and/or (g) drainage from the unsaturated zone during pumping. According 

to these authors, identifying the precise reasons for lack of reciprocity at a given site remains 

an open challenge. As drawdowns created when pumping well B5 are not reciprocal with 

those measured in B5 during other tests, we exclude drawdowns created by pumping well B5 

from consideration in this paper. We do the same with drawdowns created by B1 some of 

which appear to be in error (Riva et al., 2006; Neuman et al., 2007). Our analysis is thus 

limited to data created by pumping in B2, B3 and B4 while monitoring all remaining wells. 

Corrected drawdowns corresponding to cross-hole tests in these three wells are plotted versus 

time on semi-logarithmic scale in Figure 2. Pumping rate, pumping duration and initial 

saturated thickness associated with each test are listed in Table 1. Vertical dashed lines in 

Figure 2 denote points in time at which data assimilation took place. Note that we limit our 

consideration to transient drawdowns during periods delimited by these lines, including 

pseudo-steady state regimes. This is to ensure that boundary effects have negligible impact on 

drawdowns assimilated into our model. Aquifer storativity inferred by Martac and Ptak 

(2003) from drawdowns recorded in pumping tests across the area range from 0.02 to 0.22, 

with average 0.05, all but one estimate being of order O(10
−2

) m. This mild spatial variability 

is the reason why we, like others (e.g., Dagan, 1982; Hendricks-Franssen et al., 2011), feel 

justified disregarding fluctuations in storativity in comparison to those of transmissivity and 

considering in our analyses below aquifer storativity as a deterministic constant which we set 

equal to the estimated average of 0.05. 

Previously Neuman et al. (2007) used type curves of Neuman et al. (2004) to estimate 

geometric mean transmissivity (TG) as well as the sill ( 2

Yσ ) and integral scale ( YI ) of log 

transmissivity variogram at the site on the basis of late-time drawdown measurements. The 

first and last of their estimates 22.18 10GT −= ×  2 /m s , 2.5YI =  m and 2
1.5Yσ =  agreed 



  

closely with estimates 
22.38 10GT

−= ×  
2 /m s  and 2

1.4Yσ =  obtained independently through 

vertical averaging of 312 flow meter test results from 12 boreholes comprising all B wells in 

Figure 1c and additional seven wells shown in Figure 1b. These values are consistent with 

geostatistical log hydraulic conductivity estimates obtained by Lessoff et al. (2010) on the 

basis of aquifer direct-push slug tests (DPST) and direct-push injection logs (DPIL) across 

the site. 

3. Numerical flow model 

Our groundwater flow model uses finite elements to solve second-order (in 

conditional standard deviation of natural log transmissivity) approximations of otherwise 

exact conditional stochastic moment equations (e.g., Tartakovsky and Neuman, 1998; Ye et 

al., 2004; Panzeri et al., 2013). The latter nonlocal (integrodifferential) equations govern the 

space-time evolution of conditional ensemble means (statistical expectations) and 

covariances of hydraulic heads and fluxes. Our two-dimensional finite element grid, depicted 

in Figure 3, contains 79 × 79 rectangular elements that decrease in size toward the center of 

the 356.2 × 356.2 m2 study area. The finer inner part of the grid, including wells B1 - B5, 

contains 39 × 39 square elements of size 0.6 × 0.6 m2. Log transmissivities within this inner 

area are uniform in each element and treated as an autocorrelated random field, Y. 

Rectangular elements in the outer area are assigned a single deterministic transmissivity equal 

to the geometric mean, 22.18 10GT −= ×  2 /m s , estimated for this site by Neuman et al. 

(2007). As noted earlier, we limit our analysis to drawdowns in the fine inner region of the 

grid, occurring prior to the onset of boundary effects in this region. Similar to Riva et al. 

(2009), we performed tests about the suitability of the grid size upon comparing numerical 

results against the Theis model (Theis, 1935) in a homogeneous setting. Comparison between 

analytical and numerical solutions shows negligible differences for the grid size we employ. 

This is documented in Figure 4, which depicts the temporal evolution of the absolute 



  

difference, Eh, between analytical and numerical heads evaluated at the locations of the 

observation wells for the tests we analyze. These plots demonstrate that numerical errors 

associated with grid discretization are always well below 10−3 m, this being the value we 

employed for standard deviation of head measurement errors. 

Initial heads across the domain are zero, as is head on all four domain boundaries. 

Pumping in each test is represented by a point sink, ( )P
Q δ −

w
x x , in which P

Q  is withdrawal 

rate, δ is the Dirac delta function and wx  is position vector of the pumping well, all wells 

being located at grid nodes. Disregarding pumping well radius and storage in this manner is 

likely to introduce inaccuracies in the reproduction of pumping well drawdowns, which we 

therefore do not assimilate. 

4. Data assimilation strategy 

We employ our ME-based EnKF algorithm to assimilate drawdowns recorded during 

tests T2 and T3 at points in time indicated by vertical dashed lines in Figure 2. The mean and 

covariance of Y estimated on the basis of T2 are used to initiate the assimilation of T3 data. 

Results are validated against drawdowns recorded during test T4. 

Drawdowns in Figure 2 are recorded at more than 100 time steps during each test of 

duration close to 10,000 s. Previous studies (e.g., Chen and Zhang, 2006; Panzeri et al., 2013) 

have shown that (a) hydraulic heads measured during the early transient regime are 

associated with higher information content than those registered during the later pseudo-

steady state regime and (b) switching from low to high temporal assimilation frequency 

yields only marginal improvement in parameter estimates. For these reasons, and to lower 

computational cost, we assimilate drawdowns only at 15 points in time during each test such 

that about 80% of the assimilated data correspond to early transient flow. 

As detailed by Ye et al. (2004), we solve our MEs at a fixed number of discretization 

points in Laplace space and back-transform their solution into the time domain using a 



  

quotient-difference algorithm developed by De Hoog et al. (1982). The computational time 

required for any forward solution step is thus constant, independent of temporal time step 

size. This allows us to restart the flow simulation from time zero after each update, thereby 

conserving mass prior to any such update. Additionally, since the Kalman gain matrix 

requires only cross-covariances between heads at observation well nodes and log 

transmissivities at grid elements, our approach avoids the need to compute entire head 

covariance matrices. It thus results in significant speed-up of the ME-based assimilation 

algorithm. 

5. Theoretical background and data assimilation algorithm 

We define the state vector 

 
=  
 

Y
y

s
 (2) 

where Y and s are vectors containing log transmissivities at the NY grid elements and 

drawdowns at the Ns grid nodes, respectively, so that y has dimension 
y Y s

N N N= + . We 

denote by T0 = 0 the starting time of each pumping test and by Tk (k = 1, 2, ..., 15) the points 

in time at which drawdown measurements are assimilated during each pumping test. Due to 

incomplete knowledge of transmissivity the vector y  is modeled as a random field. We link 

head observations to unknown values of y at time Tk, kTy , through 

k k k kT T T T= +d H y ε  (3) 

where the vector kT
d  contains Nd measurements at time Tk which, in our case, consist of Nd = 

4 heads at observation wells; kT
H  is a transformation matrix of size Nd × Ny; and kT

ε  is a 

random vector representing zero-mean Gaussian measurement errors with covariance matrix 

εε
Σ . In our application, entries H kT

ij
 of kT

H  are equal to 1 when element j of vector kT
y  

corresponds to observed drawdown constituting entry i of kT
d  and 0 otherwise. We further 



  

assume that measurement errors are mutually uncorrelated with standard deviation σε = 0.001 

m (rendering 
εε
Σ  diagonal and homoscedastic), independent of measurement location. As 

assimilated drawdowns, sc, range between 0.01 m and 0.10 m, the ratios σε / sc range from 10
-

1
 to 10

-2
. We collect all measurement vectors up to time Tk (i.e., iT

d , 1,i k= K ) in a matrix 

kT
D  and denote the state vector y at time Tk, conditioned on 1kT −D  and kT

D  respectively, by 

, kf T
y  and 

, ku T
y . 

Our data assimilation strategy, based on the methodology of Panzeri et al. (2013), 

requires assigning initial mean and covariance values to 0,u T
y  during each pumping test. To 

initiate the assimilation of test T2 data we condition the first two statistical moments of Y on 

those provided by type curve analysis of Neuman et al. (2007). Correspondingly, all elements 

of the mean vector 0,u T
Y  are set equal to the mean log transmissivity estimate, 

( )2ln 2.18 10 3.826−× = −  (where transmissivity is measured in m
2/s), while those of the 

corresponding covariance matrix, 0,u T

YC , are evaluated on the basis of an exponential isotropic 

variogram with sill 2
1.5Yσ =  and integral scale IY = 2.5 m. To initiate the assimilation of test 

T3 data we adopt mean and covariance values from the end of T2 assimilation. We set initial 

drawdowns at time T0 equal to steady-state mean drawdowns in the absence of pumping. In 

our case this yields zero values for all elements of the initial mean drawdown vector, 0,u T
s , 

covariance matrix, 0,u T

sC , and cross-covariance matrix between drawdowns and log 

transmissivities, 0,u T

sYC . 

At assimilation steps 0kT >  we evaluate the first two moments of 
, kf Ty , i.e., 

, kf T
y  and 

, kf T

yy
Σ , by solving the stochastic MEs of transient groundwater flow for the time interval 

( ]0 k
T T  subject to zero initial drawdown while setting the mean and covariance of Y equal 



  

to their estimates, 1, ku T −Y  and 1, ku T −

YC , at assimilation step 1kT − . Moments of the updated 

vector 
, ku T

y are then computed with the aid of kT
d , representing measurements at time Tk, 

according to 

,

, , ,

,

k

k k k k k k

k

u T

u T f T T T T f T

u T

 
  = + − =   
 

Y
y y K d H y

s
 (4) 

( )
, ,

, ,

, ,

k k

k k k k

y k k

u T u T

u T T T f T

N u T u T

 
= − =  

 

Y Ys

yy yy

sY s

C C
Σ I K H Σ

C C
 (5) 

in which 

( ) ( )
1

, ,k k k k k k kT f T T T T f T T
−+ + = −

  yy εε yy
K Σ H Σ H Σ H  (6) 

is the Kalman gain matrix, the superscript + denoting transpose. 

6. Results and discussion 

Figures 5 and 6 depict spatial distributions of estimated log transmissivity mean and 

variance at selected assimilation time steps during tests T2 and T2+T3, respectively. The 

mean Y field in Figure 5 starts displaying significant heterogeneity after the first assimilation 

step. As expected, results vary faster during early updating steps than during later steps. 

Estimation variance is smallest near wells B1, B2 and B3 and larger near wells B4 and B5 

that are located farthest from pumping well B2. As expected, the variance increases toward 

its unconditional value (equal to the variogram sill) with distance from these wells. The 

assimilation of additional data in Figure 6 is seen to yield only minor changes to the mean 

and variance of Y in Figure 5. Though based on diverse data and methods, these results as 

well as those shown in Figures A.1 and A.2 (Appendix A) are consistent with a relatively low 

variance obtained by Lessoff et al. (2010) for hydraulic conductivities close to well B2. 

Figure 7 depicts the temporal behavior of spatially averaged Y estimation variance, VY, 



  

( )2 ,

1

1 YN
u t

Y Y i

iY

V
N

σ
∗

∗
=

= ∑ x  (7) 

in which ( )2 ,u t

Y i
σ

∗

x  is log transmissivity estimation variance in grid element i, 
YN
∗  is number 

of elements in the dense inner portion of the grid (Figure 3), and 
kN

t t T
∗ =  is normalized 

time. As already noted, YV  decreases fastest during early steps of test T2 assimilation, more 

slowly during early steps of T3 assimilation, and slower yet at later steps of each assimilation 

sequence. Total decrease in YV  is 14 % during the first assimilation and 5 % during the 

second. 

Figures 8 - 11 compare drawdowns recorded in wells B1, B2, B3 and B5, 

respectively, while pumping well B4 during test T4 with corresponding estimates of mean 

drawdown and ± 2 standard deviations about the mean while relying on prior Y values, 

estimates based on assimilation of T2 data, and estimates based on joint assimilation of T2 

and T3 data. Figures 8 – 10 confirm that (a) relying on prior parameter estimates results in 

poor drawdown fits and wide uncertainty ranges, (b) assimilating T2 data improves fits and 

reduces uncertainty significantly, while (c) further assimilation of T3 data bring about only 

marginal improvements in fit and uncertainty reduction. Poor fits in Figure 11 confirm that 

drawdowns in well B5 are not represented accurately by our model. As discussed by Delay et 

al. (2011, 2012), these can be ascribed to the inability of typical mathematical formulations of 

fully saturated groundwater flow to reproduce reciprocity gaps. This element does not 

invalidate the quality of our calibration. Figure 12 indicates percent χ of drawdown data 

recorded in B1, B2, and B3 during test T4 that fall inside the corresponding uncertainty 

bounds in Figures 8 – 10. On average, χ increases from 12% prior to assimilation to about 

40% after joint assimilation of T2 and T3 data. 



  

Next we examine the effect of adding T4 drawdown data to our assimilation sequence 

using the same approach as earlier. Figure 13 depicts spatial distributions of estimated log 

transmissivity mean and variance at selected assimilation time steps during this test. Results 

differ slightly from those following joint assimilation of T2 and T3 data in Figure 6 by an 

increase in mean Y values at the top-right of the grid and a slight decrease in variance 

throughout the domain. 

Finally we compare our estimates based on T2 data to those obtained for this case 

using traditional MC-based EnKF. Implementation and results of this analysis are described 

in Appendix A. Results of MC-based EnKF approach those of ME-based EnKF as the 

number of realizations increases from 5,000 to 50,000. With such a large number of 

realizations MC-based EnKF becomes computationally more demanding than our ME-based 

approach. 

7. Conclusions 

Our work leads to the following major conclusions. 

1. The moment-equations (ME) based ensemble Kalman filter (EnKF) approach to data 

assimilation proposed by Panzeri et al. (2013) works well when applied to three sets 

of pumping test data from the Lauswiesen alluvial aquifer near Tübingen, Germany. 

The approach provides sequential estimates of log transmissivity and its variance-

covariance distributions in space. 

2. Estimates obtained through assimilation of data from two pumping tests were 

validated successfully against a third such test at the site. Consistent with observations 

by Chen and Zhang (2006) and Panzeri et al. (2013) on synthetic scenarios, our 

parameter estimates improved faster when based on the assimilation of transient 

drawdown data than when based on near-steady state data. 



  

3. We found that to reduce parameter estimation error by as much as was possible using 

our ME-based EnKF approach, the traditional Monte Carlo-based approach would 

require so many simulations as to render it computationally less efficient. 
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Appendix A - Comparison of ME- and MC-based EnKF 

We compare results obtained through our ME-based EnKF assimilation of T2 

drawdown data against those obtained with traditional EnKF based on MC simulation. The 

assimilation is initialized by generating a collection of log transmissivity realizations, 0,u T

iY , i 

= 1,…, NMC, where NMC is the size of the MC sample. This is done by means of a 

Sequential Gaussian Simulator SGSIM (Deutsch and Journel, 1997) employing the same 

variogram parameters as those used for our ME-based analysis. Forward state vectors at time 

steps Tk, , kf T

iy , i = 1,…, NMC, are obtained through deterministic flow simulations over time 

intervals ( ]0
,

k
T T  using estimates 1, ku T

i
−Y  and uniform zero initial drawdown. As in the ME-

based case, we solve the flow equations in Laplace space and back transform the results 

numerically into the time domain. 

The collection of forward state vectors are then updated according to 

( ), , ,ˆk k k k k ku T f T T T T f T

i i i i= + −y y K d H y  1, ,i NMC= K  (A.1) 

where kT

id  is obtained by perturbing the observation vector available at time step Tk, kT
d , 

with a realization kT

iε  of the random vector kT
ε  

k k kT T T

i i= +d d ε  (A.2) 

and ˆ kT
K  is the approximated Kalman gain matrix evaluated through 

( ) ( )
1

, ,ˆ ˆ ˆ ˆk k k k k k kT f T T T T f T T
−

+ + = −  yy εε yyK Σ H Σ H Σ H  (A.3) 

in which ,ˆ kf T

yyΣ  and ˆ kT

εε
Σ  are the sample covariance matrices of the vectors , kf T

iy  and kT

iε , i = 

1,…, NMC, respectively. 

We assimilate the observations registered during test T2 adopting the same strategy described 

in Section 4 and investigate the effect of adopting diverse sizes of the MC sample (i.e., we 

employ NMC = 500; 5,000 and 50,000). Figures A.1 and A.2 compare spatial distributions of 



  

corresponding log transmissivity mean and variance, respectively, at selected time steps with 

ME- and MC-based EnKF methodologies. Figure A.1 shows that employing NMC = 500 MC 

realizations does not yield stable mean log transmissivities, requiring at least NMC = 5000 

realizations to identify the site heterogeneity pattern clearly. Mean and variance values 

obtained with a sufficiently large number of MC realizations are similar to those obtained 

with the ME-based approach. 

Both approaches were implemented in parallel using a similar number and type (Intel 

i7-3930K) of processors. Whereas running one assimilation step of ME-based EnKF required 

approximately 3 hours, running 500, 5,000 and 50,000 MC realizations required about 1, 6 

and 60 hours, respectively. We thus see that embedding MEs in EnKF yields results of 

similar quality to those obtained with a large number of MC realizations, which however 

requires more computational time. An additional disadvantage of the MC-based approach is 

that it requires assessing the rates at which sample statistics converge to their unknown 

ensemble values. 

 

  



   
Figure 1. (a, b) Satellite images of Lauswiesen site (from Google Earth); (c) spatial location 

of wells, piezometric surface (isolines) and average groundwater flow direction (black arrow) 

in study area. Boreholes marked as R- P- and G- have been employed in prior experimental 

campaigns and are not part of the cross-hole pumping test sequence here analyzed. 
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Figure 2. Corrected drawdowns recorded while pumping from wells B2, B3 or B4 versus 
time. Vertical dashed lines show when assimilation took place during tests T2 and T3. 
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Figure 3. Flow domain, details of numerical grid (+), boundary conditions and spatial 

locations of wells B1 - B5. 
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Figure 4. Comparison between numerical results and Theis model [Theis, 1935] in a 

homogeneous setting. Temporal evolution of absolute difference, Eh, between analytical and 
numerical heads evaluated at observation wells. 
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Figure 5. Spatial distributions of estimated log transmissivity mean and variance at 
assimilation steps k of drawdowns measured during test T2 while pumping well B2. Circles 

indicate spatial locations of wells B1 - B5. 
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Figure 6. Spatial distributions of estimated log transmissivity mean and variance at 
assimilation steps k of drawdowns measured during test T3 while pumping well B3 and 

following assimilation from test T2. Circles indicate spatial locations of wells B1 - B5. 
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Figure 7. Spatially averaged estimation variance, YV  (7), versus normalized time (

kk N
t T T∗ =

) during assimilation of drawdowns while pumping well B2 (0 1t∗< < ) and subsequently 

well B3 (1.0 2.0t∗< < ). 
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Figure 8. Drawdown measured at well B1 while pumping well B4 (symbols) in test T4, estimated mean (red curve) with ± two standard deviations confidence 

intervals (dashed curves) obtained with log transmissivities (a) prior to data assimilation, (b) after assimilation of T2 data, and (c) after joint assimilation of T2 and 

T3 data. 
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Figure 9. Drawdown measured at well B2 while pumping well B4 (symbols) in test T4, estimated mean (red curve) with ± two standard deviations confidence 

intervals (dashed curves) obtained with log transmissivities (a) prior to data assimilation, (b) after assimilation of T2 data, and (c) after joint assimilation of T2 and 

T3 data. 
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Figure 10. Drawdown measured at well B3 while pumping well B4 (symbols) in test T4, estimated mean (red curve) with ± two standard deviations confidence 

intervals (dashed curves) obtained with log transmissivities (a) prior to data assimilation, (b) after assimilation of T2 data, and (c) after joint assimilation of T2 and 

T3 data. 
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Figure 11. Drawdown measured at well B5 while pumping well B4 (symbols) in test T4, estimated mean (red curve) with ± two standard deviations confidence 

intervals (dashed curves) obtained with log transmissivities (a) prior to data assimilation, (b) after assimilation of T2 data, and (c) after joint assimilation of T2 and 

T3 data. 
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Figure 12. Percentage χ of drawdowns during pumping test T4 within uncertainty bounds of 

± 2 standard deviation about mean based on prior Y estimates (blue), estimates obtained after 

assimilating T2 data (red) and after subsequent assimilation of T3 data (green). 
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Figure 13. Spatial distributions of estimated log transmissivity mean and variance at 
assimilation steps k of drawdowns measured during test T4 while pumping well B4. Circles 

indicate spatial locations of wells B1 - B5. 
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Figure A.1. Spatial distributions of estimated log transmissivity mean at assimilation steps k 

of drawdowns measured during test T2 while pumping well B2 using the ME- and the MC-

based EnKF with diverse values of NMC. Circles indicate spatial locations of wells B1 - B5. 

-7.0

-4.0

-1.0

2.0

-7.0

-4.0

-1.0

2.0

-7.0

-4.0

-1.0

2.0

-7.0

-4.0

-1.0

2.0

-7.0

-4.0

-1.0

2.0

-7.0

-4.0

-1.0

2.0



  

k ME NMC = 500 NMC = 5,000 NMC = 50,000  

0 

 

1 

 

3 

 

5 

 

10 

 

15 

 
Figure A.2. Spatial distributions of estimated log transmissivity variance at assimilation steps 

k of drawdowns measured during test T2 while pumping well B2 using the ME- and the MC-

based EnKF with diverse values of NMC. Circles indicate spatial locations of wells B1 - B5. 
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Test Name Pumping 

Well 

Pumping flow rate 

[m3/s] 

Duration 

[hours] 

Average initial saturated 

thickness [ ]m  

T2 B2 5.27×10
−3

 3.46 4.81 

T3 B3 3.00×10
−3

 3.34 5.04 

T4 B4 5.48×10
−3

 3.93 5.64 

Table 1. Pumping well, rate, duration and average initial saturated thickness in tests T2, T3 

and T4. 

  



  

 

Highlights 

1. Traditional EnKF assimilation requires computationally intensive MC simulations 

2. Coupling EnKF with moment equations (ME) eliminates this need and inbreeding 

3. Here we use ME-based EnKF to estimate aquifer transmissivities at a field site 

4. ME-based results compare favorably with those of numerous MC simulations 

5. As such, ME- based EnKF requires a lesser amount of computer time 

 




