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ABSTRACT 7 

The increasing frequency of flooding events in urban catchments related to an increase in 8 

impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low Impact 9 

Development (LID) techniques have proven to be a viable and effective alternative by reducing 10 

stormwater runoff and increasing the infiltration and evapotranspiration capacity of urban areas. 11 

However, the lack of adequate modeling tools represents a barrier in designing and constructing 12 

such systems. This paper investigates the suitability of a mechanistic model, HYDRUS-1D, to 13 

correctly describe the hydraulic behavior of permeable pavement installed at the University of 14 

Calabria. Two different scenarios of describing the hydraulic behavior of the permeable pavement 15 

system were analyzed: the first one uses a single-porosity model for all layers of the permeable 16 

pavement; the second one uses a dual-porosity model for the base and sub-base layers. Measured 17 

and modeled month-long hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) 18 

index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering highlighted the 19 

influence of the wear layer on the hydraulic behavior of the pavement and identified the ranges of 20 

parameters generating behavioral solutions. Reduced ranges were then used in the calibration 21 

procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for the 22 

estimation of hydraulic parameters. The best fit value for the first scenario was NSE = 0.43; for the 23 

second scenario, it was NSE = 0.81, indicating that the dual-porosity approach is more appropriate 24 

for describing the variably-saturated flow in the base and sub-base layers. Estimated parameters 25 

were validated using an independent, month-long set of measurements, resulting in NSE values of 26 
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0.43 and 0.86 for the first and second scenarios, respectively. The improvement in correspondence 27 

between measured and modeled hydrographs confirmed the reliability of the combination of GSA 28 

and PSO in dealing with highly dimensional optimization problems. Obtained results have 29 

demonstrated that PSO, due to its easiness of implementation and effectiveness, can represent a new 30 

and viable alternative to traditional optimization algorithms for the inverse estimation of 31 

unsaturated hydraulic properties. Finally, the results confirmed the suitability and the accuracy of 32 

HYDRUS-1D in correctly describing the hydraulic behavior of permeable pavements. 33 
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INTRODUCTION 66 

Progressing urbanization, connected with the demographic growth of the last decades, has 67 

led to an increase in impervious surfaces in urban catchments at the expense of natural areas. This 68 

long-term process has resulted in the alteration of the natural hydrological cycle by reducing the 69 

infiltration and evaporation capacity of urban catchments, increasing surface runoff, and reducing 70 

groundwater recharge. While some studies highlighted a decrease of recharge as a result of an 71 

increase of impervious surfaces, other studies identified an increase in recharge due to the leakage 72 

of water from an urban infrastructure, such as sewer and water supply systems. The effect of 73 

urbanization on groundwater recharge is discussed in detail by Price (2011). 74 

Another important factor is that the frequency of extreme rainfall events, characterized by 75 

high intensity and short duration, is expected to increase in the near future as a consequence of 76 

climate change (Kundzewicz et al., 2006; Min et al., 2011). For example, a recent study of Wasko 77 

and Sharma (2015) identified a strong correlation between intense precipitation peaks and high 78 

temperatures. They concluded that the expected global warming could lead to an increase of short-79 

duration floods. The correlation between atmospheric temperature and extreme rainfall intensities 80 

was also confirmed in other studies (e.g., Westra et al., 2014). This will be accompanied by a more 81 

frequent occurrence of flooding events in urban areas (Carbone et al., 2015b).  82 

The traditional approach to urban drainage systems focuses on collecting stormwater in 83 

piped networks and transporting it off-site as quickly as possible. The increasing frequency of 84 

flooding events proves that a new design paradigm for drainage systems is needed. This approach 85 

must aim to restore the natural hydrological cycle of urban catchments by increasing their 86 

evapotranspiration and infiltration capacity. In recent years, Low Impact Development (LID), an 87 

innovative approach to land development, has gained increasing popularity. LID is a 'green' 88 

approach for stormwater management that seeks to mimic the natural hydrology of a site using 89 

decentralized micro-scale control measures (Coffman, 2002). LID practices consist of bioretention 90 

cells, infiltration wells/trenches, stormwater wetlands, wet ponds, level spreaders, permeable 91 
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pavements, swales, green roofs, vegetated filter/buffer strips, sand filters, smaller culverts, and 92 

water harvesting systems. Several studies have evaluated the benefits of LIDs. For example, 93 

Newcomer et al. (2014) used a numerical model to demonstrate the benefits of LIDs, in particular of 94 

an infiltration trench, on recharge and local groundwater resources for future climate scenarios. In 95 

another paper, Berardi et al. (2014) demonstrated how green roofs may contribute to the 96 

development of more sustainable buildings and cities. Environmental benefits included ecological 97 

preservation, mitigation of air and water pollution, enhancement of urban hydrology, a decrease of 98 

urban heat island effects, a reduction of energy consumption, etc. Furthermore, green roofs were 99 

able to significantly reduce storm-water runoff and retain rainfall volume with retention efficiencies 100 

ranging from 40% to 80% (Bengtsson et al., 2004); bioretention cells were shown to reduce average 101 

peak flows by at least 45% during a series of rainfall events in Maryland and North Carolina (Davis, 102 

2008). Even though the results of available studies are encouraging, more research is needed to 103 

precisely assess the impact of LIDs on the hydrological cycle. 104 

Most impervious surfaces in urban catchments consists of roofs, roads, parking lots and road 105 

shoulders. The development of any large impervious surface commonly leads to multiple impacts 106 

on stream systems. These impacts include higher peak stream flows, which cause channel incision, 107 

bank erosion, and increased sediment transport (Trimble, 1997; Whipple et al., 1981). Another 108 

consequence of these impervious surfaces is the reduction of infiltration, which lowers groundwater 109 

recharge (Rose and Peters, 2001) and potentially also stream base flow (DeWalle et al., 2000; 110 

Simmons and Reynolds, 1982). Permeable pavements represent one solution to the problem of 111 

increased stormwater runoff and decreased stream water quality. They consist of a surface concrete 112 

layer, a filter layer made of sand and other materials, a stony base, and sub-base layers. Permeable 113 

pavements offer great advantages in terms of runoff reduction (Collins et al., 2008), water retention, 114 

and water quality (Brattebo and Booth, 2003). 115 

In spite of many well-known benefits of permeable pavements and other LID practices, the 116 

transition to sustainable urban drainage systems is very slow. One of the key limiting factors in the 117 
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widespread adoption of such systems is the lack of adequate analytical and modeling tools (Elliot 118 

and Trowsdale, 2007). The availability of an effective LID modeling software could encourage a 119 

wider adoption of LID principles. Although several stormwater models can be applied to the LID 120 

analysis (Elliot and Trowsdale, 2007), most of them do not incorporate accurate descriptions of 121 

hydrological processes involved, which leads to inaccurate predictions. Moreover, existing tools do 122 

not incorporate automatic parameter optimization techniques and sensitivity analysis routines, 123 

which have proven to be fundamental when the model includes multiple parameters. In recent years, 124 

researchers have focused their attention on applying and developing physically-based models for 125 

the LID analysis (Carbone et al., 2015a), however more research is still needed in this direction.  126 

For example, the HYDRUS software suite (Šimůnek et al., 2008) has been widely used in 127 

the literature for the description of the hydraulic behavior of green roofs (Hilten et al., 2008; Li and 128 

Babcock, 2015; Newcomer et al., 2014; Palla et al., 2009), with excellent agreement between 129 

numerical simulations and experimental data. Newcomer et al. (2014) investigated the effects of 130 

LIDs on recharge. In their study, the HYDRUS-2D software was used to simulate flow from an 131 

infiltration trench and an irrigated lawn installed at the San Francisco State University. While the 132 

model was calibrated by comparing the simulated and measured recharge, only few details were 133 

given about the calibration procedure. The calibrated model was then used to simulate the behavior 134 

of LIDs for future precipitation scenarios. Hilten et al. (2008) used HYDRUS-1D to study the 135 

effectiveness of green roofs in mitigating stormwater. Simulations were run using HYDRUS-1D for 136 

a 24-h design storm to determine peak flow, retention, and detention time for runoff.  Li and 137 

Babcock (2015) used HYDRUS-2D to model the hydrologic response of a pilot green roof system. 138 

The root-mean-square error deviation (RMSD) between the modeled water contents and field 139 

measurements ranged between 0.38 and 1.74%. This suggests that the use of mechanistic models, 140 

such as HYDRUS, represents one of the most valuable alternatives to empirical and conceptual 141 

models for the LID analysis. 142 
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Among all LID practices, permeable pavements are those that lack modeling tools able to 143 

describe their hydraulic behavior most. The heterogeneity of materials that compose a permeable 144 

pavement, together with the high infiltration rates (Brattebo and Booth, 2003), which may lead to 145 

preferential flow and especially in the base and sub-base layers, pose complex problems in the 146 

numerical modeling of these systems. Very few modeling tools exist in the literature for permeable 147 

pavements. One of them is included in the Storm Water Management Model (SWMM) (Gironás et 148 

al., 2010). However, results obtained by SWMM have proven to be inaccurate, especially in the 149 

description of the effects of base and sub-base layers on the infiltration processes (Zhang and Guo, 150 

2015). HYDRUS has also been used for the description of variably-saturated flow in permeable 151 

pavements. Illgen et al. (2007) used HYDRUS-2D for the numerical analysis of a permeable 152 

pavement and calibrated the model against experimental data collected at a laboratory test facility. 153 

The calibrated model was then used to simulate different scenarios not investigated during the 154 

laboratory campaign. The Illgen et al. (2007) study provided only limited details about the 155 

calibration of soil hydraulic parameters and their uncertainty and sensitivity. The occurrence of 156 

preferential flow in the permeable pavement was also not investigated. Moreover, the model was 157 

used to simulate a laboratory test facility, the behavior of which can differ from a field scale 158 

experimental facility. On the other hand, Carbone et al. (2014) used HYDRUS-1D to model a 159 

permeable pavement at the field scale. The HYDRUS-1D model was calibrated against four 160 

different rainfall events with optimal results. In this study, the permeable pavement was modeled as 161 

a single homogeneous layer and the differences between hydraulic properties of different layers 162 

were neglected. Furthermore, the numerical simulations were event-based. In both studies, 163 

calibration of soil hydraulic properties was carried out manually without taking advantage of more 164 

recent global optimization algorithms. This indicates that research in this direction is limited, with 165 

only inconclusive results that need to be further investigated.  166 

The lack of studies that provide a comprehensive description of the hydraulic behavior of a 167 

permeable pavement at the field scale and that propose a general methodology for the estimation of 168 
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its hydraulic parameters suggests that research is particularly needed in the development and 169 

identification of accurate modeling tools for the analysis of LID practices, especially for permeable 170 

pavements. The aim of this study is to investigate the suitability of the HYDRUS mechanistic 171 

model to correctly describe unsaturated flow in typical permeable pavement, installed at the 172 

experimental site of the University of Calabria. Multiple uniform and nonequilibrium flow models 173 

included in HYDRUS-1D, such as single- and dual-porosity models, are used to describe the 174 

hydraulic behavior of the permeable pavement. The problem is addressed in the following way. 175 

First, a Global Sensitivity Analysis (GSA) is carried out to prioritize hydraulic parameters and 176 

identify those that are non-influential. Results of the GSA, combined with a Monte Carlo filtering 177 

approach, are used to investigate the parameter space and identify behavioral regions. These 178 

regions are then used in the calibration process conducted with the Particle Swarm Optimization 179 

(PSO) algorithm. The use of PSO for the determination of unsaturated hydraulic properties 180 

represents a new important application of this method.  Finally, the calibrated model is validated on 181 

an independent set of measurements. 182 

 183 

MATERIALS AND METHODS 184 

Site Description 185 

The University of Calabria is located in the south of Italy, in the vicinity of Cosenza (39°18′ 186 

N 16°15′ E). The climate is Mediterranean with a mean annual temperature of 15.5 °C and an 187 

average annual precipitation of 881.2 mm. The permeable pavement is part of the “Urban Hydraulic 188 

Park,” which also includes an extensive green roof, a bioretention system, and a sedimentation tank 189 

connected with a treatment unit. The permeable pavement has an area of 154 m2, an average slope 190 

of 2%, and a total depth of the profile of 0.98 m. Figure 1 shows a schematic of the permeable 191 

pavement, consisting of 5 layers. 192 
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The surface wear layer consists of porous concrete blocks characterized by high 193 

permeability. Base, sub-base and bedding layers were constructed by following the suggestions of 194 

the Interlocking Concrete Pavement Institute (ICPI), which recommends certain ASTM stone 195 

gradations. The ASTM numbers and corresponding gradations can be found in ASTM D 448, 196 

Standard Classification for Sizes of Aggregate for Road and Bridge Construction. The ASTM 197 

No57, used for the base layer, is characterized by a porosity of about 30-35%.  The ASTM No2 is 198 

used in the sub-base layer for its stability and a high volumetric porosity of about 40%. The ASTM 199 

No8 is used for the bedding layer and the protection layer and has a porosity of about 20% of 200 

volume. The bedding layer is composed of a mixture of sand, glass sand, and zeolite to improve the 201 

pollutant removal efficiency of the permeable pavement for typical contaminants of stormwater 202 

runoff. A high permeability geotextile with a fiber area weight of 60 g/m2 is placed at the interface 203 

between the bedding layer and the base layer to prevent sand from migrating into the bottom layers. 204 

An impervious membrane is placed at the bottom of the profile to prevent water from percolating 205 

into deeper horizons. The protection layer which is composed of coarse sand is placed between the 206 

sub-base layer and the impervious membrane. The baseflow is collected in a horizontal drain, which 207 

consists of a perforated PVC pipe, and is conducted to a manhole for quantity and quality 208 

measurements. 209 

A weather station located directly at the site measures precipitation, wind velocity and 210 

direction, air humidity, air temperature, atmospheric pressure, and global solar radiation. Rain data 211 

are measured by a tipping bucket rain gauge with a resolution of 0.254 mm and an acquisition 212 

frequency of one minute. Climatic data are acquired with a frequency of five minutes. Data are 213 

processed and stored in the SQL database. 214 

Two flux meters, composed of a PVC pipe with a sharp-crested weir and a pressure 215 

transducer, measure baseflow and runoff from the permeable pavement. The pressure transducer 216 

(Ge Druck PTX1830) measures the water level inside the PVC pipe and has a range of 217 

measurement of 75 cm with an accuracy of 0.1 % of the full scale. The pressure transducers were 218 
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calibrated in the laboratory by using a hydrostatic water column, linking the electric current 219 

intensity with the water level inside the column. The exponential head-discharge equations for the 220 

two PVC flux meters were obtained by fitting the experimental data with a coefficient of 221 

determination R2=0.999 for both devices. Runoff and baseflow data were acquired with a time 222 

resolution of 1 minute and stored in the SQL database. No measurements of pressure heads or 223 

volumetric water contents inside the pavement were taken. 224 

Two month-long data sets were selected for further analysis (Fig. 2). The first data set, 225 

which started on 2014-01-15 and ended on 2014-02-15, was used for parameter optimization and 226 

sensitivity analysis. Total precipitation and total potential evapotranspiration for the first data set 227 

were 274 mm and 43 mm, respectively. The second data set, which started on 2014-03-01 and 228 

ended on 2014-03-31, was used for model validation. Total precipitation and total potential 229 

evapotranspiration for the second data set were 175 mm and 81 mm, respectively. The second data 230 

set was selected so that it had significantly different meteorological data than during the first period. 231 

The optimization set is characterized by multiple rain events with few dry periods. The validation 232 

set has fewer rain events, which are concentrated at the beginning and end of the time period and 233 

separated by a relatively long dry period between. Surface runoff was not observed during these 234 

time periods. 235 

Potential evaporation was calculated using the Penman-Monteith equation (Allen et al., 236 

1998). The permeable pavement was installed in 2013 and has been constantly exposed to 237 

atmospheric conditions and traffic since then that has altered the surface roughness and color. For 238 

these reasons, an albedo of 0.25 was used as suggested by Levinson and Akbari (2002) for 239 

weathered gray cement. 240 

 241 

Theory 242 

Water flow simulations were conducted using the HYDRUS-1D software (Šimůnek et al., 243 

2008). HYDRUS-1D is a one-dimensional finite element model for simulating the movement of 244 
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water, heat, and multiple solutes in variably-saturated porous media. HYDRUS-1D implements 245 

multiple uniform (single-porosity) and nonequilibrium (dual-porosity and dual-permeability) water 246 

flow models (Šimůnek and van Genuchten, 2008). In this study, two different conceptual models 247 

were used to represent flow in the permeable pavement (Table 1). 248 

Scenario I assumed that water flow in all five soil layers of the permeable pavement can be 249 

described using the classical single-porosity approach (SPM). Unsaturated water flow is then 250 

described using the one-dimensional Richards equation: 251 
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where θr [-] is the residual water content, θs [-] is the saturated water content, Ks [LT-1] is the 260 

saturated hydraulic conductivity, n is a pore-size distribution index [-], α is a parameter related to 261 

the inverse of the air-entry pressure [L-1], L indicates the tortuosity and is usually assumed to be 0.5 262 

for many soils, and Se is the effective saturation [-]. In order to simplify the model (to lower the 263 

number of unknown parameters), the residual water content of all layers was fixed. In particular, the 264 
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residual water content for the wear and bedding layers was assumed to be 0.045 and 0.03, 265 

respectively, while the residual water content for both the base and sub-base layers was assumed to 266 

be 0.0, considering that they were composed of crushed stones. Furthermore, considering that the 267 

bedding layer and the protection layer had the same stone gradation, ASTM No8, the same set of 268 

parameters was used for both. Despite of all these considerations, this scenario still involves 16 269 

parameters (θs, α, n, and Ks for 4 soil layers). 270 

Scenario II assumes a single-porosity model for the wear layer, the bedding layer, and the 271 

protection layer, and a dual-porosity model for the base and sub-base layers. This configuration was 272 

selected in order to consider the occurrence of preferential flow in the coarse layers of the 273 

pavement. 274 

The base and sub-base layers are composed of crushed stones, with particle size diameters 275 

ranging from 2.5 to 37 mm in the base layer and from 20 to 75 mm in the sub-base layer. Crushed 276 

stones were washed before installation in order to remove fine particles. This narrow gradation 277 

provides a high volume of voids and increases the water storage and infiltration capacities of these 278 

two layers. From a physical point of view, the structure of the base and sub-base materials closely 279 

resembles fractured aquifers (Barenblatt et al., 1960). Fractured aquifers are represented by a blocky 280 

matrix system intercepted by fractures. Open and well-connected fractures represent high 281 

permeability pathways that are many orders of magnitude more permeable than the porous rock 282 

matrix. At the same time, one of the characteristics of a fractured aquifer is that the fractures occupy 283 

a much smaller volume than the pores of the rock matrix. Traditionally, fractured porous media are 284 

thus represented by two separate flow domains: the high permeability (mobile) domain, the network 285 

of connected fractures characterized by advective flow, and the low permeability (immobile) 286 

domain, dominated by diffusion. The rock matrix also provides storage capacity because of its 287 

significantly larger volume than the fracture system. Typical breakthrough curves for a fractured 288 

aquifer are characterized by early breakthrough and long tailing (Geiger et al., 2010). This is due to 289 

the fact that the matrix has a delayed response to pressure head changes that occur in the 290 
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surrounding fractures. The resulting pressure difference induces matrix-fracture interflow. This flow 291 

takes place after initial fracture flow and before the matrix and fracture pressures equilibrate (Bai et 292 

al., 1994). Several studies have demonstrated the long tailing from permeable pavements in 293 

discharge hydrographs (e.g., Brattebo and Booth, 2003; Fassman and Blackbourn, 2010) and 294 

attributed this effect to the storage and flow through the base and sub-base layers.  295 

The classical approach to model water flow in fractured porous media is the so-called “dual-296 

porosity” or "mobile-immobile water" (MIM) approach (Barenblatt et al., 1960; van Genuchten and 297 

Wierenga, 1976; Warren and Root, 1963). This approach assumes that flow occurs only in the 298 

mobile fracture domain, for which an effective permeability must be known, while water in the 299 

matrix domain is immobile. Both domains are connected by a simple first-order transfer function, 300 

which accounts for the exchange of fluid across the boundary of the two domains. 301 

In the dual-porosity approach, the liquid phase is divided into two domains: 302 

mf θθθ +=
 (4) 303 

where subscript f refers to the (mobile) fracture system, and subscript m refers to the immobile 304 

matrix domain. The dual-porosity water flow formulation is based on a modified Richards equation 305 

for flow in fractures and a mass balance equation for moisture dynamics in the matrix: 306 
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where Γw  is the mass transfer between two domains, which is assumed to be proportional to the 309 

difference in effective saturations of the two regions (Šimůnek and van Genuchten, 2008; Simunek 310 

et al., 2003): 311 
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where ω is a first-order coefficient [T-1]. Compared to assuming a pressure head based driving force 313 

for the mass transfer, the dual-porosity model based on (7) requires significantly less parameters 314 
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since one does not need to know the retention function (and corresponding parameters) for the 315 

matrix region explicitly, but only its residual and saturated water contents (Simunek et al., 2003). 316 

The residual water content for the mobile domain of both the base and sub-base layers is assumed to 317 

be 0.0 (Simunek et al., 2003). The tortuosity factor, L, is again assumed to be 0.5 for all layers. 318 

Scenario II thus includes 20 parameters (additionally also ω and θs of the immobile domain for the 319 

base and subbase layers). 320 

 321 

Numerical Domain and Boundary Conditions 322 

The numerical domain representing the stratigraphy of the permeable pavement was divided 323 

in 5 layers. The bedding layer and the protection layer had the same properties since they were 324 

constructed using the same ASTM No8 stone gradation. A relatively fine, finite element mesh with 325 

a constant element size of 0.5 cm was used in order to minimize mass balance errors and avoid non-326 

convergent runs during sensitivity analysis and parameter optimization. An atmospheric boundary 327 

condition was applied at the pavement surface using (a) precipitation and potential evaporation 328 

fluxes, (b) a prescribed zero pressure head (saturation) during ponding, and (c) equilibrium between 329 

the pavement surface water content and atmospheric water vapor when atmospheric evaporative 330 

demand could not be met by the wear layer. A seepage face boundary condition was specified at the 331 

bottom of the protection layer. A seepage face boundary acts as a zero pressure head boundary 332 

when the bottom boundary node is saturated and as a no-flux boundary when it is unsaturated. The 333 

initial conditions were specified in terms of the soil water pressure head and were set to linearly 334 

increase with depth, from -90 cm at the top of the flow domain (z = 0) to -0.5 cm at the bottom (z = 335 

-98). The surface layers are assumed to be drier than the bottom layers since they are directly 336 

exposed to evaporation.  337 

 338 

Objective Function 339 
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The Nash-Sutcliffe Efficiency (NSE) index (Nash and Sutcliffe, 1970) is used for evaluating 340 

the agreement between hydrographs: 341 



















−

−

−=

∑

∑

=

=

T

i

obs

mean

obs

i

T

i

i

obs

i

QQ

QQ

NSE

1

2

1

2mod

)(

)(
1

 (8) 342 

where Qi
obs is the ith measured value, Qi

mod is the ith simulated value, and Qmean
obs is the mean value 343 

of observed data. The NSE coefficient ranges between -∞ and 1.0, is equal to 1 in case of a perfect 344 

agreement, and, generally, values between 0.0 and 1.0 are considered acceptable (Moriasi et al., 345 

2007). The NSE has been used because it is often reported to be the best measure for evaluating the 346 

overall fit of a hydrograph (Sevat et al., 1991). 347 

 348 

Global Sensitivity Analysis 349 

Most existing environmental models include a high number of parameters. This aspect 350 

creates a major problem in their application, as the parameter estimation becomes a high-351 

dimensional and mostly nonlinear problem. To solve this problem, several optimization algorithms 352 

were developed (Beven and Binley, 1992; Duan et al., 1992; Poli et al., 2007; Vrugt et al., 2003). 353 

Moreover, environmental optimization studies are often affected by the equifinality problem 354 

(Beven, 2006) when multiple sets of parameters can produce similar results. This problem is 355 

exacerbated when the number of parameters is significant and only limited information about their 356 

interactions and their effects on the output is available. However, it is not always necessary to 357 

include all model parameters in the optimization process because some of them could be measured 358 

or estimated, and some may have negligible effects on the output of the model for a particular 359 

application. A sensitivity analysis (SA) can identify the most influential parameters and their 360 

interactions and how these parameters affect the output (Saltelli et al., 2005).  361 

The principal steps of a SA are: Factors Prioritization (FP), Factors Fixing (FF), Variance 362 

Cutting (VC), and Factors Mapping (FM) (Saltelli and Tarantola, 2004). The aim of FP is to 363 
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identify factors that one should measure in order to obtain the greatest reduction in the uncertainty 364 

of the output. Conversely, FF identifies factors that are non-influential. By applying these two 365 

settings, the modeler is able to reduce the dimension of the optimization problem and have a 366 

complete appreciation of the parameters’ influences and interactions. 367 

Most SAs performed in the literature of environmental sciences are the so-called 'one-at-a-368 

time' (OAT) sensitivity analyses, performed by changing the value of parameters one-at-a-time 369 

while keeping the others constant (Cheviron and Coquet, 2009; Houska et al., 2013; Rezaei et al., 370 

2015). However, when the model includes interactions between parameters, results of the OAT 371 

analysis are inaccurate because parameter interactions can be identified only by changing multiple 372 

parameters simultaneously. For this reason, when the property of a model is a priori unknown, a 373 

Global Sensitivity Analysis (GSA) is always preferred (Saltelli and Annoni, 2010). Practitioners 374 

call this analysis a model-free setting.  375 

One of the most widespread algorithms for the GSA is the variance-based Sobol’ method 376 

(Sobol', 2001). Variance-based methods aim to quantify the amount of variance that each parameter 377 

contributes to the unconditional variance of the model output. For the Sobol’ method, these 378 

amounts are represented by Sobol’s sensitivity indices (SI’s). These indices give quantitative 379 

information about the variance associated with a single parameter or related to interactions of 380 

multiple parameters. For a more complete explanation about the Sobol’ method, please refer to 381 

Sobol' (2001).  382 

Sobol’s sensitivity indices are expressed as follows: 383 

V

V
SOrderFirst i

i =    
 (9) 384 

V

V
SOrderSecond

ij

ij =    
 (10) 385 

∑
≠

++=
ij

ijiT
SSSTotal ...   

 (11) 386 



  

16 
 

where Vi is the variance associated with the ith parameter and V is the total variance. The first-order 387 

index, Si, is denoted in the literature as the “main effect”. This index can be described as the fraction 388 

of the model output variance that would disappear when parameter Xi is fixed. When the model is 389 

additive, i.e., when it does not include interactions between input factors, then the first-order index 390 

is sufficient for decomposing the model’s variance. For additive models, the following relation is 391 

valid: 392 

∑ =
i

iS 1
 (12) 393 

Even when the model includes interactions between parameters, the first-order index 394 

remains the measure to use for FP (Saltelli and Tarantola, 2004). On the other hand, the total effect 395 

index, ST, gives information about a non-additive part of the model. A significant difference 396 

between ST and Si indicates an important role of an interaction for the parameter considered. 397 

Essentially, the total effect index, STi, gives a fraction of the total variance that would be left when 398 

all factors but Xi were fixed. STi = 0 is a condition necessary and sufficient for Xi to be non-399 

influential. Therefore, Xi can be fixed at any value within its range of uncertainty without affecting 400 

the output unconditional variance. The total effect is the measure to use for FF. 401 

Considering that environmental models are generally highly nonlinear, it is almost 402 

impossible to calculate the variances using analytical integrals. Hence, Monte Carlo integrals are 403 

often applied, which are based on sampling the parameter space in q samples. Obviously, the 404 

accuracy in the estimation of integrals becomes more accurate as the number of samples increases, 405 

which also increases the computational cost of the SA. For an accurate description of the calculation 406 

of Sobol’s indices please refer to Saltelli (2010). 407 

Basically, the calculation of Sobol’s indices requires q·(2p+1) model evaluations, where p is 408 

the number of input factors. However, Saltelli (2002) introduced a method that requires only 409 

q·(p+2) model evaluations. To sample the parameters' space we used Sobol’s quasi-random 410 

sampling technique (Sobol', 2001). 411 
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One of the most important aspects of the GSA is the choice of the number of samples, q. An 412 

increase in the number of samples will increase the accuracy of Sobol’s indices. However, a high q 413 

implies a higher number of model evaluations. The number of samples is case-sensitive; it depends 414 

on the structure of the model and on the type of simulations performed. A convergence analysis of 415 

Sobol’s indices is the recommended procedure for estimating q. However, this approach is time 416 

consuming because it needs to repeat the GSA several times by increasing the number of samples 417 

until the variability of indices between two consecutive analyses is below a threshold value for all 418 

parameters. 419 

In a recent study, Nossent et al. (2011) gave a comprehensive description of the influence of 420 

q on the accuracy of a GSA for an environmental model that included 26 parameters. Nossent et al. 421 

(2011) reported that for most parameters, less than 5000 samples were sufficient to reach a stable 422 

solution. An extensive review of the GSA in hydrological models is reported in Song et al. (2015). 423 

Here, we report the number of model runs for each GSA performed, together with the type of GSA, 424 

the number of parameters of the model, and the objective function used. For the GSA based on 425 

Sobol’s method, the number of model runs rarely exceeds 100,000. Due to considerations discussed 426 

above, a value of q=5000 was chosen in our study. Table 2 summarizes the characteristics of the 427 

GSA for the two scenarios considered. 428 

In order to assess the accuracy of estimations of the sensitivity indices, the bootstrap 429 

confidence intervals (BCIs) (Efron and Tibshirani, 1986) were estimated. The basic idea of the 430 

bootstrapping is that, in absence of any other information about the distribution, the sample contains 431 

all the available information about the underlying distribution. In our particular case, we were 432 

interested in computing the uncertainty of estimated sensitivity indices. However, since their 433 

distribution is unknown it is not possible to compute the confidence intervals analytically. The 434 

rationale of the bootstrap method is to replace the unknown distribution with its empirical 435 

distribution and to compute the sensitivity indices using a Monte Carlo simulation approach where 436 

samples are generated by resampling the original sample used for the sensitivity analysis. In our 437 
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case, the q samples used for the model evaluation were sampled 1000 times with replacement, 438 

whereby Sobol’s indices were calculated for each resampling. In this way, 95% confidence intervals 439 

are constructed by using the percentile method and the moment method (Archer et al., 1997). 440 

The sensitivity analysis was conducted using the programming language Python and in 441 

particular, the Sensitivity Analysis Library (SALib) (Usher et al., 2015). An elaborated script 442 

overwrites the input file containing the parameters for different materials at each iteration. The 443 

script then executes HYDRUS-1D, which usually runs less than one second. If the HYDRUS-1D 444 

run is not finished after 15 seconds, it is considered non-convergent; the script then terminates the 445 

process and attributes a large negative value to the objective function. The same negative value is 446 

attributed when the length of the modeled hydrograph is shorter than one month, which indicates 447 

that the run was unsuccessful. Values of the objective function are stored in a one-dimensional array 448 

for the subsequent computation of sensitivity indices. Table 3 reports the initial range of all 449 

evaluated parameters in the two scenarios. The initial conditions were not included in the GSA 450 

because their effects on the hydrograph for a month-long simulation are assumed to be limited to 451 

only the first few days. 452 

 453 

Monte Carlo Filtering 454 

In the context of an optimization framework, results of the GSA can be used to extract 455 

useful information about the problem structure. The GSA preliminarily identifies the subset of input 456 

factors that drive most of the variation in the model output; to establish their optimal values, these 457 

sensitive parameters can be further investigated by using a Monte Carlo filtering approach. Filtering 458 

techniques are used to explore the parameter space pertaining to the single or multiple optima. This 459 

is particularly relevant when dealing with mechanistic models that almost always contain ill-defined 460 

parameters and are thus referred to as over-parameterized models (Draper and Smith, 1981). 461 

The Monte Carlo filtering is often coupled with the regionalized sensitivity analysis (RSA) 462 

(Hornberger and Spear, 1981). The RSA generally requires two tasks: (a) a qualitative description 463 
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of the system behavior, and (b) a binary classification of the model output that divides solutions into 464 

two behavioral and non-behavioral groups. However, the main drawback of the RSA is that no 465 

higher-order analysis is performed and thus interactions between parameters are not investigated. In 466 

the GSA, a complete description of main effects and interactions is given. The GSA has been 467 

combined effectively with the GLUE analysis (Beven and Binley, 1992) in the context of the 468 

parameter optimization (Ratto et al., 2001). In Ratto et al. (2001), the sample generated for the 469 

GLUE analysis is also used for the computation of variance-based sensitivity indices. 470 

In this study, the GSA is coupled with a basic Monte Carlo filtering. The aim of this step is 471 

to identify behavioral regions in the parameter space and to reduce the uncertainty in the following 472 

parameter estimation step by using the same sample and runs of the GSA. For each parameter set 473 

used in the GSA, a value of the objective function is calculated. Potential solutions are divided into 474 

two groups: behavioral, solutions with NSE >0.0, and non-behavioral, solutions with NSE ≤ 0.0. 475 

Two different types of analysis were performed on the filtered sample: a) Kernel density estimation 476 

and b) correlation analysis. 477 

 478 

Kernel Density Estimation (KDE) 479 

The KDE plots have been used to identify regions with a high density of behavioral 480 

solutions. The KDE is a non-parametric estimator of the probability density function (PDF) of a 481 

random variable (Silverman, 1981). A kernel is a special type of PDF with an added property that it 482 

must be even. The KDE bi-variate plots have been used because they give a smooth qualitative 483 

representation of PDFs in a bi-dimensional space. The uni-variate KDE has also been computed for 484 

each parameter. The KDE plots have been calculated using a Gaussian kernel and the Scott 485 

procedure for the determination of a bandwidth (Scott, 1992). 486 

 487 

Correlation Analysis 488 
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The correlation analysis helps to identify particular interaction structures between 489 

parameters. Detecting high values of correlation coefficients suggests a way to reduce the input 490 

factor space. In particular, when the coefficient is positive, the couple of parameters acts in the 491 

model as a quotient/difference, and when it is negative, the parameters act as a product/sum.  492 

 493 

Particle Swarm Optimization 494 

Inverse modeling is a procedure to estimate unknown parameters of the model from 495 

experimental data. One of the major reasons to apply inverse modeling is to estimate parameters 496 

that cannot be directly measured for various reasons. Numerous applications of inverse modeling 497 

for the estimation of soil hydraulic properties exist in the literature (Abbaspour et al., 2004; 498 

Hopmans et al., 2002; Vrugt et al., 2008, 2004). The gradient methods (Marquardt, 1963) have been 499 

used  most widely among hydrologists and soil scientists. However, these methods are sensitive to 500 

the initial values of optimized parameters, and the algorithm often remains trapped in local minima, 501 

especially when the response surface exhibits a multimodal behavior. These considerations inspired 502 

researchers to develop and use global optimization techniques such as the annealing-simplex 503 

method (Pan and Wu, 1998), genetic algorithms (Ines and Droogers, 2002), shuffled complex 504 

methods (Vrugt et al., 2003), and ant-colony optimization (Abbaspour et al., 2001), among many 505 

others. 506 

In this paper, a global search method based on Particle Swarm Optimization (PSO) 507 

(Kennedy and Eberhart, 1995) is used. PSO has been used in multiple studies involving inverse 508 

modeling with complex environmental models (Gill et al., 2006; Jiang et al., 2010; Zambrano-509 

Bigiarini and Rojas, 2013). However, so far it has not been used for the determination of 510 

unsaturated hydraulic properties. PSO is a relatively new algorithm for evolutionary computation 511 

methodology, but its performance has proven to be comparable to various other, more established 512 

methodologies (Kennedy and Spears, 1998; Shi and Eberhart, 1999). One of the main advantages of 513 

PSO is the easiness of its implementation (Liang et al., 2006). PSO is characterized by an algorithm 514 
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based on a social-psychological metaphor involving individuals that interact with each other in a 515 

social world. PSO was inspired by the behavior of schools of fish or flocks of birds as they seek 516 

food or other resources. In PSO, collections of “particles” explore the search space, looking for a 517 

global or near-global optimum. Particles in PSO keep track of their best positions thus far obtained 518 

in the search space and the best positions obtained by their neighboring particles. The global best 519 

position is what all particles tend to follow. A detailed description of the PSO algorithm is given in 520 

Shi and Eberhart (1998). 521 

The most important parameters in the PSO are: c1, c2, and w. c1 and c2 are constant 522 

parameters known as the cognitive and social parameters, respectively, and w is the inertia-weight, 523 

which plays a key role in the optimization process by providing balance between exploration and 524 

exploitation. A large w facilitates a global search while a small one facilitates a local search. The w 525 

parameter is very similar to the “temperature” parameter in the simulated annealing algorithm. 526 

While several strategies have been used in the literature for the inertia weight, in this study, a 527 

constant value of w has been used (Shi and Eberhart, 1998). 528 

In PSO, each particle is influenced by its σ nearest neighbors. The arrangement of neighbors 529 

that influence a particle is called the topology of the swarm. Different types of neighborhoods are 530 

reported in the literature (Akat and Gazi, 2008). In this study, the all topology is used, in which the 531 

neighborhood encompasses the entire swarm. The PSO parameters used in this study for both 532 

scenarios are reported in Table 4 and are as suggested by Pedersen (2010). 533 

A modified version of the PySwarm Python Library was used for the PSO analysis. Similar 534 

to the GSA, a Python script has been written for the optimization process. The script overwrites the 535 

input file of HYDRUS-1D containing the hydraulic parameters for the different layers, runs the 536 

executable module, and retrieves the value of the objective function. A large negative value of NSE 537 

is attributed to non-convergent runs, as defined above. 538 

 539 

RESULTS AND DISCUSSION 540 
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Sensitivity Analysis – Scenario I 541 

As discussed above, the basic outcome of Sobol’s SA are the first-order (S1) and total (ST) 542 

sensitivity indices. Table 5 presents these two indices and their relative bootstrap confidence 543 

intervals (BCI). In the left part of Table 5 (S1), it can be seen that only two parameters exhibit a 544 

significant direct influence on the output’s variance, the pore-size distribution index n1 and the air-545 

entry pressure parameter a1 . The third most influential parameter, the saturated hydraulic 546 

conductivity Ks1, has the effect, which is only half of the second most influential parameter, a1. Ten 547 

parameters have a first-order index lower than 1%, which indicates that their main effect on the 548 

output variance is negligible. Table 5 also shows that the sum of all first-order indices is less than 1, 549 

which means that the model is non-additive. Only 56% of variance is attributable to the first-order 550 

effects, which indicates that interactions between parameters play a fundamental role. 551 

The right part of Table 5 (ST) shows that almost 75% of variance in simulated outflow is 552 

caused by n1, either by the variation of the parameter itself (30%) or by interactions with other 553 

parameters. Together with a1 (51%) and Ks1 (42%), it is the most influential parameter for simulated 554 

flow. It can be noted that the saturated hydraulic conductivity, Ks1, has a relatively low main effect 555 

but a relatively high total effect. That indicates that this parameter has a limited direct effect on the 556 

variance of the objective function, but it has an effect in interactions with other parameters.  557 

The effect of the sub-base layer on the output is less significant, while the wear layer 558 

strongly conditions the output. That behavior is in agreement with results reported in the literature. 559 

Illgen et al. (2007), in his laboratory campaign, confirmed that the wear layer has the major 560 

influence on the infiltration capacity of the permeable pavement, while the base and sub-base layers 561 

have a minor impact and act as a storage tank. The total index is always greater than zero, which 562 

implies that all parameters influence the output variance either directly or by their interactions, and 563 

thus no parameter can be fixed without affecting the uncertainty of the output. 564 

Scatter plots for the plain Monte Carlo runs for the two most sensitive parameters, a1 and n1, 565 

are displayed in Figure 3. The scatter plots show that there is no clear pattern of factors driving bad 566 
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solutions. Particular trends in the solutions were further identified by the regression lines. They 567 

indicate that there is a trend for parameter a1, with admissible solutions in the left part of the plot. 568 

On the other hand, the distribution of values for parameter n1 is flat, and thus no conclusions can be 569 

made about the position of a denser region of behavioral solutions in the high-dimensional space. 570 

 571 

Monte Carlo Filtering – Scenario I 572 

A Monte Carlo Filtering procedure was applied to the runs of the GSA. The threshold value 573 

of NSE = 0.0 produced a filtered sample composed of 1,452 behavioral solutions. Figure 4 shows 574 

the univariate and bivariate KDE plots and the correlation plots for the wear layer. 575 

The maximum Pearson correlation coefficient (in absolute values) was 0.42 between 576 

parameters a1 and n1. It is also evident from Figure 4 that a moderate negative correlation is present 577 

for parameters θs1-a1, and a positive correlation for parameters θs1- n1, while for the other 578 

parameters, the correlation is negligible. The univariate KDEs for parameters θs1, n1, and Ks1 579 

indicate a platykurtic distribution of behavioral solutions characterized by multimodality. Parameter 580 

a1 exhibits a leptokurtic distribution, for which a denser region of good solutions is clearly 581 

identifiable in the range of 0.001-0.1. 582 

This behavior is more clear in the bivariate KDE plots. The bivariate KDE for a1-n1 583 

highlights the presence of a denser region for values of n1 in the range 2.5-4.5, a behavior that was 584 

not evident from the univariate KDE. The comparison between univariate and bivariate plots 585 

reveals that the latter gives a much more comprehensive description of the response surface. This 586 

aspect is exacerbated when the model is governed by interactions between parameters, which is 587 

clearly highlighted by Sobol’s indices. In such a case, the high-dimensional inspection of the 588 

parameter space provides significant information.  589 

The saturated hydraulic conductivity, Ks1, for which the univariate KDE indicates a 590 

multimodal behavior, exhibits a denser region in the range of 10.0-20.0; this region is clearly 591 

identifiable in the bivariate plot of K1- n1. 592 
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 593 

Sensitivity Analysis – Scenario II 594 

Results of the GSA for Scenario II are reported in Table 6. Also for Scenario II, parameters 595 

a1 and n1 exhibit the highest main effects on the output’s variance (about 35%). For Scenario II, the 596 

differences are even more evident than for Scenario I. Parameters n1 and a1 have a first-order index 597 

of 30% and 5%, respectively, while all remaining parameters remain well under 5%. Nine 598 

parameters have a first-order index lower than 1%. The main effects represent 53% of the output 599 

variance, which clearly indicates both that the model output is again (similarly as for Scenario I) 600 

partially driven by interactions between parameters, and that the model is non-additive. 601 

The right part of Table 6 (ST) shows that the output variance is largely influenced by n1, 602 

either directly (30%) or by interactions with other parameters (64%). Similar to Scenario I, 603 

parameters a1 and n1 are the most influential parameters, and the model’s output is mainly driven by 604 

the wear layer. Four of the first eight most influential parameters are related to the wear layer. The 605 

main difference between Scenarios I and II is the influence of the base and sub-base layers on the 606 

model’s output. This is evident from Figure 5, in which the average ST for each layer is reported for 607 

both scenarios. For both scenarios, modeling results are most sensitive to the wear layer, which 608 

strongly influences the output’s variance. However in Scenario II, the influence of the wear layer is 609 

partially reduced and redistributed to other layers. It is evident that the adoption of the dual-porosity 610 

model for the unsaturated hydraulic properties significantly affects the influence of the base and 611 

sub-base layers on the model’s output. The dynamics of sensitivity indices between the two 612 

scenarios suggest that the physical description of unsaturated flow in the sub-base layer is an 613 

important element in numerical simulations. 614 

Similar to scenario I, all parameters influence the model’s output, either by the variation of 615 

the parameters themselves or by their mutual interactions. The condition for FF is never achieved 616 

for all parameters. 617 
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Scatter plots for the plain Monte Carlo runs for the two most sensitive parameters, a1and n1,  618 

are displayed in Figure 6. It can be seen that there is again no clear pattern of factors driving bad 619 

solutions. The regression lines indicate that there is a slight trend, which is higher for parameter a1, 620 

to have admissible solutions in the left part of the plot. The optimum appears flat, however. 621 

 622 

Monte Carlo Filtering – Scenario II 623 

A Monte Carlo Filtering procedure was again applied to the runs of the GSA. The filtered 624 

sample now consisted of 28,107 behavioral solutions. The filtered sample of behavioral solutions 625 

for Scenario II was considerably larger than for Scenario I. This indicates that the implementation 626 

of the dual-porosity model leads to higher values of the objective function.  627 

Figure 7 shows the univariate and bivariate KDE plots as well as the correlation plots for 628 

parameters of the wear layer. It is evident that no clear correlation exists between various 629 

parameters (Fig. 7), except for a negative correlation trend between parameters a1 and n1, but only 630 

with a small magnitude. The maximum correlation coefficient, in absolute values, was -0.531 631 

between parameters a4 and n4.  632 

The univariate KDE for parameters θs1-Ks1 indicates a platykurtic distribution of behavioral 633 

solutions without a clear identification of a denser region across the parameter space. On the other 634 

hand, for parameters a1 and n1, the univariate KDEs indicate a more leptokurtic distributions, 635 

especially for n1, for which a denser region of solutions between1.1-2.8 is identifiable.  636 

The bivariate KDEs give a better description of the location of behavioral regions in the 637 

bidimensional parameter space than the univariate KDEs. The bivariate KDE for the two most 638 

sensitive parameters, a1 and n1, indicate the presence of a denser region in the range of n1=(1.1, 639 

2.8), and a1=(0.01,0.15). The bivariate plots, θs1- a1 and θs1- n1, indicate the presence of a denser 640 

region in the range of θs1=(0.25, 0.40), a region that was not clearly indicated by the univariate plot 641 

for θs1. The saturated hydraulic conductivity, Ks1, exhibits a multimodal behavior characterized by 642 
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several potential regions of interest. A potential behavioral region may be identified in the range of 643 

Ks1=(7.0, 15.0). 644 

 645 

Particle Swarm Optimization 646 

The results and conclusions from the coupled GSA-Monte Carlo filtering analysis were used 647 

to reduce the ranges of parameters for the PSO. The reduction was applied only for parameters that 648 

exhibited well identifiable behavioral regions in multivariate plots. The original ranges were kept 649 

for parameters that displayed  high multimodality, in order to avoid the convergence of PSO to the 650 

local optimum. Table 7 reports the new ranges for all parameters. 651 

Figure 8 compares measured and modeled hydrographs for the two scenarios. The PSO for 652 

Scenarios I and II resulted in NSE values of 0.43 and 0.81, respectively. Both NSE values of the 653 

objective function are higher than zero and thus admissible (Moriasi et al., 2007). However, the 654 

implementation of the dual-porosity model for the base and sub-base layers in Scenario II provides 655 

a more accurate description of the hydraulic behavior of the permeable pavement. In particular, the 656 

dual-porosity model is able to accurately reproduce the fast hydraulic response of the permeable 657 

pavement and the long-tailing behavior of the measured hydrograph. The modeled hydrograph for 658 

Scenario I appears less accurate in reproducing the dynamics of the observed hydrograph, especially 659 

the fast response of the pavements to precipitation. 660 

Optimized parameters for the two scenarios are reported in Table 8. Significant differences 661 

emerge between the two scenarios in terms of estimated values of the saturated water contents, θs1 662 

and a1; differences between estimated values of the saturated hydraulic conductivities, Ks1 and n1, 663 

are less pronounced. For layer 2, while estimated values of saturated water contents are very 664 

similar, huge differences arise between estimated pore-size distribution indices, n2, which for 665 

Scenario I is less than half of its value for Scenario II. Also, Ks2 is considerably lower for Scenario 666 

II than for Scenario I. Estimated vaues of dual-porosity parameters confirm the assumptions made 667 

about the fractured nature of the base and subbase layers. While the saturated water content for the 668 
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mobile domain is very low, the porous matrix possesses a high storage capacity as indicated by the 669 

large value of the immobile saturated water content. In particular, the overall porosity of the base 670 

layer is about 40% and 30% for the subbase layer. The result for the base layer is slightly higher 671 

than the prescriptions of ICPI, which recommends a porosity of 30-35%. The estimated porosity for 672 

the subbase layer is 30%, which is lower than the prescribed porosity of about 40%. This difference 673 

can be related to the simplifications made in the mobile-immobile dual porosity model for the 674 

description of preferential flow and uncertainties related to the effective graduation of the stone 675 

material used. However, the significant increase in the accuracy between the single-porosity model 676 

and the dual-porosity model suggests that the hydraulic behavior of the base and subbase layers is 677 

strongly affected by fast preferential flows in interconnected fractures and the accumulation of 678 

water in the rock matrix. This behavior is in agreement with results reported in the literature. For 679 

example, Illgen et al. (2007) reported that the water contents in the base and sub-base layers only 680 

marginally increased during rainfall events, and that the lower layers act as a storage tank. 681 

Both scenarios exhibit low values of porosity for the base and sub-base layers. For scenario 682 

II, the total porosity is divided between the mobile and immobile domains. Flow is restricted only to 683 

highly conductive and interconnected fractures, which represent a relatively small part of the 684 

domain, while the immobile domain provides the storage capacity. While Scenario II assumes 685 

overlapping and interacting continua, Scenario I assumes a single continuum approach for all 686 

layers. When the optimized value of porosity is very low, such as for the sub-base layer, it is 687 

necessary to interpret the optimized values differently than for typical Richards’ type flow. In such 688 

case, especially for flow in crushed stones, the model tends to approximate a combination of film 689 

flow and fingering that likely occur in this layer. This hydraulic behavior is similar to the one 690 

reported, for example, by Hodnet and Bell (1990) for unsaturated flow in a medium composed 691 

largely of chalk cobbles. In their study, Tokunaga and Wan (1997) analyzed the influence of film 692 

flow on unsaturated flow in fractures. High velocities of film flow measured in their study 693 

suggested that film flow contributed significantly to preferential flow in fractured rocks. Our model, 694 
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based on a macroscopic description of this fast unsaturated flow, shares some similarities with the 695 

active fracture model proposed by Liu et al. (1998). This approach divides the pore space into two 696 

parts, active and inactive. Flow and transport occurs only within the active pore space, with the 697 

inactive part simply bypassed. Liu et al. (1998) further assumed that van Genuchten (1980) relations 698 

are approximately valid for the active pore space. In a separate study, Liu et al. (2003) reports 699 

values of porosity between 0.01 and 0.03 for the pore space used with the active fracture model. 700 

 701 

Confidence Regions 702 

Since parameter estimation involves a variety of possible errors, including measurement 703 

errors, model errors, and numerical errors, an uncertainty analysis of the optimized parameters 704 

constitutes an important part of parameter estimation. In order to evaluate the uncertainty associated 705 

with the estimated parameters, a confidence region around the best solutions optimized with PSO 706 

were calculated using HYDRUS-1D. HYDRUS-1D uses the linear approximation method to 707 

identify the confidence region around estimated parameters β, resulting in ellipsoid contours 708 

centered at β.  709 

Although restrictive and only approximately valid for nonlinear problems, an uncertainty 710 

analysis provides a means to compare confidence intervals between parameters, thereby indicating 711 

which parameters should be independently measured or estimated. Confidence intervals have been 712 

calculated using the Student’s t distribution with a confidence level of 95%. It is evident from Table 713 

9 that confidence intervals are narrower for Scenario II, and that the most uncertain parameters are 714 

the saturated hydraulic conductivities for different layers. 715 

 716 

Model Validation 717 

In order to evaluate the reliability of the estimated parameters, the model has been validated 718 

on another independent set of experimental data. Figure 10Error! Bookmark not defined. shows a 719 
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comparison between measured and modeled hydrographs for the two scenarios during the validation 720 

period. 721 

The value of the objective functions are NSE = 0.43 for Scenario I and NSE = 0.86 for 722 

Scenario II. For Scenario I, the value of the objective function remains the same, which confirms 723 

the reliability of the calibrated model. Although the simulated hydrograph provides an overall 724 

sufficiently accurate description of the hydraulic behavior of the pavement, it is less accurate during 725 

rainfall events, which may be a time period of main interest. For Scenario II, the value of the 726 

objective function actually increased and reached the value NSE = 0.86, which is very high and 727 

reflects the accuracy of the modeled hydrograph. Also the description of the hydraulic behavior of 728 

the pavement during rainfall events is optimal. This capability of the calibrated model is important 729 

when dealing with the analysis of combined traditional drainage systems and LID techniques. A 730 

correct description of the hydrograph during precipitation gives information about the lag time and 731 

the intensity of peak flow, which are fundamental for both a comprehensive hydraulic analysis of 732 

drainage systems, and for the evaluation of benefits of LIDs implementation. The initial part of the 733 

hydrograph appears to be underestimated, which may be related to the influence of the unknown 734 

initial conditions. The model was not able to reproduce outflow induced by the precipitation event 735 

on March 15. This may be related to an overestimation of potential evaporation calculated using a 736 

literature value of albedo, which could result in an overestimation of the storage capacity of the 737 

pavement at the beginning of the precipitation event, which had a total volume of 6 mm. As a result, 738 

the model predicted that the pavement retained all the precipitation volume. A better 739 

characterization of evaporation could help in increasing the accuracy of the model, which is already 740 

high. 741 

Figure 10 directly compares the measured outflows with those calculated by the two 742 

modeling scenarios. The red bisector line represents conditions when modeled and measured 743 

outflows are perfectly matched. Linear regression lines are reported for both scenarios. Since the 744 

Scenario I tends to overestimate the outflow fluxes, the difference between the bisector and the 745 



  

30 
 

linear regression line (gray) for scenario I is substantial. On the other hand, Scenario II tends to only 746 

slightly underestimate the outflow fluxes, and thus the slopes of the bisector and the linear 747 

regression line (black) for Scenario II are similar. The simulated hydrographs for both scenarios 748 

tend to introduce some bias in the estimation of peak flows. This aspect is related to the choice of 749 

the NSE as the objective function for the optimization. The NSE is focused on the general behavior 750 

of the hydrograph rather than on particular components such as peak flows. A multi-objective 751 

optimization that would include an objective function targeted to peak flow estimates could 752 

represent a more appropriate approach if estimates of peak flows were the main goal of calibration. 753 

However, even of great interest, the multi-objective optimization is out of the scope of this paper. 754 

Overall, the validation process demonstrated the reliability of the calibrated models for both 755 

scenarios. 756 

 757 

CONCLUSIONS 758 

 In this paper, we investigated the suitability of the mechanistic model, HYDRUS-1D, to 759 

correctly describe the hydraulic behavior of a permeable pavement installed at the University of 760 

Calabria. We considered two different scenarios in describing the system. In Scenario I, we 761 

assumed that flow on all layers can be described using a single-porosity model, while in Scenario II, 762 

we assumed that a dual-porosity mobile-immobile model is needed to describe flow in the base and 763 

subbase layers. The widely used Nash-Sutcliffe efficiency index was used to assess the models. A 764 

Global Sensitivity Analysis, coupled with a Monte Carlo filtering procedure, was carried out before 765 

the model calibration. Sensitivity analysis results suggested that the model is non-additive and 766 

mainly driven by parameter interactions in both scenarios. The first-order effects only accounted for 767 

56% of output variance for Scenario I and 53% for Scenario II. Sensitivity analysis also revealed 768 

that the wear layer mainly influenced the hydraulic behavior of the pavement. A subsequent Monte 769 

Carlo filtering procedure was applied to the runs performed during the sensitivity analysis in order 770 

to identify the behavioral regions and to reduce parameter uncertainty. Both univariate and bivariate 771 
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Kernel Density Estimation plots were used to inspect the response surfaces and identify the 772 

behavioral regions. This analysis revealed the high multimodality of the response surfaces, which 773 

suggested the use of a global optimization algorithm for parameter estimation. Correlation 774 

coefficients of the filtered sample were also computed, indicating a general low correlation between 775 

parameters. Based on the results of the Monte Carlo filtering, a heuristic global optimization 776 

method based on the Particle Swarm algorithm was used for parameter estimation. The calibrated 777 

model for Scenario I exhibited an optimum NSE = 0.43, while for Scenario II, it reached NSE=0.81. 778 

The optimized parameters were then validated against an independent set of experimental data, 779 

resulting in NSE = 0.43 for Scenario I and NSE = 0.86 for Scenario II. The results of optimization 780 

and validation clearly indicated that the implementation of the dual-porosity model for the base and 781 

subbase layers produced more accurate results than the single-porosity model and described much 782 

better the hydraulic behavior of pervious pavement. Results also confirmed the validity of the 783 

assumption that the hydraulic behavior of the base and subbase layers was similar to the behavior of 784 

a fractured rock, which is characterized by the highly permeable interconnected fractures and the 785 

highly storative rock matrix. The main advantage in using a simple, dual-porosity, mobile-immobile 786 

model with a saturation-based mass transfer is that this model requires only two additional 787 

parameters compared to the single-porosity model. Further significant improvements could be 788 

obtained by characterizing the hydraulic properties of the wear layer in the laboratory, as suggested 789 

by the sensitivity analysis. 790 
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Figure 1. A schematic of the permeable pavement. 1021 

Figure 2. Precipitation and subsurface flow during the optimization (top) and validation 1022 

(bottom) time periods. 1023 

Figure 3. Scatter plots for pair relations a1-NSE (left) and n1-NSE (right) for Scenario I. The 1024 

red line is a regression line. 1025 

Figure 4. Bivariate KDE plots (below diagonal), univariate KDE plots (diagonal), and 1026 

correlation plots (above diagonal) for Scenario I. 1027 

Figure 5. The average total index, ST, for different layers for both scenarios. 1028 

Figure 6. Scatter plots for pair relations a1-NSE (left) and n1-NSE (right) for Scenario II. The 1029 

red line is a regression line. 1030 

Figure 7. Bivariate KDE plots (below diagonal), univariate KDE plots (diagonal), and 1031 

correlation plots (above diagonal) for Scenario II. 1032 

Figure 8. Comparison between the modeled and measured hydrographs for Scenarios I (top) 1033 

and II (bottom) for the optimization process. 1034 

Figure 9. Comparison between the modeled and measured hydrograph for the two scenarios 1035 

for the validation period. 1036 

Figure 10. Comparison between the modeled and measured outflows for the two scenarios 1037 

for the validation period. 1038 
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Soil Layer Scenario I Scenario II 

Wear Single Porosity Single Porosity 
Bedding Single Porosity Single Porosity 

Base Single Porosity Dual Porosity – MIM 
Sub-base Single Porosity Dual Porosity – MIM 

Protection Single Porosity Single Porosity 
Table 1. Conceptual models representing water flow in the permeable pavement. 1040 

 1041 

Scenario Number of parameters Model runs 

I 16 90000 
II 20 110000 

Table 2. Number of parameters and HYDRUS-1D runs for both scenarios. 1042 

 1043 

 Scenario I Scenario II 
Parameter Initial range 
θs1 [-] 0.2-0.5 0.2-0.5 

a1 [1/cm] 0.001-0.3 0.001-0.3 
n1 [-] 1.1-4.5 1.1-4.5 

Ks1 [cm/min] 1.0-20.0 1.0-20.0 
θs2 [-] 0.2-0.5 0.2-0.5 

a2 [1/cm] 0.001-0.3 0.001-0.3 
n2 [-] 1.1-4.5 1.1-4.5 

Ks2 [cm/min] 1.0-20.0 1.0-20.0 
θs3 [-] 0.01-0.40 0.001-0.1 

a3 [1/cm] 0.001-0.3 0.001-0.3 
n3 [-] 1.1-4.5 1.1-4.5 

Ks3 [cm/min] 1.0-100.0 1.0-100.0 
θs,im3 [-] - 0.15-0.4 
ω3 [1/min] - 0.00001-0.009 
θs4 [-] 0.01-0.4 0.001-0.1 

a4 [1/cm] 0.001-0.3 0.001-0.3 
n4 [-] 1.1-4.5 1.1-4.5 

Ks4 [cm/min] 1.0-100.0 1.0-100.0 
θs,im4 [-] - 0.15-0.4 
ω4 [1/min] - 0.00001-0.009 

Table 3. Ranges of parameters used in the GSA for both scenarios. 1044 

 1045 

N c1 c2 w 

69 -0.267 3.395 -0.444 

Table 4. Parameters used in the PSO optimization. 1046 

 1047 

Parameter S1 S1 (BCI)  Parameter ST ST (BCI) 



  

39 
 

n1 [-] 0.298 0.054  n1 [-] 0.745 0.042 
a1 [1/cm] 0.102 0.040  a1 [1/cm] 0.508 0.032 

Ks1 [cm/min] 0.051 0.040  Ks1 [cm/min] 0.421 0.032 

θs3 [-] 0.023 0.024  θs1 [-] 0.247 0.025 
a4 [1/cm] 0.020 0.023  n4 [-] 0.224 0.146 
a2 [1/cm] 0.017 0.022  Ks3 [cm/min] 0.210 0.127 

n3 [-] 0.014 0.029  n3 [-] 0.194 0.035 
Ks4 [cm/min] 0.009 0.025  a3 [1/cm] 0.181 0.024 

n4 [-] 0.009 0.035  a2 [1/cm] 0.176 0.024 
θs1 [-] 0.009 0.028  n2 [-] 0.176 0.028 
n2 [-] 0.007 0.023  a4 [1/cm] 0.170 0.033 

Ks3 [cm/min] 0.004 0.022  θs3 [-] 0.167 0.031 
θs4 [-] 0.001 0.022  θs2 [-] 0.151 0.030 

a3 [1/cm] -0.001 0.024  Ks2 [cm/min] 0.138 0.023 
θs2 [-] -0.004 0.019  Ks4 [cm/min] 0.138 0.038 

Ks2 [cm/min] -0.005 0.016  θs4 [-] 0.136 0.022 
Sum 0.563    > 1.0  

 1048 
Table 5. First-order (S1) and total (ST) effect indices (in decreasing order) with their bootstrap 1049 

confidence intervals (BCI) for parameters of Scenario I. 1050 
 1051 

Parameter S1 S1 (BCI)  Parameter ST ST (BCI) 

n1 [-] 0.302 0.026  n1 [-] 0.640 0.023 

a1 [1/cm] 0.054 0.029  a1 [1/cm] 0.387 0.027 

θs3 [-] 0.030 0.045  n3 [-] 0.383 0.020 

n3 [-] 0.026 0.024  θs3 [-] 0.294 0.027 

Ks3 [cm/min] 0.018 0.022  a3 [1/cm] 0.291 0.022 

a4 [1/cm] 0.018 0.020  θs1 [-] 0.271 0.019 

θs2 [-] 0.017 0.018  a4 [1/cm] 0.269 0.019 

θs4 [-] 0.014 0.022  Ks1 [cm/min] 0.259 0.018 

a3 [1/cm] 0.013 0.025  n4 [-] 0.256 0.013 

Ks2 [cm/min] 0.012 0.026  a2 [1/cm] 0.229 0.017 

Ks4 [cm/min] 0.011 0.031  Ks3 [cm/min] 0.222 0.017 

θs1 [-] 0.007 0.023  n2 [-] 0.217 0.022 

θs,im3 [-] 0.006 0.017  θs4 [-] 0.201 0.017 

a2 [1/cm] 0.005 0.016  Ks2 [cm/min] 0.195 0.023 

Ks1 [cm/min] 0.001 0.022  Ks4 [cm/min] 0.186 0.021 

ω4 [1/min] -0.001 0.027  θs2 [-] 0.185 0.018 

n2 [-] -0.001 0.026  θs,im3 [-] 0.149 0.016 

ω3 [1/min] -0.003 0.021  ω3 [1/min] 0.143 0.016 

θs,im4 [-] -0.004 0.020  θs,im4 [-] 0.138 0.013 

n4 [-] -0.006 0.017  ω4 [1/min] 0.125 0.020 

Sum 0.534    > 1.0  

Table 6. First-order (S1) and total (ST) effect indices (in decreasing order) with their 1052 
bootstrap confidence intervals (BCI) for parameter of Scenario II. 1053 

 1054 
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 Scenario I Scenario II 
Parameter Reduced range 
θs1 [-] 0.2-0.5 0.2-0.4 

a1 [1/cm] 0.001-0.1 0.001-0.15 
n1 [-] 3.0-4.5 1.1-2.8 

Ks1 [cm/min] 10.0-20.0 1.5-20.0 
θs2 [-] 0.25-0.5 0.2-0.4 

a2 [1/cm] 0.2-0.3 0.1-0.2 
n2 [-] 1.1-4.5 1.1-4.5 

Ks2 [cm/min] 1.0-20.0 3.0-20.0 
θs3 [-] 0.20-0.40 0.001-0.05 

a3 [1/cm] 0.001-0.05 0.001-0.05 
n3 [-] 1.1-4.5 1.5-4.5 

Ks3 [cm/min] 1.0-100.0 20.-100.0 
θs,im3 [-] - 0.2-0.4 
ω3 [1/min] - 0.00001-0.009 
θs4 [-] 0.01-0.2 0.001-0.05 

a4 [1/cm] 0.15-0.3 0.15-0.3 
n4 [-] 2.0-4.0 1.5-3.5 

Ks4 [cm/min] 1.0-100.0 1.0-100.0 
θs,im4 [-] - 0.15-0.3 
ω4 [1/min] - 0.00001-0.009 

Table 7. Reduced ranges of optimized parameters for the optimization process. 1055 

 1056 

Scenario I 
Layer θr θs a N Ks L θr,im θs,im ω 

Wear 0.045 0.2 0.002 3.0 10 0.5 - - - 
Bedding 0.03 0.3 0.3 4.47 20 0.5 - - - 

Base 0 0.2 0.023 2.85 68.7 0.5 - - - 
Sub-base 0 0.01 0.27 2.41 96.7 0.5 - - - 

Protection 0.03 0.3 0.3 4.47 20 0.5 - - - 
Scenario II 

Wear 0.045 0.287 0.03 2.67 7.33 0.5 - - - 
Bedding 0.03 0.298 0.113 3.04 3.87 0.5 - - - 

Base 0 0.044 0.021 4.33 93.2 0.5 0 0.35 0.00017 
Sub-base 0 0.001 0.247 2.17 56.3 0.5 0 0.29 0.0013 

Protection 0.03 0.298 0.113 3.04 3.87 0.5 - - - 

Table 8. Optimized soil hydraulic parameters for both scenarios. 1057 

 1058 

 Scenario I  Scenario II 

Parameter Value CI  Value CI 

θs1 [-] 0.2 0.057  0.287 0.007 
a1 [1/cm] 0.002 0.0006  0.029 0.0008 

n1 [-] 3 0.783  2.67 0.058 
Ks1 [cm/min] 10 4.4  7.33 0.272 
θs2 [-] 0.3 0.072  0.29 0.009 
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a2 [1/cm] 0.3 0.062  0.11 0.002 
n2 [-] 4.47 1.08  3.04 0.052 

Ks2 [cm/min] 20 6.5  3.87 0.084 

θs3 [-] 0.2 0.048  0.044 0.001 
a3 [1/cm] 0.023 0.003  0.021 0.0005 

n3 [-] 2.85 0.537  4.33 0.139 
Ks3 [cm/min] 68.73 19.7  93.2 3.172 
θs,im3 [-] - -  0.35 0 
ω3 [1/min] - -  0.00017 0.000003 
θs4 [-] 0.01 0.002  0.001 0.00003 

a4 [1/cm] 0.27 0.018  0.247 0.004 
n4 [-] 2.41 0.121  2.17 0.039 

Ks4 [cm/min] 96.7 9.2  56.3 1.051 
θs,im4 [-] - -  0.288 0 
ω4 [1/min] - -  0.0013 0.00002 

Table 9. Confidence intervals (CI) for optimized parameters for both scenarios. 1059 
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Highlights 1061 

• Among Low Impact Development techniques permeable pavement are those that most lacks 1062 
reliable and accurate modeling tools. 1063 

• A mechanistic model is used for the analysis of the hydraulic behavior of a permeable 1064 
pavement. 1065 

• A Global Sensitivity Analysis is used to identify the main effect and interactions of soil 1066 
hydraulic parameters. 1067 

• The model is calibrated by using the metaheuristic Particle Swarm Optimization algorithm. 1068 
• The calibrated model is validated on an independent set of measurements with optimal 1069 

results. 1070 

 1071 
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