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A B S T R A C T   

The Probable Maximum Precipitation (PMP) estimation for long durations during winter and spring seasons is 
important to develop the Probable Maximum Flood for snowmelt-driven regions since extreme floods are often 
characterized by snow-accumulation and snowmelt processes rather than by a single rainstorm event. Although 
several studies have estimated the PMP for a single storm duration, little attention has been given to the PMP 
estimation for long durations on the order of several months. This study proposes a new framework using a 
numerical weather model (NWM) to estimate the long-duration Maximum Precipitation (MP) during the winter 
season, which is the first part of a two-part effort to develop the PMP during the winter and spring seasons. As a 
demonstrative case, we estimate the MP for the 6-month winter period (October to March) for the drainage areas 
of Bonneville Dam (621,600 km2) and Libby Dam (23,270 km2) in the Columbia River Basin dominated by at
mospheric rivers (ARs). In the proposed framework, the historical AR events are identified based on the inte
grated water vapor transport thresholds used in the AR category scale. The precipitation depths during the 
identified AR events are then maximized by simultaneously optimizing the AR position and its atmospheric 
moisture. Finally, the design precipitation sequence is formed by substituting each historical AR event with the 
corresponding maximized AR event, acting as the basis of long-duration MP. As a result, the maximum 6-month 
winter period accumulated basin-average precipitation depths: long-duration MP, for the drainage areas of 
Bonneville Dam and Libby Dam, are estimated to be 961.0 mm and 1101.7 mm, respectively. To the authors’ 
knowledge, this is the first study estimating the MP for long durations on the order of several months and for very 
large basins (above 100,000 km2) by using the NWM-based approach.   

1. Introduction 

The Probable Maximum Precipitation (PMP) concept has been 
widely used as a design basis to estimate the Probable Maximum Flood 
(PMF) (WMO, 2009). The PMP is defined as the theoretical maximum 
precipitation for a given duration under possible meteorological con
ditions (WMO, 2009). Since the PMP is a key parameter for estimating 
PMF, the accurate estimation of the PMP is of considerable importance 
for the design and risk assessment of the potential failure of hydraulic 
structures. Traditional approaches to estimate the PMP can be classified 

mainly into two categories: The statistical approach and the storm 
maximization approach. 

The statistical approach is usually referred to as Hershfield’s method 
(Hershfield, 1961, 1965), which is based on the general frequency 
equation proposed by Chow (1951). Since Hershfield’s method requires 
only observed annual maximum daily precipitation data, it has been 
applied in many regions of the world (Casas et al., 2008; Desa M et al., 
2001; Rakhecha et al., 1992; Rezacova et al., 2005; Sarkar and Maity, 
2020a, 2020b; Sherif et al., 2014; Tajbakhsh and Al-Ansari, 2019). 
Several problematic issues associated with Hershfield’s method, 
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however, have been reported. For instance, Koutsoyiannis (1999) 
argued Hershfield’s method might not provide the physical upper limit 
of precipitation but rather rainfall with a given significant return period. 
Nobilis et al. (1991) argued that Hershfield’s method is inadequate for 
observed precipitation series with outliers. Furthermore, Hershfield’s 
method may not produce realistic spatial variations of PMP since it 
yields only point values of PMP where the observed precipitation data 
are available and thus requires area-reduction curves to adjust the point 
values to areas of various size (WMO, 2009). 

In the storm maximization approach, the PMP is determined by the 
transposition and moisture maximization of historical severe rainstorms 
(Hansen et al., 1994). This approach maximizes the historical storms by 
multiplying them by the ratio of PWmax/PW, where PW is actual pre
cipitable water in the atmosphere, and PWmax is maximum precipitable 
water estimated by maximum daily dew point temperature of the cor
responding month (WMO, 2009). Hence, the storm maximization 
approach lies in the assumption that precipitation depth and PW are 
linearly related. The storm maximization approach has been a widely 
recognized technique for the PMP estimation, especially in North 
America (Beauchamp et al., 2013; Hansen et al., 1994; Rouhani and 
Leconte, 2016; Rousseau et al., 2014). The limitations of the storm 
maximization approach, however, have been discussed in several 
studies as it is insufficiently grounded in physics. Several studies 
showed, using numerical weather models, that the linear relationship 
between PW and precipitation depth might not necessarily hold in re
ality (Abbs, 1999; Rastogi et al., 2017; Zhao et al., 1997). Chen and 
Bradley (2006) found that the pseudo-adiabatic profile assumption, 
which is used to calculate actual PW based on the surface dew point 
temperature or sea surface temperature, could overestimate PW. 
Moreover, PMP estimation under the hypothesis of stationarity is not 
valid under changing precipitation patterns led by climate change (Ben 
Alaya et al., 2020; Chen et al., 2017; Cheng and Aghakouchak, 2014; 
Gao et al., 2016; Ishida et al., 2018a, 2018b; Kunkel et al., 2013). 

Furthermore, the two traditional methods mentioned above have 
limitations regarding the spatial extent of the PMP estimation. The 
statistical approach is mainly applicable for watersheds with a drainage 
area less than 1000 km2 (390 sq mi) (WMO, 1986; 2009). The storm 
maximization approach, referred to as the storm separation method in 
HMRs, is traditionally limited to areas of 25,900 km2 (10,000 sq mi) and 
durations of 72 h, or less for generalized PMP estimates (Hansen et al., 
1982, 1994). However, the total drainage area of a dam located at the 
most downstream of many upstream dam systems, such as the drainage 
area of Bonneville Dam in the Columbia River Basin (CRB), can be much 
larger than 25,900 km2 (10,000 sq mi). The traditional approaches 
cannot be applied directly to the PMP estimation for such large drainage 
areas. Moreover, even though the meteorological/hydrological condi
tions of multiple dams are mutually dependent, these traditional ap
proaches need to estimate the PMP for each dam independently due to 
the areal limitation. USACE (2019) estimated the 72-hr PMP for many 
dams in the CRB using the traditional storm maximization approach. In 
their study, the PMP for each dam’s drainage area was estimated 
considering that each dam is meteorologically and hydrologically in
dependent (USACE, 2019). 

A numerical weather model (NWM)-based PMP estimation approach 
has been developed to overcome the aforementioned limitations. The 
NWM-based approach estimates the PMP by numerically solving the 
nonlinear governing equations of the regional atmospheric processes. 
Hence, the NWM-based approach does not depend on the traditional 
assumptions, such as the linear relationship between precipitation depth 
and PW, and does not have a limitation on the spatial extent of the PMP 
estimation as long as the computational resources allow. Recently, 
Ohara et al. (2011) proposed a NWM-based PMP estimation approach 
which modifies the initial and boundary conditions (ICs, BCs) at the 
outer nesting domain of the NWM for maximizing precipitation. The 
approach of Ohara et al. (2011) consists of a combination of the relative 
humidity maximization (RHM) and the geospatial atmospheric BC 

shifting, following the general concepts of the traditional storm maxi
mization approach. Hereafter, the geospatial atmospheric BC shifting 
will be referred to as “shifting”. In the RHM method, the atmospheric 
moisture in the modeling domain is maximized by setting the relative 
humidity (RH) to 100% at ICs and BCs of the NWMs. The shifting 
method spatially shifts the atmospheric BCs of the NWMs so that target 
storms can be transposed to the specified watersheds. In Ishida et al. 
(2015a,b), the severe historical storms over three watersheds in 
Northern California were maximized using the shifting and RHM 
methods to obtain the PMP for a 72-h duration. Rastogi et al. (2017) 
estimated the PMP for 6 to 72 h storm durations using the RHM method 
under changing climate over the southeastern United States. Toride 
et al. (2019) developed a PMP estimation framework using the relative 
humidity perturbation (RHP) method, which proportionally increases 
RH at ICs and BCs of the modeling domain instead of setting RH at 100%, 
in order to maintain the original structure of RH (Yang and Smith, 
2018). Toride et al. (2019) applied the RHP method only at the model 
boundaries where vertically integrated water vapor transport (IVT) 
values are higher than 250 kg m− 1 s− 1 (RHP-IVT method) to prevent 
unrealistic boundary conditions produced by applying the RHP method 
broadly across the boundary condition – to storm-free areas of the 
boundaries. The RHP-IVT method is detailed in Section 3 of this paper. 

Although the NWM-based approach does not have a theoretical 
limitation on the spatial extent of the PMP estimation, few studies have 
focused on the PMP estimation for extremely large drainage areas 
(above 100,000 km2; WMO, 2009) using the NWM-based approach. It is 
of great interest to apply the NWM-based approach to estimating the 
PMP for large drainage areas since it could be essential to evaluate the 
safety of hydraulic structures whose drainage areas are very large, such 
as that of Bonneville Dam. 

Moreover, even though the NWM-based approach has been suc
cessfully applied to estimate the PMP with a single storm duration 
(mostly hourly to daily scale durations), little attention has been given to 
the PMP estimation for long durations, such as seasonal scale durations 
on the order of several months. The PMP estimation for long durations is 
crucial especially for snowmelt-driven regions, such as the CRB (U.S. 
Weather Bureau, 1945). In snowmelt-driven regions, extreme floods are 
often driven by both snow accumulation and snowmelt processes rather 
than by a single rainstorm event. It has been reported that extreme 
floods in the CRB are strongly dominated by winter snow accumulation 
and spring melt (Hamlet and Lettenmaier, 1999; Lee et al., 2009). These 
snow accumulation and snowmelt processes usually last on the order of 
several months, such as from the winter to early spring season. There
fore, the long-duration sequence of extreme precipitation or other at
mospheric variables, such as temperature, is necessary for conducting 
the hydrologic precipitation-runoff analysis to estimate PMF in 
snowmelt-driven regions. This extreme precipitation sequence is also 
needed for long-duration water resource planning and management. The 
approaches mentioned above cannot be applied directly to the long- 
duration PMP estimation. This is because extreme precipitation for 
long durations, especially for large basins, is often composed of a 
sequence of successive short duration storm events from different syn
optic systems, rather than from a single storm event (Liu et al., 2018; 
WMO, 2009). As a way of estimating the PMP for long durations, WMO 
(2009) suggests the “similar process substitution method”. In this 
method, the storm processes with small rainfalls are temporally 
substituted with one or more storm processes with similar weather 
systems and large rainfalls to form a new sequence of ideal extraordinary 
storms. This method, however, requires sufficient hydrometeorological 
data, as well as theories and experience in mid- to long-term evolution of 
the regional weather systems to judge whether it is possible to reason
ably link different storms together (WMO, 2009). Hence, the similar 
process substitution method is only applicable to a limited number of 
watersheds where sufficient observation data are available, and highly 
depends on the subjective judgment of hydrometeorologists. 

Based on the above discussion, a new framework to estimate the PMP 
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for large basins and long durations during the winter and spring season, 
is required for the extreme flood risk assessment in snowmelt-driven 
regions. This study proposes a new framework to estimate the long- 
duration maximum precipitation (MP) during the winter season for 
large basins dominated by atmospheric rivers (ARs) using the NWM- 
based approach. We call this effort a “MP” which is defined as a part 
of PMP, due to the fact that, in such a long duration flooding regime, the 
ultimate PMP estimation requires the sequence of extreme precipitation 
during both the winter and spring season. This study, which is the first 
part of a two-part effort to develop the PMP estimation during the winter 
and spring season, focuses on the winter season MP estimation which 
addresses the AR-induced extreme precipitation and snowpack accu
mulation during the winter season. The second part of the ongoing 
effort, not discussed in this paper, will address the MP estimation during 
the spring season focusing on the spring rain on snow events and 
snowmelt process that often yields extreme floods in snow-dominated 
regions. As a demonstrative case, we estimate the MP for the 6-month 
winter period (October-March) for the drainage areas of Bonneville 
Dam and Libby Dam in the CRB. The estimated winter season MP in this 
paper can be used later to develop the PMP during the winter and spring 
(April-June) seasons. We estimate the MP for the 6-month winter period 
by maximizing all identified AR events belonging to the specified period 
in a target water year by optimizing the AR position and its atmospheric 
moisture. In this paper, the term ‘‘optimization’’ is used to describe the 
combination of the AR position and its atmospheric moisture that 
maximizes the precipitation depth during the target historical AR event, 
as defined in Toride et al. (2019). Additionally, in this paper, “maxi
mizing AR event” means maximizing the cumulative basin-average 
precipitation depth over the target basin during the target AR event 
period. Section 2 of this paper reviews the study area, numerical 
weather model, and data. Section 3 describes the framework for the 
long-duration MP estimation. Section 4 provides the simulation results. 
Section 5 summarizes and discusses these results. 

2. Material and methods 

2.1. Study area 

The CRB is located in the Pacific Northwest, extending over seven U. 
S. states and southern British Columbia, Canada, which consists of 13 
main tributary drainage areas (Fig. 1). The Columbia River (CR) is the 
largest river in the Pacific Northwest and fourth-largest river in North 
America, traveling over 2000 km (1,240 miles) and draining roughly 
673,400 km2 (260,000 sq mi) (Cohen et al., 2000; U.S. Department of 
the Interior, Bureau of Reclamation, 2016). 

In the CRB, there are more than 250 reservoirs and around 150 hy
droelectric projects providing 60–70% of the electrical needs in the 
Pacific Northwest region in the U.S., with 31 major federal dams 
including Bonneville Dam and Libby Dam (U.S. Department of the 
Interior, Bureau of Reclamation, 2016). The total drainage area above 
Bonneville Dam is about 621,600 km2 (240,000 sq mi), and includes 11 
watersheds: Upper Columbia, Kootenai, Pend Oreille, Middle Columbia, 
Spokane, Yakima, Lower Snake, Deschutes, Mainstem, Upper Snake, and 
Middle Snake watershed, shown in Fig. 1 (USACE, 2019). The total 
drainage area of Libby Dam is 23,270 km2 (8,985 sq mi), shown as the 
gray shaded area in Fig. 1 (USACE, 2019). In this study, we focus on the 
drainage areas of Bonneville Dam and Libby Dam in the CRB to estimate 
the long-duration MP. 

The CRB experienced significant floods in 1876, 1894, 1948, and 
1996 (Stanford et al., 2005). The flood of June 1894 recorded the 
greatest flow discharge, reaching 33.6 ft (10 m) water level at Portland 
(Flores and Griffith, 2002; Willingham, 2014), while the flood stage for 
the CR, as measured near the Port of Vancouver, was 16.0 ft (4.9 m) 
(National Weather Service, 2019). The flood of June 1894 is regarded as 
one of the world’s largest floods (O’Connor and Costa, 2004), which was 
caused by heavy snowpack accumulated during the winter of 
1893–1894, followed by a dry, warm spring, resulting in massive 

Fig. 1. Location map of the Columbia River Basin (CRB) and the drainage areas of Bonneville Dam and Libby Dam. Bonneville Dam’s drainage area includes 11 
watersheds: Upper Columbia, Kootenai, Pend Oreille, Middle Columbia, Spokane, Yakima, Lower Snake, Deschutes, Mainstem, Upper Snake, and Middle 
Snake watershed. 
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snowmelt (Nelson, 1949). The second-largest flow discharge in the CRB 
was recorded for the flood of May-June 1948, reaching 31.0 ft (9.4 m) 
water level at Portland (McGregor, 2003). Extreme rainfall on the snow 
which was accumulated in the winter and early spring and sharply 
increased the temperature in May and June produced this hazardous 
flood with the estimated damage of more than 100 million dollars (Rantz 
and Riggs, 1949). 

Along the Pacific Northwest region where the CRB is located, ARs 
play a critical role in transporting massive amounts of water vapor from 
the eastern Pacific Ocean, contributing to the majority of wintertime 
extreme precipitation (Knippertz and Wernli, 2010; Neiman et al., 2008; 
Warner et al., 2012). ARs are defined as long and narrow corridors of 
strong IVT (Ralph et al., 2004; Zhu and Newell, 1998). Recent studies 
showed that the central CRB is largely affected by the AR-generated 
precipitation and floods (Barth et al., 2017; Rutz et al., 2014). Ralph 
and Dettinger (2012) showed that ARs fed more than 90% of the 
heaviest 3-day rain events in the U.S. West Coast. Neiman et al. (2011) 
reported that about 95% of the annual peak daily flow occurred with 
landfalling ARs in Western Washington. In this paper, IVT is calculated 
by the following equation (Chen, 1985; Newell et al., 1992; Neiman 
et al., 2008): 

IVT =
1
g

∫ 300

1000
qUdp (1)  

where g is the gravitational acceleration (m s− 2), q is the specific hu
midity (kg kg− 1), U is the horizontal wind speed (m s− 1), and p is the 
pressure (hPa). ARs are generally identified using the threshold of IVT >
250 kg m− 1 s− 1 over the Pacific Northwest region (Rutz et al., 2015, 
2014). 

2.2. Model and data 

The Advanced Research version of Weather Research and Fore
casting Model (WRF), version 3.9.1, was used for conducting numerical 
experiments to estimate the long-duration MP in this study. WRF is a 
fully compressible and non-hydrostatic model using a terrain-following 
hydrostatic-pressure vertical coordinate and an Arakawa C-grid stag
gering spatial discretization for atmospheric variables (Skamarock et al., 
2008). The model configuration consists of two nested domains with 
horizontal grid resolutions of 36 km and 12 km. Fig. 2 shows the 
geographic coverage of the domains. Two-way nesting was employed, so 
that information from the inner domain was carried back to the outer 
domain. Both model domains have 40 sigma levels from the surface to 
50 hPa. The outer domain covers the west coast of North America from 
Southern California to middle British Columbia while the inner domain 
covers the whole CRB. 

For the initial conditions and boundary conditions in the WRF model, 
this study used the National Centers for Environmental Prediction’s 
(NCEP) Climate Forecast System Reanalysis (CFSR; Saha et al., 2010) 
and the National Oceanic and Atmospheric Administration (NOAA) 
Twentieth Century Reanalysis version 2c (20CRv2c; Compo et al., 
2011). This study also used the CFSR and 20CRv2c for calculating IVT 
used in the AR event identification process (detailed in Section 3.2). The 
CFSR is a global reanalysis product generated by a coupled ocean
–atmosphere general circulation model by assimilating various obser
vations (Saha et al., 2010). The CFSR is available from 1979 to present at 
6-hour intervals with 0.5◦ horizontal resolution and 40 vertical levels. 
20CRv2c is a global reanalysis product generated by assimilating only 
surface pressures and using monthly sea surface temperature and sea ice 
distributions as boundary conditions within an Ensemble Kalman Filter 
(Compo et al., 2011). The 20CRv2c is available from 1850 to 2014 at 6- 
hour intervals with 2.0◦ spatial resolution and 24 vertical levels. In this 

Fig. 2. Domain configuration for the WRF simulations. Domains 1 and 2 employ horizontal grid spacings of 36 km and 12 km, respectively.  
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study, the reanalysis product was selected depending on the target water 
year: CFSR for the 2017 water year and 20CRv2c for the 1974 water 
year. Selection of the target water years is detailed in Section 3.1. 

The physical parameterization schemes used in the model domains 
include the Rapid radiative transfer model for general (RRTMG) short 
radiation scheme (Iacono et al., 2008), the RRTMG longwave radiation 
scheme (Iacono et al., 2008), the Stony-Brook University microphysics 
scheme (Lin and Colle, 2011), the Mellor-Yamada-Janjic planetary 
boundary layer scheme (Janjić, 1994), the Zhang-McFarlane cumulus 
convection scheme (Zhang and McFarlane, 1995), and the Noah land 
surface model (Ek et al., 2003). This parameterization configuration was 
selected following the CONUS physics suite which is available in the 
WRF version 3.9, except for the microphysics and cumulus convection 
schemes. This study investigated the performance and sensitivity of the 
parameterization schemes for simulating the basin-average precipita
tion and temperature in the CRB, resulting in the selection of the 
different microphysics and cumulus convection schemes from the 
CONUS physics suite. To evaluate the selected parameterization 
configuration, the simulated CRB basin average precipitation was 
compared to the gridded Parameter-Elevation Regressions on Indepen
dent Slopes Model (PRISM; Daly et al., 2008) dataset. The PRISM dataset 
provides the interpolated ground observed precipitation and tempera
ture data over the U.S. with 4-km spatial resolution. The PRISM dataset 
has a daily product from 1979 to present and a monthly product from 
1895 to present. Thus, the WRF simulation results were compared to the 
PRISM daily product for the 2017 water year and to the PRISM monthly 
product for the 1974 water year. Fig. S1 shows the comparison of the 
daily CRB-average precipitation depth from October 01, 2016 to March 
31, 2017. From Fig. S1, the daily CRB-average precipitation simulated 
with the selected parameterization schemes shows good agreement with 
the PRISM dataset (R2 = 0.87). Fig. S2 shows the comparison of the 
monthly CRB-average precipitation depth from October 01, 1973 to 
March 31, 1974. In Fig. S2, although the WRF simulation tends to 
overestimate the monthly CRB-average precipitation depth, it captures 
the temporal variation in the precipitation depth quite well (R2 = 0.94). 

3. Proposed framework for the long-duration MP estimation 
during a winter season 

In this study, a new framework is proposed to estimate the long- 
duration MP during the winter season in AR dominant regions as 
follows: 

Step 1: Select target water years based on the historical precipitation 
depth and average temperature over a specified basin; 
Step 2: Identify historical AR events over a specified basin during the 
winter season in the target water years based on the AR category 
scale developed by Ralph et al. (2019); 
Step 3: Maximize the cumulative precipitation depths over the target 
drainage areas within a specified basin during the identified AR 
events by simultaneously optimizing the AR position and atmo
spheric moisture; 
Step 4: Substitute each historical AR event with the corresponding 
maximized AR event to form the sequence of maximized precipita
tion events (design precipitation sequence) during the winter season; 
Step 5: Develop the long-duration MP estimation during the winter 
season over the target drainage areas by accumulating the design 
precipitation sequence formed in the above step 4. 

The procedure at each step is detailed below. 

3.1. Selection of target water years 

In step 1, target water years for the MP estimation for the 6-month 
winter period (October-March) are selected based on their historical 
precipitation depth during the winter season over the CRB. This 

procedure is based upon the hypothesis that water years with heavy 
precipitation during the winter season have high potential to produce 
the long-duration MP. Table. 1 which was created using the PRISM 
dataset, shows the top 15 water years with respect to the accumulated 
CRB-average precipitation depths during the winter season for the 
period of 1928–2020 water years. Besides the precipitation depths, 
Table. 1 shows the ranking of the time-averaged CRB-average temper
ature during the spring season for the period of 1928–2020 water years. 
In this study, the 1974 and 2017 water years were selected to demon
strate the MP estimation for the 6-month winter season over the CRB. 
The 1974 water year was selected since it shows the greatest CRB- 
average precipitation depth during the winter season for the period of 
1928–2020 water years (Table. 1). The 2017 water year was selected 
because it also shows significant CRB-average precipitation depth dur
ing the winter season (4th largest) with the highest spring season tem
perature among the 15 water years shown in Table. 1. It should be noted 
that water years with heavy precipitation during the winter season and 
high temperature during the spring season, could be the basis of a PMP 
scenario during the winter and spring season in the CRB where extreme 
floods are typically caused by the spring snowmelt process (Lee et al, 
2009). Therefore, the 2017 water year was selected considering the high 
spring season temperature although the MP estimation during the spring 
season is not covered in this study. 

3.2. Identification of historical Atmospheric River events 

In step 2, the historical AR events during the winter season in the 
selected water years were identified based on the IVT thresholds used in 
the recently developed AR category scale (Ralph et al., 2019). This 
category scale classifies AR events into five categories: Primarily bene
ficial (category 1), Mostly beneficial but also hazardous (category 2), 
Balance of beneficial and hazardous (category 3), Mostly hazardous but 
also beneficial (category 4), and Primarily hazardous (category 5), using 
the maximum IVT magnitude and the duration of the AR event at a given 
point (Ralph et al., 2019). The “AR event” is defined in Ralph et al. 
(2019) by the period during which IVT at a given point location 
continuously satisfies the threshold: IVT ≥ 250 kg m− 1 s− 1. In this study, 
the AR event period is defined by the duration that maximum IVT over 
the CRB continuously satisfies the same threshold: IVT ≥ 250 kg m− 1 

s− 1. The maximum IVT magnitude over the CRB is also considered to 

Table 1 
Top 15 winter season accumulated basin-average precipitation depths and 
spring season average basin-average temperature in the corresponding water 
years over the Columbia River Basin for the 1928–2020 water years. The winter 
season is from October to March; the spring season is from April to June. This 
table was created based on the PRISM dataset.  

Ranking 
(precipitation) 

Water 
year 

Cumulative 
CRB-average 
precipitation 

depth during the 
winter season 

[mm] 

Ranking 
(temperature) 

Average CRB- 
average 
temperature 
during the 
spring season 
[℃] 

1 1974  733.6 53  11.8 
2 1997  688.7 68  11.4 
3 1956  665.1 29  12.4 
4 2017  657.3 21  12.7 
5 1996  621.6 58  11.6 
6 1972  615.0 60  11.5 
7 1971  607.3 74  11.3 
8 1982  605.3 84  10.8 
9 1951  603.0 50  11.9 
10 1999  592.9 90  10.5 
11 1943  585.1 67  11.4 
12 1938  581.9 27  12.4 
13 1950  580.7 82  10.9 
14 1976  573.9 73  11.3 
15 1965  573.6 65  11.5  
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identify the AR events belonging to the categories 2–5, which could be 
hazardous. The following are the IVT thresholds that were applied to 
identify the AR events belonging to the categories 2–5 in Ralph et al. 
(2019).  

• AR event duration < 24 h & Maximum IVT over the CRB ≥ 750 kg 
m− 1 s− 1  

• AR event duration ≥ 24 h and < 48 h & Maximum IVT over the CRB 
≥ 500 kg m− 1 s− 1  

• AR event duration ≥ 48 h & Maximum IVT over the CRB ≥ 250 kg 
m− 1 s− 1 

The IVT over the region including North America and the Pacific 
Ocean was calculated using the reanalysis datasets: CFSR for the 2017 
water year and 20CRv2c for the 1974 water year. The identified AR 
events during the winter season in the 2017 and 1974 water years are 
listed in Table 2 and Table 3, respectively. Twenty-four AR events were 
identified during the winter season in the 2017 water year and 16 AR 

events were identified during the winter season in the 1974 water year. 
The IVT contours over the CRB during the AR event 12-b in the 1974 
water year: 1200 UTC Jan 12, 1974–1200 UTC Jan 17, 1974 are shown 
in Fig. 3. The AR event 12-b showed the greatest maximum IVT over the 
CRB among all the identified events (1042.5 kg m− 1 s− 1). From the 
figure, one can see how the AR event enters and passes through the CRB 
with time. 

3.3. Maximization of the identified Atmospheric River events 

In step 3, the cumulative basin-average precipitation depths during 
the identified AR events are maximized by simultaneously optimizing 
the AR position and atmospheric moisture. The shifting and RHP-IVT 
operations were simultaneously conducted for the optimization. The 
RHP-IVT method proportionally increases the RH at the modeling 
boundary where IVT value exceeds 250 kg m− 1 s− 1, as follows: 

RH =

{
min(βRH0, 97), if RH0 < 97%

RH0, if RH0 ≥ 97% (2)  

where RH0 is the original relative humidity (%) and β is a multiplication 
factor to determine the increment of RH. In Eq. (2), the threshold is set to 
97% in order to avoid immediate saturation at the modeling domain 
(Zhao et al., 1997). Hereafter, the RHP-IVT method with β = 1.1 is 
referred to as RHP110-IVT, RHP120-IVT with β = 1.2, and so on (Toride 
et al. 2019). The procedure for maximizing the identified AR events 
using the combination of the shifting and RHP-IVT operations is detailed 
as follows: 

Step 3-1: Apply the latitudinal shifting up to 5◦ in north and south 
directions at 0.5◦ intervals with RHP110-IVT (Shift + RHP110-IVT) to 
the AR events. In this study, the atmospheric boundary conditions were 
shifted with respect to latitude only. The shifting with respect to 

Table 2 
The identified atmospheric river events over the Columbia River Basin during 
the winter season in the 2017 water year. This table was created based on the 
CFSR reanalysis dataset.  

AR event 
number 

Start End Duration 
[hr] 

Maximum IVT over the 
CRB [kg m− 1 s− 1] 

1-a 2016-10- 
07 00:00 

2016-10- 
11 18:00 

114  722.0 

2-a 2016-10- 
13 00:00 

2016-10- 
18 00:00 

120  906.3 

3-a 2016-10- 
20 00:00 

2016-10- 
22 06:00 

54  673.0 

4-a 2016-10- 
24 00:00 

2016-11- 
01 06:00 

198  791.2 

5-a 2016-11- 
02 00:00 

2016-11- 
03 12:00 

36  578.1 

6-a 2016-11- 
05 00:00 

2016-11- 
06 18:00 

42  700.0 

7-a 2016-11- 
07 00:00 

2016-11- 
09 18:00 

66  468.7 

8-a 2016-11- 
11 00:00 

2016-11- 
13 06:00 

54  649.2 

9-a 2016-11- 
13 12:00 

2016-11- 
16 12:00 

72  699.6 

10-a 2016-11- 
24 06:00 

2016-11- 
27 00:00 

66  538.6 

11-a 2016-12- 
08 18:00 

2016-12- 
11 00:00 

54  451.8 

12-a 2016-12- 
14 12:00 

2016-12- 
16 18:00 

54  527.4 

13-a 2016-12- 
19 06:00 

2016-12- 
21 00:00 

42  661.2 

14-a 2017-01- 
07 18:00 

2017-01- 
09 18:00 

48  565.4 

15-a 2017-01- 
10 12:00 

2017-01- 
11 12:00 

24  545.5 

16-a 2017-01- 
17 00:00 

2017-01- 
19 12:00 

60  804.4 

17-a 2017-02- 
03 12:00 

2017-02- 
08 12:00 

120  633.4 

18-a 2017-02- 
08 18:00 

2017-02- 
11 00:00 

54  813.7 

19-a 2017-02- 
15 00:00 

2017-02- 
17 06:00 

54  788.0 

20-a 2017-02- 
20 12:00 

2017-02- 
22 00:00 

36  528.6 

21-a 2017-03- 
07 12:00 

2017-03- 
11 00:00 

84  601.9 

22-a 2017-03- 
11 18:00 

2017-03- 
16 18:00 

120  751.8 

23-a 2017-03- 
17 12:00 

2017-03- 
20 06:00 

66  769.2 

24-a 2017-03- 
28 12:00 

2017-03- 
31 00:00 

60  629.9  

Table 3 
The identified atmospheric river events over the Columbia River Basin during 
the winter season in the 1974 water year. This table was created based on the 
20CRv2c reanalysis dataset.  

AR event 
number 

Start End Duration 
[hr] 

Maximum IVT over the 
CRB [kg m− 1 s− 1] 

1-b 1973-10- 
06 12:00 

1973-10- 
08 00:00 

36  502.6 

2-b 1973-10- 
12 06:00 

1973-10- 
14 12:00 

54  554.1 

3-b 1973-10- 
17 18:00 

1973-10- 
22 00:00 

102  462.0 

4-b 1973-10- 
27 06:00 

1973-10- 
29 00:00 

42  508.1 

5-b 1973-10- 
30 00:00 

1973-11- 
01 12:00 

60  517.5 

6-b 1973-11- 
05 12:00 

1973-11- 
13 00:00 

180  644.7 

7-b 1973-11- 
14 18:00 

1973-11- 
17 00:00 

54  437.0 

8-b 1973-11- 
27 06:00 

1973-11- 
29 18:00 

60  510.4 

9-b 1973-12- 
06 06:00 

1973-12- 
08 00:00 

42  513.3 

10-b 1973-12- 
15 06:00 

1973-12- 
17 18:00 

60  607.6 

11-b 1973-12- 
20 00:00 

1973-12- 
21 18:00 

42  583.4 

12-b 1974-01- 
12 12:00 

1974-01- 
17 12:00 

120  1042.5 

13-b 1974-01- 
18 12:00 

1974-01- 
19 12:00 

24  663.3 

14-b 1974-02- 
18 06:00 

1974-02- 
19 12:00 

30  516.9 

15-b 1974-02- 
28 00:00 

1974-03- 
02 12:00 

60  465.2 

16-b 1974-03- 
14 18:00 

1974-03- 
17 00:00 

54  330.2  
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longitude could render unrealistic atmospheric conditions over the CRB 
due to the land-sea contrast in the surface layer since the CRB is located 
along the Pacific Northwest coast. The latitudinal range of the shifting is 
limited to 5◦ in north and south directions so that the Coriolis parameter 
component of the absolute vorticity of the system would not change by 
more than 10 percent (Hansen et al. 1994). In this study, the RHP110- 
IVT was first applied in order to investigate the sensitivity of the 
basin-average precipitation increase to the increase in atmospheric 
moisture at each shifting amount. 

Step 3-2: Apply the latitudinal shifting with RHP-IVT with β ranging 
from 1.2 to 1.5 at 0.1 intervals (RHP120-IVT, RHP130-IVT, RHP140- 
IVT, and RHP150-IVT) to the AR events. In this step, the shifting amount 
was determined according to the sensitivity of the basin-average pre
cipitation increase to RH increase, investigated in step 3-1. The in
crements of β were limited up to 1.5 since a large increase in 
atmospheric moisture may change storm evolution and structural 
properties (Ohara et al., 2017; Yang and Smith, 2018). It was also shown 
that excessive RH increase does not necessarily lead to a rise in pre
cipitation depths (Ohara et al., 2017; Yang and Smith, 2018). In Toride 
et al. (2019), the 72-h PMP in the Willamette watershed was obtained by 
the combination of shifting and RHP130-IVT although they investigated 
the RHP-IVT with β up to 1.7 (RHP170-IVT). 

Step 3-3: Apply the latitudinal shifting at 0.1◦ intervals with the 
optimal RHP-IVT found in step 3-2 to the AR events. The latitudinal 
shifting amount was set up to 0.5◦ north and south of the north-south 
location at which the AR event cumulative basin-average precipitation 
depth became greatest in step 3-2. In other words, this procedure aims to 
find an actual maximum basin-average precipitation depth by a local 
search with finer intervals around the optimal north-south location with 
the optimal RHP-IVT found in step 3-2. 

In this study, first, step 3-1 was conducted for all identified AR events 
over the CRB during the winter season in each target water year. Then, 
step 3-2 and step 3-3 were performed for the drainage areas of Bonne
ville Dam and Libby Dam, respectively. It is noted that each AR event 
simulation was initialized using the WRF restart files of the control 
simulation so that each AR event could be maximized based on the 
historical conditions. 

3.4. Development of long-duration MP estimation during the winter 
season 

In step 4, each historical AR event was substituted with the corre
sponding maximized AR event in order to form a sequence of maximized 
precipitation depths during the winter season. In this paper, the result
ing sequence of maximized precipitation depths during the winter sea
son is called “design precipitation sequence”. This AR event substitution 
is based on the concept of the similar process substitution method in 
which historical storms with small rainfalls are substituted with one or 
more historical storms with large rainfalls (WMO, 2009). The design 
precipitation sequence was formed for the drainage areas of Bonneville 
Dam and Libby Dam, respectively. In step 5, the 6-month winter season 
accumulated basin average precipitation depths were computed using 
the design precipitation sequence over the drainage areas of Bonneville 
Dam and Libby Dam, respectively. Finally, the maximum 6-month 
winter season accumulated precipitation depths were obtained as the 
long-duration MP during the winter season for Bonneville Dam and 
Libby Dam. 

4. Results 

4.1. Maximization of the historical Atmospheric River events 

We first examine how each AR event is maximized through simul
taneously optimizing the AR position and its atmospheric water vapor 
since the long-duration MP is obtained as a result of maximization of 
each AR event. Figs. 4 and 5 show the cumulative basin-average pre
cipitation depths during each AR event, obtained by the control simu
lation, Shift + RHP110-IVT experiment, and the simulation with the 
optimal combination of the AR position and RH. The optimal combi
nations of the AR position and RH are shown with the AR event names in 
the figures (e.g., 5.0◦ S (N) + RHP150-IVT represents the combination of 
5.0◦ south (north) shifting and RHP150-IVT). The figures also show the 
increasing rates in the basin-average precipitation depths from the 
control simulation’s results to the results of the simulations with the 
optimal combinations. 

As shown in the figures, the AR events with relatively high potential 
to increase the basin-average precipitation depths can be identified. It is 
found that the optimal combination for each AR event depends on the 

Fig. 3. Integrated water vapor transport (IVT; kg m− 1 s− 1) contours during the atmospheric river event 12-b in the 1974 water year: 1200 UTC Jan 12, 1974–1200 
UTC Jan 17, 1974. The visualized fields are based on the 20CRv2c dataset. 
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geographical characteristics of the target basin. As can be seen from 
Figs. 4 and 5, 15 AR events (62.5%) in the 2017 water year, and 10 AR 
events (62.5%) in the 1974 water year are maximized by south shifting 
for Bonneville Dam’s drainage area. Meanwhile, 14 events (58.3%) in 
the 2017 water year and 11 events (68.8%) in the 1974 water year are 
maximized by north shifting for Libby Dam’s drainage area. Moreover, 
23 AR events (95.8%) in the 2017 water year and 14 AR events (87.5%) 
in the 1974 water year are maximized by RHP150-IVT for Bonneville 
Dam’s drainage area; yet 10 AR events (41.7%) in the 2017 water year 
and 7 AR events (31.3%) in the 1974 water year are maximized without 
increasing RH or by RHP110-IVT for Libby Dam’s drainage area. The 
relationship between the optimal combination and target basin can be 

more clearly found when focusing on specific events. For instance, the 
event 22-a in the 2017 water year is maximized by 3.9◦ south shifting 
and RHP150-IVT for Bonneville Dam’s drainage area, but by 1.9◦ north 
shifting and RHP150-IVT for Libby Dam’s drainage area (Fig. 4). Fig. 5 
shows that the AR event 12-b in the 1974 water year is maximized by 
5.0◦ south shifting and RHP150-IVT for Bonneville Dam’s drainage area, 
yet by 4.9◦ south shifting and RHP100-IVT for Libby Dam’s drainage 
area. To clarify how the optimal combination for each AR event is 
determined based on the geographical characteristics of the target basin 
or the event’s properties, we investigate the atmospheric fields of the 
maximized AR events by comparing them with the control simulation’s 
results. 

Fig. 4. The cumulative basin-average precipitation depths over the drainage areas of Bonneville Dam (a) and Libby Dam (b) during each atmospheric river (AR) 
event in the 2017 water year, obtained by the control simulation (CTL), Shift + RHP110-IVT experiment (Shift + RHP110-IVT), and the simulation with the optimal 
combination of the AR position and atmospheric moisture for each event (Optimal combination). The optimal combinations of the AR position and atmospheric 
moisture are shown with the AR event names. It shows the increasing rates in the cumulative basin-average precipitation depths during the AR events from the 
control simulation’s results to the results of the simulations with the optimal combinations. 
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Fig. 6 shows the time-averaged IVT fields and spatial distributions of 
the accumulated precipitation depths obtained by the control simulation 
(Fig. 6a and d) and the simulation with the optimal combination for the 
drainage areas of Bonneville Dam (Fig. 6b and e) and Libby Dam (Fig. 6c 
and f) during the AR event 22-a in the 2017 water year. As can be seen 
from Fig. 6a, this AR event initially hits the region around Oregon to 
Washington state and extends to the central CRB in the control simu
lation. Fig. 6d shows that the region with high precipitation depths, such 
as the western CRB, corresponds to the strong IVT area. In the case of the 
optimization for Bonneville Dam’s drainage area: 3.9◦ south shifting and 
RHP150-IVT (Fig. 6b and e), the region with strong IVT is transposed to 
further south and becomes wider compared to the control simulation’s 
result. The region where IVT ≥ 250 kg m− 1 s− 1 extends to the southern 
CRB as the AR system is transposed to the south. Fig. 6e shows that the 
optimization for Bonneville Dam’s drainage area increases the precipi
tation depths, especially in the southern part of the domain. Meanwhile, 
this AR event is maximized by 1.9◦ north shifting and RHP150-IVT for 
Libby Dam’s drainage area (Fig. 6c and f). In this case, the intense IVT 

region is located slightly more north than the control simulation’s result, 
corresponding to the modest shifting amount (Fig. 6c). Fig. 6c shows 
that the optimization increases IVT intensity overall without changing 
the pattern of the IVT field much. The region where IVT ≥ 250 kg m− 1 

s− 1 covers more northern and eastern parts of the CRB where Libby 
Dam’s drainage area is located. Accordingly, it increases the precipita
tion depths mainly in the northern part of the CRB, leading to greater 
precipitation depths over Libby Dam’s drainage area (Fig. 6f). Fig. 6 
visualizes how the shifting amount and direction are determined to 
maximize the contribution of the AR event to the basin-average pre
cipitation over the target basin in the proposed method. Since the major 
part of Bonneville Dam’s drainage area belongs to the southern CRB 
while Libby Dam’s drainage area is located at the north-east of the CRB, 
the shifting amount and direction are determined based on each event’s 
characteristics. 

Similarly, Fig. 7 shows the time-averaged IVT fields and the spatial 
distributions of the accumulated precipitation depths during the AR 
event 12-b in the 1974 water year. As can be seen from Fig. 7a, this AR 

Fig. 5. The cumulative basin-average precipitation depths over the drainage areas of Bonneville Dam (a) and Libby Dam (b) during each atmospheric river (AR) 
event in the 1974 water year, obtained by the control simulation (CTL), Shift + RHP110-IVT experiment (Shift + RHP110-IVT), and the simulation with the optimal 
combination of the AR position and atmospheric moisture for each event (Optimal combination). The optimal combinations of the AR position and atmospheric 
moisture are shown with the AR event names. It shows the increasing rates in the cumulative basin-average precipitation depths during the AR events from the 
control simulation’s results to the results of the simulations with the optimal combinations. 
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event hits the wide region ranging from Northern California to Wash
ington state and covers a large portion of the CRB in the control simu
lation. The maximum IVT magnitude over the CRB during this event 
period is 1042.5 kg m− 1 s− 1 (Table. 3). In Fig. 7d, the high precipitation 
depths are distributed mainly in the coastal area and the eastern CRB. As 
the AR event is optimized by 5.0◦ south shifting and RHP150-IVT for 
Bonneville Dam’s drainage area (Fig. 7b), the strong IVT region is 
transposed to the south, and the magnitude of IVT is intensified overall. 
In this case, almost the entire southern to central CRB is covered by the 
region with IVT ≥ 250 kg m− 1 s− 1. Fig. 7e shows the significant increase 
in the precipitation depths within the modeling domain, especially at the 
eastern CRB as well as at the southern coastal area. The AR event opti
mized for Libby Dam’s drainage area by 4.9◦ south shifting and RHP100- 
IVT, also shows a similar geospatial position transposed to the south 
(Fig. 7c). The IVT intensity overall becomes lower than the IVT intensity 
of the optimized case for Bonneville Dam’s drainage area since atmo
spheric moisture is not increased. Accordingly, it shows lower precipi
tation depths, specifically in the south-west of the domain, compared to 
the optimized case for Bonneville Dam’s drainage area (Fig. 7e and f). 
Interestingly, however, the precipitation depths over Libby Dam’s 
drainage area become slightly greater, especially at the central part of 
Libby Dam’s drainage area, than the optimized case for Bonneville 
Dam’s drainage area (Fig. 7f). This phenomenon will be discussed in 
detail in Section 5.1. 

Fig. 8 shows the changes in the cumulative basin-average precipi
tation depths through shifting and perturbing RH during the event 22-a 
(Fig. 8a and b) and event 12-b (Fig. 8c and d). Fig. 8a shows that the 
basin-average precipitation depth over Bonneville Dam’s drainage area 
increases as the atmospheric BC is shifted toward the south, and peaks 

when it is shifted 3.9◦ south. The basin-average precipitation depth over 
Bonneville Dam’s drainage area also monotonically increases with at
mospheric moisture (Fig. 8a). Similarly, the basin-average precipitation 
depth over Libby Dam’s drainage area peaks when the atmospheric BC is 
shifted 1.9◦ north (Fig. 8b). Importantly, Fig. 8b shows that the AR event 
maximization by modifying the AR position and RH is a non-linear 
process. Although the basin-average precipitation depth shows a 
monotonic increasing trend with RH when the atmospheric BC is shifted 
around 1.5◦-2.5◦ north, it gradually diverges from this trend as the at
mospheric BC is shifted toward the south of the optimal shifting location 
(Fig. 8b). This nonlinearity emphasizes the importance of the simulta
neous optimization of the AR position and atmospheric moisture. Also, 
in the case of the AR event 12-b, although the basin-average precipita
tion over Libby Dam’s drainage area increases with RH when the at
mospheric BC is shifted 1.5◦-2.0◦ south, the increment of the 
precipitation depth gradually decreases and turns to a decreasing trend 
as the atmospheric BC is shifted farther south. This non-linear change in 
the basin-average precipitation depth with shifting and RH perturba
tion, shown in Fig. 8d, will be discussed in Section 5.1. 

We also analyzed the change in PW versus the change in precipita
tion depths due to the precipitation maximization. Fig. S3 and S4 show 
the relationships between the change in PW and the change in precipi
tation depths based on the maximization of the identified AR events in 
the 1974 and 2017 water years (Table. 2 and Table. 3) for Bonneville 
Dam’s drainage area and Libby Dam’s drainage area, respectively. As we 
can see from Fig. S3 and S4, the relationship assumed in the traditional 
storm maximization approach, which is the change in PW is consistent 
with the change in precipitation depth, is not present in our simulations. 
Although investigating this relationship further is beyond the scope of 

Fig. 6. The spatial distribution of the time-averaged Integrated water vapor transport (IVT; kg m− 1 s− 1) (a-c) and accumulated precipitation depths (d-f) during the 
atmospheric river event 22-a in the 2017 water year (1800 UTC 11 Mar to 1800 UTC 16 Mar 2017): (a), (d) the control (CTL); (b), (e) the maximum case obtained by 
the simulation with the optimal combination for Bonneville Dam’s drainage area (3.9◦ south latitudinal shifting + RHP150-IVT); (c), (f) the maximum case obtained 
by the simulation with the optimal combination for Libby Dam’s drainage area (1.9◦ north latitudinal shifting + RHP150-IVT). “Bonneville” and “Libby” represent 
the drainage areas of Bonneville Dam and Libby Dam, respectively. 
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this paper, this finding could support the validity of the NWM-based 
approach which maximizes precipitation by accounting for non-linear 
atmospheric processes. 

4.2. Development of the MP estimation for the 6-month winter period 

The design basin-average precipitation sequence was formed by 
substituting each historical AR event with its corresponding maximized 
AR event. Fig. 9 shows the design basin-average precipitation sequence 
over Bonneville Dam’s drainage area for the 6-month winter period. 
Similarly, Fig. 10 shows the design basin-average precipitation sequence 
over Libby Dam’s drainage area. As can be seen from these figures, the 
maximized AR events result in significant changes in the basin-average 
precipitation depths during the corresponding AR event period. These 
figures show that the maximization process increases the precipitation 
peaks further, such as the strong peaks in the middle of January in the 
1974 water year. When comparing the results for Bonneville Dam’s 
drainage area (Fig. 9) with those for Libby Dam’s drainage area 
(Fig. 10), the magnitude of the basin-average precipitation change by 
the optimization is generally higher in the Libby case than the Bonne
ville case. The change in basin-average precipitation should be greater in 
a smaller basin than the change in a larger basin for a given amount of 
precipitation change in a basin due to the smoothing effect of the spatial 
averaging which increases with basin size. Since Libby Dam’s drainage 
area is much smaller than that of Bonneville Dam (Fig. 1), the basin- 
average precipitation over Libby Dam’s drainage area is considered to 
be more sensitive to the to the optimization-induced precipitation 
change in a basin. 

Fig. 11 shows the cumulative curve of the design basin-average 

precipitation together with the control simulation’s results. The 6- 
month winter period accumulated basin-average precipitation depth 
over Bonneville Dam’s drainage area increases 172.7 mm (23.3%) in the 
2017 water year and 95.1 mm (11.0%) in the 1974 water year from the 
control simulation’s results. Over Libby Dam’s drainage area, it in
creases 304.9 mm (38.3%) in the 2017 water year and 223.0 mm 
(25.5%) in the 1974 water year from the control simulation’s results. 
The amount of increase in the accumulated precipitation depth becomes 
larger over Libby Dam’s drainage area than Bonneville Dam’s drainage 
area since the magnitude of the precipitation change is found to be 
larger over Libby Dam’s drainage area, as discussed above (Figs. 9 and 
10). From Fig. 11, the maximum cumulative basin-average precipitation 
depth, namely long-duration MP, for the 6-month winter season is 
estimated to be 961.0 mm over Bonneville Dam’s drainage area and 
1101.7 mm over Libby Dam’s drainage area. 

The sensitivity of the increase in the cumulative basin-average pre
cipitation depth to the AR transposition and RH perturbation was also 
investigated. Fig. 12 shows the 6-month winter period accumulated 
precipitation depths when the AR events are transposed to the optimal 
location for each atmospheric moisture condition. In Fig. 12, “Design” 
represents the 6-month winter period accumulation of the design pre
cipitation sequence. As can be seen from Fig. 12, the latitudinal shifting 
accounts for the significant part of the increase in the basin-average 
precipitation depth: 63.6% of the total increase in the 2017 water year 
and 63.2% in the 1974 water year over Bonneville Dam’s drainage area; 
80.5% in the 2017 water year and 82.4% in the 1974 water year over 
Libby Dam’s drainage area. Since ARs are narrow and long bands of 
strong IVT (Ralph et al., 2004; Zhu and Newell, 1998), the latitudinal 
transposition of ARs to the optimal locations significantly contributes to 

Fig. 7. The spatial distribution of the time-averaged Integrated water vapor transport (IVT; kg m− 1 s− 1) (a–c) and accumulated precipitation depths (d-f) during the 
atmospheric river event 12-b in the 1974 water year (1200 UTC 12 Jan to 1200 UTC 17 Jan 1974): (a), (d) the control (CTL); (b), (e) the maximum case obtained by 
the simulation with the optimal combination for Bonneville Dam’s drainage area (5.0◦ south latitudinal shifting + RHP150-IVT); (c), (f) the maximum case obtained 
by the simulation with the optimal combination for Libby Dam’s drainage area (4.9◦ south latitudinal shifting + RHP100-IVT). “Bonneville” and “Libby” represent 
the drainage areas of Bonneville Dam and Libby Dam, respectively. 
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the increases in the basin-average precipitation depths. The atmospheric 
moisture increase plays a relatively larger role in increasing precipita
tion depth over Bonneville Dam’s drainage area than Libby Dam’s 
drainage area. The relationship between atmospheric moisture and 
precipitation depth, taking into account the differences in geographical 
characteristics of the target basins, will be discussed in detail in Section 
5.1. 

Fig. 13 shows the spatial distribution of the 6-month winter period 
accumulated precipitation depths over the modeling domain. In Fig. 13, 
“Design precipitation” shows the spatial distribution of the 6-month 

winter period accumulation of the design precipitation sequence. 
Fig. 13e and c show the spatial distribution of the MP scenario for the 
drainage areas of Bonneville Dam and Libby Dam, respectively. Fig. 13 
shows that the proposed approach can produce the extreme precipita
tion scenario not only over target drainage areas but over the whole 
modeling domain, based on the mutual dependency of meteorological/ 
hydrological conditions of the dam systems over the domain. The 
maximization of each historical AR event increases the cumulative 
precipitation depths without significantly changing the precipitation 
distribution pattern over the CRB. The optimization for Bonneville 

Fig. 8. The maximization process of the cumulative basin-average precipitation depths through latitudinal shifting and RH perturbations along atmospheric rivers 
(AR) over (a) Bonneville Dam’s drainage area during the AR event 22-a in the 2017 water year; (b) Libby Dam’s drainage area during the AR event 22-a in the 2017 
water year; (c) Bonneville Dam’s drainage area during the AR event 12-b in the 1974 water year; and (d) Libby Dam’s drainage area during the AR event 12-b in the 
1974 water year. 
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Dam’s drainage area intensifies the cumulative precipitation depths, 
especially at the southern central CRB, where it reaches greater than 
2000 mm (Fig. 13b and e). The optimization for Libby Dam’s drainage 
area specifically increases the precipitation depths at the northern CRB 
(Fig. 13c and f). As a result of optimizing each AR position and RH based 

on the target basins’ terrain characteristics, the cumulative precipitation 
depth also shows various spatial distributions depending on the target 
basin. 

Fig. 9. The design basin-average precipitation sequence (Design) with the basin-average precipitation sequence obtained by the control simulation (CTL) over 
Bonneville Dam’s drainage area during the winter season in the (a) 2017 water year and (c) 1974 water year, and the difference between Design and CTL in the (b) 
2017 water year and (d) 1974 water year. 

Fig. 10. The design basin-average precipitation sequence (Design) with the basin-average precipitation sequence obtained by the control simulation (CTL) over 
Libby Dam’s drainage area during the winter season in the (a) 2017 water year and (c) 1974 water year, and the difference between Design and CTL during the winter 
season in the (b) 2017 water year and (d) 1974 water year. 
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5. Discussion and conclusion 

5.1. Identification and maximization of the historical Atmospheric River 
events 

This study identified the hazardous AR events by applying the AR 
category scale (Ralph et al., 2019) to the entire CRB.. All the identified 
AR events were then maximized by optimizing the AR position and at
mospheric moisture as in Toride et al. (2019). As can be seen from Fig. 8, 
the maximization of each AR event shows that the basin-average pre
cipitation depth does not necessarily increase with atmospheric mois
ture, which is consistent with the findings of other recent studies (Ohara 
et al., 2017; Yang and Smith, 2018). Fig. S3 and S4 show that the change 

in PW and the change in precipitation depths due to the precipitation 
maximization are not necessarily consistent, which agrees with the 
finding of Rastogi et al. (2017). Furthermore, the AR events with higher 
precipitation depths in the control simulation do not always provide 
greater increases in precipitation by optimization (Figs. 4 and 5), which 
is also in agreement with the recent studies by Ishida et al. (2015a,b), 
Toride et al. (2019). 

Our analyses on the AR event maximization show that the precipi
tation maximization process is grounded in the non-linear relationships 
among AR position and direction, atmospheric moisture content, and 
the target basin’s geographical characteristics. For instance, Fig. 7 shows 
that the cumulative basin-average precipitation depth during the AR 
event 12-b over Libby Dam’s drainage area is maximized by 4.9◦ south 

Fig. 11. The cumulative curve of the design basin-average precipitation sequence (Design) with the one of the control simulation (CTL) over (a) Bonneville Dam’s 
drainage area during the winter season in the 2017 water year; (b) Bonneville Dam’s drainage area during the winter season in the 1974 water year; (c) Libby Dam’s 
drainage area during the winter season in the 2017 water year; and (d) Libby Dam’s drainage area during the winter season in the 1974 water year. 

Fig. 12. The 6-month winter period accumulated basin-average precipitation depths over the drainage areas of Bonneville Dam and Libby Dam in the 1974 and 2017 
water years. The results obtained by the control simulation (CTL), latitudinal shifting alone (Shift), Shift + RHP110-IVT experiment (Shift + RHP110-IVT), and 
accumulation of the design precipitation sequence (Design) are shown. 
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shifting and RHP100-IVT (Fig. 7f). Nevertheless, its corresponding IVT 
intensity (Fig. 7c) overall is lower than the IVT intensity obtained by 
5.0◦ south shifting and RHP150-IVT (Fig. 7b). We could interpret this 
result as follows: When the atmospheric moisture is significantly 
increased at the boundary where IVT ≥ 250 kg m− 1 s− 1 by the RHP150- 
IVT method, as in the AR maximization for Bonneville Dam’s drainage 
area (Fig. 7b and e), the atmosphere can saturate more quickly after 
injecting the moisture into the domain. This relatively immediate 
saturation causes heavy precipitation near the boundary where RH is 
increased. Fig. 7e shows that heavy precipitation occurs around the 
south-west boundary during the AR event 12-b that enters the modeling 
domain from the south-west. Meanwhile, this AR event losing some 
amount of water vapor due to heavy precipitation near the boundary, 
cannot cause substantial precipitation to the basin far from the boundary 
unless it attains additional moisture. This immediate saturation process 
could impact the precipitation depths over Libby Dam’s drainage area 
less since that is located at the north-east of the modeling domain, which 
is the opposite direction of the boundary where RH was increased. 

Meanwhile, the moisture depletion process due to the terrain of the 
Cascade Range could be a more important factor for determining the 
contribution of ARs to the precipitation depth over the upper inland 
basins, such as Libby Dam’s drainage area. ARs impacting the upper 
basins must have a trajectory that favors the IVT penetrating inland 
through mountain range gaps, or the AR IVT being sufficiently strong 
and deep (Rutz et al., 2015). Therefore, not only the distance between 
the boundary and target basin but also the AR trajectories or Cascade 
Range’s elevation should be investigated in order to explain the mech
anism of the AR-induced precipitation maximization process. 

Investigation of this matter further is beyond the scope of this paper. 
Fig. 8d also shows that the precipitation maximization process is 
grounded in the aforementioned non-linear relationships between the 
nature of the AR and terrain characteristics since the relationship be
tween the precipitation depth and RH gradually becomes reversed when 
the AR is transposed farther south. Similarly, Yang and Smith (2018) 
reported that extreme rainfall does not show a monotonic increase with 
atmospheric moisture but also depends upon the pre-storm conditions 
and complex terrain. Although investigation of the relationship between 
the landfalling AR nature and terrain characteristics of the target basin is 
outside the scope of this paper, these findings highlight the importance 
of the NWM-based approach, which can account for the orographic 
uplifting effect, moisture convergence, and nonlinearity of the atmo
sphere, as several studies have asserted (Abbs, 1999; Chen et al., 2017; 
Ohara et al., 2011). 

5.2. Development of the MP estimation for the 6-month winter period 

We substituted each historical AR event with its corresponding 
maximized AR event to form the design precipitation sequence during 
the winter season, which acts as the basis of the long-duration MP. This 
sequencing process is based on the concept of the similar process sub
stitution method (WMO, 2009). While the similar process substitution 
method temporally substitutes some historical storms with different 
historical storms to form a new precipitation sequence, the proposed 
method forms a precipitation sequence by maximizing historical AR 
events in a target water year without combining different storms. In fact, 
Fig. 11 shows that the cumulative design precipitation depths increase 

Fig. 13. The spatial distribution of the 6-month winter period accumulated precipitation depths, obtained by (a) the control simulation (CTL) in the 2017 water year; 
(b) the accumulation of the design precipitation for Bonneville Dam’s drainage area in the 2017 water year; (c) the accumulation of the design precipitation for Libby 
Dam’s drainage area in the 2017 water year; (d) the control simulation (CTL) in the 1974 water year; (e) the accumulation of the design precipitation for Bonneville 
Dam’s drainage area in the 1974 water year; and (f) the accumulation of the design precipitation for Libby Dam’s drainage area in the 1974 water year. 
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with time while maintaining an increasing trend over the control sim
ulation’s results. This indicates that the proposed method can maximize 
long-duration cumulative precipitation depths based on the maximiza
tion of “historical” AR events over the target basin, rather than creating 
and introducing “new” AR events to the basin. Besides, as shown in 
Figs. 11 and 12, a water year with higher precipitation depth in the 
control simulation does not always provide greater increase in a 6- 
month accumulated precipitation depth by the maximization process. 
Although the 1974 water year shows 77.5 mm larger 6-month winter 
period basin-average precipitation depth over Libby Dam’s drainage 
area than the 2017 water year in the control simulation, the 2017 water 
year reaches greater precipitation depth as a result of the maximization. 
This finding is in agreement with the studies by Ishida et al. (2015a,b), 
Toride et al. (2019) clarifying that the maximization of the storm event 
with the largest historical precipitation depth does not necessarily yield 
the MP for a specified duration. It is also in the agreement with Toride 
et al. (2019) that the latitudinal shifting accounts for the significant part 
of the increase in the basin-average precipitation depth as shown in 
Fig. 12. 

To the authors’ knowledge, this is the first study that estimates the 
MP for long durations on the order of several months. It should be noted 
that we define the long-duration MP as a maximum cumulative pre
cipitation depth during a certain time period including several intervals 
between AR events. Thus, it cannot be simply compared with the MP 
value estimated in previous studies which focused on a continuous 
single-storm period (Ishida et al., 2015a, 2015b), in the same context. It 
is of considerable importance, however, to estimate extreme precipita
tion series for such a long period in order to assess the role of large 
hydraulic structures in controlling extreme floods over a target basin, 
especially in snowmelt-driven regions. 

This study estimated the long-duration MP for the very large 
drainage area of Bonneville Dam which is located at the most down
stream of many upstream dam systems in the basin, without treating 
those dam systems independently, as shown in Fig. 13. In fact, the 
proposed approach can maximize precipitation depths for different 
drainage areas within the same large basin by maximizing the same 
historical AR events, namely, without independently identifying AR 
events for each drainage area. This is because the proposed approach 
identifies AR events using the thresholds of IVT over the large basin in 
which target drainage areas are located. This is one of the most signif
icant advantages of the proposed method from an engineering 
perspective. 

5.3. Limitations and future directions 

There are some limitations to this study. First, this study estimates 
the MP for the 6-month winter period based on only two water years 
(1974 and 2017) since the primary purpose of this study was to propose 
a framework to estimate the MP for long durations. However, a more 
rigorous estimate of the long-duration MP for the target basin could be 
founded on the consideration of more historical water years. Second, the 
AR event identification method using the IVT thresholds still has room 
for improvement. For instance, it might be possible to distinguish 
different AR systems more rigorously by analyzing the trajectory path
ways of the ARs in the identification process. Understanding the tra
jectory pathways of ARs might lead to a more efficient determination of 
the atmospheric BC shifting amount as well. However, the simplicity 
with which the AR events could be identified using only thresholds of 
IVT over the CRB is one of the strengths of the proposed method. Hence, 
there is room for consideration as to how much detail is necessary to 
distinguish the AR events for estimating the long-duration MP. Third, 
the proposed approach only modified the AR position and atmospheric 
moisture to maximize precipitation depths during AR events over the 
CRB, assuming that these modifications can yield extreme precipitation 
as in the previous studies. However, it might be worth considering the 
effect of other variables, such as temperature, on the increase in 

precipitation. There have been some studies revealing the strong rela
tionship between extreme precipitation and other atmospheric vari
ables. Ishida et al. (2018a), Ishida et al. (2018b) found a monotonous 
increase in the maximum 72-h basin-average precipitation with air 
temperature over the American River watershed in California. Ohara 
et al. (2017) examined the optimal wind direction for the extreme storm 
events to maximize the precipitation over the Feather and American 
River watersheds. Ben Alaya et al. (2020) found that, using the bivariate 
extreme value model of PW and precipitation efficiency, the PMP on the 
North American continental scale increases at a rate of approximately 
4% per 1 ◦C warming. Therefore, it is crucial to investigate the sensi
tivity of other variables to the increase in precipitation depth and 
determine which variables to focus on. The modification of atmospheric 
variables should be sufficiently evaluated not to render the atmospheric 
system unrealistic. 

Future work should expand the proposed framework to other regions 
where other atmospheric phenomena are dominant in causing severe 
precipitation. For instance, to expand the proposed framework to the 
regions where tropical cyclones or hurricanes are dominant, it would be 
necessary to modify the event identification method and RH perturba
tion method. Other recent studies (Mure-Ravaud et al., 2019b, 2019a) 
which investigated the extreme precipitation induced by tropical cy
clones or hurricanes using the NWM-approach, could be a good basis for 
expanding the proposed framework. Moreover, it would be of great in
terest to estimate the long-duration MP under changing climate. Since 
the proposed framework identifies AR events based on IVT values 
calculated by the historical reanalysis datasets, the long-duration MP 
estimation under future climate scenarios can be developed using the 
downscaled global circulation model future climate projections (Ishida 
et al., 2018a, 2018b; Rastogi et al., 2017). It also should be noted that 
the primary purpose of this effort, the MP estimation during the winter 
season is toward development of a PMP scenario during the winter and 
spring season which will be used to calculate a PMF for the target 
drainage areas (WMO, 2009). The MP estimation during the spring 
season will be addressed in the second part of an ongoing two-part effort 
to develop the PMP estimation during the winter and spring seasons. 
Hence, PMF estimation based on the proposed framework is one sig
nificant remaining issue. The proposed NWM-based approach produces 
not only the precipitation sequence but also other meteorological vari
ables’ sequences such as temperature, solar radiation, or wind vector, 
maintaining the physical relationships with precipitation fields. Thus, a 
rigorous PMF estimation during the winter and spring seasons could be 
developed by the hydrological analysis using the meteorological vari
ables obtained by the proposed approach as input data. Gangrade et al. 
(2018) successfully estimated the PMF over the Alabama-Coosa- 
Tallapoosa River Basin by conducting hydrological simulation under 
the 72-hr PMP scenario which was estimated using the RHM method 
although their analysis did not include snowmelt. Further studies 
regarding the methodologies for the long-duration MP estimation, such 
as on methods for improving the event identification or sequencing 
method, may also be desirable. 
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Janjić, Z.I., 1994. The Step-mountain eta coordinate model: further developments of the 
convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 
122, 927–945. https://doi.org/10.1175/1520-0493(1994)122b0927:TSMECMN2.0. 
CO;2. 

Knippertz, P., Wernli, H., 2010. A lagrangian climatology of tropical moisture exports to 
the northern hemispheric extratropics. J. Clim. 23, 987–1003. https://doi.org/ 
10.1175/2009JCLI3333.1. 

Koutsoyiannis, D., 1999. A probabilistic view of Hershfield’s method for estimating 
probable maximum precipitation. Water Resour. Res. 35 (4), 1313–1322. https:// 
doi.org/10.1029/1999WR900002. 

Kunkel, K.E., Karl, T.R., Easterling, D.R., Redmond, K., Young, J., Yin, X., Hennon, P., 
2013. Probable maximum precipitation and climate change. Geophys. Res. Lett. 40 
(7), 1402–1408. https://doi.org/10.1002/grl.50334. 

Lee, S.-Y., Hamlet, A.F., Fitzgerald, C.J., Burges, S.J., Lettenmaier, D.P., 2009. Optimized 
flood control in the Columbia River Basin for a global warming scenario. J. Water 
Resour. Plann. Manage. 135, 440–450. https://doi.org/10.1061/(ASCE)0733-9496 
(2009)135:6(440). 

Lin, Y., Colle, B.A., 2011. A new bulk microphysical scheme that includes riming 
intensity and temperature-dependent ice characteristics. Mon. Weather Rev. 139, 
1013–1035. https://doi.org/10.1175/2010MWR3293.1. 

Liu, T., Liang, Z., Chen, Y., Lei, X., Li, B., 2018. Long-duration PMP and PMF estimation 
with SWAT model for the sparsely gauged Upper Nujiang River Basin. Nat. Hazards 
90 (2), 735–755. https://doi.org/10.1007/s11069-017-3068-z. 

Martin Ralph, F., Rutz, J.J., Cordeira, J.M., Dettinger, M., Anderson, M., Reynolds, D., 
Schick, L.J., Smallcomb, C., 2019. A scale to characterize the strength and impacts of 
atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 269–289. https://doi.org/ 
10.1175/BAMS-D-18-0023.1. 

McGregor, M.N., 2003. The Vanport Flood [WWW Document]. Oregon Hist. Proj. URL 
https://oregonhistoryproject.org/articles/essays/the-vanport-flood/. 

Mure-Ravaud, M., Dib, A., Kavvas, M.L., Yegorova, E., Kanney, J., 2019a. Physically 
based storm transposition of four Atlantic tropical cyclones. Sci. Total Environ. 666, 
252–273. https://doi.org/10.1016/j.scitotenv.2019.02.141. 

Mure-Ravaud, M., Kavvas, M.L., Dib, A., 2019b. Impact of increased atmospheric 
moisture on the precipitation depth caused by Hurricane Ivan (2004) over a target 
area. Sci. Total Environ. 672, 916–926. https://doi.org/10.1016/j. 
scitotenv.2019.03.471. 

National Weather Service, 2019. COLUMBIA RIVER AT VANCOUVER, Advanced 
Hydrologic Prediction Service. https://water.weather.gov/ahps2/hydrograph.php? 
gage=vapw1&wfo=pqr (accessed 17 October 2020). 

Neiman, P.J., Ralph, F.M., Wick, G.A., Lundquist, J.D., Dettinger, M.D., 2008. 
Meteorological characteristics and overland precipitation impacts of atmospheric 

Y. Hiraga et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.jhydrol.2021.126224
https://doi.org/10.1016/j.jhydrol.2021.126224
https://doi.org/10.1029/1998WR900013
https://doi.org/10.1002/2016WR019064
https://doi.org/10.1002/2016WR019064
https://doi.org/10.1002/wrcr.20336
https://doi.org/10.1007/s10584-019-02591-7
https://doi.org/10.1196/annals.1446.003
https://doi.org/10.1175/15200493(1985)113<1801:GWVFAM>2.0.CO;2
https://doi.org/10.1175/15200493(1985)113<1801:GWVFAM>2.0.CO;2
https://doi.org/10.1029/2005WR004469
https://doi.org/10.1002/2017WR021094
https://doi.org/10.1038/srep07093
https://doi.org/10.1029/TR032i002p00231
https://doi.org/10.1080/02508060008686827
https://doi.org/10.1080/02508060008686827
https://doi.org/10.1002/qj.776
https://doi.org/10.1002/joc.v28:1510.1002/joc.1688
https://doi.org/10.1002/joc.v28:1510.1002/joc.1688
https://doi.org/10.1016/S0169-8095(01)00070-9
https://doi.org/10.1029/2002jd003296
https://doi.org/10.1029/2017WR021987
https://doi.org/10.1016/j.atmosres.2016.07.014
https://doi.org/10.1111/j.1752-1688.1999.tb04240.x
https://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR52.pdf
https://www.nws.noaa.gov/oh/hdsc/PMP_documents/HMR52.pdf
http://refhub.elsevier.com/S0022-1694(21)00271-7/h0110
http://refhub.elsevier.com/S0022-1694(21)00271-7/h0110
https://doi.org/10.1002/j.1551-8833.1965.tb01486.x
https://doi.org/10.1002/j.1551-8833.1965.tb01486.x
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1029/2008JD009944
https://doi.org/10.1002/hyp.13253
https://doi.org/10.1002/hyp.13253
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001026
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001175
https://doi.org/10.1016/j.jhydrol.2016.10.008
https://doi.org/10.1016/j.jhydrol.2016.10.008
https://doi.org/10.1175/1520-0493(1994)122b0927:TSMECMN2.0.CO;2
https://doi.org/10.1175/1520-0493(1994)122b0927:TSMECMN2.0.CO;2
https://doi.org/10.1175/2009JCLI3333.1
https://doi.org/10.1175/2009JCLI3333.1
https://doi.org/10.1029/1999WR900002
https://doi.org/10.1029/1999WR900002
https://doi.org/10.1002/grl.50334
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(440)
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:6(440)
https://doi.org/10.1175/2010MWR3293.1
https://doi.org/10.1007/s11069-017-3068-z
https://doi.org/10.1175/BAMS-D-18-0023.1
https://doi.org/10.1175/BAMS-D-18-0023.1
https://doi.org/10.1016/j.scitotenv.2019.02.141
https://doi.org/10.1016/j.scitotenv.2019.03.471
https://doi.org/10.1016/j.scitotenv.2019.03.471


Journal of Hydrology 598 (2021) 126224

18

rivers affecting the West coast of North America based on eight years of SSM/I 
satellite observations. J. Hydrometeorol. 9, 22–47. https://doi.org/10.1175/ 
2007JHM855.1. 

Neiman, P.J., Schick, L.J., Martin Ralph, F., Hughes, M., Wick, G.A., 2011. Flooding in 
western washington: the connection to atmospheric rivers. J. Hydrometeorol. 12, 
1337–1358. https://doi.org/10.1175/2011JHM1358.1. 

Nelson, E.R., 1949. Columbia river basin flood. Mon. Weather Rev. 77, 1–10. https://doi. 
org/10.1175/1520-0493(1949)077<0001:crbf>2.0.co;2. 

Newell, R.E., Newell, N.E., Zhu, Y., Scott, C., 1992. Tropospheric rivers?—a pilot study. 
Geophys. Res. Lett. 19 (24), 2401–2404. https://doi.org/10.1029/92GL02916. 

Nobilis, F., Haiden, T., Kerschbaum, M., 1991. Statistical considerations concerning 
Probable Maximum Precipitation (PMP) in the Alpine Country of Austria. Theor. 
Appl. Climatol. 44 (2), 89–94. https://doi.org/10.1007/BF00867996. 

O’Connor, J. E., Costa, J. E. 2004. The World’s Largest Floods, Past and Present: Their 
Causes and Magnitudes. U.S. Geological Survey Circular 1254, 13. http://pubs.usgs. 
gov/circ/2004/circ1254/pdf/circ1254.pdf. 

Ohara, N., Kavvas, M.L., Anderson, M.L., Chen, Z.Q., Ishida, K., 2017. Characterization of 
extreme storm events using a numerical model-based precipitation maximization 
procedure in the feather, Yuba, and American River Watersheds in California. 
J. Hydrometeorol. 18, 1413–1423. https://doi.org/10.1175/JHM-D-15-0232.1. 

Ohara, N., Kavvas, M.L., Kure, S., Chen, Z.Q., Jang, S., Tan, E., 2011. Physically based 
estimation of maximum precipitation over American River Watershed. California. J. 
Hydrol. Eng. 16 (4), 351–361. https://doi.org/10.1061/(ASCE)HE.1943- 
5584.0000324. 

Rakhecha, P.R., Deshpande, N.R., Soman, M.K., 1992. Probable maximum precipitation 
for a 2-day duration over the Indian Peninsula. Theor. Appl. Climatol. 45 (4), 
277–283. https://doi.org/10.1007/BF00865518. 

Ralph, F.M., Dettinger, M.D., 2012. Historical and national perspectives on extreme west 
coast precipitation associated with atmospheric rivers during December 2010. Bull. 
Am. Meteorol. Soc. 93 (6), 783–790. https://doi.org/10.1175/BAMS-D-11-00188.1. 

Ralph, F.M., Neiman, P.J., Wick, G.A., 2004. Satellite and CALJET aircraft observations 
of atmospheric rivers over the Eastern North Pacific Ocean during the winter of 
1997/98. Mon. Weather Rev. 132, 1721–1745. https://doi.org/10.1175/1520-0493 
(2004)132<1721:SACAOO>2.0.CO;2. 

Rantz, S. E., Riggs, H. C., 1949. Floods of May–June 1948 in Columbia River Basin – a 
presentation of data on floods, gathered from selected gaging stations and other 
sources. Geological Survey Water-Supply Paper 1080, U.S. Government Printing 
Office Washington. 

Rastogi, D., Kao, S.-C., Ashfaq, M., Mei, R., Kabela, E.D., Gangrade, S., Naz, B.S., 
Preston, B.L., Singh, N., Anantharaj, V.G., 2017. Effects of climate change on 
probable maximum precipitation: a sensitivity study over the Alabama-Coosa- 
Tallapoosa River Basin. J. Geophys. Res. 122 (9), 4808–4828. https://doi.org/ 
10.1002/2016JD026001. 

Rezacova, D., Pesice, P., Sokol, Z., 2005. An estimation of the probable maximum 
precipitation for river basins in the Czech Republic. Atmos. Res. 77 (1-4), 407–421. 
https://doi.org/10.1016/j.atmosres.2004.10.011. 

Rouhani, H., Leconte, R., 2016. A novel method to estimate the maximization ratio of the 
Probable Maximum Precipitation (PMP) using regional climate model output. Water 
Resour. Res. 52 (9), 7347–7365. https://doi.org/10.1002/2016WR018603. 

Rousseau, A.N., Klein, I.M., Freudiger, D., Gagnon, P., Frigon, A., Ratté-Fortin, C., 2014. 
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