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HIGHLIGHTS

e Developed an internal state variable (ISV) mapping method for Li-plating diagnosis.
e Used multi-physics simulations for neural network (NN) battery model training.

e Developed a Kriging surrogate model that maps the NN weights with battery ISVs.
e Evolving change of NN weights maps the change of battery ISVs over time.

o Case study results showed effective diagnosis of Li-plating onset.
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Li-ion battery failure becomes one of major challenges for reliable battery applications, as it could cause
catastrophic consequences. Compared with capacity fading resulted from calendar effects, Li-plating
induced battery failures are more difficult to identify, as they causes sudden capacity loss leaving
limited time for failure diagnosis. This paper presents a new internal state variable (ISV) mapping
approach to identify values of immeasurable battery ISVs considering changes of inherent parameters of
battery system dynamics for Li-plating diagnosis. Employing the developed ISV mapping approach, an
explicit functional relationship model between measurable battery signals and immeasurable battery
ISVs can be developed. The developed model can then be used to identify ISVs from an online battery
system for the occurrence identification of Li-plating. Employing multiphysics based simulation of Li-
plating using COMSOL, the proposed Li-plating diagnosis approach is implemented under different
conditions in the case studies to demonstrate its efficacy in diagnosis of Li-plating onset timings.

Kriging model

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As the prevalence of portable electronics and hybrid electric
vehicles (HEVs), applications of lithium-ion batteries draw signifi-
cant attentions due to their highlighted advantages such as high
energy density, slow self-discharging rate, and no memory effect.
Meanwhile, the risk of various safety critical battery failures be-
comes an important issue to be addressed for battery applications.
Development of an advanced battery management system (BMS)
could significantly mitigate the risk of potential battery failures. An
advanced BMS is designed to acquire electrical data, control oper-
ational environment, monitor internal states, predict future
degradation, and protect batteries from unexpected failures [1]. For
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a BMS, state-of-charge (SoC) and state-of-health (SoH) are two
important parameters indicative of battery health condition; thus,
accurately estimating them becomes a paramount task in a BMS
development [2]. Tremendous works have been done to improve
performance of the BMS technique [3—10]. Since most of batteries
failure modes involve very complicated internal electrochemical
reactions, accurate modeling and analysis of specific battery failure
mode is extremely challenging. Thus, detecting and diagnosing
those failure modes become a very important research task for
broad battery applications, enabling remedial strategies and pro-
tections being implemented accordingly to avoid battery failures
and prevent even hazardous system damages due to these failures.
Out of many battery failure modes, Li-plating is one safety critical
failure mode for lithium-ion batteries that happens at the negative
electrode in the charging process [11]. Once Li-plating happens,
several irreversible side reactions would occur inside the battery
where numerous active lithium ions would lose their activity,
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which could significantly reduce the capacity of cells, leading to
sudden battery capacity loss. Meanwhile, the plated lithium metal
around the negative electrode could form the dendritic structure
that could cause the physical damage on the separator and elec-
trodes, leading to short circuits or other related critical battery
failures.

Since Fuller and Doyle established the electrochemical battery
model using porous electrode and concentration solution theories
[12], several models have further developed to investigate the in-
ternal dynamics of lithium-ion batteries. Due to the complexity and
inefficiency of the electrochemical model, several models have
been developed to improve the computational efficiency without
largely compromising the accuracy [13—18]. Recently, attentions
have been paid by researchers to investigate battery failure modes
using the electrochemical model. Perkins et al. [19] developed a
control oriented reduced order model to determine the Li-plating
by estimating several important battery parameters through sim-
ulations. Legrand et al. presented a new method to access the
charging process of Li-ion battery thereby characterizing the Li-
plating effect [20]. However, the existing work failed to consider
the impact of changes of battery internal state variables due to
aging of batteries over time. Since most related work has been built
upon the foundation of battery electrochemical model, or Doyle-
Fuller-Newman (DFN) model [12], that employs a system of par-
tial differential equations (PDEs) to describe electrochemical prin-
ciples in Li-ion batteries, coefficients in these PDEs are essential to
estimate correct values under various battery operating conditions.
While a battery system undergoes diverse variation of external
circumstances in service, several physical and chemical coefficients
in the PDEs could vary in a large range enough to change system
behaviors. In this case, employing fixed coefficients to analyze
battery system behaviors is thus inappropriate. The related time-
varying coefficients in a Li-ion battery system, denoted as internal
state variables (ISVs), include diffusion coefficients, reaction rate,
conductivity, and so on. With regard to specific failure mode, a
certain set of coefficients could be influenced to induce or mitigate
the occurrence of battery failures. By identifying failure related
coefficients over time, such as those key factors that activate the Li-
plating failure mechanism, battery system behaviors could be
better understood.

A few body of work has been reported in the literature that
focuses on battery parameter identification by applying different
approaches to given battery models. Santhanagopalan et al. [22]
developed an approach that employs Levenberg-Marquardt opti-
mization and Markov chain Monte Carlo (MCMC) method to esti-
mate parameters in the DFN model. Speltino et al. [23] used a two-
step approach to identify battery parameters, in which the cathode
equilibrium potential function is first approximated from obser-
vations of open circuit voltage (OCV), and battery tests are per-
formed to identify battery parameters of interest. Forman et al.
employed a generic algorithm (GA) to identify battery parameters
with the DFN model and used fisher information criterion to
perform identifiability analysis [25]. In existing studies, a full DFN
model has been generally used for parameter identification com-
bined with other simulation or heuristic algorithms such as MCMC
and GA. The computational burden for parameter identification is
usually very high based on the complexity of numerical calculation
of PDEs in the DFN model, and meanwhile the implementation of
MCMC or GA also adds up a large amount of computational work,
which together prevents these approaches from practical
applications.

To address these challenges, this paper presents a new internal
state variable (ISV) mapping approach to identify battery parame-
ters and capture battery system failure due to Li-plating. In the
developed ISV mapping approach, an artificial neural network

(ANN) model is firstly constructed to model battery system re-
sponses with respect to different designed battery parameters.
With the developed ANN model, weights in the NN model can be
used to enhance their correlations with battery parameters in the
original DFN model. Thus, a Kriging based surrogate model can then
be built to map from NN weights to battery internal state variables.
With the constructed Kriging model that maps the ANN weights
with the battery ISVs can be further used to identify battery pa-
rameters in real time with online measurement data during the
battery service process. After identifying battery ISVs, a new cri-
terion to detect the occurrence of Li-plating is proposed. To
demonstrate the developed ISV mapping approach for Li-plating
diagnosis, the experiment is based on the COMSOL Multiphysics
to simulate the Li-plating, multiphysics simulation of a battery
system is implemented by using the COMSOL Multiphysics soft-
ware and then the concentration information of electrodes is
employed to analyze the local effects and the onset timing of Li-
plating.

The rest of the paper is organized as follows. Section 2 in-
troduces the related work on Li-ion battery electrochemical model
and the ANN and Kriging models used for the development of ISV
mapping approach. The section 3 details the developed ISV map-
ping approach. The section 4 presents the mechanisms of Li-plating
and the new approach for the detection of Li-plating. The section 5
shows the experiments implemented by COMSOL and the results
that illustrate the Li-plating diagnosis using the developed
approach.

2. Related work

In this section, the previous valuable work will be introduced,
which includes the description of the pseudo 2D battery model in
subsection 2.1. The artificial neural network model and the Kriging
model used for the developed ISV mapping approach are briefly
introduced in subsections 2.2 and 2.3, respectively.

2.1. The Doyle-Fuller-Newman (DFN) model

The DFN model, or pseudo two dimensional (P2D) model, was
developed from the battery electrochemical model with the ohmic
porous electrode theory and Bulter-Volmer kinetics by Fuller et al.
[12]. Based on the battery electrochemical kinetics, the pseudo 2D
model can describe the internal variables such as concentration or
potential in both solid phase and solution phase. The P2D model
consists of three regions: negative electrode, separator, and positive
electrode. In each electrode, there are two phases which are the
solid phase consisting of porous electrode particles and the solution
phase being full of electrolyte. At regularly charging/discharging
processes, the current will force the Li-ions to extract from particles
of one electrode, move through the electrolyte, and intercalate into
particles of the other electrode. The P2D model describes this
behavior of Li-ions which follows the diffusion kinetics [21].

As shown in Fig. 1, a generic P2D model structure is used to
study the battery internal states. This model only considers Li*
diffusion dynamics in electrolyte along the horizontal x-axis and
Lit exaction/intercalation behaviors in spherical particles along the
radius r-axis. The partial differential equations (PDEs) are employed
to solve for the electrolyte concentration, electrolyte potential, solid
phase concentration, and solid phase potential along the different
locations in x, r-axis. The detailed equations of the P2D model is
presented on Appendix A.

2.2. Review of the artificial neural network model

Artificial neural networks (ANN) have been designed for various
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Fig. 1. The 2D structure of a Li-ion battery.

applications, such as pattern recognition, prediction, optimization,
function approximation, and control. In this paper, one of the most
commonly used ANN, namely a multilayer perceptron (MLP), is
employed to approximate the system response for a dynamic bat-
tery system. In a MLP, several neuron nodes are used to compose
three types of network layers, with generally one input layer, one or
multiple hidden layers, and one output layer. The information is
propagated directly from the input layer through hidden layers to
the output layer. The information propagation process is realized by
using the activation function, which transforms the activation level
of a neuron into an output signal. There are a number of common
activation functions in use with ANN, and out of which the sigmoid
function is most widely used. A general ANN model is showed on
Fig. 2.

In this study, an ANN is constructed to intelligently learn
response of the P2D model with multiple coefficients, then a
Kriging model could find the relationship between ANN weights
and P2D model coefficients.

2.3. Review of the Kriging-based surrogate model

This subsection introduces the Kriging technique, which is a

Input Layer

Hidden Layer

Output Layer

Fig. 2. A general neural network model.

probabilistic method for interpolating values modeled by a
Gaussian process based on observed measurements. Based on
various stationary properties of global means in Kriging model,
different methods were developed to apply practical situations of
various degrees of stationarity assumed. In this paper, the ordinary
Kriging as one of classical Kriging methods is employed to address
the special ISV mapping problem.
The Kriging model is usually presented as

y(X) =f(x) +5(x) (1)

where X is an n-dimensional vector for n design variables, y(x) is an
unknown function that the Kriging model tends to express, f{x) is a
global mean function that can provide several options such as a
constant term or a polynomial function, and S(x) is the realization
of a stochastic process with zero mean and variance ¢, which
represents the local deviation from the global mean. In this paper, a
constant u is used for the global mean function f{x).

The correlation between S(x;) and S(x;) is related to the distance
between two samples X; and x;. It is represented as

Corr(S(x1). S(xj)) = 0?R(x;, ;) (2)

where R(X;, Xj) is an n x n correlation matrix, and the distance
between x; and X; is not the Euclidean distance that has the same
weights for all design variables. The distance with additional
weighted values can be expressed as

n

d(Xi,Xj) = Z [43%

2
Xk — x’-“ (3)
P

]

where ay are the undetermined weights used to match the model,
and x¥ and xj"are the kth design variables. Given the distance of two
samples, the (i, j) entry of correlation matrix R can be written as

R(x;,x;) = exp( — d(x;,x;)) (4)

For a new interpolated sample X\, the prediction of the Kriging
model is given by

Y(Xnew) =t + T (Xnew)R™1(y — 14/) (5)
where r(xpew) is a correlation vector with the ith element is
Ii(Xnew) = CorT(S(Xnew), S(x;)), (6)
and the mean estimate u’ is

-1
W= (ITR*H) 1R ly. (7)

Also, the estimate of the variance, ¢’ is defined by

o W) Ry — 1w (8)
n
Among all equations, the undetermined parameter in Kriging
model is a in Eq. (3). In order to estimate this parameter, the
maximum likelihood estimation (MLE) method is employed to
address this problem. The likelihood function is expressed as

Likelihood(i', o', o) — —gln(zw) - gln (o2) - %ln(\R|)

552V 1) Ry~ 1w) (9)

In order to maximize Eq. (9), several numerical methods such as
Newton-Gauss method are selected to approximate model
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parameter o. For given o, |’ and ¢’ are able to be updated accord-
ingly. The calculated routine then repeats calculating these three
coefficients until likelihood function converges to a stable
maximum value.

3. The developed ISV mapping approach

This section presents the developed ISV mapping approach.
Subsection 3.1 briefly presents the battery parameter estimation
problem. After simplifying the Li-ion battery P2D model in
subsection 3.2, the ISV mapping approach to estimate PDE co-
efficients is then detailed in subsection 3.3. Subsection 3.4 shows
the flowchart that concludes the procedures of the developed
approach.

3.1. Identification of battery model parameters

As previously mentioned in Section 1, system inherent param-
eters must be identified and confirmed so that system internal
states can be estimated during battery system dynamical processes.
However, determining the coefficients in PDEs is a very challenging
problem especially in a complex PDE form or system of PDEs [22]-
[24]. Meanwhile, existing studies generally employ the full or
reduced-order P2D models, and rely on numerical techniques to
iteratively estimate required parameter values. To apply existing
methods for estimations of PDE coefficients, computational burden
is generally extremely high for even a single battery parameter.
Mathematically, the presented problem for a PDE can be expressed
as

ou ou
F(X,t,u,a,...,&,9> :O (10)

where Fis a linear function of u and its derivatives, X = (X, ... xp)T is
a p-dimensional argument, 0 is the parameter vector that relates to
primary interest in this paper.

The present problem for Li-ion battery electrochemical model is
more complex than Eq. (10). First, the P2D model includes several
PDEs from Eq. (A.1) to Eq. (A.16) to construct a system of PDEs in
order to describe the entire Li-ion battery system. Second, the
variable u in Eq. (10) is unobservable in system of PDEs for Li-ion
battery, which increases difficulty with using observations to esti-
mate PDE parameters. For the sake of addressing these challenges,
an ISV mapping approach is proposed. In the new approach, a
reduced order model is developed for P2D model to reveal de-
pendency between observed voltage and variables in the battery
model, and a surrogate model is applied for reduce the computa-
tional complexity of the system of PDEs.

3.2. Reduced order model for Li-ion battery

This subsection presents the reduced order model for Li-ion
battery P2D model. Recalling the Eq. (A.3), the output voltage
equals to the difference between potentials at two boundaries x = 0
and x = L. Since we don’t have to consider the x variables for
calculating output voltage, the existing PDE can be reduced to an
ordinary differential equation (ODE) for electrode potential as
follows:

dPy_or(t)

Thus, Eq. (11) simplifies the variable ® to be a variable only
related to time. By discretizing this equation, we can obtain

LO(x,t) = f(x,t,1(t),0) >

Dy—rk — Px—r—1 = At x f(I}, 0) (12)
Finally, the voltage at time index k can be summarized as
Vi = G, Vi-1.0) (13)

The Eq. (13) implies that the output voltage at time point k only
depends on the input current at time k, voltage at last time point k-
1, and the related coefficients in PDEs. The Eq. (13) can significantly
reduce the complexity of the original system of PDEs and easily
generalize the relationship between system input and output. Base
on Eq. (13), it has a great convenience to employ a surrogate model
to replace the reduced model and estimate system response with
required accuracy.

3.3. Battery ISV mapping

This subsection presents the proposed the methodology of the
developed approach. To realize the time-varying parameters, the
diffusion coefficients, in the governing PDEs, a two-stage method is
designed to solve this problem.

In the first stage, a surrogate model is constructed to approxi-
mate PDE system responses. A surrogate model has two advantages
compared to the original full PDE model: first, under an accepted
accurate level, a surrogate model could largely reduce the
computational complexity; second, a surrogate model provides
explicit weights in model equations, which could be utilized to map
time-varying coefficients in a PDE model.

In the developed approach, a neural network (NN) model is
selected from surrogate models. The NN model can be written as

1 J
yx) = aep (Zw,-jxj + bj> ., and W = [a;, wj;, bj}T, (14)
i1 =

where a, w, and b are all weights inside the NN model, x is the input
of NN model, i and j represent the number of hidden nodes and
input nodes, respectively. ¢ is the sigmoid function that can be
expressed as

1

£y —
o) =10 (15)

In order to surrogate the reduced battery model, the input of NN
model is assigned to be I, and Vj.1; the output of NN model is V.

To fit the battery model, the Levenberg-Marquardt algorithm is
used to optimize NN weights to ensure the validation of NN model.
The optimization is expressed as

2

Minimlize :Z(kacyde - y<chcle>> (16)
cyele k

where cycle represents the cycle index, k is the time index in a

specific cycle, y represents the estimates of NN model, and V is the

true system output.

Apparently, the trained weights W in the NN model have a
strong correlation with coefficients 0 since both of them are the
only parameters in their respective models. Therefore, building an
accurate mapping from W to 6 would assist us to determine the
values of PDE coefficients. The mapping can be written as

g:W-0

In this mapping, the dimension of input is regulated by the
number of hidden nodes in the predefined NN model, and the
dimension of output is determined by the number of coefficients in
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PDEs. The mapping solution in this paper is Kriging model that has
the powerful estimation on interpolation problems.

3.4. Flowchart of the ISV mapping approach

In this subsection, the procedure of the developed approach, as
illustrated by Fig. 3, is presented. According to the proposed pro-
cedure, the whole approach is divided into offline and online
stages. The basic idea is to utilize the mapping relations between
NN weights and diffusion coefficients revealed by Kriging model to
estimate the current diffusion coefficients in the testing battery
with experimental data. In the offline stage, the testing battery
characteristics, such as materials in electrodes and electrolyte, ge-
ometry of the battery structure, and several other fixed parameters,
have to be designed in a COMSOL multiphysics model, then this
model is able to be executed the simulated battery cycling experi-
ments that could easily provide the system response under
different designed current and diffusion coefficients. After obtain-
ing system behavior with several [-V curves, a NN model is
employed to approximate the I-V relations instead of using a full
PDE model. As mentioned previously, a Levenberg Marquardt
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algorithm is used to optimize the NN model until the required ac-
curate level is reached. Due to the direct relations between weights
from the NN model and diffusion coefficients from the aimed PDE
model, a Kriging model is employed here to approximate the
mapping relations from weights W to coefficients 0.

In the online stage, the testing battery has to be set up to go
through a charging and discharging experiment to obtain the real
experimental data. The battery experiment firstly performs a dis-
charging profile until the voltage drops under 3.2 V that is the stop
voltage for discharge. The battery could be considered as deeply
discharged in this case. Then the discharged battery is applied on a
constant charging current, and at the same time, the battery tester
is recording the measurement signals: current and voltage. In the
same procedure, the measured I-V curve is also plugged into the
NN model to get trained until the error level is met. Obtaining the
weights W’ from new trained NN, we plug the W’ into the designed
Kriging model and get the prediction of diffusion coefficients 6.
Since the diffusion coefficients 0’ represent the battery current
states that could affect the Li-plating occurrence, the Li-plating
could be predicted according to the given diffusion coefficients.
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Fig. 3. Procedure of the developed ISV mapping approach.
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4. Li-plating mechanism

In this section, the Li-plating mechanism is briefly reviewed and
the developed Li-plating occurrence model for diagnosis is pre-
sented. In the following, Subsection 4.1 introduces the Li-plating
mechanism and Subsection 4.2 presents essential assumptions
and the proposed Li-plating occurrence model.

4.1. Electrochemical explanations for Li-plating mechanism

Under extremely operating conditions that make reduction re-
actions occur easily, metallic lithium could be deposited (plated) on
the surface of the negative electrode instead of intercalating into it.
Li-plating phenomenon generally occurs in the charging process
under two specific conditions: charging at high current or low
temperature.

When Li-ion batteries are charging at high current, the active Li-
ion will extract from the positive electrode, move across the
separator, and intercalate into the negative electrode. However, the
high current makes the extraction rate larger than the intercalation
rate, and then side reactions will occur and turn Li-ions to metallic
lithium on the surface of negative electrodes particles. Similarly,
the low temperature will slow down the intercalation rate on the
surface of negative electrode and result in the Li-plating on the
negative electrode. These side reactions when Li-plating occurs are
concluded as follows:

xLit + LizCq +X€7—>Ll‘5+xC6 (17)

(1—x)Li" + (1 -x)e” —(1—x)Li| (18)

The reaction (17) is the regular insertion reaction in which xLi*
(x represents the fraction of charge carriers) insert into the graphite
structure formed by six carbon atoms Cs. The reaction (18) is the Li-
plating side reaction which causes that (1-x)Li* forms metal
lithium and is plated on the surface of negative electrodes.

Since the metallic lithium has very active properties, it will
continue having other side reactions with substances in electrolyte,
which are shown as follows:

R+Lil—>Li—R (19)

where R represents the carbonate solvent electrolyte. This side
reaction indicates that metallic lithium could be rapidly oxidized by
the substances of electrolyte and form an additional SEI [19]. The
new SEI layer could stop the further side reactions between plated
lithium metal and other oxidizers. As a consequence, the new-
formed plated lithium metal has been protected gradually and
will form a dendritic form that would cause more hazardous
damages.

4.2. Li-plating occurrence model for diagnosis

As we described in the subsection A, the Li-plating occurs
when the extraction rate of Li* from positive electrodes exceeds
the intercalation rate of Li* into negative electrodes. To create the
Li-plating model, several additional assumptions should be
claimed: (1) the reaction (19) as the only side reaction occurs in
the charging process. The other side reactions have to be ignored,
and (2) the Li™ concentration gradient on the surface of electrodes
approximates to the extraction or intercalation rate, because the
Li-plating only relates to the variation of Li* concentration on the
surface of electrode particles. Besides, in order to compare two
rates in local areas, the average concentration gradient could be
computed in a specific area. Based on this fact, we defined two

equations to demonstrate the extraction/intercalation rate as
follows:

oC.

Rex = 73';”( P (20)
ac

Rin sthzrf,n (21)

where Reyx and R;, represent the extraction rate and intercalation
rate, respectively, Cssurfp and Cssurfn Tepresent the solid phase con-
centration on the surface of different electrodes particles, which
can be obtained by ¢s sy = Cslr—gp for both electrodes according to
Eq. (A.10). After calculating Egs. (20) and (21) at different locations
and time points, the extraction and intercalation rates could be
obtained. According to the mechanism of the Li-plating, the Li-
plating occurs only when the following equation is satisfied:

Rex| > [Rin] (22)

When Eq. (22) is satisfied at a specific location or time point, the
Li-plating could be considered to happen.

5. Li-plating diagnosis employing the ISV mapping approach

This section presents the results of Li-plating using COMSOL
Multiphysics. The subsection 5.1 introduces a case study of Li-ion
battery 2D model to implement the developed approach, and the
subsection 5.2 presents a case study of the battery 2D model to
demonstrate the local Li-plating effect and diagnosis using the
developed ISV mapping approach.

5.1. Battery 2D model case

In this subsection, the weights-mapping approach is imple-
mented for a Li-ion battery 2D case. The results discuss the local
effects of Li-plating happening due to impact of geometry of a
battery.

The battery 2D model implemented in COMSOL Multiphysics
V4.4 is a double dimension model based on electrochemical prin-
ciples of a Li-ion battery. With the same materials, this model is
built in three regions: the positive electrode (the pink area), the
negative electrode (the grey area), and the separator (the green
area). There are two current collectors covered around the two
electrodes. For the experimental purpose, the current collector of
the positive electrode has been cut over than half areas to enhance
the Li-plating effects on local areas. Thus, the battery model has
been divided into two parts according to the partially covered
current collector. The reason of this unbalanced design is because

Current collector Local test area

\ /
= /

Postive electrode

Separator

Negative electrode

Current colloector ——

/

The rest test area

Fig. 4. The Li-ion battery 2D geometry in COMSOL.
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Li-plating could occur more rapidly in the local area than the rest
test area, thereby saving a large amount of computational efforts to
generate the Li-plating phenomenon and data. The geometry of Li-
ion battery 2D model is shown in Fig. 4.

In this case study, the designed diffusion coefficients in different
electrodes vary both from 1e-12 to 1e-15 m?/s according to surveys
with different measurement techniques in current literature [26,
27]. For each diffusion coefficient, the PDE solver is designed to
uniformly sweep the coefficient range as 20 steps, which implies
that the total number of parameters combinations is 20 x 20 = 400
groups. Using all of parameters combinations, 400 charging cycles

Table 1
Accuracy of the ISV mapping approach.
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At positive electrode 4.0126e-28 4.2338% Fig. 6. Concentration gradient with different combinations of parameters.
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are able to be generated to implement the developed approach. By
applying the weights-mapping approach, a NN model is used to
surrogate the designed battery model and 400 wt vectors are
trained corresponding to the related parameters combinations.
Then, we randomly choose 50 groups of parameters combinations
to validate the developed approach.

5.2. Li-plating diagnosis using ISV mapping

By applying 50 groups of testing parameters combinations, the
developed approach is implemented to approximate the true PDE
parameters. Fig. 5(a) and (b) show the estimations of the diffusion
coefficients at two electrodes from the Li-ion battery 2D model.

The results, as shown in Fig. 5(a) and (b), and Table 1, indicate
that the developed approach is able to achieve a high accuracy of
approximation. It is observed that MSE or RE of diffusion coefficient
at the positive electrode is larger than the one at the negative
electrode. This fact is attributed that the ANN output, namely the
voltage, has less sensitivity with diffusion coefficient at the positive
electrode. Thus, the weights of ANN has weaker link to the diffusion
coefficient at the positive electrode compared to the one at the
positive electrode. The equations of mean square error (MSE) and
relative error (RE) are expressed as:

1 2
MSE = > " (Y{PProx — yob (23)
R v
1N yapprox
RE=100% x — S |1 — - 24
XN ; yop (24)

where N is the total number of approximations, Y??P™* and Y?? are
the approximation and true value, respectively.

After obtaining the approximation of diffusion coefficients, the
PDE solver could obtain the concentration information in different
electrodes. For easily occurrence of Li-plating, the related param-
eters should be adjusted to proper values. The initial SoC has been
set to 90%, which means the battery is close to fully charged. Then
the battery charging simulation is undergoing with different
diffusion coefficient combinations. Since diffusion coefficients
could significantly impact the Li-ion concentration performance in
different electrodes, randomly coupled coefficients are selected to
indicate the Li-plating occurrence in various conditions. Fig. 6
shows the concentration gradient performance with different
combinations of parameters.

The blue curve and red curve represent Li-ion concentration
gradient for negative and positive electrodes, respectively. In
Fig. 6(a), the specific diffusion coefficients make concentration
gradients of both electrodes to parallel to each other, and the value
of positive electrode is much smaller than the one of negative
electrode. In this case, Li-plating would not happen in the entire
time scale. In Fig. 6(b), the concentration gradient of positive
electrode diverges to the other one, which indicates that Li-plating
won’t occur most unlikely in the future. In Fig. 6(c), the concen-
tration gradients of both electrodes are close and converging to
each other, which indicates that Li-plating could happen in the
future when one curve intersects another. In the circumstance as
shown in Fig. 6(d), the blue curve intersects with the red curve at
time t = 4 s, indicating that the concentration gradient of positive
electrode exceeds the one of negative electrode. In this case of
coupled coefficients, Li-plating would occur after the intersection
and be diagnosed by the proposed approach.

6. Conclusion

In this paper, Li-plating failure identification is investigated
based on capturing battery parameters dynamics. To capture sys-
tem dynamics in DFN model, a new internal variable (ISV) mapping
approach is developed to identify battery parameters in a system of
PDEs. Multiphysics-based simulation of battery system dynamics
with designed battery parameters are implemented within the
COMSOL multiphysics simulation environment. With the simula-
tion data, an artificial neural network (ANN) model is constructed
to model battery system output voltage instead of DFN models, and
then the links between weights in the ANN model and parameters
in the DFN model is evaluated by employing a Kriging based sur-
rogate model. Using the Kriging model, the real battery parameters
can be identified from experimental data. The Li-plating mecha-
nism has been discussed and a new determining approach for Li-
plating occurrence is proposed to analyze the local effects and
the onset timing of Li-plating under the high current conditions by
using the developed ISV mapping approach. The experiment using
COMSOL Multiphysics is to simulate the charging process of a Li-ion
battery to observe the concentration gradient of different elec-
trodes. Based on these experimental results, the occurrence of Li-
plating at different areas and onset times can be successfully
identified by employing the developed ISV mapping approach.
With the developed approach, a remaining useful life (RUL) pre-
diction strategy considering Li-plating failure mechanism could be
further investigated in the future work for battery failure
prognostics.
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Appendix A. The P2D model for Li-ion battery

Based on all the principles and kinetics, we can present
equations that model the electrochemical dynamics in a Li-ion
battery. Integrating Kirchoff's law with Ohm’s law, we can
obtain the representation of the electric potential the ®; in solid
phase:

02d o
Uiszs =a;Fj;, i=p,n (A1)
with boundary conditions
0.
S, =1, and ®s4_g=0 (A2)
0X |y—01

where ¢ represents the effective electronic conductivity of elec-
trode i (i = p, n), I is the external current density, a is the specific
surface area of electrode i, F is the Faraday’s constant, and j is the
wall flux of Li* on the intercalation particle of electrode i. At the
interface between an electrode and a current collector (i.e.x =0or L
in Fig. 1), the first boundary condition in eq. (A.2) is derived because
the current density in electrolyte i, is approximated as 0. The po-
tential in the solid phase of negative electrode is zero as the second
boundary condition. The electric potential at two ends of different
electrodes can be used to calculate the output voltage as



G. Bai, P. Wang / Journal of Power Sources 323 (2016) 115—124 123

V= gDs,x:L - Qs,x:o (A~3)

The potential in the electrolyte can be calculated as follows:

e _ fe 2RT q ) (1 +

(A4)

0P, dlnfc/a dln ce
ox k F

dilnce 0x

Since we can only measure differences of potentials, boundary
conditions can randomly be set as:

d)eA,x:L =0
d)e,x:ln,— = gDe,x:ln,Jr and @e,x:l,,,— = @e,x:l,,Ar (A5)
where « is the ionic conductivity of the electrolyte, R is the universal
gas constant, T is the temperature of the battery, F is the Faraday’s
constant, . is Li* transference number in the electrolyte, and f is
the mean molar activity coefficient in electrolyte.

According to the Fick’s law, the lithium-ion concentration in the
electrolyte is modeled as follows:

ac, 8¢ o
a—:: eﬂ,iﬁ"‘a(l - t+)]ia I=p,n (AG)
with the initial condition

=9 A7)
Celt—o = Ce (A
and the boundary conditions
¢ =0 andaﬂ _de , i=p,n (A.8)
ox x=0,L ox x=l;,— ox x=l;,+

where D is the effective diffusion coefficient in electrolyte, p, n
represent the positive and negative electrodes, respectively, and a
is the specific interfacial area, expressing as

a = es(4nR3) /[(4/3)7R3] = es(3/Ry) (A9)
where ¢ represents the volume fraction of the solid electrode
material in the porous electrode, R;, is the radius of particles in solid
phase.

In the solid phase, the transport of the lithium-ion also follows
Fick's law similarly, but associates a spherical particle of R, with
each particle’s location x. For each particle at the location x, the
lithium-ion concentration is described as:

% - rlZ % (Dsyirz%), i=p,n (A.10)
with the initial condition

Csle—o = €7 (A11)
and the boundary conditions

% - =0 and % . = fDlsji, i=p,n (A12)

where r is the radial coordinate of particles in electrodes, Ry, is the
maximum radius of particles, and D; is the diffusion coefficient in
solid phase of electrodes.

Relating the net pore-wall molar flux with the divergence of the
current, we can obtain the relationship between them at each x
location

%e _ afj;, i=p,n

x (A13)

where ¢ is the volume fraction of the solid electrode material in the
porous electrode. Besides, the solid phase intercalation over-
potential s, which determines the rate of the intercalation reaction
occurred on the surface of solid particles, is described as
ns = @5 — De — Ur (Coqurr ) — PR (A14)
where U, represents the equilibrium potential at the existing sur-
face concentration, Ry represents the film resistance of the solid
electrolyte interface (SEI).

To associate all the useful variables together and compute the
molar flux j, the Butler-Volmer equation is employed to build the
connection with them. The Butler-Volmer equation is expressed as

.71.0 ex C(aF ex —O(CF
]*F p ﬁ"ls — exXp Wﬂs

where a4 and «. are the transport coefficients, and iy is the ex-
change current density, which can be expressed as

(A.15)

. g
fp = TerCe® X (Cs,max — cwurf) X C?,Csurf (A.16)

where refris a constant, and ¢s max is the maximum concentration of
lithium-ion in different electrodes depending on specific material
properties. Combining all the equations, the output voltage V can be
solved by the given input which is the applied current I.
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