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HIGHLIGHTS

o Effects of C,H, on spatial PEMFC performance and EIS were studied with a segmented cell.

« The experiments were done under galvanostatic control of overall cell current (0.1-1.0 A cm2).
o Injection of C;H; resulted in a voltage decrease and redistribution of segments' currents.

e Localized currents redistribution under C;H, exposure depends on operating current/voltage.

e Oxidation/reduction of C;H; on Pt occurs at high/low cell potential, respectively.
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Acetylene is a welding fuel and precursor for organic synthesis, which requires considering it to be a
possible air pollutant. In this work, the spatial performance of a proton exchange membrane fuel cell
exposed to 300 ppm CH, and different operating currents was studied with a segmented cell system.
The injection of C;H; resulted in a cell performance decrease and redistribution of segments' currents
depending on the operating conditions. Performance loss was 20—50 mV at 0.1—0.2 A cm~2 and was
accompanied by a rapid redistribution of localized currents. Acetylene exposure at 0.4—1.0 A cm 2 led to
a sharp voltage decrease to 0.07—0.13 V and significant changes in current distribution during a tran-

g;mcgds' sition period, when the cell reached a voltage of 0.55—0.6 V. A recovery of the cell voltage was observed
Pt cathode after stopping the C;H; injection. Spatial electrochemical impedance spectroscopy (EIS) data showed
Acetylene different segments' behavior at low and high currents. It was assumed that acetylene oxidation occurs at
Airborne contaminant high cell voltage, while it reduces at low cell potential. A detailed analysis of the current density dis-
Spatial EIS tribution, its correlation with EIS data and possible C;H; oxidation/reduction mechanisms are presented

Segmented cell and discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The proton exchange membrane fuel cell (PEMFC) has been the
subject of intensive research and development efforts for the last
two decades due to its potentials. High efficiency, harmless emis-
sion products, low operating temperature and quiet operation have
provided a wide range of fuel cell applications: from vehicle power
sources instead of internal combustion engines to portable and
stationary power generation systems. As fuel cell technology moves
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toward a mass-production stage, research has to address issues
relating to the environments in which fuel cells are expected to
operate. Currently available PEMFCs mostly use ambient air as the
cathode oxidant, which contains a variety of impurities such as SO,
H,S, NH3 and NOy. Major sources of air contaminants are vehicle
and industrial exhausts in urban environments and some naturally
occurring processes such as volcanic activities.

For the past fifteen years, the impacts of some air contaminants
have been studied intensively. The first works were published in
2000—-2001 [1,2]. The effects of battlefield contaminants (SO, NO3,
CO, C3Hg and benzene) and some warfare agents (sarin, sulfur
mustard, CNCl, and HCN) on air-breathing PEMFC were studied by
J.M. Moore [1]. G. Mepsted presented a detailed study on the
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impacts of common urban atmospheric pollutants (SO, CO, ben-
zene, 1,3-butadiene and NH3) on membrane electrode assembly
(MEA) performance and examined contaminant mitigation by
filtration [2]. The research was focused mainly on the effects of
common inorganic species on oxygen reduction reaction (ORR),
membrane conductivity and MEA performance [3—12]. The effects
of sulfur dioxide and related species were presented in papers
[1,2,6—20], while the impacts of NH3 and NOy on fuel cell perfor-
mance were reported in Refs. [1,2,6—12,21—25]. Fuel cell perfor-
mance under NaCl and atmospheric aerosols exposure was studied
in Refs. [26-28]. At the same time, the selection of air contaminants
ignores potentially hazardous organic compounds, and prior pub-
lications with organic species as oxidant pollutants are limited to
warfare agents [1], benzene and 1,3-butadiene [1,2], and some
other hydrocarbons [29—-31].

Air pollutants are particularly critical for fuel cell systems where
air filters cannot be employed due to weight or volume limitations.
Impurities affect fuel cell performance by different mechanisms.
Some of them can adsorb on the catalyst surface, reduce electro-
chemically active area (ECA) and decrease ORR activity. Some
contaminants may alter the ORR pathways by promoting or
inhibiting particular elemental steps, for example changing a 4-
electron ORR mechanism to 2-electron with the formation H,O,.
Moreover, some pollutants may change the properties of MEA
components, such as hydrophobicity or proton conductivity, which
affect water management and may cause performance loss.
Depending on the chemical nature of the contaminant and expo-
sure time, its impact on the fuel cell may be reversible or
permanent.

From an inventory of 260 air pollutants from the Environmental
Protection Agency list, seven contaminants were chosen for
detailed studies using a two tier selection process [32]. These seven
pollutants are acetylene (C;H), propene (CsHg), methyl methac-
rylate (CH,C(CH3)COOCH3), 2-propanol ((CH3);CHOH), bromo-
methane (CH3Br), naphthalene (CigHg) and acetonitrile (CH3CN),
which are commonly used as solvents, welding and other fuels,
cleaning agents, or for pest control. The selected contaminants
belong to different classes of organic compounds and cover various
functional groups, including alcohols, N-containing compounds,
alkenes, alkynes, esters, aromatic rings and halides. As shown
previously, all of them have serious negative impacts on Pt ECA and
PEMFC performance [33—39].

As acetylene is widely used as welding fuel and a chemical re-
agent, it is considered to be a potential fuel cell contaminant. The
chemical and electrochemical interaction and adsorption of C;H,
with Pt is a much investigated area due to wide studies of Pt-based
catalysts for the oxidation and partial oxidation of various hydro-
carbons [40] and studies of the anodic oxidation of organic fuels for
the production of electrical energy [41—43]. The effects of C;H, on
ORR for a commercial Pt/C catalyst were investigated using the
rotating ring disk electrode (RRDE) technique [37]. The results
showed a complete loss of Pt ECA in the presence of acetylene, an
increase in H,O, production and a shift of the ORR onset potential
in the negative direction by 330 mV. Studies on the impact of
acetylene on single fuel cell performance revealed that high con-
centrations (~300 ppm) caused a drastic performance loss [34]. The
evaluation of fuel cell performance with a single cell approach
provides only an average of the local voltage, current and imped-
ance values and does not reveal the spatial behavior of the cell. A
segmented cell system is a powerful tool for understanding the
details of locally resolved fuel cell processes such as local current
distributions [44—49], gas and water management effects [50—54],
stack and single cell diagnostic techniques [55—58], defect detec-
tion and localization methods [59—63], recirculation [64], and
start-up and starvation impact [65—68]. However, there are only

several publications in which segmented cells were applied to the
study of anode poisoning with CO in a hydrogen stream [69—75]. At
the same time, there are no any works on spatial PEMFC perfor-
mance under cathode poisoning by airborne contaminants. Infor-
mation about the current distribution is crucial and beneficial for
understanding the poisoning process and mechanism, improving
the PEMFC environmental adaptability and durability and devel-
oping mitigation strategies. This paper focuses on detailed studies
of the spatial performance of a fuel cell exposed to 300 ppm CyH;
and operated at different current densities. In addition, spatial
electrochemical impedance spectroscopy (EIS) was employed to
understand and characterize the local PEMFC response under
exposure to acetylene.

2. Experimental

All the experiments were conducted on a single cell test station
using Hawaii Natural Energy Institute's (HNEI) segmented cell
system, which enables the simultaneous acquisition of spatially
distributed data [57]. The segmented cell approach for this study
builds upon the works of Ballard Power Systems Inc. [46], the
German Aerospace Centre at Stuttgart [76] and Los Alamos National
Laboratory (LANL) [45,77]. HNEI's segmented cell system is
partially based on the LANL design using closed loop Hall sensors
and an improved data acquisition system. These enhancements
allow the system to perform simultaneous rather than sequential
measurements of spatial EIS, spatial linear sweep voltammetry
(LSV) and cyclic voltammetry (CV).

The segmented cell system consists of the cell hardware, the
current transducer system, the data acquisition device and a single
cell test station (Fig. 1). The current transducer system was custom
designed. A closed loop Hall sensor (Honeywell CSNN 191) is
employed for current sensing. For EIS measurements, these sensors
show very little inductance over the entire frequency range of in-
terest. The system allows the investigation of 10 current channels in
a high (standard) current mode and 10 channels in a low current
mode. The standard current mode enables the measurement of
segment currents to 15 A. The low current mode of the system
yields maximum current measurements of 375 mA with an accu-
racy of +2.5%, which is typical for CV or LSV experiments. Voltage
and current signal data collection was performed with a National
Instrument PXI data acquisition instrument operating on HNEI-
developed LabView programs. This diagnostic tool enables the
collection of spatially resolved information during a standard fuel
cell experiment and it is operated as a single cell using a GRan-
dalytics test station equipped with an Agilent N3300A DC elec-
tronic load and an UltraFlex series power supply from Lambda
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Fig. 1. Segmented cell measurement setup. Reprinted from [57], T.V. Reshetenko, G.
Bender, K. Bethune, R. Rocheleau, Electrochim. Acta 56 (2011) 8700, copyright (2011),
with permission from Elsevier.
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Electronic Inc. The test station has current and power limitations of
240 A and 1.2 kW, respectively. Standardized single fuel cell testing
protocols were used for recording locally resolved data. All exper-
iments were carried out under galvanostatic control of the total cell
current. Such operation minimized any impact from the segmented
cell system and facilitated properties distribution measurememts
without interference on the segments performance. The operation
of the segmented cell system also represents operating conditions
that are identical to applications because only the overall current is
controlled while segments current and voltage are floating. The
system was designed such that the segments voltages and cell
voltage response were the same due to the relatively small fuel cell
active area.

The segmented cell hardware is based on the HNEI 100 cm? cell
design. The hardware contains a segmented cathode flow field
consisting of ten consecutive segments disposed along the path of a
ten-channel serpentine flow field. Each segment has an area of
7.6 cm? with its own distinct current collector. The same channel
designs are used for both the segmented cathode and the standard
anode flow fields (the reactant streams are arranged in a co-flow
configuration).

The cell hardware was operated with 100 cm? Gore MEAs. The
anode and cathode electrodes were composed of a Pt/C catalyst
with a loading of 0.4 mgp; cm~2. The gasket material was made of
Teflon, with thicknesses of 125 um for the anode and cathode.
Sigracet 25 BC was used as the anode and cathode GDLs. The
cathode used a segmented GDL and gasket configuration, whereas a
single GDL was applied at the anode, and the total active area of the
MEA was 76 cm?>.

During C;H, exposure, the dry contaminant gas was injected
into the humidified air stream, and the humidification of the gas
was held constant by increasing the temperature setting of the
humidifier unit. The anode/cathode testing conditions for the
contamination experiments were Hp/air, 2/2 stoichiometry, 100/
50% relative humidity and 48.3/48.3 kPag backpressure. The cell
temperature was 80 °C. The MEA was operated under galvanostatic
control of the whole cell current in the range of 0.1-1.0 A cm™2
(based on the 76 cm? active MEA area). Fresh MEAs were used for
each fixed current test. The contamination experiment consists of
three phases: (1) pre-poisoning period with neat air, (2) poisoning
until the cell voltage reached a steady value and (3) recovery, when
the C;H; injection was stopped to evaluate the cell's self-recovery
with air.

The polarization curves (VI curves) in the Hy/air gas configura-
tion were measured under the same conditions as the contamina-
tion experiment. VI curve measurements were also performed in
the Hy/He + O, (21 vol.%) and H,/O, gas configurations. To maintain
a constant water transport in the cell for any given total cell current
density, the flow rates of He + O, and O, were identical to the rates
used during the air operation with a stoichiometry of 2. Conse-
quently, the stoichiometry of He + O, remained 2, whereas the
stoichiometry of O, increased to 9.5. The resulting three different VI
curves (Hy/air, Hy/He + O and H,/0O,) were used to determine a
segment's activation, ohmic and mass transfer (permeability and
diffusion) overpotentials, as described previously [57].

The VI curve measurements and contamination experiments
were combined with EIS to determine the cell's and segments'
high-frequency resistances (HFR) and to measure the electro-
chemical impedance spectra for all ten segments and the overall
cell. The selected frequency range for the EIS experiments was
0.05 Hz—10 kHz, and the amplitude of the sinusoidal current signal
perturbation was 2 A, which resulted in a cell voltage response of
10 mV or lower. The HFR was determined from the intercept of the
EIS with the x-axis at higher frequencies.

CV experiments were conducted to determine the ECA using a

Parstat 2273 potentiostat/galvanostat from Princeton Applied
Research and Solartron SI 1287 /electrochemical interface. CVs were
performed at a cell temperature of 35 °C with a scan rate of
20 mV s~ !, whereas 100% humidified hydrogen and nitrogen were
supplied to the reference/counter and working electrodes, respec-
tively, at a flow rate of 0.750 1 min~. For each measurement, three
cycles were applied over a potential range from —0.015 to 1.1 V vs.
the hydrogen reference electrode (HRE). The hydrogen desorption
peak area of the third cycle was used to determine the ECA.
Hydrogen crossover experiments were performed at the same
temperature and flow conditions as the ECA experiments using a
single potential sweep from 0.1 to 0.4 V vs. the HRE at a scan rate of
01mvVsL

Before C,H; exposure, the segmented cell was assembled using
established procedures, conditioned and subjected to a set of
diagnostic tests. The beginning of test (BOT) diagnostics consisted
of CV to determine the ECAs of the electrodes, LSV to determine the
hydrogen crossover current and measurement of VI curves with
spatial EIS using the Hy/air, Hy/He + O, and H,/O, gas configura-
tions to determine the performance, overpotential distributions
and impedance responses of the cell. The same diagnostic tests
(end of test (EOT)) were repeated after the C;H, experiment. A
comparison of the results before and after the contaminant expo-
sure provided insight into the effects of acetylene on the spatial
properties of the cell.

3. Results and discussions
3.1. Fuel cell operation at low current density

Figs. 2 and 3 present profiles of the segment voltages and cur-
rent densities normalized to its initial values vs. experiment time at
0.1 and 0.2 A cm™?2, respectively. The prepoisoning period was
performed with Hy/air for 16—17 h. The segments voltages and the
overall cell voltage were 0.817 V at 0.1 A cm™2 and 0.770 V at
0.2 A cm~2. The initial current density distribution was in the range
of 0.08—0.13 A cm 2 in the case of an overall current density of
0.1 Acm™2. An increase in total current density to 0.2 A cm™2 led to
the current distribution in the range from 0.17 to 0.23 A cm 2. The
performances of individual segments were constant and did not
change significantly with time during the prepoisoning stage. After
the injection of 300 ppm of C;H; into the air stream, a decrease in
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Fig. 2. Voltage (a) and normalized current densities (b) of individual segments vs. time
for an overall current density of 0.1 A cm~2 and 300 ppm C,H,. Anode/cathode: H,/air,
0.212/0.504 1 min~", 100/50% RH, 48.3/48.3 kPag, 80 °C.
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Fig. 3. Voltage (a) and normalized current densities (b) of individual segments vs. time
for an overall current density of 0.2 A cm~2 and 300 ppm C,H,. Anode/cathode: H,/air,
0.212/0.504 1 min~', 100/50% RH, 48.3/48.3 kPag, 80 °C.

segments voltages together with current density redistribution
were observed. At steady state, the voltage loss was 30 and 50 mV
at 0.1 and 0.2 A cm 2, respectively, and the current density redis-
tribution exhibited similar behavior: the inlet segments were
characterized by lower performance than the outlet.

Under C,H, exposure at 0.1 A cm ™2, inlet segments 1—4 showed
the lowest current density values and the outlet segments exhibi-
ted an increase in produced current (Fig. 2). A decrease in the inlet
segments' performance reaching a value as high as 62% of their
initial performance occurred due to the adsorption of CoH, on the
Pt cathode, and its further conversion was most likely at the inlet
part of the cell, which led to a decrease in C;H; concentration
downstream and kept the cathode outlet unpoisoned. Moreover,
operation of the cell in the galvanostatic mode required obtaining a
constant current out of the entire cell, and because the current of
the inlet segments decreased, an increase of 42% in the current of
segments 7—10 occurred. Similar current density behavior was
found under CO poisoning [69—75]. Current density redistribution
varied in the range of +65% for segments 9—10 and —95% for seg-
ments 1—2 at 0.2 A cm 2 (Fig. 3). The cell and segments partially
recovered their performances after stopping C;Hy injection into the
air stream. The voltage of the cell operating at 0.1 A cm~2 reached
0.790 V vs. an initial value of 0.817 V, whereas the voltage after
recovery was 0.747 vs. 0.770 V at 0.2 A cm 2. Moreover, for the last
case, the segment current densities did not recover completely after
23 h of operation with pure air. Table 1 summarizes the details of
performance under acetylene exposure at different current
densities.

Spatial EIS data for all ten segments and the overall cell, recor-
ded at 0.1 and 0.2 A cm 2, are presented in Figs. 4 and 5, respec-

prepoisoning stage after operation with pure air for 14—15 h. The
EIS curves of the fuel cell operated without any air impurities
consist of several arcs: a high-frequency anode arc attributed to the
hydrogen oxidation reaction (HOR), which is usually negligible but
can sometimes be distinguished at low current operation; a high-
frequency cathode loop due to a charge transfer resistance and
double layer capacitance of ORR; and a low-frequency arc pre-
senting mass transfer limitations at the cathode [78]. There is an
increase in diameter of the low-frequency mass transfer loop from
the inlet to the outlet segments due to O, depletion and water
accumulation [52,53,75].

After 1 h of CH, injection at 0.1 A cm™2, there is an increase in
the cathode charge transfer resistance of segments 13 (Fig. 4).
However, in the case of 0.2 A cm~?2, the impact of C;H, on the EIS
response after 1 h of exposure is not very significant (Fig. 5). Further
CyH; injection within 5—50 h leads to a continuous increase in
impedance for segments 1-3 at 0.1 A cm~? and segments 1—4 at
0.2 A cm~2, whereas the other segments demonstrate a slight
decrease in impedance due to their increased performances. Thus,
acetylene affects mostly the inlet part of MEA during operation at
low current, and its impact is severe in the case of 0.2 Acm~2, when
cell voltage reaches ~0.72 V.

CoH; exposure was stopped after 50 h of poisoning. Operation
with pure air within 1 h results in a decrease in charge transfer
resistance for inlet segments 1—3 and a slight increase of imped-
ance responses for the other segments at 0.1 A cm~2. Recovery for
1hat 0.2 A cm2 leads to the same spatial behavior: a decrease in
impedance for segments 1—4 and a slight increase in impedance for
segments 5—10. However, a low-frequency inductive loop was
observed for segments 1 and 2. Low-frequency inductive behavior
in PEMFC was previously observed during operation with H, con-
taining CO [75,79—90]. R.D. Armstrong and M. Henderson
described a general mechanism consisting of two successive elec-
tron transfer steps involving the formation of an adsorbed inter-
mediate species and explaining the appearance of low-frequency
inductance under certain conditions [91]. Further studies were
performed by D.A. Harrington and B.E. Conway [92], Chu-Nan Cao
[93], J.-P. Diard et al. [94] and P. Cérdoba-Torres et al. [95]. The
observation of low-frequency inductance during recovery at
~0.7—0.75 V allows us to assume that there are successive reactions
involving CoH, and its adsorbed species with formation of an in-
termediate on the Pt electrode. Cathode recovery within 17 h at
0.1 Acm~2 results in a slight increase in the impedance of segments
1—4 and a slight decrease for other segments. In the case of oper-
ation at 0.2 A cm 2, a further decrease in cathode charge transfer
resistance was revealed for segments 1 and 2, and others demon-
strated slight variations, but the inlet segments did not reach their
initial state.

3.2. Fuel cell operation at high current density

Profiles of the segments' voltages and normalized current den-

tively. The initial EIS spectra were recorded during the . . )
sities recorded at total cell current densities of 0.4 and 1.0 A cm

Table 1
Summary of performance details under C;H, exposure and operation at different current densities. Localized current density under C;H, exposure refers to steady state
operation.

Current density Initial cell Transition Voltage during C;H, Changes in localized current density under C,H, exposure [%] Voltage loss after

2 - -

[Acm 7] voltage [V] period exposure [V] Segment 1 Segment 10 recovery [V]

0.1 0.817 No 0.785 —61 +41 0.027

0.2 0.770 No 0.720 -95 +59 0.023

04 0.750 8h 0.130 —52 +93 0.065

0.6 0.705 60 min 0.105 -27 +32 0.058

1.0 0.662 40 min 0.074 -19 +20 0.015
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are shown in Figs. 6 and 7. The voltage and current profiles for the
cell operated at 0.6 A cm™2 are similar to the results at 1.0 A cm™2,
and the details of the test are presented in Table 1. During the
prepoisoning phase, the cell and segments’ voltages were 0.750 and
0.662 V at 0.4 and 1.0 A cm ™2, respectively. The range of measured
individual segment current densities was 0.37—0.48 A cm 2 for the
cell operated at an overall current density of 0.4 A cm~2, whereas
the initial current density distribution was from 0.88 to 1.15 A cm 2
for the cell operated at an overall current density of 1.0 A cm 2.
The results of the injection of 300 ppm C,H, into the air stream
at 0.4 A cm 2 allow us to distinguish a transition period consisting
of two stages before the cell reached a steady state (Fig. 6). During
the first stage (first 7—7.5 h), acetylene caused a gradual decrease in
voltage. At the same time, the current redistribution behavior was
very similar to the case of 0.2 A cm~? (Fig. 3), when inlet segments
1-3 produced lower current than the others. The second stage
began as soon as the cell reached a voltage of ~0.65 V: a rapid
decrease of cell potential to 0.130 V occurred, which was accom-
panied by additional redistribution of local currents. At the begin-
ning of the second stage, a performance decrease for segments 1—6

to 0 and performance growth for segments 7—10 were detected.
When segments 1—6 increased their performances, segments 7—10
decreased, and all segments reached the steady state. Current
redistribution at the steady state was +95% for segment 10 and
—53% for segment 1 vs. their initial values (Fig. 6).

The spatial fuel cell performance under C;H; exposure at
1.0 A cm~2 was also characterized by a transition period (Fig. 7).
However, the transition period took only 40 min instead of 8 h and
was similar to the second stage of the previous case. Cell and seg-
ments' voltages immediately and rapidly decreased from 0.662 to
0.074 V under C;H, exposure. Simultaneously, the local currents
redistributed in much the same way as at 0.4 A cm~2. The segments
and cell reached the steady state with a local current distribution
of +20 + —20%.

After changing the cathode gas from a mixture of air and
300 ppm C;H; to pure air, the cell and segments' performances
recovered. Partial recovery was found for the cell operated at
0.4 A cm 2. There was a performance loss after the C;H, poisoning
test of 65 mV, and local currents did not recover their initial values
(Fig. 6). In contrast, at 1.0 A cm™2, recovery was almost complete:
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the cell voltage was 0.647 vs. the initial value of 0.662 V, and the
normalized segments' current densities were close to 1 (Fig. 7).
Spatial EIS data for all ten segments and the total cell during
different stages of the contamination test are presented in Figs. 8
and 9 for 0.4 and 1.0 A cm~2, respectively. A comparison of the
initial EIS data and the data under C;H, exposure at 0.4 A cm 2
revealed an increase in charge and mass transfer resistances for
segments 13 after 1-5 h of contaminant exposure, whereas the
others did not demonstrate any significant changes (Fig. 8). Addi-
tionally, for segments 1 and 2, a drift of impedance values at low
frequency was detected, which indicates changes in the segments’
impedance during the EIS recording [75,96]. Thus, spatial EIS
behavior during the first stage of the transition period was very
close to the results obtained at 0.1 and 0.2 A cm™2 (Figs. 4 and 5).
After 10 h of CoH;, exposure, the segments and the cell were in the
steady state, and it was clear that EIS revealed a different behavior
pattern. An increase in impedance and the formation of a low-
frequency inductive loop were observed for the cell and segments
1-9. The formation of a low-frequency negative-resistance loop for
segment 10 was previously detected in studies of the impact of CO

in hydrogen on PEMFC performance [75] and also during operation
at low air stoichiometry [52,97]. In this study, the formation of this
loop might be explained by several reasons, including the specific
impact of C;H, and other species originating from acetylene con-
version and the depletion of local oxygen concentration at the MEA
outlet caused by applied EIS perturbation current. The observation
of low-frequency inductance for segments 1-9 might be attributed
to the presence of successive electron transfer reactions, relatively
slow in comparison with ORR, with the formation of an adsorbed
intermediate species on Pt cathode surface [91—94]. Moreover,
changes in the localized EIS response indicate changes in the ORR
and C;H; transformation mechanisms on Pt with cell voltage and
current. Further CoHy injection led to a slight increase in impedance
for all segments. At high current density operation (1.0 A cm~2), EIS
data also demonstrated a significant increase in impedance
response and the appearance of a low-frequency inductive loop for
segments 1-9 after 1 h of C;H; exposure (Fig. 9). Segment 10
exhibited a low-frequency negative-resistance loop, and the spatial
behavior of all segments was very similar to the previous case.
Recovery with pure air within 1 h led to a significant decrease in
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impedance response, with disappearance of low-frequency induc-
tance in both cases (Figs. 8 and 9). However, almost full recovery
was obtained only at 1.0 A cm~2 after 15 h of operation with air
(Fig. 9), whereas even 22 h of recovery at low current operation
(0.4 A cm2) could not provide the initial spatial EIS performance,
which confirms the voltage—current data (Figs. 6 and 8).

The obtained results allow us to conclude that there are most
likely two different mechanisms of C;H; transformations/conver-
sions on Pt depending on the cell potential. At high cell voltage
(>0.65 V), acetylene affects mainly the inlet part of the MEA and
quickly transforms into products. At low potentials (~0.1 V), acet-
ylene is assumed to slowly convert into products and impact all
areas of the electrode.

3.3. Impacts of acetylene on ORR and PEMFC performance

The electrochemistry of oxygen (its reduction to water and
evolution from water) has been intensively studied due to its
fundamental complexity and importance for practical application
[98]. Oxygen reduction on platinum occurs mainly through a direct
4-electron pathway involving the dissociation of oxygen and its
subsequent reduction to water. The mechanism is complicated
because of various oxygen reduction intermediates, as well as
platinum surface oxides and/or hydroxides; moreover, the reaction
involves multiple electron transfers and elemental steps.

parallel to the Pt surface, in a bridge configuration between two Pt
atoms. After accepting electrons from electrode to the w" anti-
bonding orbital, the chemosorbed species dissociates to atomic
oxygen sitting at three-fold hollow sites [98,100].

On the other hand, oxygen can also be reduced by a series of 2-
electron reactions with the formation of hydrogen peroxide, which
can be a final product or an intermediate leading to water.

0, +2e + 2H+—>H202 Eqg = 0.67 Vvs. SHE

H,0, + 2~ + 2H" >H,0, Eq = 1.77 Vvs. SHE

To obtain maximum efficiency and avoid corrosion in PEMFC, it
is necessary to achieve 4-electron reduction, whereas 2-electron
reduction is unwanted due to peroxide formation and possible
Nafion degradation. The direct 4-electron mechanism mainly oc-
curs on a clean Pt surface.

The first step of C;H; adsorption on Pt (111) most likely includes
the formation of distorted CoH, species on triangular sites (fcc 3-
fold hollow site on Pt (111)) with the C—C axis parallel to the
metal surface and the C—C—H plane tilted relative to the surface
normal [101—104] (Fig. 10a). This bonding accompanies 7 donation
to the surface and surface back-donation to acetylene ©", giving rise
to ethylenic-like ¢ bonding orbitals between C;H; and Pt [104,105].
Thus, the adsorption of acetylene is non-dissociative [106,107]. The

0, +4e” +4H" ->2H,0 Eg = 1.229V vs. SHE (standard hydrogen electrode)

The direct 4-electron reduction requires the dissociation of ox-
ygen; however, its direct dissociation energy is quite large
(498.3 k] mol~!). The more energetically favorable path is the
superoxo/peroxo path, with transfer of the electron to the O,. The
dissociation energy of O3 and/or 05~ is much lower than the
dissociation energy of O, (98.7 k] mol™!), resulting in an easier
reaction path without a strong interaction with the catalyst [99].
Moreover, it was found that O, adsorption predominantly occurs in
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distorted CyH, surface species subsequently rearrange to vinyli-
dene structures (nz—ug—CCHz) (Fig. 10b), which are characterized by
the C—C backbone tilted up from the metal surface (angle ~30°)
[101,102,108—110]. At temperatures of 200—380 K, a variety of
different species are usually formed that include ethylidene
(M = CHCH3), di-o-bonded ethylene (M—CH,CH,—M), p-vinylidene
(M=CCH3) and ethylidyne (M=CCHj3) [101,108,109] (Fig. 10). The
number of Pt sites obscured by the one adsorbed molecule of CoH;
varies from 2 [43,107] to 3.5 [111].
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Thus, the adsorption of CyH; results in the redistribution of
electronic density between the catalyst and adsorbants and
modification of the geometric properties of the catalytic particles (a
decrease of available Pt sites for ORR). RRDE studies confirm these
assumptions and provide valuable information about the electro-
chemical conversions of C;H,. CV measurements show that the first
positive potential scan exhibited the complete absence of hydrogen
electro-oxidation [37,107]. Moreover, studies of C;H; adsorption on
Pt at high potential revealed that acetylene partially substituted
chemisorbed oxygen [112] and most likely water at low operating
potentials [104]. This result indicates that the Pt surface is covered
by CoHy, which decreases the available ECA for ORR. In addition,
there is an increase in hydrogen peroxide formation during ORR in
the presence of acetylene [37], which is similar to the effect of many
other impurities [11,13,23,31,38,39,99,113]. This observation may
suggest that adsorbed C;H, decreases the concentration of empty
and appropriate Pt-pair sites required for the dissociation of the O,
bond, so the ORR proceeds partially through the 2-electron
pathway [99]. In terms of fuel cell performance, all these findings

can explain a decrease in performance and an increase in charge
and mass transfer resistances.

Adsorbed acetylene on Pt cathode under fuel cell operating
conditions can transform by both chemical and electrochemical
mechanisms, and it is very important to understand the processes
to develop mitigation procedures. It has been found that under
RRDE conditions at potentials less than 0.2 V, acetylene is reduced
to ethylene and ethane [107,111,114], whereas at potentials greater
than 0.35 V it is oxidized to CO, [43,107,111]. Thus, the impacts of
CyH; on fuel cell performance should be considered depending on
the operating potential of the cell.

At low current density or high potential (>0.65 V) and under fuel
cell operating conditions, there is an electrochemical and chemical
oxidation of acetylene with almost full conversion of CoH, to CO;
[34]. For electrochemical oxidation, the observed negative pressure
dependence indicates that the rate-determining step involves a
species other than acetylene. Moreover, the Tafel slope of RT/F
suggests a reaction following the first transfer step at low coverage,
or following any charge transfer step at full coverage. For full



T.V. Reshetenko, J. St-Pierre / Journal of Power Sources 287 (2015) 401—415 409

1.0

1.0
Seg 1 Seg 2

4m Z [Q em?]

o
N

4Am Z [Q cm?]
o
o

.
o
N

00 02 04 06 ) 08 10 00 02 04 06 08 10 00 02 04 0.62 08 1.0
Re Z [Q cm’] ReZ[Qcm] Re Z [Q cm’]

1.0
Seg7 | 10} Seg8 | I N Seg 9
. os} /\ 5

4m Z [Q cm?]

0 2 4 6 8 10 12

—— 15 h Air
——18 h, 1 h C2H2
22 h, 5 h C2H2
———42 h, 25 h C2H2
47 h, 30 h C2H2
=50 h, 1 h Air
64 h, 15 h Air

-Im Z [Q cm?]

4 e
-6 -4 -2 0 00 02 04 06 08 1.0
Re Z [Q cm] Re Z [Q cm’]

Fig. 9. EIS for segments 1-10 and the overall cell during 300 ppm C,H, exposure test at 1.0 A cm~%; 1 indicates on an increase of impedance response under C;H, exposure during
30 h, 2 — changes in EIS curves after 1 and 15 h of recovery. Anode/cathode: Hy/air, 1.059/2.552 1 min~', 100/50% RH, 48.3/48.3 kPag, 80 °C.

| N

H/C H/C\ /
H H H
\é/
H
“\c/ !
H H
\ I Pt Pt

d)
Fig. 10. Schematic representation of adsorbed acetylene (a), vinylidene (n?-u3-CCH,) (b), ethylidene (M=CHCH3) (c), di-c-bonded ethylene (M—CH,CH,—M) (d), p-vinylidene (M=

CCH,) (e) and ethylidyne (M=CCHj3) (f).



410 T.V. Reshetenko, J. St-Pierre / Journal of Power Sources 287 (2015) 401—415

coverage, no pressure dependence would be expected. It should be
mentioned that for the electrochemical pathway, water discharge is
required, and the reaction mechanism can be formulated as
[41,43,107,115]:

CGHy + [] « [CoHa],
where [C3H,] is most likely some 1?-j13-CCH, species.

HyO +[] « [OH] +H" +e”

[C;Hy] + [OH] — intermediates (rate — determining step)

intermediates + HyO — ... —» CO + H" + e~ +[]

It is proposed that the rate determining step involves single
electron transfer and might proceed through the deprotonation of
adsorbed acetylene [107]:

[CoHz] + [OH] — [CoH] + H20 + []
[Csz] — [CzH] +H"+e”

or through the formation of adsorbed oxygenated acetylene
species:

[CHy] + [OH] — [CHOH] + HY + e
[CoH] + [OH] — [CHo0H]

Studies of acetylene chemical oxidation on Pt revealed contro-
versial conclusions about the mechanism. Previously, it was shown
that the first step of oxidation at 1000 K is the activation of C—H
bonds. Surface carbon can then react with adsorbed atomic oxygen
to form CO, which then either desorbs or oxidizes further to CO;
[116]. In a temperature-programmed desorption study of coad-
sorbed atomic oxygen and acetylene, it was determined that acet-
ylene oxidation proceeds through an intermediate with the
stoichiometry C:H = 1:1, suggesting that acetylene is oxidized as
C,H; [117]. Recently, it was shown that during acetylene oxidation,
M%-u3-CCH, species and atomic oxygen are the primary in-
termediates involved in the reaction. Moreover, it is proposed that
acetylene oxidation occurs in a single step at 330—420 K when
oxydehydrogenation and skeletal oxidation proceed simulta-
neously [110]. Schematically, the chemical oxidation of acetylene
might be presented by the following reactions:

GHy + [] « [CHo]
02 +[] « [02]
[02] — 2[0]

[CoHz] + [O] — ... — CO2 + Hy0 + (]

In the operating conditions of the fuel cell cathode at low cur-
rent density, it is reasonable to assume that the chemical oxidation
of adsorbed 1?-p3-CCH, species by atomic oxygen occurs together
with electrochemical oxidation.

The spatial EIS data and current distribution obtained at low
overall current density operation demonstrated that only the inlet
part of MEA (segments 1—4) is affected by acetylene, whereas the
outlet segments are not poisoned by the contaminant (Figs. 2—5).
This observation allows us to conclude that at high potential

(>0.65 V) and under fuel cell operating conditions (e.g., Pt cathode,
80 °C), acetylene adsorption and its further chemical and electro-
chemical oxidation occur relatively fast in comparison with ORR.

As soon as the cell voltage reached 0.65 V, it became obvious
that there was a change in the mechanism of acetylene trans-
formation (Fig. 6). Moreover, there was a decrease in acetylene
conversion to ~50% at a cell voltage of 0.67 V and no conversion at
0.55 V [34]. S. Gilman studied the coverage of the Pt electrode
surface by acetylene at different potentials using the multipulse
potentiodynamic method [111]. Maximum surface coverage (~80%)
was observed at electrode potentials of 0.2—0.4 V, and the decrease
in coverage at high and low potentials was explained by C,H;
oxidation and reduction, respectively, which was also confirmed by
CV results [37,107]. The lack of any acetylene conversion at cell
voltages of 0.55 V and lower was shown in Refs. [34], confirming
our assumption about acetylene coverage on Pt. Previously, T.M.
Beloslyudova and D.V. Sokol'skii showed that the adsorption of
acetylene on a platinum surface at 0.6 V resulted in a potential
decrease of 0.35 V and hydrogen evolution [118]. The authors
explained observations by the possible dehydrogenation of acety-
lene and formation of carbon deposits. Thus, at this range of elec-
trode potential, 0.6—0.2 V, there are no acetylene electrochemical
reactions: acetylene adsorbs on the Pt surface and affects the whole
electrode area, decreasing the cell voltage (Figs. 6 and 7). In addi-
tion, the observed current density redistribution accompanying a
voltage drop can be explained by fast and strong acetylene
adsorption, when acetylene occupies all available Pt sites. More-
over, the strong C;H, adsorption is confirmed by DFT calculations,
which showed that the adsorption energy of C;H, on Pt (111) varies
from 67.8 to 209 k] mol~! depending on the adsorbate's structure
[119], whereas for O; it is in the range of 16.4—37.6 kj mol~! [120].
As soon as the Pt surface is covered by acetylene and cell voltage is
as low as ~0.1 V, electroreduction of the adsorbed acetylene occurs
with the formation of C;H4 and C,Hg. Later, the products of
reduction desorb and free the Pt surface, leading to the steady state
of the segments and cell.

As mentioned previously, the electrochemical reduction of C;H;
under the conditions of a rotating disk electrode (RDE) or RRDE
occurs at low electrode potentials (<0.2 V) with the formation of
ethylene and ethane [106,114,118,121]. It was mentioned that the
limiting rate of acetylene reduction corresponds to the maximum
rate at which acetylene can diffuse to the electrode in an electrolyte
solution [121]. Thus, the electrochemical reduction of acetylene in
RRDE is characterized by a high reaction rate constant, and acety-
lene adsorption and diffusion are most likely rate-determining
processes [106,121]. However, the detailed studies of electro-
chemical C;H; hydrogenation demonstrated a negative effect of
acetylene partial pressure, indicating that neither acetylene nor any
intermediates derived from it could be involved in the rate-
determining step [114]. It was suggested that the rates of acety-
lene hydrogenation are limited by the supply of electrically dis-
charged hydrogen ions at 0.05—0.2 V. The authors proposed the
following mechanism of C;H; electroreduction:

CHy + [] < [CHy]
[l+H" +e o [H]
[CoHz] + [H] < [CoH3] + []
[CoHs] + [H] « [CoH4] + ]
It should be noted that together with the acetylene electro-

reduction, there is oxygen reduction, and both processes require
protons and free Pt surface. The higher rate of ORR in the conditions
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of the operating fuel cell enables oxygen to compete more favorably
for hydrogen and suitable Pt surface sites. The observed low-
frequency inductance in spatial EIS recorded at high current den-
sity operation (Figs. 8 and 9) requires explanation with respect to its
mechanistic meaning. Inductance implies that the current signal
follows a perturbation with a significant phase delay, which can be
rationalized by assuming slowness of [CoH;]| coverage relaxation:
the acetylene coverage decreases with increasing perturbation
current signal, but it takes some time before new steady state
coverage is established and the corresponding current flows
[91—94,122]. This phase delay causes the observed low-frequency
inductance, indicating that the acetylene electrochemical reduc-
tion is most likely a slow process in comparison with oxygen
reduction at the given conditions. Previous experimental and
theoretical studies confirmed this assumption and showed that the
activation energy for ORR on Pt is in the range of 24—77.2 k] mol~!
[120,123—125], which is lower than the activation energy for the
hydrogenation of acetylene (108—115 kJ mol~') [119].

3.4. Effect of CoH, exposure on fuel cell performance and ECA after
recovery

A comparison of initial ECA values for MEAs samples showed
that ECAs varied. The anode surface area was in the range of
67—85 m? g~ ! whereas for the cathode, the surface area range was
69—81 m? g~ 1. However, the initial performance of the MEAs was
close, cell voltage varied from 0.650 to 0.670 V at total current
density of 1.0 A cm~2. The distributions of the anode and cathode
ECA differences are presented in Fig. 11. The ECA difference was
calculated between values after (EOT) and before (BOT) CH
exposure. The evolution of ECA after the contamination tests
indicated that the anode and cathode losses were in the range of
0—12.2% and 1-21.6%, respectively. Observations showed that the
anode ECA was affected less than the cathode ECA. Operation at
0.1 A cm~2 resulted in the most significant ECA losses of 12.2 and
21.6% for anode and cathode, respectively (Table 2). The ECA
decrease and noticeable catalyst degradation observed at
0.1-0.4 A cm~2 could be attributed to the impact of impurity as well
as low current operation. Acetylene exposure at 0.6—1.0 Acm™2 led
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to cathode ECA loss of 9—14.4%, which is typically observed for a
fuel cell operated without any impurities in an air stream. Thus, this
loss might be associated with the degradation processes, and ECA
was not seriously affected by C;H,. After the acetylene contami-
nation tests, there was no pinhole formation in the MEA, and the
overall hydrogen crossover current varied from 131 to
1.49 mA cm? for different MEA samples.

Fig. 12 presents the distributions of voltage differences between
the values after (EOT) and before the contamination test (BOT) at
fixed current densities as functions of the segment locations. The
acetylene exposure test at 0.1 A cm~? resulted in a spatial perfor-
mance loss of 30 mV obtained at low current density operation.
However, the performance loss was reduced with increasing the
operating current. The spatial fuel cell performances before and
after CoH, exposure were analyzed in terms of activation, ohmic
and mass transfer overpotentials as described in the Experimental
section and reference [57] (Table 2). The data revealed that the
performance loss at low current density is caused by increased
activation overpotential due to a decreased ECA. A slight perfor-
mance improvement (~25—30 mV) was found after the contami-
nation test at 0.2 A cm 2 because of reduced mass transfer
overpotentials. A comparison of the curves for the cases of 0.4 and
0.6 A cm 2 revealed non-uniform performance degradation during
the contamination test, resulting in performance decreases of
50 mV for the inlet part of MEA, whereas the outlet demonstrated a
higher performance. Under these conditions, the performance loss
is explained by increased activation and mass transfer over-
potentials. The most interesting observation was the lack of any
significant performance losses after acetylene exposure at
1.0 Acm™2

The observed voltage losses of the samples can be attributed to
both the impact of the contaminant and other fuel cell degradation
mechanisms. However, it is currently difficult to separate these two
types of contributions. Operation at a low current density of
0.1-0.4 A cm™2, where ORR kinetics control the reaction rate,
usually affects the ECA and results in an activation overpotential
increase. At high currents, electrode and gas diffusion layer (GDL)
degradation due to water production and removal of PTFE is also
present [126]. It is assumed that C;Hy could facilitate degradation
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Table 2
ECA and performance changes after CoH, exposure at different current densities.
i of C,H, exposure [A cm?] AECA [%] AVoltage [mV] Analysis of voltage overpotentials
Anode Cathode
0.1 —-12.2 -21.6 -30to 0 Increase in activation losses (5—30 mV)
0.2 —-4.9 -1.0 +30 Decrease in mass transfer losses (~30 mV)
0.4 -34 -21.5 —50to —10 Increase in activation (10—25 mV) and mass transfer losses (5—30 mV)
0.6 +0.1 -9.5 —50 to 20 Increase in activation (0—15 mV) and variation in mass transfer losses (—10 to 20 mV)
1.0 -7.9 -144 -5t05 No significant impact of any overpotential

under certain conditions. For instance, it was shown that acetylene
shifts the ORR mechanism from a 4 to a 2-electron path and causes
an increase in HyO, production [38,43]. Peroxide decomposes the
ionomer in the membrane and catalyst layer, which results in a
reduction of the ECA and modification of hydrophilic/hydrophobic
properties of the catalyst layer. An increase in activation over-
potential for tests at 0.1, 0.4 and 0.6 A cm~2 was observed. However,
the most substantial effect was found at 0.1 A cm™2. It is also
assumed that acetylene impact could disrupt mass transport by
locally increasing the oxygen flux and decreasing the oxygen con-
centration at the catalyst surface due to the ECA decrease. This
situation is similar to the mass transport loss observed with a
decrease in catalyst loading [127]. The impact of mass transfer
losses was revealed for 0.4 and 0.6 A cm~2 cases, whereas for
1.0 A cm? a noticeable effect was not found. The introduction of
CyH; at 1.0 A cm 2 results in the lowest cell voltage of 0.07 V, which
most likely leads to a faster acetylene reduction, a low production
level of peroxide and a low catalyst coverage by acetylene. It is
likely that the exceptional 0.2 A cm~? results are exclusively
ascribed to the operating conditions, peculiarities of CoH, impact
under these operating parameters and some certain properties of
the MEA. Thus, the operation of a fuel cell at low current under C;H;
exposure leads to non-homogeneous performance degradation,
whereas high current can likely mitigate the negative impact of the
contaminant and prevent degradation.

4. Conclusions

The spatial performance of a PEMFC exposed to 300 ppm C;H;

was studied using a segmented cell system at different operating
currents. Acetylene exposure caused a cell performance decrease of
2050 mV at 0.1-0.2 A cm~2 and 590—620 mV at 0.4-1.0 A cm ™2,
The voltage decrease was accompanied by significant changes in
the current density distribution.

At low current operation, localized performance was rapidly
redistributed immediately after C,H; injection. Inlet segments 1—4
showed a decrease in performance due to the impact of C;Hy,
whereas the downstream segments demonstrated an increase in
current. The observed spatial performance can be attributed to
acetylene adsorption and its chemical and electrochemical oxida-
tions to CO,, which are likely fast and occur mostly at the inlet part
of the cell.

As soon as the cell reached a voltage of 0.55—0.6 V under acet-
ylene exposure at 0.4—1.0 A cm 2, there was a drastic redistribution
of the localized currents simultaneously with a sharp voltage
decrease to 0.07—0.13 V. This redistribution can be explained by the
lack of electrochemical acetylene reactions at potentials of
0.6—0.2 V, which allows fast and strong C;H; adsorption to occur, so
that acetylene occupies all available Pt sites at the electrode. As
soon as the Pt surface is covered by acetylene and the cell voltage is
low as ~0.1 V, C;H; electroreduction begins the formation of C;Hy
and CyHg. At steady state, the inlet segments produced less current
than the outlet segments. Acetylene electroreduction occurs
together with oxygen reduction, and both processes require pro-
tons/hydrogen and free Pt surface. The higher rate of ORR under the
conditions of the operating fuel cell enables oxygen to compete
more favorably for hydrogen and the Pt surface. The observed low-
frequency inductance in spatial EIS recorded at high current density
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Fig. 12. Distributions of performance differences between the values after (EOT) and before (BOT) C;H, exposure tests at different current densities. Anode/cathode parameters for
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operation allows us to assume that acetylene electrochemical
reduction is most likely slow in comparison with oxygen reduction
under the given operating conditions.

A partial recovery of the cell voltage was observed after stop-
ping the C,H; injection at 0.1-0.6 A cm 2, and full recovery was
reached at 1.0 A cm 2. Analysis of the spatial performance and ECA
before and after the acetylene exposure tests showed that at low
current operation (except 0.2 A cm2), there was non-
homogeneous performance loss (~50 mV), whereas high current
can likely mitigate the negative impact of the contaminant and
prevent degradation.
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