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a b s t r a c t

This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a
lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a
modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-
instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit
discrete-time state-space model based on actual cell parameters; the control methodology is used to
compute a fast charging profile that respects input, output, and state constraints. Results show that MPC
is well-suited to the dynamics of the battery control problem and further suggest significant perfor-
mance improvements might be achieved by extending the result to electrochemical models.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

A major obstacle to widespread use of electric vehicles remains
the high cost and limited range associated with on-board energy
storage systems (ESS). Market acceptance is further hindered by a
lack of the high performance energy management systems (EMS)
needed to supply the high power and energy demands presented
by drivetrain electrification [1e3]. Consequently, most commercial
offerings are based on hybrid energy storage systems (HESS), which
aim to exploit the advantages of different ESS solutions while
minimizing their respective drawbacks. All-electric vehicles (EVs)
must overcome current range and cost limitations in order to gain
appreciable market acceptance.
avier), mtrimbol@uccs.edu
Electric vehicle energy storage is accomplished by devices that
accumulate energy electrochemically to perform useful work at a
later time. Examples include batteries, fuel cells, capacitors, and
super (ultra) capacitors. The present work will address electro-
chemical storage using lithium ion batteries.

The term battery is often used to describe both a single battery
cell and a multi-cell battery pack. Battery cells are defined as the
smallest individual electrochemical unit, and deliver a voltage
dependent on a specific cell chemistry. Battery packs are assembled
from groups of cells organized into modules in series and parallel
configurations. A battery pack's operation and safety is managed by
a battery management system (BMS) consisting of sensor and
control circuitry.

It is well known that lithium ion battery performance (and
indeed safe operation) can be significantly affected by the choice
of charging strategy employed to replenish the battery. The
ability to bring a battery to a specified state-of-charge in the
shortest time possible is intrinsically limited by internal
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1 An ionic bond is a type of chemical bond formed due to the attraction between
an atom that has lost one or more electron and an atom that has gained one or
more electrons.
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electrochemical processes. Additionally, exceeding certain cur-
rent rates and cell voltages can cause irreversible damage and
capacity loss that will ultimately degrade long-term performance.
The most widely used charging profile for lithium-ion batteries is
constant-current constant-voltage (CCCV). In this scheme, the
battery is first charged at a constant current level until a specified
voltage limit is reached, after which the voltage limit is held
constant while the current is proportionately reduced. Although
CCCV is relatively easy to apply, it is often based on conservative
voltage limits and thus may not take full advantage of the true
operating range of the battery.

Alternative charging strategies have begun to appear in the
literature with some of the most promising motivated by control
theory. Recent work by Hu et al. [4] devises a multi-objective
optimization problem to trade-off minimization of charge time
with energy loss by utilizing a linear quadratic regulator (LQR)
problem formulation and a simple equivalent circuit model.
Bashash et al. [5] utilize multiple objectives to obtain vehicle charge
pattern optimization between energy cost and battery longevity,
while other approaches have included fuzzy logic [6] and consec-
utive orthogonal arrays [7], to name a few.

Most battery management control strategies address system
(pack)-level control in order to achieve system level performance
objectives (e.g., cell balancing). Surprisingly little has been done at
the cell-level to improve overall battery performance and extend
lifetime. One approach seemingly well-suited to this task is model
predictive control (MPC), which is gaining popularity throughout
industry [8]. In Ref. [9] the authors propose a nonlinear model
predictive control approach to minimize the charging time of a
lithium ion battery based on a complex underlying electrochemical
model. Employing a ‘look-ahead’ strategy, MPC can foresee dy-
namic changes before they happen and efficiently compute
stepwise-optimal input control to achieve a quadratic performance
objective. More importantly however, MPC is able to conform to
hard constraints imposed on designated problem variables. This
feature makes MPC particularly appealing for the battery control
problem, where respecting certain voltage and current limits can be
shown to influence both instantaneous and long-term cell perfor-
mance [10].

MPC has shown promise in application to hybrid system per-
formance; for example [11], and [12] demonstrate a fuel cell-UC
configuration, and [13] and [14] use a fuel cell-battery set. These
works exploit a degree of freedom introduced by a secondary en-
ergy source (either battery or ultracapacitor) in order to optimize
operation of hydrogen fuel cells; in this case, constraints are
imposed to avoid a detrimental oxygen starvation condition. A
power flow control solution is presented in Refs. [13] and [14],
while control on the current applied is presented in both [11] and
[12].

The effectiveness of cell-level control is ultimately limited by
the underlying mathematical model of battery cell dynamics.
Existing cell-level implementations rely almost exclusively on
equivalent circuit models of battery dynamics due to their
inherent simplicity and general effectiveness. Related work was
accomplished by Moura et al. [15] where the problem of film
growth in Li-ion battery packs was addressed via switching. There,
the authors propose an unequal charging profile obtained through
switches controlled by deterministic dynamic programming
(DDP) and DDP-inspired algorithms. Although showing effective
reduction in film growth, the approach is computationally
demanding.

Previous work by Plett ([16,17]) has shown successful imple-
mentation of an Extended Kalman Filter (EKF) to estimate cell SOC
using equivalent circuit models. For applications where it is of in-
terest to limit SOC during operation, it is suggested that MPC may
be used to optimize selected measures of cell performance while
respecting such limits.

To that end, it is of interest to examine what can be achieved
applying MPC techniques to the control of a battery cell using an
equivalent circuit model. Specifically, this paper examines the po-
tential efficacy of MPC to carefully regulate input current when
applied to the problem of “fast charge” of a battery cell. In order to
clearly illustrate the behavior of MPC with fundamental battery
cell-level dynamics, we confine our treatment to discrete-time
equivalent circuit cell models representing linear, time-invariant
systems. Extensions to reduced-order physics-based models will
follow in a subsequent paper.

This paper is organized as follows. In Section 2 we review the
basics of battery cell modeling and develop the expressions
defining the equivalent circuit model forming the basis of this
study. Section 3 introduces the principles of Model Predictive
Control and details the modifications employed to incorporate a
direct feed-through term. Section 4 formulates the fast-charge
optimization problem and Section 5 presents results.

2. Battery cell modeling formulation

2.1. Electrochemistry basics

Vehicle autonomy and reliable performance depend heavily on
accurate knowledge of a battery's internal state. When used
together with ‘smart’ controls, dynamic state information can
enable significant improvements in battery life and driving range.
However, understanding the fundamental processes driving cell
behavior is a critical first step to realizing these gains.

Candidate battery technologies for drivetrain electrification
include: lead acid, nickelmetal hydride (NiMH), and lithium ion (Li-
ion). Li-ion batteries have emerged as the candidate of choice due
to their high specific energy, low self-discharge rates and long cycle
life. Additionally, lithium-ion cells show no memory effect and the
high open circuit voltage characteristic allows them to provide the
same power at lower current, or by using a reduced number of cells
compared to NiMH and NiCd.

2.2. Lithium-ion battery operation

A battery produces electricity by releasing stored potential en-
ergy through an electrochemical process. Typical cells consist of
three basic elements: a positive electrode, a negative electrode and
and electrolyte material. The two electrodes are usually made of
different substances, both of which chemically react with the
electrolyte as ionic bonds.1 A separator material electrically isolates
the positive and negative electrodes to avoid self discharge of the
cell. Lithium-ion batteries work differently from other electro-
chemical cells in that they depend on an “intercalation”mechanism
rather than a standard redox reaction. Intercalation involves the
insertion of lithium ions into the crystalline lattice of the host
electrode without altering its crystal structure.

Presently, most commercial Li-ion cells use some form of
graphite (C6) for the negative electrode material; a commonly used
material for the positive electrodes is LixCoO. However, since this
material encounters difficulties in scaling, viable candidate cathode
materials also include LixMn2O4 and LixFePO4. Each electrode is in
electrical contact with a current collector, which transports the
electrons from the solid electrode material to the external circuit.
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Typically, the negative current collector is made of copper and the
positive current collector is comprised of aluminum. The electrolyte
in a Li-ion cell can be a solid ionically conductive polymer or a
conductive liquid. The electrolyte conducts lithium ions between
the electrodes when a battery conducts an electric current through
an external circuit. Lithium is stored in the electrodes as a neutrally
charged atomic form while Liþ ions move through the electrolyte.
Lithium enters the surface of an electrode particle, but diffuses
inward to equalize the concentration of lithium within the elec-
trode (see Fig. 1).

During cell discharge, the electrochemical potential energy at
the negative electrode favors a chemical process that releases
electrons into the external circuit and positively charged ions into
the electrolyte, thus lithium ions are dissociated from the negative
electrode and migrate across the electrolyte to be inserted into the
crystal structure of the positive electrode. Simultaneously, due to
the electrochemical potential at the positive electrode, compen-
sating electrons traverse the external circuit and are accepted by
the positive electrode to balance the reaction. This chemical process
also allows the positive electrode to accept positively charged ions
from the electrolyte. The process is completely reversible. Thus the
lithium ions pass back and forth between the electrodes during
charging and discharging.
2.3. Equivalent circuit formulation

The electrochemical dynamic relationship for a Li-ion cell is
fundamentally a function of current, voltage, and temperature.
Mathematical models of battery dynamics used in most model-
based estimators and model-based controllers fall into two broad
categories: (1) empirical models, which include black box [18] and
equivalent circuit models (ECMs) [19]; and (2) first principles,
physics-based models [20,21].

The equivalent circuit model is a highly simplified representa-
tion based only loosely on electrochemistry [19]. The model is
described by a circuit of resistors and capacitors, the values for
which are typically found via empirical system-identification ex-
periments. The ECM is considerably simpler than a first principles
model, and generally amenable to efficient computation compared
to full-order physics-based models. Nonetheless, ECM's have
important limitations. Since the internal model variables are
Fig. 1. A solid particle of lithium illustrating the diffusion of Liþ and movement due to
electrochemical potential changes.
currents and voltages describing circuit behavior, dynamic elec-
trochemical properties of the cell cannot be gleaned from an ECM.
Regardless, the ECM is widely used in industry and for that reason
will serve as an important first step in the characterization of cell-
level performance using model predictive control techniques.

A number of different topologies are often used for modeling
battery cells with equivalent circuits. A comprehensive study is
presented in Ref. [22] in which a comparison of twelve equivalent
circuit models for Li-ion batteries is performed. Among those
examined, numerical results point to a superior performance of
the first-order RC for LiNMC cells, while the first-order RC model
with one-state hysteresis appears to be the best choice for LiFePO4
cells. Due to its overall simplicity, the first-order RC, also known in
the literature as the Thevenin model, was selected for this work.
The Thevenin model consists of a single resistance and one RC
ladder element (see Fig. 2). Resistance R0 represents the ohmic
resistance generated from the instantaneous response obtained
when a load is connected to the circuit. The single RC ladder
models a diffusion process, where R is the polarization resistance,
and C is the electric double layer capacitor, which is used to
describe the transient portion of the response realized during
charging and discharging.

The open circuit voltage (OCV) is represented by a state-of-
charge dependent ideal voltage source, OCV(z(t)). The SOC/OCV
relation is typically nonlinear and obtained from a look-up table.

Utilizing a discrete-time representation, and assuming that the
input current i(t) is held constant over each sampling interval, the
state-space system can be described by the following vector-matrix
expression:

�
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�
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R1C1
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��
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vk ¼ ½0 �1 �
�
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vC1 ;k

�
þ ½�R0 �ik þ OCVðzkÞ: (2)

A temperature dependance may also be added to the open-
circuit voltage function since the cell's OCV is a static function of
temperature in addition to OCV, i.e., OCV(zk,Tk). It is important to
note that the presence of the ohmic resistance contributes a direct
feed-through term [�R0] to the state-space output equation. This
will necessitate a slight modification to the standard model pre-
dictive control formulation.
Fig. 2. The Thevenin model.
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3. Model predictive control

3.1. Fundamental principles

Model predictive control belongs to a class of computer control
algorithms thatmake use of an explicit process model to predict the
future response of a plant. Generally speaking, at each sampling
interval MPC attempts to optimize future plant behavior by
computing a sequence of future manipulated variables where only
the first input in the optimal sequence is used. The entire calcula-
tion is then repeated at subsequent intervals. MPC was originally
developed to meet the specialized control needs of power plants
and petroleum refineries as an alternative algorithm to the con-
ventional proportional integral derivative (PID) control approach
and remains as the only advanced control technique that has had
widespread impact on industrial process control [23]. This is largely
due to the fact that it is the only control methodology that can deal
explicitly with real-world constraints since operation near
constraint boundaries is often necessary for themost profitable and
efficient system operation.

3.2. Standard MPC state-space model

The following development assumes a linearized, discrete-time,
state-space model of the plant. For simplicity, we will initially as-
sume there is no direct feed-through term, i.e., D ¼ 0:

xm; kþ1 ¼ Amxm; k þ Bmuk
yk ¼ Cmxm; k;

(3)

where x is an n-dimensional state vector, u is an l-dimensional
input vector, and y is an my-dimensional vector of measured out-
puts. The sub-index k is the time sampling instant, and the notation
with the subscript m is used as a reference to the “original” system
model and differentiates it from the augmented model that will be
presented next.

Most implementations introduce integral action implicitly in
order to eliminate steady-state error by modifying the state-space
model through a differencing operation performed on both sides
of Eq. (3). This gives:

Dxm; kþ1 ¼ AmDxm; k þ BmDuk; (4)

where we denote the first difference of the state variable by
Dxm, kþ1¼ xm, kþ1 � xm, k and Dxm, k ¼ xm, k � xm, k�1 and similarly for
the control variable by Duk¼uk� uk�1.

The corresponding expression for the output yk is then
computed by first defining a new augmented state vector:

xk ¼ Dxm; k
yk

� �
; (5)
and noting that

ykþ1 � yk ¼ Cmðxm; kþ1 � xm; kÞ ¼ CmDxm; kþ1

¼ CmAmDxm;k þ CmBmDuk: (6)

Combining Eqs. (5) and (6) the augmented state-space model
can be written as:

(7)

where q denotes the number of outputs.
3.3. Discrete-time state-space MPC incorporating feedthrough

Standard forms of the MPC algorithm (e.g., [24]) assume a
strictly causal system, which implies D¼ 0 in the state-space
description. However, as previously stated, mathematical models
of battery dynamics yield an output equation that is a function of
both current states and present input; the latter introduces the
direct feed-through component. Since the instantaneous ohmic
resistance exhibited by battery cells can be significant, it is
important to take this aspect into explicit account when config-
uring the cell model for controller design. Consequently, we shall
introduce a modification to the standard algorithm in order to cater
for the ohmic resistance effect. This is accomplished by leveraging
the work of Ordys and Pike [25], where we first consider the SISO
system described by the following linear discrete-time, state-space
equations:

xm; kþ1 ¼ Amxm k þ Bmuk
yk ¼ Cmxm k þ Dmuk:

(8)

Re-defining the state vector from Eq. (8) as:

the system in Eq. (8) can be re-written in augmented form as

ckþ1 ¼ ~Ack þ ~BDukþ1
yk ¼ ~Cck;

(9)

where we now define



Table 1
Parameter identification results (25 �C).

Parameter Value

R0 0.0121 U
R1 0.0155 U
R1C1 166.8685 s
Q 5.160 Ah
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This form allows the standard implementation machinery to be
used on the re-defined quantities.
3.4. Predictive control algorithm

Unlike standard optimal control formulations which compute
control magnitudes, MPC control inputs are defined in terms of
their step-wise increments:

Duk;Dukþ1;…;DukþNc
;

where k represents a particular time step and Nc is a user-defined
control horizon. This construction assumes that all future control
input increments beyond the control horizon up to a prediction
Fig. 3. (a) SOC, (b) terminal voltage, and (c) charge cu
horizon Np (where Np � Nc) are equal to zero, which implies that
control inputs from Nc to Np are held constant (i.e., are held equal to
ukþNc

). Of course the information contained in augmented state
vector ckþi allows predictions beyond Np, but for computational
effeciency it is customary to limit the prediction horizon as per-
formance will allow.

Future state variable vectors are stacked into the matrix

c ¼ �
ckþ1jk ckþ2jk … ckþmjk … ckþNpjk

�T
; (10)

where ckþmjk is the predicted state vector at time kþmwith given
current plant information at time increment k.

Based on the state-space model given in Eq. (7) and on the
future state variables defined in Eq. (10), the predicted output
variables are propagated in time and assembled into a compact
matrix as

Yk; Np
¼ F~Ack þ GDUk; Nc

; (11)

where, Yk; Np
¼ �ykþ1jk ykþ2jk ykþ3jk … ykþNpjk

�T is the
sequence of future predicted outputs,
DUk; Nc

¼ �
Duk Dukþ1 Dukþ2 … DukþNc

�T is the sequence of
future control inputs, and data matrices F and G are defined as
rrent for 1C rate, Np¼ 10, Nc¼ 1, and l ¼ 0.0001.
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3
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3.5. Quadratic optimization problem

For a given set-point rk at sample time k, the control objective is
to find the best input sequence DU such that a specified cost
function is minimized. First, let

Rs ¼ Rsrk;

be the vector that contains the step-wise set-point information,
where Rs ¼ ½1 1 1 / 1 �T is a vector of length Np. Next, define
cost function J as

Jk ¼
�
Yk;Np

� Rs
	TQ�

Yk;Np
� Rs

	þ DUT
k; Nc

RDUk; Nc
; (12)

where the first term aims tominimize errors between the predicted
Fig. 4. (a) SOC, (b) terminal voltage, and (c) charge cu
output and the set-point signal while the second term reflects
weighting placed on the size of DU. Q is a positive semi-definite
matrix. The weighting matrix R ¼ rwINc�Nc

ðrw � 0Þ, where rw may
be used as a tuning parameter to affect the desired closed-loop
performance.

The optimal DU that minimizes the cost in Eq. (12) is found as
the vector solution of the stationarity condition

vJk
vDUk

¼ 0;

and is computed as

DU�
k; Nc

¼


GTGþ lI

��1
GT



Rs � F~Ack

�
: (13)

Optimal parameter vector DU�
k; Nc

contains future control
values computed for time indices k to kþNc; though the receding
horizon control principle stipulates only the first sample of the
sequence is adopted as the current control input. The procedure
is repeated at the next time sample. As mentioned previously,
this formulation assumes all control increments beyond the
control horizon (up to the prediction horizon) are set equal to
zero.
rrent for 2C rate, Np¼ 10, Nc¼ 1, and l ¼ 0.0001.
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4. Applying MPC to improve performance of a Li-ion battery
cell

4.1. Fast-charge problem

MPC will first be applied to the battery fast-charge problem
incorporating hard system constraints. The traditional fast-charge
problem consists of finding the input current time profile
required to bring a battery cell from an initial state-of-charge to a
specified final value in the shortest possible time, i.e.,

min
Iapp

time to charge½ �
SOC0/SOCf

: (14)

This problem is of the min-time optimal control type, and when
real-world constraints are imposed on input current and cell ter-
minal voltage, it produces the well-known CCCV profile. Min-time
problems are notoriously difficult to solve in practice; so for MPC
implementation, we instead fashion a cost function designed to
bring about essentially the same result through a pseudo min-time
problem:

Jk ¼
XNp

j¼0

�

zkþjþ1 � rkþjþ1

�T

zkþjþ1 � rkþjþ1

�

þ l


Dukþjþ1

�T

Dukþjþ1

�

: (15)
Fig. 5. Influence of the penalty weig
Here we set Q¼ I, and R ¼ l (scalar-valued for single input
systems). In essence, the cost function is designed to minimize the
normed distance between the measured SOC and the output
reference value while penalizing the magnitude of the input cur-
rent rate. The investigation involves de-tuning a (non-zero) penalty
on the current rate in such a way that it reaches a near-optimal
solution as we allow the current to achieve large step-wise
increments.
4.2. Equivalent circuit cell model

4.2.1. Cell specifications
The present study utilizes a model of a rechargeable lithium-ion

polymer battery manufactured by LG Chem, Ltd [26]. which has a
nominal capacity of 6000 mAh and a nominal voltage of 3.85 V. The
model parameters were obtained through a data-fitting process
applied to inputeoutput data obtained from controlled battery cell
tests [27]. The identification results for a Thevenin equivalent cir-
cuit model assuming a cell efficiency of h ¼ 0.997 and operating
temperature of 25 �C are shown in Table 1.
4.2.2. State-space model
Introducing the cell identification results of Table 1 into Eqs. (1)

and (2), gives a second-order, discrete-time state-space represen-
tation of the equivalent circuit model:
hting, l (for Np¼ 10 and Nc¼ 1).
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�
zkþ1

vC1; kþ1

�
¼
�
1 0
0 0:9940

��
zk
vC1;k

�
þ
�
�0:5413�10�4

0:9279�10�4

�
ik (16)

vk ¼ ½0 �1 �
�

zk
vC1; k

�
þ ½�0:0121 �ik þ OCVðzkÞ: (17)

The OCVeSOC relationship is inferred via a lookup table. Since
SOC is designated the output to be controlled, we write an output
equation of the form

zk ¼ ½1 0 �
�

zk
vC1 ; k

�
: (18)
4.3. Control design

Following the development of section 3.2 we first augment the
state-space system to introduce integral action:

(19)
Fig. 6. Influence of the control horizon, Nc (for Np¼ 10,
vk ¼ ½0 �1 �0:0121 �ck (20)

(21)

The principle control objective is to find the applied current
profile {ik} that drives the SOC from an initial value to a desired
reference while keeping terminal voltage within cell-specific
operational bounds. To respect physical limits and avoid over-
charge we also bound SOC at the reference target value:

zk 	 0:9: (22)

Moreover, the applied current is bounded at maximumvalues of
1C and 2C rates determined from the cell nominal capacity at 25 �C.
Voltage and current constraints are summarized below:

3 V 	 vk 	 4:2 V; (23)

�5:1160A 	 ik 	 5:1160A; for 1C; (24)

�10:2320A 	 ik 	 10:2320A; for 2C: (25)

Step-wise control inputs ik are calculated at each time instant.
For control and prediction horizons of Nc and Np, respectively, a
l ¼ 0.1, and maximum charge current of 2C rate).
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sequence of control increments is computed at each time instant, k:

DUk; Nc
¼ �

Dukþ1 Dukþ2 … DukþNc

�T
:

The optimal control sequence minimizes the finite horizon
performance index in Eq. (15) and simultaneously satisfies con-
straints on control amplitude, terminal voltage and SOC for future k
values up to the prediction horizon.
5. Simulation results and discussion

A range of test cases was run at both 1C and 2C maximum
charge rates using the following parameter sets:

Control weighting l ¼ 0:1 0:01 0:001 0:0001½ �;
Prediction horizon Np ¼ 10 20 60 100 200½ �;

Control horizon Nc ¼ 1 2 3 6½ �:
(26)

Tuning among these parameters yields a solution to the 1C rate-
limited pseudo minimum-time problem at: Np¼ 10, Nc¼ 1, and
l ¼ 0.0001 (see Fig. 3). This parameter set delivered a CCCV
charging profile that drove the cell SOC from 0.5 to 0.9 in 1471 s.

For a current limit of 2C the tuning parameters turn out to be the
same as for 1C. Due to the higher maximum current rate, however,
the total time-to-charge decreased (as expected) to 1158 s. The
results are shown in Fig. 4.
Fig. 7. Influence of the prediction horiz
The effect of varying the penalty weight is shown in Fig. 5 for a
maximum current rate of 2C. Herewe fix the prediction and control
horizons at Np¼ 10 and Nc¼ 1, respectively, and vary only the
weight on the control increment. Relaxing the value of the penalty
weight allows the control algorithm to compute larger variations of
the control increment causing the charge current to “jump” to its
maximum value, bringing about a quicker system SOC response.
The system performance for both l ¼ 0.001 and l ¼ 0.0001 appear
the same; however, the computed total time to charge was slightly
less for the latter case. In order to explore the influence of the
weighting factor for even smaller values, we performed simulations
reducing l down to 10�10; all delivered the same performance as for
l¼ 0.0001, which we take as the limiting case. Conversely, it can be
seen that heavy weighting on the control increment produces a
predictably sluggish response.

The effect of changing the control and prediction horizons for
the 2C rate-limited case are shown in Figs. 6 and 7, respectively.
Clearly, the length of the control horizon has very little effect on
performance for this system. It was observed, however, that for
extremely small penalty weights (approaching zero), we begin to
experience numerical anomalies for larger values of Nc; in partic-
ular, the algorithm fails to respect hard constraints on the control
amplitude. It turns out that this behavior results from ill-
conditioning of the quasi-Hessian matrix (GTGþ lI)�1 that ap-
pears in the optimal control sequence calculation in Eq. (13). As l
on, Np (for Nc¼ 1 and l ¼ 0.0001).
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approaches zero, the matrix GTGþ lI/GTG; the rows of the latter
matrix comprising shifted versions of the discrete-time impulse
responses for the modeled system. As Nc is made large, the rows
become increasingly linearly dependent, the matrix becomes ill-
conditioned, and hence numerically unreliable on inversion. This
creates numerical issues when computing the optimal DU during
the optimization steps of the quadratic programming algorithm.
Note that this problem is mitigated by selecting control horizon
valuesNc that are small relative toNp. IndeedwhenNc¼ 1, this term
become scalar, and the inverse is guaranteed.

Fig. 6 shows the influence of the control horizon on SOC per-
formance for a relatively large control input weight of l¼ 0.1. There
is no apparent difference as we vary the control horizon while
keeping the prediction horizon and the penalty weight constant.
However, the computed total time-to-charge yields a slight
reduction from 1740 s for Nc¼ 1 to 1726 s for Nc¼ 6. This implies
that for certain penalty weights, increasing the control horizonmay
improve overall performance.

Fig. 7 shows that large prediction horizons slow the speed of
response. This behavior is primarily due to the assumption of a
constant control amplitude beyond the control horizon (up to the
prediction horizon). The predicted presence of this far-future con-
trol input causes the controller to generate a less aggressive input in
near-future time. Further research is on-going to investigate alter-
native strategies for the far-future control assumption with a view
to improving near-future performance while maintaining short
control horizons.

6. Conclusion

An application of constrained MPC is presented that generates
the CCCV input charge current profile for fast charging of a lithium-
ion battery cell. The algorithm accommodates direct feed-through
to correctly model ohmic resistance and utilizes a second-order,
discrete-time equivalent circuit model for prediction. Model pa-
rameters were obtained from a data-fitting process utilizing
inputeoutput experiments. The MPC cost function is configured
and tuned to deliver a solution to a “pseudo minimum-time”
optimization problem under hard constraints imposed on input
current, terminal voltage and maximum state-of-charge. A para-
metric study is presented which examines the influence of key
tuning parameters on controlled system performance. Constrained
MPC exhibited stable and acceptable performance for the fast-
charge problem over a wide range of tuning parameters.
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Nomenclature

A: state transition matrix of the state-space model
B: input matrix of the state-space model
C: output matrix of the state-space model
C1: electric double layer capacitance, F
D: inputeoutput coupling matrix of the state-space model
G: data matrix used to compute the sequence of predicted outputs
i: applied cell current, A
J: cost function
k: time sampling instant
Nc: control horizon
Np: prediction horizon
Q: total capacity of a battery cell, Ah
rw: tuning parameter to affect the desired closed-loop performance
R0: ohmic resistance, ohms
R1: polarization resistance, ohms
R: weighting matrix
u: input vector of state-space model
x: state vector of state-space model
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y: linear output vector of state-space model
Y: vector containing the sequence of predicted outputs
z: battery cell state of charge (SOC)

Greek

h: coulombic efficiency
l: control weighting
F: data matrix used to compute the sequence of predicted outputs
c: augmented state vector of state-space model

Subscript/superscript

m: pertaining to the “original” system model
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