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HIGHLIGHTS

® Comprehensive review of the economic implications of Li-ion battery degradation.

® Calendar Aging is dominant life reducing factor in vehicular applications.

® Battery Degradation Cost is predominately time and temperature dependent.

® Economic analyses of degradation cost should be informed by battery lifetime models.
® V2X services can prolong battery life but cost effectiveness is chemistry dependent.

ARTICLE INFO ABSTRACT

Electric and Plug-in Hybrid Electric Vehicles are a promising sustainable mobility alternative due to their low
emissions impact and the rapidly falling production costs of Li-ion batteries. To lower total vehicle ownership
costs, Vehicle-to-Grid/Building/Home (V2X) services aim to derive additional value from the battery asset
through dynamic or bi-directional charge control to provide benefits to the electric grid or to reduce/flatten/
shift peak energy consumption of buildings. Battery State of Health (SOH) is impacted through reduction of total
capacity and/or increase in internal impedance due to various degradation mechanisms which collectively result
in Calendar Aging and Cycling Aging behaviors. At moderate temperatures, Calendar Aging is the dominant
factor and this understanding paired with the fact that most vehicles are immobile more than 90% of the time,
implies that the battery management strategy while at rest will bound lifetime. Evidence suggests that V2X could
prolong battery life through integration with optimized management algorithms and that cost effective V2X
services may be dependent on battery chemistry. Therefore economic analyses of battery assets should contain
sufficient electrochemical detail to account for chemistry specific degradation behavior.
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1. Introduction Lithium-ion technology provides the highest specific power and

specific energy over other commercial battery and storage types [4].

The transportation sector accounts for around 25% of global energy-
related carbon emissions of which light-duty passenger vehicles account
for over half and their impact is expected to grow in the coming years
[1,2]. It is clear, that to achieve the necessary carbon emission reduc-
tions agreed upon in the Paris Climate Accords there must be a sub-
stantial contribution from the transport sector [3]. Replacement of
light-duty vehicles with Electric Vehicles (EV) and Plug-in Hybrid
Electric Vehicles (PHEV) offers a promising alternative to take ad-
vantage of synergies between the Energy and Transport sectors, yet
their effectiveness as a solution depends on a decarbonized electric grid
and the availability of cost competitive battery technology.
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Battery costs have been reduced by a factor of four since 2008 and are
set to decrease further; additionally, energy density of lithium ion
batteries has increased substantially as seen in Figure S1 in the Sup-
plementary Materials. Over the course of seven years from 2009 to
2015, PHEV batteries experienced an almost 400% increase in energy
density [1]. As such, Lithium-ion technology offers the most promising
battery solution for the near future.

While PHEVs and other hybrid topologies are already well estab-
lished in the market, key barriers to large scale EV market penetration
include battery costs and vehicle range, both areas where recent tech-
nology developments provide encouraging signs. Evidence suggests that
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EVs may reach price parity with Internal Combustion Engine (ICE)
vehicles by 2022 [5]. There are several ongoing approaches to these
barriers EV adoption.

The first approach is to lower the cost of battery packs thus lowering
the Total Cost of Ownership (TCO) of EVs. This strategy is noted as the
“Tesla approach”, which aims to exhaust economies of scale while
improving manufacturing techniques and drastically reducing shipping
costs by assembling battery packs in-house.

The second is to invest in research and development of new battery
chemistries and new technology. Research is directed towards the de-
velopment of longer lasting and safer cells with greater energy density,
thus lowering per kWh costs. This includes experimentation with new
additives in electrolyte and cathode materials for longer lasting Li-ion
cell chemistry [6-10]. New technologies include Lithium Sulfur (Li-S)
and Lithium Air (Li-O2) battery configurations, the use of solid elec-
trolytes over organic liquid electrolytes for the creation of Solid State
Batteries (SSB), and incorporation of new anode materials such as Si-
licon and Titanate [11-16].

The third approach is related to developing more intelligent Battery
Management Systems (BMS) to allow for smaller batteries to satisfy the
same mobility demands, thus lowering the TCO of EVs through de-
creased capacity requirements and the additional cost savings from
reduction in vehicle weight [17,18].

The fourth approach, which is the focus of this review, is to develop
new revenue streams to offset the high initial cost of EVs through
participation in energy markets and provision of grid services, or
through diminishing the energy burden of buildings or homes. Vehicle-
to-Grid (V2G), Vehicle-to-Building (V2H), Vehicle-to-Home (V2H),
Vehicle-to-Load (V2L), and Vehicle-to-Vehicle (V2V) collectively de-
noted as V2X services, aim to derive additional value from the battery
asset during times of non-use in the primary objective of mobility [19].

1.1. V2X Services

Unlike the standard load demands that EV battery packs which are
designed for mobility-only undergo, the resultant load demand from a
V2X product is inherently dependent on the underlying energy service.
Thus V2X should be considered an umbrella term under which several
distinct energy services can be provided therefore a generalized V2X
load profile does not exist. It is however possible to develop load pro-
files for individual V2X products depending on the connection topology
(V2G, V2B, V2H, V2L, and V2V) and the energy service being provided
(Frequency Regulation, Energy Arbitrage, Emergency Back-up Power,
etc.) as elaborated in the following sections 1.1.1 and 1.1.2.

V2X can be generalized into energy based products and power based
products. Bulk energy transfer products such as performing V2G energy
arbitrage (charging/buying electricity during times of low energy prices
and discharging/selling during periods of high energy prices), pro-
viding V2G spinning reserves (bulk energy discharge or dynamically
altering charge rate in response to grid requirements), acting as a
Demand Response (DR) resource, or serving as emergency back-up
power (V2H/V2B), all result in similar load profiles in that a large
energy throughput is required which translates to long periods of
charging or discharging for a vehicle battery. Frequency of use, daily
timing, and utilization rates for each service will differ however and are
further elaborated in Section 5.2.2. Power products however (most
notably V2G frequency regulation) where fast response time is crucial
will result in significantly less energy exchange as the inherent energy
service is charge/discharge flexibility. Fig. 1 below is a visual overview
the various V2X topologies which shows interaction type with grid
operators and operating location either in the High Voltage (HV),
Medium Voltage (MV) or Low Voltage (LV) networks [20]. Note that a
V2B topology is similar to the V2H pictured with the addition of mul-
tiple vehicles or a fleet which implies a more sophisticated building
energy management system but the concept is the same. Additionally
the V2L and V2V topologies are similar.
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1.1.1. Vehicle-to-Grid (V2G)

Vehicle-to-Grid services relate to utilizing an electric vehicle battery
as either a Distributed Energy Resource (DER) or as storage for the
electric grid. V2G is envisioned to predominately provide Ancillary
Services due to the inherent characteristics of an EV resource which
include a near-instantaneous response time and limited energy capa-
city. Four potential products exist in current energy markets for V2G
services: Spinning Reserves, Peak Power Shaving (also known as Energy
Arbitrage), Frequency Regulation (or Regulation Reserves), and
Demand Response [21-23]." While the other Ancillary Services have
been shown to be economically competitive in certain situations, Fre-
quency Regulation has been identified as the first most promising and
lucrative market due to its inherent characteristics which include a
seconds-time interval response requirement and a low net energy re-
quirement with relatively high market prices [21,24]. Figure S2 in the
Supplementary Materials is an example frequency regulation load
profile which compares PJM's Reg A (Ordinary Regulation, net energy
variable) and Reg D (Fast Response Regulation, net energy neutral)
signals and their impact on battery State-of-Charge (SOC) of a Battery
Energy Storage System (BESS) [25]. Due to the inherent nature of the
usage case (high frequency charging/discharging load profile) a low net
energy exchange and a shallow charge/discharge cycle results which is
known to be less detrimental to batteries as will be explained in Section
3.

The US Frequency Regulation Market is highly volatile which often
experiences price spikes of over 100 ($/MW-h) while typical prices can
range from 5 to 65 ($/MW-h) depending on the regional market.
Market revenue has grown from under $20 million in 2009 to over
$380 million in 2014; however Frequency Regulation is a relatively
shallow market with an average capacity requirement of 410 MW [26].
Due to these characteristics, it is envisioned that V2G would likely
provide Frequency Regulation first while descending the technology
learning curve until market saturation and later expand into larger
markets.

Lazard's Levelized Cost of Storage (LCOS) analysis has identified
that non-subsidized stationary lithium-ion Battery Energy Storage
Systems (BESS) on the high-end have already achieved cost competi-
tiveness with conventional gas peaker plants for Frequency Regulation
services as of 2015, with projected 5-year developments likely to lead to
full cost competitiveness across all installations [27]. Subsequent ana-
lysis showed an estimated 5-year capital cost reduction of Lithium-ion
Batteries between 26 and 29% [28]. The question remains however, if
lithium ion technology in an electric or plug-in hybrid vehicle config-
uration can deliver a similar value proposition.

Current Ancillary Service regulation requires a minimum capacity
to bid into the market ranging from 100 kW-5 MW [29,30]. These rules
constitute a barrier to entry for small capacity resources yet reflect the
reality that only significantly large loads are economically worth con-
trolling during real-time grid operation. While an EV charging at even
the lowest L1 charging power will draw roughly 2kW which would
double the instantaneous power requirement of a household, it is a
negligible amount in the context of the transmission grid. However,
100 EVs charging simultaneously would be well above the minimum
capacity requirement regardless of the charging level used. As such,
V2G is likely to be employed by an aggregator which intelligently co-
ordinates several distributed resources to provide grid-significant ca-
pacity [31,32].

! These Ancillary Service products are from US energy market definitions. In Europe
these Ancillary Services have recently been redefined as Frequency Containment Reserves
(FCR), Frequency Restoration Reserves (FRR), and Replacement Reserves (RR) in efforts
to harmonize the various definitions across EU Member States [112]. Other international
markets may have additional definitions for Ancillary Services.
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Fig. 1. Overview of various V2X topologies (readers

Grid are referred to the web version of this article for
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Distribution grid Distribution grid > control while the purple dotted line indicates in-
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erator at the Medium Voltage (MV) and High Voltage
(HV) networks. This framework shows that V2H
(V2B) and V2V (V2L) operate at the Low Voltage
(LV) network mostly behind-the-meter while V2G
could operate both in the LV and MV network de-
pending on aggregation size and type. Interested
readers are referred to the original source which
additionally provides a thorough overview of V2X
integration with the rest of the electric grid at the
various connection points [20]. (For interpretation of
the references to color in this figure legend, the
reader is referred to the Web version of this article.)

v2v

Parking lot

1.1.2. Vehicle-to-Building (V2B), Vehicle-to-Home (V2H), Vehicle-to-Load
(V2L), and Vehicle-to-Vehicle (V2V)

Vehicle-to-Building (V2B) or Vehicle-to-Home (V2H) relate to em-
ploying an EV or PHEV as a means to optimize energy consumption and
to limit overall energy usage by reducing, flattening, or shifting peak
energy consumption in either a building or a home. Vehicle-to-Load
(V2L) or Vehicle-to-Vehicle (V2V) typically relate to using a vehicle as
emergency back-up power or as a mobile energy source. Several re-
search projects have focused on employing EV fleets with rooftop solar
sources and have found there are many interesting value propositions
for both homes and building integration [33-36]. Additionally [37],
found that energy storage paired with buildings will result in reduced
load variability along with several other derivative benefits such as
capital cost deferment, reduction of carbon emissions, and reduction of
operation costs for both grid operators and building managers.

There has also been investigation into using EV and PHEVs for re-
active power balancing in either a V2B or V2H topology to improve the
load power factor thus improving power quality and reducing losses
[38]. Power Factor improvement provided by V2B or V2H would mi-
tigate the need for high capital cost capacitor banks which are still in
use in industrial buildings today [39,40].

V2H/V2B topologies avoid the infrastructure and tariff problems
associated with V2G [38]. As with V2B, V2H co-optimization with
rooftop solar or other smart appliances happens behind-the-meter and
would not discharge to the grid, further eliminating expensive power
electronic components and control systems which are required for re-
liability (i.e. anti-islanding protection) and the need for more precise
measurement instrumentation (as required for net metering with
rooftop solar or micro-wind). V2H, V2B, V2L and V2V topologies ad-
ditionally benefit from reduced complexity as the need to coordinate
and control tens to hundreds of individual users is eliminated, as in the
case for V2G [20]. Utilizing EVs as emergency back-up generation has
been shown to displace expensive diesel generators and to lower CO,
emissions [41]. One caveat however is that V2B, V2H, V2L, and V2V
topologies would all be considered energy products and their efficacy
will largely be contingent on utilization frequency and duration as large
energy throughput is known to be highly detrimental to battery lifetime
as will be explained in Section 3.

1.2. Problem Statement

An important question is to what extent additional use of the vehicle
battery will affect battery capacity over its lifetime. There have been
several studies conducted towards this end, many of which claim these
additional effects to be minimal or even negligible while others claim it
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to be a barrier to V2X [42-45]. Still others claim the additional battery
degradation cost will be outweighed by the V2X income which would
be generated [46]. While there is disagreement of the viability of V2X
as a whole, there is a consensus that services which require a large
energy throughput would likely be cost prohibitive as this would cause
the greatest capacity degradation [42,45]. Due to this consensus, this
review will focus more on V2G products as they constitute both a more
lucrative market environment and less impactful operational profiles.
However, as noted in Section 5.2, the various other V2X topologies can
be economically feasible in certain cases.

To date there has been no published economic study to investigate
battery degradation caused by real-world V2X service provision to a
sufficiently sophisticated level which takes the interplay of Calendar
and Cycling Aging effects and their fundamental drivers of Time,
Temperature, State of Charge (SOC), Depth of Discharge (DoD), Charge
Rate (C-rate), and Amp-hour (Ah) throughput into account. Truly em-
pirical lifetime analyses would require time scopes of 10 years or more,
which is both impractical and would be rendered obsolete at comple-
tion as battery technology is improving rapidly. Due to these chal-
lenges, semi-empirical electrochemical models have been developed
which aim to model fundamental electrochemical phenomena mathe-
matically while extracting rate relationships from what limited de-
gradation data is available [47-55].

As the intention of this work is to review and explain the economic
consequences due to battery asset degradation, semi-empirical elec-
trochemical and combined electrochemical-thermal lifetime models are
the focus of this work while other modeling methods such as equivalent
circuit models, reduced order models, statistical methods, fuzzy logic,
and other methodologies have been aptly covered in previous review
articles and are mostly used to characterize battery operational beha-
vior, not battery lifetime degradation [56-60]. Furthermore, this work
does not attempt to incorporate all relevant electrochemical and par-
ticle physics theory, and rather focuses on the most important de-
gradation mechanisms needed to predict battery life for economic
analyses.

This review continues with an introduction to Battery Fundamentals
in Part 2, followed by an explanation of Battery Degradation
Mechanisms in Part 3. Part 4 is an overview of Battery Modeling
Approaches and their limitations. The Economic Implications of battery
degradation is then discussed in Part 5 followed by Conclusions in Part
6.

2. Battery Fundamentals

Lithium Ion batteries are complex electrochemical systems which
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consist of four primary components: a negative electrode (anode), and
positive electrode (cathode), an electrolyte, and a separator.
Additionally, copper and aluminum current collectors are located at the
positive and negative electrodes respectively. Degradation will occur at
each element differently to contribute to overall life fade as explained
in more detail in Section 3 on Battery Degradation Mechanisms.

2.1. Battery Cells

A battery cell consists of two electrodes (electronic conductors)
which produce two half-reactions with the electrolyte (ionic con-
ductor). Reductions occur at the positive electrode which is additionally
referred to as the cathode while oxidations occur at the negative elec-
trode which is additionally called the anode [61]. Individual battery
cells are packaged together in a combination of string or series con-
figurations to form battery packs which are controlled by a Battery
Management System (BMS). The weakest cell in a string can affect the
entire line output since the current which can be extracted from a cell
within safe thermal operating conditions is a function of its internal
resistance. Additionally, due to manufacturing deviations, weaker cells
will charge and discharge more rapidly which can lead to overcharged
cells and elevated temperature spots which can compromise the entire
pack. Therefore it is crucial that the BMS monitors individual cells and
balances the battery pack. Cell balancing refers to the practice of either
removing excess charge of cells at risk of overcharge though heat dis-
sipation in internal resistors or through moving charge from higher
charged cells to lower charged cells such that all cells are maintained
within a defined interval [62]. These two techniques are referred to as
passive and active cell balancing respectively.

2.2. Anode

Anodes are typically graphite-based due to the low cost of material
and the wide availability of carbon however graphite alone displays a
high reactivity to electrolyte and therefore must be treated. Graphite
anodes exhibit a moderate intrinsic specific capacity of 372mAhg?
however current commercial anodes will soon be unable to meet in-
creasing energy density demands from electronic devices, electric ve-
hicles, and energy storage applications [63]. Current graphite-based
anode materials are effectively optimized and other anode materials
such as metal oxides or alloying materials are either cost prohibitive or
suffer reduced robustness. Therefore improvements in battery capacity
and lifetime in commercial cells are through development of Silicon/
Carbon (Si/C) composite anode materials or through the trend towards
new, Nickel-rich cathode materials [14,64].

2.3. Cathode

Cathodes (positive electrode) consist of a complex lithiated com-
pound material which will greatly affect the battery discharge profile,
lifetime, and cost [65]. When speaking of Li-Ion battery chemistry, the
cathode material is referenced as a graphitic anode is typically as-
sumed. An overview of current commercial batteries, their chemical
compounds, a snapshot of the technology characteristics, and current
usages is presented in Table 1.

2.4. Electrolyte

The electrolyte must serve as an ionic conductor yet provide elec-
tronic insulation therefore it must exhibit a low viscosity and a high
dielectric constant [66]. The reaction between the anode and electro-
lyte forms a passivating layer on the negative electrode (anode) surface
known as the Solid Electrolyte Interface (SEI). Stability of the lithium
battery depends on this reaction product. An SEI layer that is not pas-
sivating enough will continue to allow electrolyte molecules to reach
the anode surface and will result in corrosion. An SEI layer that is too
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thick or insufficiently ionic-conductive can lead to unacceptably large
increases in cell internal resistance, which is why only a few organic
compounds can be used as solvents for the electrolyte [67]. Thus a key
design goal of electrolytes and of film formation additives aims to result
in a reaction product SEI layer that is ionically conducting, electro-
nically insulating, and mechanically robust [68].

Traditionally Ethylene Carbonate (EC) has been used as electrolyte
solvent and was previously thought to be indispensable; however, re-
cent research has proven that EC free electrolyte battery cells perform
better at higher voltages [8,69]. Ethel Methyl Carbonate (EMC) along
with optimized amounts of “enablers”, additives which passivate the
graphite electrode and thus enable an EC free cell to operate, has de-
monstrably improved performance [10].

Thus the electrolyte typically consists of an organic aqueous solvent
(typically alkylcarbonates) with a salt compound (typically LiBF, or
LiPFs) which have become dominant in the market [68,70]. Although
there is investigation into solid-state electrolytes and ionic liquid
electrolytes, the organic aqueous solution is the primary technology
used in commercial cells due to its superior ionic conductivity. Much
research has been focused on improving the electrolyte performance
and safety through either functional additives, enablers, or flame-re-
sistant phosphate compounds and is seen as area which can still be
improved in commercial cells [9,71].

2.5. Separator

The separator is a thin porous membrane which primarily serves to
prevent the anode and cathode from physical contact while maintaining
the free flow of ions [72]. For safety of the battery the separator must be
able to shut the battery down when overheating occurs, as in the case of
a short-circuit, to ensure thermal runaway is avoided [73]. Each battery
chemistry has unique thermal runaway characteristics as can be seen in
Fig. 2 with the worst to best ordering as LCO, NCA, NMC, LMO, and
LFP.

3. Battery Degradation Mechanisms
3.1. General Terms

Battery State of Health (SOH) is negatively impacted through a re-
duction of total capacity and/or an increase in internal impedance.
Typically definitions of SOH only focus on a measurement of capacity
reduction (Capacity Fade) however internal impedance rise reduces the
battery power delivery which is why increasing impedance is ad-
ditionally referred to as Power Fade. Capacity Fade is caused by the
irreversible Loss of Lithium Inventory (LLI) or through loss of active
material (LAM), whereas internal impedance rise (Power Fade) is
caused by increased kinetic resistance within system [75-77].

The SOH concept is important to define for when the battery asset
reaches its End of Life (EoL). Currently there is no standard definition of
EoL however many have taken the view that 20-30% reduction of ca-
pacity or a 100% increase from initial internal resistance constitutes
EoL [78]. It is important to note that even at EoL, the battery is not fully
depleted but still has a significant amount of capacity left (70-80%)
which has lead several investigations into Battery Second Life (B2L)
products as stationary storage systems or peak voltage provision in high
power DC charging systems [79-81]. Furthermore, recent studies have
suggested that batteries may continue to satisfy the majority of mobility
needs down to 40% percent of remaining capacity [82]. Thus the need
for a standardized definition of SOH and EoL along with accurate es-
timation and monitoring is clear.

3.2. Degradation mechanisms by cell component

Various degradation mechanisms act at each cell component to
contribute to Capacity Fade and Power Fade, with the growth of the
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Table 1
Current commercial batteries characteristics and usages.
Manufacturer Chemistry Capacity  Configuration = Nominal Voltage = Weight  Volume  Energy Density  Specific Energy =~ Used in
Anode/Cathode ~ Ah v Kg Liter Wh liter ! Wh kg™? OEM Model
1 AESC G/LMO-LNO 32.5 Laminate 3.75 0.79 - 317 157 Nissan Leaf
2 LG Chem G/NMC-LMO 36 Pouch 3.75 0.86 0.49 275 157 Renault Zoe
3 Li-Tec G/NMC 52 Pouch 3.65 1.25 0.60 316 152 Daimler Smart
4  LiEnergy Japan  G/LMO-NMC 50 Prismatic 3.7 1.70 0.85 218 109 Mitsubishi  i-MiEV
5  Samsung G/NMC-LMO 64 Prismatic 3.7 1.80 0.97 243 132 Fiat 500
6  Lishen Tainjin G/LFP 16 Prismatic 2.3 0.52 0.23 200 89 Honda Fit
7  Panasonic G/NCA 3.1 Cylindrical 3.6 0.048 0.018 630 233 Tesla Model S

Abbreviations used for Table 1 are: G = Graphite, LMO = Lithium Manganese Oxide, NCA = Nickel Cobalt Aluminum Oxide, NCM or NMC = Nickel Cobalt
Manganese, LFP = Lithium Iron Phosphate, LCP = Lithium Cobalt Phosphate, LFSF = Lithium Iron Fluorosulfate, LTS = Lithium Titanium Sulfide, and LTO = Li-
thium Titanate Oxide (Titante is an anode material), LNO = Lithium Nickle Oxide.
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Fig. 2. Thermal Runaway Characteristics of NCA (purple), NMC (blue), LFP
(green), and LMO (red) chemistries [74]. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of this
article.)

Solid Electrolyte Interface (SEI), a passivation layer which forms on the
anode, being the most prominent contributor. The SEI layer has been
given extensive study due to its central importance not only in life
degradation but in proper functioning of the battery. A stable and
uniform SEI is required to protect against current collector corrosion at
the anode from the highly reactive electrolyte, yet extensive or non-
uniform SEI formation can result in dendrite growth, cracking, and a
reduction in lithium access to the anode [52,71]. As an example, during
the first full cycle up to 10% of the original battery capacity can be
consumed in irreversible SEI formation though this amount has been
reduced to 2-3% in recent cells [83]. Lithium plating, current collector
corrosion, and mechanical failure are other prominent degradation
mechanisms which are further explained in Part 3.3. Fig. 3 is a visual
representation of the various aging mechanisms and where they take
place.

3.3. Calendar vs Cycling Aging

These degradation mechanisms collectively result in two aging be-
haviors known as Calendar Aging and Cycling Aging which are
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Fig. 3. Lithium ion battery aging mechanisms and battery cell structure [76].
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Fig. 4. Battery Degradation Flowchart. Shows conceptual and causal links between the Degradation Concepts (SOH, Calendar and Cycling Aging), Degradation
Drivers (Temperature, SOC, C-rate, DoD), and various Degradation Mechanisms which could be controlled through active management of charging or V2X strategy.

exacerbated by degradation drivers (or stress factors). Calendar Aging is
the degradation experienced when the battery is at rest and is depen-
dent on Temperature and State-of-Charge (SOC). Temperature and SOC
are coupled through an Arrhenius relationship which has been em-
pirically proven to adequately model SEI layer growth and results in
Calendar Aging having an underlying dependency on time (t*) where z
tends to be Y2 [84-86]. Cycling Aging is the degradation resulting from
battery usage and is dependent on the Temperature, SOC, charge cur-
rent (C-rate), and Depth of Discharge (DoD or ASOC). C-rate is a re-
presentation of charge current normalized to battery capacity such that
a current expressed as 1C would charge a given battery in 1 h. Similarly
a current expressed as 2C would charge a battery in 30 min while a C/2
current would charge the battery in 2h. While previously the under-
lying dependency of Cycling Aging was expressed as cycle number (N),
recent research has shown that total Ah throughput, the total amount of
energy extracted from the battery, is true underlying dependency of
Cycling Aging [50,87,88].

Fig. 4 is a visual summary which shows conceptual and causal links
between the Degradation Concepts (SOH, Calendar and Cycling Aging),
Degradation Drivers (Temperature, SOC, C-rate, DoD), and various
Degradation Mechanisms [75,76,85,89]. For example, the large size of
the SEI Layer Growth box in Fig. 4 indicates that it is a prominent
Degradation Mechanism while the green color of the box indicates that
it acts at the anode. Fig. 4 also shows that SEI Growth is caused by high
Temperatures and high SOCs while at rest (Calendar Aging), and results
in a large amount of both Capacity Fade and Power Fade. Lithium
Plating is another prominent Degradation Mechanism which acts at the
anode, is caused by low Temperatures and high C-rates while cycling,
and primarily results in a large amount of Capacity Fade with a lesser
secondary result of Power Fade [68,75,76]. Mechanical Failure can
occur at both the Anode and Cathode and is the result of volumetric
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changes during cycling which can lead to cracking of the SEI layer,
lithium exfoliation, isolation of active electrode material, and contact
loss at each current collector. Overcharge (Overpotential) and Over-
discharge are also prominent degradation mechanisms which can cause
gas evolution, particle cracking, and lithium plating [68,75,76]. Ad-
ditionally, Current Collector Corrosion occurs at the anode and is
caused by long periods of rest at low SOCs which results in a large
contribution to Power Fade [75,76,85,89]. Apart from structural or
manufacturing defects however, Overcharge and Overdischarge con-
ditions will not be encountered in batteries which are properly pro-
tected by a BMS therefore are omitted here as V2X services will only
operate batteries within manufacturer specified limitations. While
Current Collector Corrosion can be avoided as well through manu-
facturer prescribed lower SOC limits, it is included in this visualization.

As previously mentioned, the total amp-hour (Ah) throughput refers
to the total extracted energy of a battery throughout the course of its
lifetime. Ah throughput is useful to compare the degradation effect of
different usage profiles with various DoDs. Due to SOC effects, a cycle
from SOC 100%- SOC 80% will not result in the same degradation as a
cycle from SOC 40%- SOC 20% although they both would constitute a
DoD of 20. By changing the X axis from cycle number to Ah throughput
the true degradation effects of various cycle and usage profiles can be
compared. Fig. 5 is a concise visualization of overall life Capacity Fade
which differentiates the contribution of both Calendar and Cycling
Aging effects.

While high temperatures trigger more Calendar Aging (chemical
degradation) through increased SEI layer growth, low temperatures and
high charge rates induce more Cycling Aging (mechanical degradation)
through increased lithium plating. Additionally, high DoD cycling in-
duces more mechanical failure especially if performed at high SOCs and
high C-rates. To minimize Calendar Aging while the battery is at rest,



A.W. Thompson

Journal of Power Sources 396 (2018) 691-709

Capacity
Loss /%

2000
Ah Throughput
34°C

Capacity
Loss /%

000 I

Ah Thmugthul

2000
Ah Throughput

Fig. 5. Simulation of calendar life model and cycle
life model for LMO-NMC chemistry as a function of
discharge rate and Ah throughput for four experi-
mental temperatures: 10, 20, 34, and 46 °C. (blue:
total life loss; green: calendar life loss; and red: cycle
life loss) [49]. (For interpretation of the references to
color in this figure legend, the reader is referred to
the Web version of this article.)
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Fig. 6. Chemistry Effect on Calendar Aging for SOC = 30 (high), 65 (mid), 100 (low) and T = 30 °C (blue), 45 °C (green), and 60 °C (red) for various cell chemistries
and battery manufacturers [54]. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

maintain a low SOC and a low Temperature. To minimize Cycling Aging
while the battery is in use, maintain a moderate Temperature, a low/
moderate C-rate, and a low DoD centered around an optimal SOC point.
Preliminary evidence suggests this optimal cycling point to be around
SOC 50% as this is known to minimize joule heating yet more research
is necessary [87,90].

As temperature is the most prominent environmental cause of bat-
tery degradation, proper thermal management is crucial and can even
mitigate C-rate effects up to 2C [77]. Additionally cell temperature
affects battery power output at extreme points such that high powered
charging or discharging at very high or low temperatures would gen-
erate a diminished response. At all temperatures (except for very low,
T < 10°C) while operating in the pre-knee region, Calendar Aging is
the dominant lifetime reducing factor. After the knee region, Cycling
Aging becomes dominant due to a change in mechanism where capacity
loss begins to be governed by graphite site loss (a mechanical process)
rather than lithium loss (a chemical process) [91].

However an intelligent management strategy could prolong the

knee region point until after the vehicle battery EoL. Understanding of
fundamental battery degradation paired with the fact that most electric
vehicles are immobile more than 90% of the time, implies that Calendar
Aging is the dominant reduction factor for the majority if not all of
lifetime. This is counter intuitive and leads to the conclusion that how a
battery is managed while it is at rest will be the determining factor in
lifetime performance.

3.4. Chemistry Dependency

When referring to Li-Ion battery chemistry, the cathode material is
referenced as most commercial cells use a graphitic anode (Carbon).
Due to long chemical names, batteries are referenced in short hand in
the form of anode material/cathode material, however due the pre-
valence of Carbon (C) as an anode material, it is often omitted. An
example battery cell with a Carbon anode/Nickle-Cobalt-Aluminum
cathode would be written as C/NCA, or NCA. Along with NCA, the most
common chemistries used in commercial cells are Iron Phosphate (LFP),
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Nickle-Manganese-Cobalt (NMC), and Manganese Oxide/Nickle-
Manganese-Cobalt blend (LMO-NMC). Consequently, each battery
technology will exhibit varying sensitivities to degradation drivers due
to differences in the cathode materials, electrolyte additives, and other
nano-coatings.

Fig. 6, is a composite result of several Calendar Aging studies with
various battery chemistry cells and manufacturers. A matrix of 9 sto-
rage conditions including 3 temperatures (30 °C, 45 °C, and 60 °C) and 3
SOC (30%, 65%, and 100%) were applied to all cells which were dis-
connected and kept in storage over a period of 2.5 years [92]. All cells
of the same chemistry were from the same manufacturer with the ex-
ception of the Carbon anode/Iron Phosphate cathode batteries (C/LFP),
which were compared across three different manufacturers. SOH was
defined only in terms of Capacity Fade and the End of Life (EoL) cri-
terion was defined as when cell capacity fell below 80% of original
capacity.

The Blue, Green, and Red spreads provide a visualization of the
aging effect of the storage Temperatures of 30 °C, 45 °C, and 60 °C, re-
spectively. Within each spread, the effect of storage SOC can be seen as
well, with the highest point in each temperature spread equal to SOC
30, the middle point = SOC 65 and the lowest point = SOC 100.
Temperature sensitivity is manifested through the location and shape of
each spread, while SOC sensitivity can be seen in the width of each
spread. As can be seen in Fig. 6, there are pronounced differences in
aging rates, aging profiles (how batteries lose capacity), and sensitivity
to Temperature and SOC across battery chemistries.

However looking at Calendar Aging performance alone results in an
incomplete picture; when referring again to Table 1 and Fig. 2, each
chemistry has unique Cell Capacity vs Cell Potential ratios and safety
characteristics. Thus choosing the “best” battery chemistry results in a
tradeoff which will largely depend on the system application. A visual
representation of this tradeoff for the current commercial battery
technologies can be found in Figure S3 in the Supplementary Materials.

3.4.1. NCA

We can see from Fig. 6 that Nickle Cobalt Aluminum (NCA) is the
superior technology in terms of Calendar Life as it exhibits the least
sensitivity to both Temperature (seen in a close grouping of the Tem-
perature spreads) and SOC (seen through the narrow width of each
spread) and results in the least amount of Capacity Fade overall. Fur-
thermore it can be concluded that for NCA the effect of Temperature is
greater than the effect of SOC as there is no crossover between tem-
perature spreads. Expressed differently, a higher storage temperature
will always cause more capacity reduction than a lower temperature
regardless of the storage SOC. To cause the least degradation, high
temperatures should be avoided first with preference to lower SOCs as a
low secondary importance. Additionally NCA exhibits the highest
Specific Capacity vs Cell Potential ratio; however this all comes at the
increased risk of thermal runaway and high cost. Consequently NCA
requires the most investment to be operated safely in vehicles.

3.4.2. LFP

LFP generally exhibits a high Temperature sensitivity as seen in the
large gaps between spreads but a low SOC sensitivity as seen in the
narrow widths of the spreads. The effect of Temperature is again greater
than the effect of SOC and a non-linear degradation rate (aging profile)
is seen which is especially pronounced at high Temperatures.
Interestingly, this study found that the same battery chemistry ex-
hibited similar aging profiles regardless of the manufacturer, with the
exception of the 15 A h manufacturer cell which is more prone to de-
gradation at storage SOCs greater than 30%. To cause the least de-
gradation, high temperatures should be avoided first with low SOC as a
medium secondary importance. While the safety aspect is greatly im-
proved as LFP is the least prone to thermal runaway, this comes at the
cost of Specific Capacity vs Cell Potential and a reduced Specific
Energy.
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3.4.3. NMC

NMC exhibits a high Temperature sensitivity and a variable SOC
sensitivity which is still greater than NCA or LFP at low temperatures
and dramatically increases as temperature rises. Due to this variable
SOC sensitivity, there is some crossover between Temperature spreads
which results a more complex relationship. While Temperature is still
the more dominant effect, due to increased SOC sensitivity low storage
SOCs can compensate for the increased aging effect of higher tem-
perature.

This can especially be seen when comparing the Red and Green
crossover, it can be concluded that a cell stored at 60 °C and SOC 30
would result in less degradation than a cell stored at a lower storage
temperature of 45 °C but at a higher SOC of 100. Similarly, from the
Green/Blue crossover, a cell stored at 45 °C and SOC 30 would result in
less degradation than a cell stored at 30 °C and SOC 100. To cause the
least degradation, high Temperatures should be avoided and low SOCs
preferred with increasing importance as temperature increases. NMC
has the second highest Specific Capacity vs Cell Potential ratio and
often overlaps NCA. The thermal runaway characteristics are also the
second worst however are drastically reduced from NCA.

3.4.4. LMO-NMC

Meanwhile the Manganese Oxide + Nickle Manganese Cobalt
(LMO-NMC) blend exhibits a very high sensitivity to both SOC and
Temperature and the poorest Calendar Life performance resulting in the
most Capacity Fade overall. Similarly to the pure NMC, there is sig-
nificant crossover due to high SOC sensitivity which results in several
scenarios where low SOC can compensate for higher temperature.
Furthermore LMO-NMC exhibits an almost linear degradation (aging
profile) across all storage conditions. To cause the least degradation,
high temperatures and high SOCs should be avoided at all times. Pure
LMO has the second best thermal runaway characteristics, therefore a
blend with NMC is in attempts to improve safety (from LMO) while
increasing Cell Potential vs Specific Capacity (from NMC).

4. Battery Modeling Approaches

This section consists of an overview of three semi-empirical lifetime
models, so named due to their extrapolations of battery behavior based
on experimental data, which have influenced many other models and
research efforts. Each follows a similar process which consists of hy-
pothesizing fundamental degradation equations, generating rate laws
and other coefficients, and fitting the original hypothesis to experi-
mental data to generate the general model. In all models the degrada-
tion effect from Calendar Aging and Cycling Aging is assumed to be
additive. Further references to each will be known as the NREL model
[50], the Wang Model [49], and the MOBICUS Model [55].

4.1. NREL Model

4.1.1. Model equations and approach

The NREL Model was originally based upon an NCA chemistry da-
taset presented in Refs. [7,93,94] which was later updated to in-
corporate an LFP chemistry [48,50,52,81,91,95,96]. The model as-
sumes fundamental degradation behavior is similar for all lithium ion
technologies but is tuned by degradation coefficients which are chem-
istry dependent. The primary model outputs are battery capacity (Q)
and internal impedance (R) and both Calendar Aging and Cycling Aging
are incorporated.

The equation for internal resistance is:

R= a,+ aqit'2+ ;N 1)

The equation for cell capacity is the minimum of the capacity loss
attributed to the loss of active material lithium (Qj;) vs the loss of active
sites (Qsies) in the electrolyte of the cell:
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Q = min(Qy, Qsites) (2)
Where

Qri = by + bt + ... 3)

Qsites = Co + 1N + ... (€)]

The coefficients are rate constants for the time effect on Resistance
(aj), the cycle number effect on Resistance (a,), the time effect on
Lithium Loss (b1), and the cycle number effect on Site Loss (c;). The
ellipses signify the fact that the final model is hypothesized and chosen
from empirical fits based upon statistics, thus new terms could be in-
troduced into the model equation depending on the aging data. Indeed
[91] implied an existence of a cycle number dependency of lithium loss
(Qyp) term to be denoted as boN, however this term does not exist in any
know published representation of the NREL model and therefore has
been omitted here. While z is understood to normally be %2 due to the
well-known t'/? dependency of active lithium loss due to the SEI layer
growth, the model nomenclature was generalized to allow for empirical
fits which do not exhibit this dependency.

The model coefficients are developed from generalized rate constant
equations which assumes an Arrhenius dependence on Temperature
(61), a Tafel dependence on Open Circuit Voltage (6y,c, which is related
to SOC), and a Wohler dependence on changes in Depth of Discharge
(®apop)-

6, = ep| B[ L _ L
! P Rug T(t) T;ef

%)
_ af (Voe(t) _ Veer
e = exP[Rug[ T(t) Tf)] ®)
o _(.apop Y
apoD = | 5o DoDry *

Furthermore the effect of all rate constant equations is assumed to
be multiplicative.

6 = erefl'lek- (8)

Note that E, a, B, and 6, are fitting parameters and is where the
chemistry specific behavior is captured while Ry is the universal gas
constant and F is the Faraday constant. The reference parameters are
chosen to normalize aging to standard conditions and are defined as
follows: Tief = 298.15K, V.o = 3.6V, and ADOD,¢¢ = 1. In short, the
NREL model predicts incremental aging over an assumed standard
aging profile [97]. This approach was chosen due to the reality that
Calendar Aging (i.e. the effect of time) cannot be separated from Cy-
cling Aging effects.

4.1.2. Knee region modeling

A discrepancy between model prediction and aging data was found
in mid-to-high DoD cycling data, therefore later the c1 rate constant
was updated to better account for the “knee region” where capacity loss
is governed by the graphite site loss (mechanical process) rather than
lithium loss (predominately chemical process) [91]. Calculations based
on model extrapolation indicated that battery life would be over pre-
dicted by 25% if the knee region was not accounted for.

The hypothesized cause of the knee region was attributed to me-
chanical stress effects due to a combination of 1.) accelerated polymer
failure at high temperatures, 2.) bulk intercalation strain, 3.) bulk
thermal strain, and 4.) intercalation gradient strain accelerated by low
temperature [91]. Therefore c1 was updated to account for these effects
as follows™

2 Note in Ref. [91] the coefficient appears as c2 however there is no clear indication of
why chronological order was not followed.
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It was later shown that Bulk Intercalation Strains had the strongest
correlation to capacity fade at the knee region. The updated model with
the new cl parameter was then applied to an LFP aging meta-dataset
and was shown to be able to adequately predict 13 aging conditions
with temperatures ranging from 0 to 60 °C [91].

+ ms exp(

4.2. Wang Model

The Wang model was based upon accelerated life testing of a large
test matrix of battery conditions of the 1.5Ah 18650 LMO-NMC Sanyo
technology which drew upon previous work which modeled cycle life of
LFP cells [49,98]. This study also provided a thorough description of
both the test conditions and the measurement techniques employed to
characterize the batteries. Cells were characterized by four techniques:
capacity characterization (with well-defined charge/discharge pro-
files), relaxation tests, Electrochemical Impedance Spectroscopy (EIS),
and Hybrid Pulse Power Characterization (HPPC). Additionally, this
study conducted a voltage differential analysis to examine the source of
capacity loss and concluded that lithium (material) loss was the limiting
factor thus the active site loss was not modeled.

The Calendar Life loss model was developed from fitting model
parameters to a fundamental capacity loss equation which assumed an
Arrhenius dependence on Temperature.

Qloss, % = A 'exp(_Ea/RT)tl/2 (10)

Where A is the pre-exponential factor, E, is the activation energy in J/
mol, R is the gas constant, and T is the absolute temperature. As the test
matrix did not include stored cells, the low rate (C/2) and shallow DoD
(10%) cycling data set was taken as an approximate storage condition
and the model parameters were fitted to result in the Calendar Life loss
model. The result of the model fit is expressed in Equation (11).

Qoss, % = 14876-exp (—24.5kJ/RT)- days'/? an

The degradation due to cycling was calculated by subtracting the
Calendar Life loss model from the total loss measured from the data.
The fundamental cycle loss equation was hypothesized from the rate
effect of the C-rate and is of the functional form:

Qlusx, % = Brrexp (B, 'rate)'Ahthroughput 12

Where B; is the pre-exponential fitting factor and B, an exponential
fitting factor. Data from the 50% DoD cycling conditions were fitted to
Equation (12) to result in the Cycle Life Model for the four temperature
conditions with individual B; and B, factors per temperature as seen in
Equation (13).

Cycle life model

10 °C [0.0021exp(0.4278 rate)]- Ahthraughput
20 °C [0.0008exp(0.3903 rate)]: Ahihraughput
)
)

34 °C [0.0010exp(0.3107 rate)]- Ahiproughput

46 °C [0.0045exp(0.1826 - rate)]- Ahyproughput 13)

Finally a generalized equation to take all temperatures and rates
into account was found by an empirical fitting of B; and B, factors of
the cycle life loss model. Thus the overall Lifetime Model is represented
by Equation (14).

Qloss, % = (aTz + bT + C)eXP[(dT + e)'Irate]' Ahthroughput + f t%
-exp(—E,/RT)
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Coefficient values and units

a 8.61E-6, 1/Ah-K? Trate C-rate

b —5.13E-3, 1/Ah-K t Days

c 7.63E-1, 1/Ah E, 24.5, k] mol~!

d ~6.7E-3, 1/K-(C-rate) R 8.314,Jmol 'K !

e 2.35, 1/(C-rate) T K

f 14,876, 1/day'?? 14

It was shown that at lower temperatures (10 °C) life degradation
exhibits a linear relationship as Cycling Aging is the dominant me-
chanism, while at high temperatures (46 °C) a more exponential re-
lationship is seen due to Calendar Aging dominance. Understanding of
the interrelation of C-rates, Temperatures, and Ah throughput lead to a
concise visualization of Calendar vs Cycling Aging effects which was
shown previously in Fig. 5.

4.3. MOBICUS Model

The MOBICUS Model is still in development and has been the pro-
duct of ongoing research projects since 2007 [53-55,92,99,100]. Cur-
rently the Modeling of Batteries Including the coupling between Ca-
lendar and Usage aging (MOBICUS) project is expanding the model for
more usage profiles and coupling the effects of previously developed
aging models. The Cycling Aging model was the product of the SIMS-
TOCK project from 2007 to 2011 which investigated 3 Li-ion technol-
ogies while the Calendar Aging model was a product of the SIMCAL
project from 2009 to 2012 which investigated 6 different Li-ion tech-
nologies. A summary of the technologies investigated in each project is
presented in Table 2.

While databases of the aging characteristics of the previous battery
chemistries were built throughout the SIMSTOCK and SIMCAL projects,
only a few chemistries have been further developed into models which
have been published in the literature. While the MOBICUS project
seems to claim integration of all available chemistry datasets into the
latest model iteration, it is not clear how each dataset is taken into
account as there have been no comprehensive published articles to
date. Thus the Calendar Aging and Cycling Aging model representations
will be described in their limited capacities available in the literature
along with the latest understanding of the final MOBICUS model.

4.3.1. SIMSTOCK Cycling Aging Model

The SIMSTOCK project representation of Cycling Aging is found in
Ref. [55] for an LMO-NMC blend battery chemistry and was initially
formulated as a polynomial expression of the form:

FQY) = Yoo + Yo X1 + Yoor X2 + Vo3 X + You Xt 1s)
Where X; = current (A), X, = temperature (°C), X3 = Ah throughput
(A/s), and X4, = ASOC (%) and the variable Y represented the total
aging, considered as cumulative ampere-hours. The paper references
the NREL model but notes that aging parameters are considered static
throughout the life of the battery cell which is a limitation as the rates
at which degradation parameters affect the overall life fade will change
as the battery ages. Therefore to capture changes in degradation rate
losses, the Cycling Aging model was adapted to calculate the differ-
ential capacity loss and was formulated as follows:

Table 2
SIMSTOCK and SIMCAL battery technologies.
NCA LMO-NMC NMC LFP
SIMSTOCK Saft 7Ah LG Chem 5.3Ah - LiFeBatt 8Ah
SIMCAL Saft 7Ah LG Chem 5.3Ah Kokam 12Ah LiFeBatt 8 Ah

LiFeBatt 15Ah
A123 2.3Ah
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( dQy

= aqj,where a; = ap + a1 Xi + apXo + ap3-Xy + aps-Xy
d(ﬁ)) ’ !

(16)

The model was then fitted to the results of the testing conditions
which cycled the four parameters (X; - X,4) through all possible binary
permutations (0,1) where 0 was the minimum condition and 1 was the
maximum condition, resulting in eleven total tests. As this model is in
derivative form it attempts to predict the instantaneous rate at which
capacity declines during each battery test condition, then integrates
each individual slope over time to result in the full capacity degrada-
tion. The paper derived three conclusions from the LMO-NMC Calendar
Aging model: that the predominate aging effect was temperature, the
effect of Ah throughput was greater than the effect of current, and that
without stress, the coefficient a, is positive and indicated that the
battery would regain capacity at low temperatures.

4.3.2. SIMCAL Calendar Aging Model

The SIMCAL Calendar Aging model is presented in Ref. [53] for an
LFP battery chemistry which was subjected to six storage conditions for
a total of 14 tests. Batteries were stored at SOC: 30, 65, and 100 while
being subjected to temperatures of 30 °C, 45 °C, 60 °C, and a thermal
cycling test which varied temperature from 30 to 45 °C. This model was
also initially formulated as a derivative equation as follows:

Qloxs (t) )70{ ®

nom

dQloss

=k(T, SOC)-|1 +
S k( )(

a7
Where:

® k (T, SOQ) is the kinetic dependence of capacity fade evolution with
Temperature (T) and SOC during storage.

® Qjoss (1)/Chom is the fractional capacity loss at time t.

® (1 + Quoss (1/Com) %P with a(T) > 0 is related to the diffusion
limitation of solvent molecules inside the SEI layer which tends to
decrease the capacity fade rate and is temperature dependent.

In order to express the total capacity loss as a function of time, the
incremental representation seen in Equation (17) was integrated by
setting a = 1 att = O for Qj,ss = 0 and resulted in:

1 . Qloss (t)z

Quoss () + 5 = k(T, SOC)-t

(18)

nom

Later it was noted that this representation did not fit the aging da-
taset well. Therefore the model was further generalized to allow for
model tuning to aging data that did not follow an Arrhenius (t'/%)
evolution. This was accomplished by integrating Equation (18) and
assuming that T and SOC remain constant to result in:

a+1
{(1 + %) - 1}
Cnom

Additionally the kinetic dependence of capacity fade (k(T, SOC))
was further expressed as follows:

Cnom

"= @+ DT, S00) 19)

k(T, SOC) = A(T)-SOC + B(T) (20)
E(IA 1 1
A(T) = kgexpy——- [— - —)}
{ ROAT Ty (1)
Eag 1 1
B(T) = kyexpy —- (— - —)}
’ { R \T Ty 22)

Where R is the ideal gas constant (8.314 Jmol K™), T is represented in
Kelvin, SOC represented as a percentage, and T,.r was set at 298 K. The
model parameters a and k were estimated through non-linear regres-
sion techniques to fit the baseline model to the aging data.

Storage temperature was shown to have a stronger effect on battery
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life than storage SOC and that higher storage values of temperature and
SOC impacted battery life more than lower values if the trend con-
tinues. The effect of temperature and SOC was most apparent in the
65 °C case which exhibited a t'/* dependency and a clear delineation of
each SOC condition; however, at lower temperatures life fade exhibited
a more linear degradation.

4.3.3. MOBICUS representation

What is known of the MOBICUS model representation can be found
in Ref. [54] and seems to be an extension of the NREL representation.
While NREL model Equations (1)-(4) are referenced, it seems that the
most current version of Equation (3) was not incorporated and thus a t/
2 dependency is assumed. The MOBICUS representation hypothesizes
that since overall life degradation tends to be dominated by Calendar
Aging effects, and that cycle frequency additionally influences the effect
seen from those cycles, all degradation must therefore be time depen-
dent. Thus, the MOBICUS model updates equations (1)-(4) for internal
resistance R and battery capacity Q to become:

R=ay+ aqt'2 + @uN (23)
Q = min(Qy, Qsies) @4
Where

Qi = b, + byt'/? (25)
Qsites = Co + €1t (26)

It was claimed that with the MOBICUS representation, the knee
region can be predicted with more accuracy, but it is unclear as to
whether the updated NREL model parameter c; (active site loss model
seen in Equation (9)) was taken into account. While the MOBICUS re-
presentation claims better fit to data so that Cycling Aging is not
overestimated, there is no attempt to specify how this knee region de-
velops or to what mechanism it is attributed to as in the NREL model.
While may be possible to speculate the functional forms of the MO-
BICUS model from the SIMSTOCK and SIMCAL model outlines, there
are no known published sources to confirm. Figure S4 and Figure S5
show the MOBICUS model compared to aging data and are included in
the Supplementary Material as various battery chemistry aging profiles
are compared at a glance.

4.4. Limitations of battery models

Semi-empirical battery models allow for extrapolation of future
conditions which would be time and cost prohibitive to find empiri-
cally, however this entails they are inherently dependent on the aging
data which is used to generate degradation rate laws. This limitation is
manifested in several ways which are enumerated below.

4.4.1. Time resolution

The time resolution of the battery model is a limiting factor. As most
models are based on average hourly values for temperature and minute
values for SOC and other parameters, they cannot capture the effects of
high frequency cycling or small deviations in Temperature.
Additionally, effects of high charge rates other than average increases
in temperature are not captured. This is important to note when at-
tempting to evaluate degradation of fast grid services such as Frequency
Regulation which operates at the seconds' time interval.

4.4.2. Data limitation

As noted in Ref. [97] current models do not capture effects of ac-
celerating degradation mechanisms which could occur after 30% Ca-
pacity Fade. As rate relationships can only be assumed to hold true and
are bounded by the underlying time period of the aging data, effects of
degradation beyond 10 years cannot be predicted with certainty. Non-
accelerated storage aging data is costly to generate due to the
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experimental and time requirements and it is unclear if low impact
cycling could approximate storage conditions. The effects of extreme
temperatures are not captured as none of the previous studies have
investigated Temperatures above 50°C and below 0°C. From stress
testing research it is clear though there would be pronounced de-
gradation and potentially catastrophic cell failure at extreme tem-
peratures. Finally, cell aging effects are known to be non-transferrable
to the pack level as additional degradation beyond what could be ex-
plained by scaled effects exists [77]. This is likely due temperature non-
uniformities within the battery pack which are not adequately captured
by BMS temperature sensors, however it implies that scaled cell level
characterized aging data may not adequately explain pack aging.

4.4.3. Cycling definition and frequency

The cycling frequency and cycling definition are known to drasti-
cally affect life degradation such that, any model which is based on
accelerated cycling data alone could over predict battery life [52,93].
Various definitions of what constitutes a cycle exist depending on the
application; such as when current passes through zero or another
chosen point, the point where charge power slope changes, or the point
where charge power returns to a previous value.

Currently there is no widely accepted standardization of test cycles;
therefore it is crucial that battery cycles are well defined in aging stu-
dies. Cycle definitions should include charge rate, temperature (both
ambient and effective cycle temperature), a well-documented charge
profile, clear definition of what a cycle constitutes, and acknowl-
edgement of rest times between cycles or between measurements. Clear
definition of battery measurement and characterization techniques
(EIS, charge/discharge, HPPC, etc.) should also be provided. Recent
progress in battery test standardization been made in the US and China
however more work is needed [101,102].

4.4.4. Chemistry specificity

Current models can only postulate degradation laws based on the
chemistry of the underlying aging data. Each battery chemistry exhibits
different sensitivities to degradation drivers, especially the effects of
Temperature and SOC. Therefore it is important when employing semi-
empirical models in economic cost evaluations to note the battery
chemistry used and to understand that results are non-transferrable to
other battery technologies. Furthermore some chemistries may be more
prone than others to the Knee Region where capacity quickly drops due
to increased mechanical degradation. This Knee Region is potentially
avoidable or deferrable if battery usage conditions are constrained.

5. Economic Implications

As Calendar Aging tends to be the dominant aging factor, this im-
plies that the Temperature and SOC at which a battery is at rest over
time will have a more significant impact than any other consideration.
This reduces down to the fact that battery degradation is time depen-
dent. Additionally the total Ah throughput and how this current is ex-
tracted from the battery will further degrade SOH. Battery operational
conditions will determine lifetime therefore all degradation drivers
should be accounted for, however economic cost evaluations have only
recently come to integrate sophisticated battery models. In the case of
V2X services, the cost of the service provision should be outweighed by
the revenue generated. While revenue calculation is relatively
straightforward, without clear understanding of how a usage profile
impacts battery life, battery degradation costs cannot be properly in-
tegrated to analyses.

5.1. First approximations of battery degradation costs
5.1.1. V2X cost fundamentals (Kempton and Tomic)

The first V2X cost evaluation can be found in the seminal works by
Kempton and Tomic, which developed the fundamental equations of
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battery asset costs for V2X [19,21]. While cost estimations for capital,
purchased energy, and labor are well defined, battery degradation cost
(cq) is based on a Cycle Life only understanding of the battery which
incorporates DoD but no other degradation drivers seen in Equation
@27).

Chat
Ca = ,

Lgr

Lgr = L.Es; DoD @7
Where cq is battery degradation cost, cp, is the battery capital cost
including labor for replacement of the battery, and Lgy is the lifetime
energy throughput of the battery. L. is the cycle lifetime number, E the
total energy storage of the battery, and DoD is the depth-of-discharge at
which L. was determined. This formulization assumes that the ex-
tractable energy of the battery does not change over time for each cycle
and that battery lifetime is defined as the number of cycles at a certain
DoD.

5.1.2. Present Value of Throughput (PVT) (Neubauer et al.)

Net Present Value (NPV) is a widely accepted metric for economic
valuation of assets which takes the Time Value of Money into account.
Similarly, as Calendar Aging is the most important factor in battery
asset fade, it follows that battery degradation costs must be also time
dependent. A first attempt to include time into degradation costs is
found in Ref. [80] which defined a Present Value of Throughput (PVT)
metric to better account for the time dependency of battery energy as
seen in Equation (28).

PVT = Zn:

i=1

(1 + 0.025)i705
(1 + 0.10)i-%5

l @8)
Where i = years, n = battery life in years, x; = annual battery energy
throughput in kWh. PVT accounts for the present value of both the
capacity and cycle life of the battery assuming a discount rate asso-
ciated with the time value of money of 10% per year and that the value
of a kWh of energy storage increases at a rate of 2.5% per year [80].
While this formulation does include time, calculation of x; would still
require an understanding of both battery usage and degradation due to
that usage. Furthermore the assumption that the value of battery energy
increases over time may not always be accurate as that value is in-
trinsically a product of battery operation. Thus battery degradation
costs are best informed by battery lifetime models which already in-
corporate all (or most) of the degradation drivers.

5.2. Battery degradation costs informed by battery models

5.2.1. Optimized charging algorithm (Hoke et al.)

The first known incorporation of a battery lifetime model to esti-
mate degradation costs is found in Ref. [103] which develops an al-
gorithm to optimize EV or PHEV charging based on both electricity and
degradation costs. This work employs a simplified version of the NREL
battery model to allow for reduced calculation time and is particularly
interesting as it demonstrates an understanding for and incorporates
nearly all degradation drivers for cost estimation. The results of the
optimized charging power profile and strategy was dependent on the
exogenous signal of electricity price with fixed inputs for ambient
temperature (T), battery energy capacity (Q), initial SOC, plug-in time
(to), and target time for full charge (tax, Where full charge was defined
to be 90% SOC). Also note that only charge power was optimized where
actual charge voltage and current was assumed to be controlled sepa-
rately by the battery charger.

As seen in Fig. 7 a characteristic stepped power profile results as the
optimal least cost charging strategy when given a constant electricity
price and fixed inputs for ambient temperature (T = 25°C), and
thermal resistance (R, = 0.002°C W™ 1). The tendency to charge later
is due to Calendar Aging considerations which discourages spending
time at high SOC. The spreading of charge over time, hence the stepped
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Fig. 6. Optimized charging of 3 EVs with constant cost ofenergy

Fig. 7. Optimized Charging Power Profile (upper panel) for three EVs at Fixed
Electricity Price (lower panel). EV1 (blue) begins at SOC 35, EV2 (green) begins
at SOC 30, and EV3 (red) begins at SOC 20 where the related colored arrows
signify the user-specified plug-in and unplug time. Electricity price is constant
at $0.12/kWh [103]. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)

power profile, is due Cycling Aging considerations which discourages
high power (high current) charging to minimize temperature rise.
Later the effect of a variable electricity price and V2G power ex-
portation was explored in vehicles with good thermal control (Ry,
=0.0004°C W™1). In this example vehicles exported power im-
mediately to lower resting SOCs even if this required a higher powered
step charge later, again leading to the conclusion that minimization of
Calendar Aging effects outweigh subsequent increases in Cycling Aging
effects. In all instances the optimized charge profile was found to out-
perform other charge strategies and resulted in prolonging battery life
between 4% and 50% over other strategies. This leads to the conclusion
that if temperature can be adequately controlled, bulk power V2G ex-
portation can be beneficial to minimize battery degradation costs even
before including the primary additional value of revenue generation.

5.2.2. V2X service cost study (Wang et al.)

While previously shown that bulk energy transfer can be beneficial
in certain circumstances, typically extended periods in this operational
mode is highly detrimental [21,42]. Therefore grid services which re-
quire extended bulk energy transfer constitute the highest cost V2G
service however several other services exist. In Ref. [104] the pre-
viously explained Wang battery model was paired with a lumped
thermal model from Ref. [105] and the V2G-SIM software platform
[82,106] to quantify battery degradation costs associated with driving
only vs driving paired with a range of V2G services. The degradation
effects of providing Peak Load Shaving, Frequency Regulation, and Net
Load Shaping services were quantified by assuming each vehicle re-
peated the same itinerary for 10 years which consisted of daily driving
and service provision profiles. Only capacity reduction was studied as
internal impedance rise was omitted. All battery degradation costs were
calculated assuming a replacement battery cost of $6000.00 and an EoL
of 30% reduction of initial capacity.

5.2.2.1. Peak Load Shaving. When Peak Load Shaving was assumed to
be provided every day for 10 years, the resultant additional capacity
reduction ranged from 2.79%-9.69% over the 31.41% reduction from
the base/uncontrolled charging scenario, highlighting the detrimental
effect of extensive bulk power transfer. However based on [107]
providing Peak Load Shaving every day is unrealistic and is likely
only to be called during times of emergency, approximately 20 times
per year. Therefore V2G emergency Peak Load Shaving was calculated
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for the 20 hottest days of the year and was found to increase capacity
losses by 0.38% with an L1 charger and 0.82% with an L2 charger over
the base/uncontrolled charging case. The battery degradation cost from
the 2-h emergency Peak Load Shaving (V2G) grid service was
calculated to be $0.38 using an L1 charger at home and $0.82 using
an L2 charger at home.

5.2.2.2. Frequency regulation. It was assumed that vehicles could
adequately follow a Frequency Regulation signal from 19:00-21:00
every day based on results from Ref. [31]. The regulation signal was
based on the PJM market RegD signal which is a fast-response signal
designed to have zero net energy over each 15 min contract period. The
Frequency Regulation service resulted in an average additional 3.62%
capacity loss with an L1 charger and an additional 11.15% loss with L2
charging over the base case. The battery degradation cost from the 2-h
Frequency Regulation was $0.20 using L1 charging and $0.46 using L2
charging.

5.2.2.3. Net Load Shaping. Net Load Shaping consists of flattening the
shape of the system load profile i.e. filling in valleys while reducing the
peak. While V1G (smart charging/unidirectional) was found to help
reduce the system peak, V2G could both flatten the peak and shift
consumption to off peak hours. The increased load shifting potential of
V2G does come at an increased cost however as it would require deeper
cycles and more bulk energy transfer than V1G. Therefore V2G Net
Load Shaping service resulted in an additional 1.18% capacity loss with
L1 charging and 2.60% with L2 charging over the base case. The battery
degradation cost from the load shaping service was calculated for 20
days per year as $1.18 using L1 charging and $2.60 using L2 charging at
home.

Overall it was concluded that V2G services could be dispatched in
ways that result in very little additional cost to EV owners but extended
bulk energy transfer services would likely be cost prohibitive.

5.2.3. V2G battery chemistry impact study (Petit et al.)

In Ref. [108] a semi-empirical model which incorporated both Ca-
lendar and Cycling Aging was used to assess the impact of V2G and the
charging strategy on battery lifetime. This model attempted to capture
chemistry effects as well and was verified using the same aging data
used in Ref. [51] for an A123s 2.3 Ah LFP cell and from the MOBICUS
project for a Saft VLGP 7 Ah NCA cell. The model assumed Calendar
Aging was dominated by Temperature and SOC while the Cycling Aging
was dominated by Temperature and C-rate (current) thus the other
degradation mechanisms were omitted. One model simplification was
that one form of aging could take place at a time, assuming that Ca-
lendar Aging was already taken into account when Cycling Aging oc-
curred. The battery life effect of different charging strategies char-
acterized through cycling profiles referred to as: Just In Time, Charge
When You Can, Strong V2G, and Light V2G, which were compared to
the Nominal Strategy of charging upon plug-in.

5.2.3.1. Results. The Nominal case consisted of medium DoD cycling
with a relatively high average SOC and long periods of rest at high SOC.
The Just In Time strategy consisted of medium DoD cycling with low
average SOC and long periods of rest at low SOC. The Charge When You
Can strategy consisted of very low DoD cycling, a high average SOC
over time, and long periods at high SOC. The Strong V2G scenario
consisted of several high DoD cycles, a medium average SOC, and long
periods at low SOC. Finally the Light V2G consisted of high DoD
cycling, a medium average SOC, and long periods at low SOC. These
trends are summarized in Table 3.

The capacity loss results of each charging strategy are summarized
Fig. 8 for both chemistries. The most notable result is how different the
two technologies are affected by the charging strategy and that NCA
exhibits superior capacity retention over LFP for every strategy. Overall
the Just In Time strategy is the best as it simultaneously mitigates
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Table 3
General characteristics of various charging strategies.
DoD Cycling Average SOC Rest SOC

Nominal Mid High High
Just in time Mid Low Low
Charge when you can Low High High
Strong V2G High (x3) Mid Low
Light V2G High Mid Low

Calendar Aging by having long periods of storage at low SOC and does
not require large DoD cycling which mitigates Cycling Aging compared
to the other strategies. For LFP the Just In Time strategy results in a
3.5% capacity reduction compared the Nominal of 5.6% while for NCA
the strategy benefit is less significant with 2.2% capacity reduction
compared with the Nominal of 2.3%.

When looking closer at LFP, the Just In Time and Light V2G stra-
tegies cause the least degradation and actually decrease the life loss
when compared to the Nominal case. However the Strong V2G case,
which would require large amounts of battery throughput, is only
slightly worse than the Nominal strategy. These two observations lend
to the conclusion that incorporation of some level of V2G can be ben-
eficial to battery life regardless, but that significant levels of V2G usage
should be evaluated against the revenue benefit. For LFP the additional
life loss of the Strong V2G strategy is only 0.02% over the Nominal and
would likely be outweighed by revenue.

When looking at NCA the situation changes however as the Charge
When You Can strategy exhibits less life loss than the Light V2G.
Referring again to Fig. 6 however this does not seem surprising as the
NCA Calendar Aging effect has a low sensitivity to SOC, therefore
periods stored at high SOC would only have a slightly more negative
impact compared with storage at low SOC on life fade. However for
NCA the Strong V2G (4%) is worse than the Nominal (2.6%) and all
others. This result would imply that the Calendar Aging mitigating ef-
fect of a low storage SOC is outweighed by the large DoD and sub-
sequent increased Cycling Aging. This is an interesting result as it
conflicts with [103] which also based on an NCA chemistry and con-
cluded that the DoD effect on capacity loss was very small compared to
the Temperature and SOC effects. One possible explanation is that the
three large DoD swings raises the average battery temperature much
higher than normal which would induce more capacity degradation.
Why this effect would be more prominent for NCA and not seen in the
LFP results is not clear however as LFP is known to be more Tem-
perature sensitive.

While the Just In Time strategy resulted in the least Capacity Fade
there was little difference compared to the Light V2G scenario in both
chemistries. This study indicates that certain chemistries are better
suited to certain usage profiles; therefore the cost effectiveness of V2X
products may be chemistry dependent. This hypothesis may be evi-
denced by the different chemistry employed by Tesla for their vehicle
(NCA) vs storage batteries (NCM).

5.2.4. V2X as prolonging life (Uddin et al.)

The first known paper to outright claim the positive life effect of
V2X services can be found in Ref. [87]. While here an Equivalent Cir-
cuit Model (ECM) was employed, it was fitted with battery aging data
effectively making it a semi-empirical ECM as each parameter varies
over time and in response to degradation drivers. Capacity Fade and
Power Fade were both investigated and SOH was defined such that EoL
would be encountered if either end condition was met for Capacity Fade
(80% remaining initial capacity) or Power Fade (100% increase in in-
itial internal resistance). The model was populated with a robust aging
dataset of 3 Ah NCA 18650 cylindrical cells from an unnamed manu-
facturer. Fifty long-term aging tests with a well-defined experimental
protocol were conducted under a wide range of operational conditions
spanning 0°C < T < 45°C, 15% < SOC < 95%, 0% < DoD < 80%.
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Fig. 8. Comparison of Capacity Loss due to various charging and V2G profiles for LFP and NCA Battery Chemistries [108].

Additionally each test condition was conducted on three separate cells
to ensure robustness. Instead of using a phenomenological model, this
work opted to instead fit a generalized model without hypothesizing
rate constants with a fractional polynomial of the form:

Y=Y+ aX?f (29)

Where Y was either Capacity or Resistance, ¥, was the corresponding
value determined from the initial characterization test, X was either
time or Ah throughput (K) and « and 8 were fitting parameters found
through linear interpolation.

5.2.4.1. Vehicle-to-Building (V2B) optimization. In contrast to previous
studies, this work proposed a V2B topology where EVs would discharge
into a larger BESS, pumped storage, or compressed air system
intermediary which could be used for either energy arbitrage or for
flattening/shifting peak consumption of the commercial building to off-
peak hours. V2B discharge was managed with the primary goal to
minimize battery degradation through an iterative algorithm which
compared the expected degradation cost at an initial resting SOC; to the
expected degradation cost of a lower SOC;;; (Calendar Aging
Mitigation) where ASOC was discharged to the storage intermediary.
If SOC;;; was found to be beneficial, the algorithm next compared
whether the life gains from resting at SOC;,; would outweigh the
Cycling Aging induced to discharge ASOC and if all conditions were
true, the algorithm would discharge to SOC;,, , update it as the new
SOC; , and continue in increments of 1% ASOC until the optimal resting
SOC was reached.

5.2.4.2. Results. This study only used V2B to minimize battery
degradation cost and did not optimize financial gains vs battery
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degradation cost. While this V2B topology would result in a bulk
energy transfer product, results indicated that both Capacity Fade and
Power Fade could be reduced in certain circumstances. If a vehicle
arrived with an initial SOC between 79 and 62%, discharging an
additional 8-40% through V2B could reduce Capacity Fade by 6% and
Power Fade by 3% over the first three months. While the V2B optimized
algorithm was employed with an opportunistic charge strategy
(analogous to Charge When You Can in Ref. [108]), the authors
noted that incorporating a Just-in-Time strategy would likely deliver
more pronounced life gains.

Next the V2B algorithm was investigated in a case study which
tracked actual driving patterns of 349 EV, PHEV, and Fuel Cell EV
(FCEV) owners and calculated the available V2B energy when in-
tegrated with an actual energy usage profile of commercial building. It
was found that vehicles could provide 2.8 MWh of energy weekly
which would equate to a 0.145 GW h annual energy arbitrage potential.
Additionally, Capacity Fade was reduced up to 9.1% and PF by up to
12.1% for vehicle owners which translated to an annual savings of
$555.00 for a single EV owner when assuming a replacement battery
cost at $200/kWh.

6. Conclusions
6.1. Battery Degradation

Li-ion batteries are complicated electrochemical systems with non-
linear interdependencies which exhibit two complementary aging be-
haviors known as Calendar Aging and Cycling Aging. Calendar Aging is
dependent on the degradation drivers of Temperature and SOC which
are coupled through an Arrhenius relationship which results in an
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underlying dependency on time (t*) where z tends to be Y. Cycling
Aging is the degradation resulting from battery usage and is dependent
on the drivers of Temperature, SOC, charge current (C-rate), and Depth
of Discharge (DoD or ASOC). Cycling Aging results in an underlying
dependency on total extracted energy (Ah throughput) rather than
cycle number (N) as previously thought. Furthermore, each battery
chemistry will exhibit varying sensitivities to these degradation drivers
thus it is imperative that aging data is characterized by its underlying
chemistry. Each of these degradation drivers influences fundamental
mechanical and chemical degradation mechanisms to impact battery
State of Health (SOH). SOH is reduced through either a decrease in total
battery capacity (Capacity Fade) or an increase in internal impedance
(Power Fade).

Capacity Fade is caused by the irreversible loss of active lithium
material while internal impedance rise (Power Fade) is associated with
increased kinetic resistance within the system, both of which are mostly
attributed to an increased Solid Electrolyte Interface (SEI) layer growth.
While high temperatures trigger more Calendar Aging (chemical de-
gradation), low temperatures and high C-rates induce more Cycling
Aging (mechanical degradation). To minimize Calendar Aging while
the battery is at rest, maintain a low SOC and a low Temperature. To
minimize Cycling Aging while the battery is in use, maintain a mod-
erate Temperature, a low/moderate C-rate, and a low DoD centered
around an optimal SOC point, which may be around SOC 50% as this
point is known to produce the least joule heating, however more re-
search into this phenomena is warranted.

At all temperatures (except for very low, T < 10C) while operating
in the pre-knee region, Calendar Aging is the dominant lifetime redu-
cing factor. After the knee region, Cycling Aging becomes dominant due
to a change in mechanism where capacity loss begins to be governed by
graphite site loss (a mechanical process) rather than active lithium loss
(predominately chemical process). However an intelligent battery
management strategy could prolong the knee region point until after
the vehicle EoL. This understanding paired with the fact that most ve-
hicles are immobile more than 90% of the time [109,110], implies that
Calendar Aging is the dominant reduction factor therefore the battery
management strategy while at rest will bound lifetime.

6.2. Battery Lifetime Models

Truly empirical battery lifetime analyses would require time scopes
of 10 years or more, which is both impractical and would be rendered
obsolete at completion as battery technology is improving rapidly. Due
to these challenges, semi-empirical lifetime models have been devel-
oped which aim to represent fundamental electrochemical phenomena
mathematically while extracting rate relationships from what limited
degradation data is available. Semi-empirical models are preferred over
other methods for economic analyses as they allow for extrapolation
beyond experimental aging conditions while being based on electro-
chemical phenomena. The three primary semi-empirical models ex-
plored in this review are known as the NREL Model [97], the Wang
Model [49], and the MOBICUS Model [54,88] which have influenced or
have been incorporated into several other models and research efforts.
A summary of the degradation drivers of Calendar and Cycling Aging,
the dependencies each model accounts for, and the relationship be-
tween models is found in Table 4.

While the NREL Model seems to be the most well developed, it is
limited to two chemistries and is based on population data primarily
from geosynchronous orbit satellite life qualification tests. The Wang
Model is also well developed with additional insights related to which
degradation mechanisms bound capacity loss and the visualization of
the Calendar vs Cycling Aging effects as seen in Fig. 5. However the
Wang Model is limited to the NMC-LMO chemistry and does not employ
actual storage data as it assumed low C-rate, low DoD rate cycling data
would be comparable. The MOBICUS project has access to the most
robust aging data set from the greatest variety of battery chemistries;
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however the overall modeling approach to couple Calendar and Cycling
Aging is not clear as there are no known published works. Therefore
model dependencies must be inferred from previous models developed
out of the research of the SIMSTOCK and SIMCAL projects.

While semi-empirical battery models are the best tools for predictive
analyses due to the cost prohibitive elements of empirical full life-cycle
testing, they are inherently limited by their source data. This limitation
is manifested in several ways:

1.) Time resolution: current models do not take micro cycling into ac-
count and calculate temperature degradation from average impact
normally at an hourly timeframe. Therefore they cannot be used to
estimate Frequency Regulation or other high frequency charge/
discharge service costs.

2.) Data Limitation: It is difficult to predict beyond 10 years and below
30% Capacity Fade as no empirical dataset has been generated, lack
of data at extreme temperatures. Additionally cell-to-pack transla-
tions of aging data are known to produce biased results. This is due
cell-to-cell variations within the battery pack which produce tem-
perature non-uniformities and thus non-uniform aging.
Lack of test cycle standardization: cycle definitions should include
charge rate, temperature (both ambient and effective cycle tem-
perature), a well-documented charge profile, clear definition of
what a cycle constitutes, and acknowledgement of rest times be-
tween cycles or between measurements. Clear definition of battery
measurement and characterization techniques (EIS, charge/dis-
charge, HPPC, etc.) should also be provided.

4.) Chemistry limitation: different Li-ion chemistries have drastically
different aging profiles, thus the need to expand current models to
additional chemistries is clear.

3.

—

Therefore economic analyses of battery assets should contain suffi-
cient electrochemical detail to account for chemistry specific degrada-
tion behavior to produce results based on physical reality.

6.3. Economic Implications of Battery Degradation

Calendar Aging tends to be the dominating life effect in vehicular
applications, this reduces to Time being the most important component
of degradation; thus battery degradation cost calculations should be
time dependent. Battery Temperature is also highly impactful followed
by SOC and the total Ah throughput, however economic cost calcula-
tions to date have mostly focused on cycle number as the determining
factor of lifetime.

For Cycling Aging there is consensus that the amount of energy
which is extracted (Ah throughput) from the battery will be more sig-
nificant than number of cycles however, the manner of how the energy
is extracted (i.e. at what temperature and what C-rate) will still be
important. Charging strategies for vehicular applications should
therefore be first designed to mitigate Calendar Aging, but ideally
should be able to balance both Calendar and Cycling Aging effects.

The best battery management strategy should be based on three
principles with decreasing order or importance: 1.) Minimize
Temperature rise, 2.) Minimize time spent at high SOC, and 3.)
Minimize average charge power (C-rate). Therefore relatively simple
designs such as delayed or “Just-In-Time” charge strategies will always
outperform the typical charge when plug-in, regardless of battery
chemistry. Furthermore, V2X services may in fact prolong battery life
rather than shorten it by contributing to the three principles if in-
corporated with sufficiently sophisticated battery models. Even bulk
energy transfer V2X products with their high Ah throughput, can be
beneficial when incorporated with a holistic battery management
strategy. Furthermore, the value of V2X products may in fact be
chemistry dependent as some chemistries are more suited than others to
specific usage profiles. While there still have been no sophisticated
studies to look at the degradation effects of fast charging and
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Table 4
Summary of semi-empirical battery degradation model dependencies.
Calendar Aging Cycling Aging Chemistry
Temp SoC Time Temp SOC C-rate DoD NCA LFP NMC-LMO NMC
NREL v v v v v v v v v
[103] v v v v v v v v
[111] v v v v v v v v
Wang v v v v 50% v
[51] v v v v
[104] v v v v 50% v
MOBICUS v v v v Unclear v v v v v v
[92] v v v v
[55] v v v v v
[108] v v v v v v v
discharging as would be employed in a Frequency Regulation product, VEDECOM, and Doug Black from Lawrence Berkeley National

the final and key conclusion is that integration of V2X services with
controlled charging regimes could in fact prolong battery life while
delivering tangible energy and cost savings to both EV owners and
building managers.

We envision that V2X services could be cost-effectively incorporated
with vehicle battery management strategies using the following prin-
ciples.

V2X Frequency Regulation:

e Upon plugin for long period, decrease SOC to lowest level such that

the charging rate required to reach the SOC needed for the next trip

would not significantly increase battery temperature.

Perform Frequency Regulation around this nominal SOC value (if

temperature rise can be sufficiently contained).

Step charge back up to required SOC level for mobility needs at last

possible moment.

o Timing for this step charge should calculate trade-off between
market participation duration and battery temperature rise due to
increased charge rate.

V2X Energy Arbitrage or V2B:

Upon plugin for long period, decrease SOC to lowest level such that
the charging rate required to reach the SOC needed for the next trip
would not significantly increase battery temperature while using
discharge for bulk power V2X service simultaneously.

Sit until last possible moment

Step charge back up to required SOC for mobility needs at last
possible moment.

Without V2X:

*Upon plugin for long period, decrease SOC to lowest level such that
the charging rate required to reach the SOC needed for the next trip
would not significantly increase battery temperature.

+Sit until last possible moment

+Step charge back up to required SOC level for mobility needs at last
possible moment.
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