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Let N be a prime number, and let J0(N) be the Jacobian of the modular curve
X0(N). Let T denote the endomorphism ring of J0(N). In a seminal 1977 article,
B. Mazur introduced and studied an important ideal I ı T, the Eisenstein ideal. In
this paper we give an explicit construction of the kernel J0(N)[I] of this ideal (the
set of points in J0(N) that are annihilated by all elements of I). We use this
construction to determine the action of the group Gal(Q̄/Q) on J0(N)[I]. Our
results were previously known in the special case where N−1 is not divisible by 16.
© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let N be a prime number and let J0(N) denote the Jacobian of the
modular curve X0(N). The variety J0(N) possesses certain naturally
defined endomorphisms Ta ( for all primes a ]N) and w. These endo-
morphisms together with Z (the multiplications by integers) generate the
Hecke ring TN of endomorphisms of J0(N). In his celebrated article
‘‘Modular curves and the Eisenstein ideal’’ [10], Mazur defined the
Eisenstein ideal I in TN as the ideal generated by 1+w and the 1+a−Ta
and used it to identify the possible rational torsion subgroups of elliptic
curves defined over the rational numbers. The Galois module J0(N)(Q̄)[I]
plays an important role in [10] and later studies of the arithmetic geometry
of the curve X0(N).

Mazur proved that

J0(N)[I] 5 Z/nZ×Z/nZ



as groups, for n=(N−1)/gcd(N−1, 12). In this paper we will study the
action of the group Gal(Q̄/Q) on J0(N)[I]. The group J0(N)[I] has two
noteworthy Galois-invariant subgroups. The cuspidal subgroup C is gen-
erated by the divisor c=0−. (the formal difference of the two cusps of
X0(N)). The group C is cyclic of order n and is pointwise fixed by
Gal(Q̄/Q). The Shimura subgroup S is a finite flat subgroup scheme of
J0(N) such that

S(Q̄)=ker(bg: J0(N)Q J1(N)),

where bg is induced by the usual degeneracy map b: X1(N)QX0(N). The
group S is also cyclic of order n, but is isomorphic to mn as a group
scheme.

In this paper we shall give an explicit construction of J0(N)[I], the
proof of which relies on an informed computation, and apply the
construction in various ways. Mazur’s paper [10] contains an explicit
construction of J0(N)[I] only in the case N – 1 (mod 16), although he
remarks in a few places (e.g., [10, p. 130]) that a general description would
be desirable. Our construction identifies the action of Gal(Q̄/Q) on
J0(N)[I].

If n is odd (equivalently N – 1 (mod 8)) then C 5 S=0, so J0(N)[I]
5 C À S and therefore we know the Galois action on J0(N)[I].

If n is even then C 5 S ] 0 and more is needed to find the Galois action.
In this case C+S has index 2 in J0(N)[I]. Therefore it suffices to find an
‘‘extra’’ point P in J0(N)[I] that is not in C+S. The knowledge of the
Galois action on P, S and C then gives a description of the Gal(Q̄/Q)-
action of J0(N)[I]. For the case n — 2 (mod 4) (or equivalently N — 9
(mod 16)), Mazur finds P by considering the Nebentypus coveringX#0 (N)Q
X0(N) of degree 2. Using a function constructed by Ogg and Ligozat, he
obtains a divisor d on X#0 (N) which turns out to be the pullback of a
certain divisor on X0(N) that gives the extra point on J0(N).

This paper uses other coverings X#0 (N)QX0(N) to generalize Mazur’s
construction and find extra points of J0(N)[I] for any N — 1 (mod 8). To
find suitable divisors on our modular curves X#0 (N), we use the theory of
modular units: rational functions on a modular curve whose divisors are
concentrated at the cusps. Our coverings X#0 (N)QX0(N) are all interme-
diate to X1(N)QX0(N), enabling us to rely on the theory of modular units
on X1(N). The units of X(N) are treated in Kubert and Lang’s [8]. We
recall some of their results in Section 2. We then use the results of Section 2
to develop some results about the units of X1(N) in Section 3. (References
[7, 8] also treat this case but restrict their attention to units whose divisors
are supported at the rational cusps, and do not explicitly give the data
necessary for the descent to X#0 (N).) In Section 4, we construct a divisor on
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X#0 (N) and establish properties of the divisor that make our later argu-
ments work. In Section 5, we prove that the extra point we obtain is in
J0(N)[I] and use this fact to prove the following theorem, conjectured by
Ribet. For any positive integer k, let qk denote the kth cyclotomic character
Gal(Q̄/Q)Q (Z/kZ) × obtained via the identification Gal(Q(mk)/Q)) 5
(Z/kZ) ×.

Theorem 1.1. J0(N)[I] has a basis e1, e2 over Z/nZ such that

(a) c=e1+2e2;
(b) e1 generates S;

(c) s ¥ Gal(Q̄/Q) acts via left multiplication by

1qn(s) (1−q2n(s))/2

0 1
2

with respect to the given basis e1=(
1
0), e2=(

0
1).

The results of this paper can also be used to clarify arguments in [15]
and in [1]. Another application is determining the old subvariety of the
modular Jacobian J0(NM), where N and M are distinct primes. This is
described in [3].

2. NOTATION AND SETUP

For any non-zero rational number x, let num(x) denote the numerator
of x, that is, the smallest positive integer n such that n/x is an integer.

We will now briefly summarize the relevant properties of the modular
curves we will be using. The reader can find a thorough treatment of these
in [5], as well as in the references cited below.

Let N be a positive integer. We shall consider the usual modular curves
X0(N), X1(N) and X(N), and their Jacobians J0(N), J1(N) and J(N).
These correspond to the moduli problems of classifying an elliptic curve
with a cyclic subgroup of order N, an elliptic curve with a point of order
N, and an elliptic curve with a symplectic identification of its N-torsion
with mN×Z/NZ, respectively. These curves are all defined over Q, as are
the usual degeneracy maps (which are Galois coverings) a: X(N)Q
X1(N), b: X1(N)QX0(N) and c=b p a.

The curves X0(N)C, X1(N)C and X(N)C can also be regarded as com-
pactified quotients of the complex upper half plane Hg/C0(N), H/C1(N)
and Hg/C(N), respectively, where
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C0(N)=31
a b

c d
2 ¥ SL2Z : c — 0 (modN)4 ,

C1(N)=31
a b

c d
2 ¥ SL2Z : c — 0, d — 1 (modN)4 ,

C(N)=31
a b

c d
2 ¥ SL2Z : a — 1, b — 0, c — 0, d — 1 (modN)4 ,

and these subgroups of SL2Z act on the complex upper half plane H
via fractional linear transformations. The points introduced during the
compactification are called cusps.

Now let N be an odd prime number, and let

r=(N−1)/2.

The curve X0(N) has two cusps, denoted 0 and .. They are both defined
over Q and are distinguished by the fact that under the natural map
X0(N)C=Hg/C0(N)QX(1)C=Hg/SL2Z, the cusp 0 is ramified with
index N and the cusp . is unramified.

The curve X1(N) has N−1 cusps that come in two groups. We shall use
Klimek’s notation in [7] for them. The cusps P1, P2, ..., Pr are defined over
Q and are mapped to 0 under b: X1(N)QX0(N). The cusps Q1, Q2, ..., Qr
are defined over Q(mN)+ (the maximal totally real subfield of the Nth
cyclotomic field) and are mapped to . under b. All the cusps of X1(N) are
unramified with respect to b.

The curve X(N) has (N2−1)/2 cusps and we use Shimura’s notation in
[13] to regard them as pairs ±(xy) with x, y ¥ FN, not both equal to 0. In
this representation, Gal(X(N)C/X(1)C) 5 PSL2FN acts naturally from the
left. For 1 [ i [ r, the cusps (gi ) are all defined over Q(mN) and map
unramifiedly to Pi under a: X(N)QX1(N). For 1 [ i [ r, the cusps ( i0) are
all defined over Q(mN)+ and map to Qi under a with ramification index N.

Shimura’s notation can be used to label the cusps of any modular curve.
We shall now provide the translations to Shimura’s system of all the names
we use. On the curve X0(N), the cusps 0 and . (respectively) are called (01)
and (10) (respectively). On the curve X1(N), for any 1 [ t [ r, our notation
Pt corresponds to (0t ), while Qt corresponds to ( t0).

Recall that a unit of a modular curve is a rational function on the curve
that has its divisor concentrated at the cusps. (It is a unit of the ring of
rational maps from the noncuspidal points of the curve to the affine line.)
In [8], Kubert and Lang determined all the units of X(N). We briefly
recall their results here, using Z/NZ×Z/NZ as the indexing group instead
of their 1

N Z/Z× 1N Z/Z. Let e=(e1, e2) be a pair of integers such that not
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both of e1 and e2 are divisible by N. One can use the classical Weierstrass s

and Dedekind g functions to define the Klein form ke(y) on H. This form
enjoys the properties

-a=1
a b

c d
2 ¥ SL2Z, ke(ay)=(cy+d)−1 kea(y) (K1)

(where ea denotes usual matrix multiplication) and

-f=(f1, f2) ¥NZ×NZ, ke+f(y)=e(e, f) ke(y), (K2)

where

e(e, f)=(−1)
f1f2

N2
+
f1

N
+
f2

N exp 1 pi
N2
(e1f2−e2f1)2 .

These Klein forms are then used to define for all e=(e1, e2) ¥ (Z×Z)0
(NZ×NZ) the Siegel function

ge(y)=ke(y) g2(y).

Recall that

-a=1
a b

c d
2 ¥ SL2Z, g2(ay)=k(a) (cy+d) g2(y), (N)

where k is defined by its values on the two standard generators of SL2Z as

k 11
1 1

0 1
22=exp 1pi

6
2 , k 11

0 1

−1 0
22=exp 1pi

2
2=i.

Now [8, Chap. 4, Theorem 1.3] says

Theorem 2.2. The units of X(N)C are exactly the functions of the form

g=c D
e ¥ E
ge(y)m(e),

for some constant c and some finite set E ı Z×Z, where the m(e) satisfy the
conditions

C
e ¥ E
m(e) — 0 (mod 12), (U1)

C
e=(e1, e2) ¥ E

e21m(e) — 0 (modN), (U2)
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C
e=(e1, e2) ¥ E

e1e2m(e) — 0 (modN), (U3)

C
e=(e1, e2) ¥ E

e22m(e) — 0 (modN). (U4)

The order of such a g at a cusp P=(xy) of X(N) is as follows. Pick
a ¥ PSL2FN such that a(10)=P, and let â be a lift of a to SL2Z. Let
(c1(e), c2(e))=eâ be the components of the usual matrix product of e and
â; thus, we may take c1(e)=xe1+ye2. Then

ordP(g)=C
e ¥ E
m(e)

N
2
B2 1
c1(e) modN

N
2 , (1)

where B2(X)=X2−X+1/6 is the second Bernoulli polynomial, and we
used x modN to denote the smallest non-negative residue of x modulo N.
For details and a derivation using the q-expansion of g, see [8, Chap. 2,
Sect. 3].

Let e ¥ E and a ¥ SL2Z. From (K1) and (N), we conclude that

ge(ay)=k(a) gea(y), (2)

so using (U1) and the fact that k(a)12=1 for any a, for g(y)=
c<e ¥ E ge(y)m(e) we have

g(ay)=c D
e ¥ E
gea(y)m(e). (3)

By (K2), if e — eŒ(modN), then ge/geŒ is a root of unity. By (K1) with
a=( −10

0
−1), if e+eŒ=(0, 0), then ge/geŒ=−1 (here we also used the fact

that with this a, the k and the cy+d factors in (N) are both −1, and so
they multiply to 1). Hence all units of X(N)C can be put into the form
g=cŒ<e ¥ EŒ ge(y)m(e), with

EŒ= { (0, 1), (0, 2), ..., (0, r),

(1, 0), (1, 1), (1, 2), ..., (1, N−1),

(2, 0), (2, 2), (2, 2), ..., (2, N−1),

x

(r, 0), (r, 1), (r, 2), ..., (r, N−1)}.

Kubert and Lang [8, Chap. 5, Theorem 3.1] then prove that the degree
zero divisors on X(N) concentrated at the cusps span a finite subgroup of

THE KERNEL OF THE EISENSTEIN IDEAL 353



the divisor class group (this was also proved in general for all modular
curves by Manin and Drinfeld, see [9, footnote to Corollary 3.6]). The
number of cusps on X(N) is (N2−1)/2, which is also the cardinality of the
set EŒ. Since the divisor of a rational function has degree 0, this implies that
the functions ge with e ¥ EŒ are independent except for a single relation. A
simple calculation using (1) shows that <e ¥ EŒ ge(y) is a constant, providing
the sought-after relation.

To sum up, we have shown that

Fact 2.3. The function g=c<e ¥ EŒ ge(y)m(e) is constant if and only if
the m(e) are the same for all e ¥ EŒ.

3. THE UNITS OF X1(N)

We now determine units of X1(N)C. They can be identified with the units
of X(N)C that are invariant under Gal(X(N)C/X1(N)C), which is gener-
ated by T=(10

1
1) ¥ Gal(X(N)C/X(1)C) 5 PSL2FN. Therefore the units of

X1(N) can be determined from the knowledge of the units of X(N) and
their transformation properties under T.

Definition 3.1. For all 1 [ i [ r, let

gi(y)=g(o, i)(y)

and

si(y)=D
N−1

j=0
g(i, j)(y).

Theorem 3.4. The units of X1(N)C are exactly the functions of the form

g(y)=c D
r

i=1
gi(y)ci si(y)di,

where c is a constant and the ci and di satisfy

C
r

i=1
ci+N C

r

i=1
di — 0 (mod 12), (V1)

C
r

i=1
i2ci — 0 (modN), (V2)

C
r

i=1
i2di — 0 (modN), (V3)
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Proof. Let g(y)=c<e ¥ EŒ ge(y)m(e) be a unit of X(N). By determining
the conditions the m(e) must satisfy to be invariant under T, we can find a
criterion for g to be a unit of X1(N). Assume then that g is invariant under
the action of T. By (3) and Fact 2.3, m: EŒQ Z must be constant on the
orbits of T (acting on EŒ from the right). Since (e1, e2) T=(e1, e1+e2), this
shows that g can be written as a product of gi and si as above, with
ci=m((0, i)) and di=m((i, 0))=m((i, 1))=· · ·=m((i, N−1)).

Condition (U1) translates immediately to (V1).
The condition (U2) translates as

C
e ¥ EŒ
e21m(e)=N C

r

i=1
i2di — 0 (modN),

so it is necessarily satisfied. The condition (U3) translates as

C
e ¥ EŒ
e1e2m(e)=C

r

i=1
i C
N−1

j=0
jdi=C

r

i=1
iNrdi — 0 (modN),

so it is also necessarily satisfied. Last, (U4) in our case is

C
e ¥ EŒ
e22m(e)

=C
r

i=0
i2ci+C

r

j=0
C
N−1

i=0
i2dj=C

r

i=0
i2ci+N

(2N−1) r
3

C
r

j=0
dj — 0 (modN).

Since N is not divisible by 3, r(2N−1) must be, so (U4) translates to (V2).
It remains to check that our function g is actually invariant under the

action of T, as opposed to being invariant only up to multiplication by a
constant. This is not automatic, despite the fact that (3) has no extra con-
stant factors. Indeed, by restricting our indexing set to EŒ we sometimes
have to convert some ge (with e ¨ EŒ) occurring in (3) to some geŒ with
eŒ ¥ EŒ, thereby introducing a factor of a root of 1.

Using (K2), we can see that when we are acting by T on our g, this
factor will be

D
r

j=1
D
j−1

k=0
e((j, k), (0, N))dj=D

r

j=1
D
j−1

k=0
(−1)dj exp 1pi

N
jdj 2

=D
r

j=1
(−1) jdi exp 1pi

N
j2dj 2 .
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Hence to ensure invariance, we need

N C
r

j=1
jdj+C

r

j=1
j2dj — 0 (mod 2N).

The condition mod 2 is automatic since N is odd and j — j2(mod 2). The
condition mod N is just (V3).

It is also clear from the above calculations that any such g as given in the
statement of the theorem satisfies (U1)–(U4) and hence is actually a
T-invariant unit of X(N), so we have completed the proof. L

Remark. For any i, the Atkin–Lehner involution (associated to the
matrix ( 0−N

1
0)) interchanges the functions gi and si up to constants. (For

more details, see the proof of Theorem 3.6.) Therefore, we expect the con-
ditions (V1-3) to be invariant under exchanging the cis and the dis. This is
clear for (V2) and (V3), but it is also true for (V1). Indeed, since (N, 6)=1,
we have N2=1(mod 12), and hence

12 | C+ND Z 12 | N2C+ND Z 12 | NC+D,

where we used the notation C=; r
i=1 ci and D=; r

i=1 di.

Theorem 3.5. The order of such a function g (mentioned in Theorem 3.4)
at the cusps is

ordPi (g)=C
r

i=1

1ciN
2
B2 1
it modN
N
2+di
12
2

ordQi (g)=C
r

i=1

1 ci
12
+
diN
2
B2 1
it modN
N
22 .

Proof. A straightforward calculation using (1) and the fact that
; r
i=1 B2(i/N)=−r/(6N) gives the order of g at the cusps of X(N). Then,

using the ramification indices of the cusps of X(N) over the cusps of
X1(N), we obtain our result. L

Finally, we give the transformation properties of our functions under the
Galois group of X1(N)C over X0(N)C.

Definition 3.2. As in [13, Sect. 2], for a odd positive integer u, let

{ · }u: Z Q {0, 1, ..., (u−1)/2}

be the function defined by

{a}u — ±a (mod u).
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For brevity, let { · } denote { · }N.

Theorem 3.6. For any b ¥ {1, ..., r} and a=( sNh
f
t ) ¥ C0(N), we have

gb(ay)=k(a) o(a; b) g{bt}(y),

with

o(a; b)=(−1)bh exp 1pi 1 −b
2ht
N
22 (−1) Nbt/NM.

Although this fact will not be needed later, for reference we state that for any
a ¥ {1, ..., r} and a as above, we have

sa(ay)=k(a)N oŒ(a; a) s{as}(y),

with

oŒ(a; a)=(−1)afexp 1pi 1a
2sf
N
+r
a−{as}
N
22 (−1) Nas/NM.

Proof. Using (2) we obtain

gb(ay)=g(0, b)(ay)=k(a) g(0, b) a(y)=k(a) g(bhN, bt)(y)

=k(a) e((0, bt), (bhN, 0)) g(0, bt)(y)

=k(a) (−1)bh exp 1pi
N
(−b2ht)2 g(0, bt)(y).

If bt — {bt}(modN) then

g(0, bt)(y)=e((0, {bt}), (0, NNbt/NM)) g(0, {bt})(y)

=(−1) Nbt/NM g{bt}(y).

If bt — −{bt}(modN) then

g(0, bt)(y)=e((0, −{bt}), (0, N(Nbt/NM+1))) g(0, −{bt})(y)

=(−1) Nbt/NM g{bt}(y).

In either case, this completes the proof of the formula for gb(ay).
For sa(ay), a similar but more involved calculation can be used. Alter-

native, one might use the Atkin–Lehner involution wN=(
0
−N

1
0) ¥ SL2Z
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and the q-expansion of g(e1, e2) in [8, Chap. 2, Sect. 1, K4] via the identity
wN(y)=(

0
−1

1
0)(Ny) to conclude that ga(wy)/sa(y)=c exp(pira/N), for

some constant c that does not depend on a, and thereby reduce the
calculation to the one done above. L

Remark. Theorems 3.4 and 3.5 allow us to determine the group of
divisors supported at the cusps for any particular N. For example, consider
the conjecture by Klimek in [7, p. 3]. Let J.1 (N) denote the group of divi-
sors on X1(N) supported at the set {P1, P2, ..., Pr} up to linear equivalence.
Klimek proved that

#J.1 (N)=4
1−rN D

q ] 1
B2, q,

(where q runs over all non-trivial even characters of (Z/NZ) ×, and B2, q
denotes the generalized Bernoulli numbers of Kubota and Leopoldt, see
also [8, Chap. 6, Theorem 3.4] for another proof), and conjectured (pre-
sumably without the benefit of a computer) that the group J.1 (N) is always
cyclic. He confirmed this conjecture for all N [ 23. A simple (computer-
aided) calculation using Theorems 3.4 and 3.5 shows that the conjecture is
false for N=29. We obtain

N J.1 (N)

2, 3, 5, 7 0
11 Z/5Z
13 Z/19Z
17 Z/584Z
19 Z/4383Z
23 Z/37181Z×Z/11Z
29 Z/64427244Z×Z/4Z×Z/4Z
31 Z/1772833370Z×Z/10
x x

4. SOME UNITS ON X#0 (N)

Assume from now on that

N — 1 (mod 8)

(in particular N \ 17).
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Definition 4.1. Let CN denote the group (Z/NZ) ×/±1.

Since b: X1(N)C QX0(N)C is a cyclic Galois covering of degree r, it has
a unique intermediate covering of X0(N)C of any degree dividing r. Because
of its uniqueness, any such curve is defined over Q (for a thorough treat-
ment of these intermediate curves, see [4, IV, Sect. 3]). Letting n=(N−1)/
gcd(N−1, 12), we know from [10, II, Sect. 2] that the intermediate curve
X2(N)C QX0(N)C of degree n (the Shimura covering) is the largest étale
covering of X0(N)C through which b factors. (As remarked before, the
cusps of X0(N) are not branch points for b; it is the points with j=0 and
j=1728 that ramify in b.)

Definition 4.2. Write n as

n=2kv,

where 2k is the largest power of 2 that divides n (and v=n/2k is an odd
integer). Set z=3 if N — 1(mod 3) and z=1 otherwise. For future use, we
also set q=3/z here.

Let

f: X#0 (N)QX0(N)

be the unique covering of degree 2k through which b factors. Let J#0 (N)=
Jac(X#0 (N)).

Observe that the definitions of k, v, z imply that

r=2k+1zv.

Since 2k divides n, the Shimura covering factors through f. This implies
that f is étale and that S0=ker(fg: J0(N)Q J

#
0 (N)) is contained in S=

ker(J0(N)Q J2(N)).
The Galois group X1(N)C over X0(N)C is isomorphic to CN, with ( sNh

f
t )

mapping to {t}. Let n be a generator of CN. We will abuse notation to
lighten it, and let the same v denote the generator of Gal(X1(N)C/
X0(N)C) 5 CN and the corresponding generator of the Galois group of the
function field extension; so that (nf)(y)=f(ny) for all functions f on
X1(N). Let W denote the set of 2kth powers in CN. Then W is the Galois
group of X1(N) over X#0 (N) and

#W=2zv.

By its uniqueness property, X#0 (N) is Galois over X0(N).
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The curve X#0 (N) is the coarse moduli space for the problem of classify-
ing elliptic curves with a point of order N, where (E, P) and (EŒ, PŒ) are to
be considered equivalent if there is an isomorphism d: EQ EŒ such that
d(P)=±b·PŒ for some b ¥ W.

We shall now construct some units of X#0 (N). They will first be given as
units of X1(N), and to check that they are actually units of X#0 (N) we shall
need the following lemmas. In these lemmas (and later), for any element
b ¥ CN we let b̃ denote the representative for b in the set {1, 2, ..., r}. For
example, ; b ¥ CN b̃=; r

i=1 i=r(r+1)/2.

Lemma 4.7. For any coset WŒ of W,

C
b ¥ WŒ
b̃2 — 0 (modN).

Proof. Let m be a primitive root modulo N. Then a set of representa-
tives for CN in Z are 1, m, ..., m (N−3)/2. The representatives of a coset WŒ of
W are m j, m j+2

k
, m j+2 ·2

k
, ..., m j+((N−1)/2

k+1−1) 2k for some 0 [ j < 2k. If

b̃ — ±m j+t2
k

(modN),

then

b̃2 — m2j+t2
k+1

(modN),

so

C
b ¥ WŒ
b̃2 — m2j C

(N−1)/2k+1−1

t=0
m2

k+1t=m2j
mN−1−1

m2
k+1
−1

— 0 (modN)

by Fermat’s Little Theorem. L

In the proofs of the next two lemmas, we shall use the following con-
vention.

Convention 4.8. For P a statement, let [P] be 1 if P is true, 0 if P is
false.

Lemma 4.9. Let t be an integer relatively prime to N. Then

S= C
b ¥ CN

Nb̃t/NM

is even if and only if t is a square modulo N.
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Proof. Note that ; b ¥ CN b̃=r(r+1)/2 is even (since r is divisible by 4),
so

S= C
b ¥ CN

Nb̃t/NM — C
r

b ¥ CN

b̃t− C
b ¥ CN

NNb̃t/NM= C
b ¥ CN

(b̃t modN) (mod 2).

Now b̃t mod N is either {b̃t} or N−{b̃t} depending on whether b̃t mod
N [ r or not, respectively. Therefore, we can write S as

S — C
b ¥ CN

{b̃t}+ C
b ¥ CN

[b̃t modN> r] (−{b̃t}+N−{b̃t})

— C
b ¥ CN

b̃+ C
b ¥ CN

[b̃t modN> r] (−{b̃t}+N−{b̃t})

— C
b ¥ CN

[b̃t modN> r] (N−2{b̃t} — C
b ¥ CN

[b̃t modN> r] (mod 2).

Define m to equal ; b ¥ CN [b̃t modN> r]. Then

(−1)m r!= D
b ¥ CN

{b̃t} — D
b ¥ CN

(b̃t)=trr! (modN).

Since N does not divide r!, this implies that

(−1)m — t r (modN).

Since t r — 1 (modN) exactly when t is a square modulo N, this proves our
lemma. L

Lemma 4.10. LetWŒ be a coset of W and s, f, t, h integers with st−Nfh=
1 and {t} ¥ W and

S=h(1−t) C
b ¥ WŒ
b̃+ C

b ¥ WŒ
Nb̃t/NM.

The parity of S does not depend on the choice of WŒ.

Proof. First observe that st−Nfh=1 implies that if t is even then h
must be odd, so in any case h(1−t) — t+1 (mod 2). Therefore,

S — (t+1) C
b ¥ WŒ
b̃−N C

b ¥ WŒ
Nb̃t/NM= C

b ¥ WŒ
b̃+ C

b ¥ WŒ
(b̃t modN) (mod 2).
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Since t ¥ W, for b ranging over W the reductions of {b̃t} to CN just range
over WŒ, so we can once again use the method of the proof of Lemma 4.9.
Accordingly,

S — 2 C
b ¥ WŒ
b̃+ C

b ¥ WŒ
[b̃t modN> r] (−{b̃t}+N−{b̃t})

— C
b ¥ WŒ
[b̃t modN> r] (mod 2).

Let m=; b ¥ WŒ [b̃t modN> r]. Then

(−1)m D
b ¥ WŒ
b̃=D

b ¥ WŒ
{b̃t} — D

b ¥ WŒ
(b̃t)=t#W D

b ¥ WŒ
b̃ (modN)

Since N does not divide <b ¥ WŒ b̃,

(−1)m — t#W (modN),

and it is plain that the parity of m (which is the same as the parity of S)
depends only on the choice of t and not on the choice of WŒ. L

Recall from Definition 4.2 that q=3/z.

Theorem 4.11. Define the following three functions on X1(N):

f(y)=1 D
b ¥ W
gb̃(y)2

kq2 1 D
b ¥ CN

gb̃(y)−q2 ,

g(y)=1 D
b ¥ W
gb̃(y)−q2 1 D

b ¥ nW
gb̃(y)q2 ,

h(y)=1 D
b ¥ W
gb̃(y)2q2 .

Then the following are true:

(a) the group Gal(X1(N)C/X
#
0 (N)C) is the subgroup of Gal(X1(N)C/

X0(N)C) that fixes the function f;
(b) the functions g and h are invariant under Gal(X1(N)C/X

#
0 (N)C)

and can therefore be regarded as being defined on X#0 (N)C;
(c) nf=(−1) g2

k
f;

(d) g(ng)(n2g) · · · (n2
k−1g)=−1;

(e) the divisor div(f) is divisible by 2k in Div0(X#0 (N)).
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Remark. Henceforth we will regard f, g and h as functions on X#0 (N).
By (a) above, f descends to no smaller cover of X0(N).

Note. The function f above is the analogue in our situation of the
Ogg–Ligozat function fOL that was used in [10, II, Proposition (12.2)]. (In
that paper, fOL is called f.) Note however that if we restrict to the case of
N — 9 (mod 16) (equivalently n — 2 (mod 4)) considered in that paper, our
function f does not equal the function fOL. Instead, the ‘‘correct’’ function
f (the one we are using above) is equal to fqOL. However, since q is always
equal to 1 or 3, and Mazur was constructing a point in a group of exponent
two, f and fOL worked equally well.

Proof. First we need to check (using Theorem 3.4) that f is actually a
function on X1(N). Conditions (V1) and (V3) are clearly satisfied, since, in
the notation of Theorem 3.4, each di is zero, and ; ci is also zero. For
(V2), note that we need that N divide

q 1 C
b ¥ W
b̃22k− C

b ¥ CN

b̃22=q 12k C
b ¥ W
b̃2−
r(r+1)
6

N2 .

The first term is divisible by N by Lemma 4.7, the second is divisible by N
since clearly r(r+1)/6 is an integer.

We have now confirmed that f is defined on X1(N). It remains to check
that the largest subgroup G of CN that fixes f is in fact W. Since the coeffi-
cients in f for those gb̃ with b ¥ W are different from those for which b ¨ W,
we must have G ı W.

To check G=W then, it remains to show that for any a=( sNh
f
t ) ¥ C0(N)

with {t} ¥ W, we have f(ay)=f(y). Using Theorem 3.6 (and (V1) to get rid
of the k factors), we need to confirm that

C=q 1 C
b ¥ W
2k(Nb̃h− b̃2ht+NNb̃t/NM)2

−q 1 C
b ¥ CN

(Nb̃h− b̃2ht+NNb̃t/NM)2 — 0 (mod 2N).

The expression C can be thought of as six separate sums, and it turns out
that each of them is divisible by 2N. This is obvious for the first, third,
fourth and fifth; follows by Lemma 4.7 for the second; and follows by
Lemma 4.9 for the sixth. Hence we have proved (a).

Similarly, we can check that g is defined on X#0 (N). Again using
Theorem 3.6, we need to confirm that
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−q 1 C
b ¥ W
(Nb̃h− b̃2ht+NNb̃t/NM)2

+q 1 C
b ¥ W
(Nb̃h− b̃2ht+NNb̃t/NM)2 — 0 (mod 2N).

The divisibility by N is immediate by Lemma 4.7, and for divisibility by
2 observe that for any coset WŒ of W we have

S= C
b ¥ WŒ
(Nb̃h− b̃2ht+NNb̃t/NM)

— C
b ¥ WŒ
(b̃h− b̃ht+Nb̃t/NM) — h(1−t) C

b ¥ WŒ
b̃+ C

b ¥ WŒ
Nb̃t/NM (mod 2).

Now an application of Lemma 4.10 completes the proof.
For h(y), we need 12 | 2q (#W) to verify (V1). But 2q(#W)=2q ·2zv=
12v so this is clear. The rest of the proof is analogous to the proof for g(y).
This completes the proof of (b).

To prove (c), we calculate

(nf) (y)=f(ny)=1 D
b ¥ W
gb̃(ny)2

kq2 1 D
b ¥ CN

gb̃(ny)−q2

=1 D
b ¥ W
g nb6 (y)

2kq o(n; b̃)2
kq2 1 D

b ¥ CN

g nb6 (y)
−q o(n; b̃)−q2 ,

so (since (−1)q=−1) it suffices to show that

D
b ¥ W

o(n; b̃)2
k
D
b ¥ CN

o(n; b̃)−1=−1.

Pick some ( sNh
f
t ) ¥ C0(N) that lifts n. Then t will necessarily generate

(Z/NZ) ×, and in particular it will be a non-square modulo N. By
Theorem 3.6, it suffices to show that

exp 1pi
N
12k C

b ¥ W
(Nb̃h− b̃2ht+NNb̃t/NM)22

× exp 1pi
N
1 − C

b ¥ CN

(Nb̃h− b̃2ht+NNb̃t/NM)22=−1.

The first exponential is clearly 1 by Lemma 4.7 and because 2k is even.
Clearly
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exp 1pi
N
1 − C

b ¥ CN

(Nb̃h− b̃2ht22=1,

and we are done with (c) by Lemma 4.9.
For (d), note that

g=1 D
b ¥ W
g−qb̃ D

b ¥ nW
gqb̃ 2

ng=1 D
b ¥ nW

g−qb̃ D
b ¥ n2W

gqb̃ 2 1D
b ¥ W

o(n; b̃)−q2 1 D
b ¥ nW

o(n; b̃)q2

n2g=1 D
b ¥ n2W

g−qb̃ D
b ¥ n3W

gqb̃ 2 1D
b ¥ W

o(n; b̃)−q2 1 D
b ¥ nW

o(n; b̃)q2×

×1 D
b ¥ nW

o(n; b̃)−q2 1 D
b ¥ n2W

o(n; b̃)q2

=1 D
b ¥ n2W

g−qb̃ D
b ¥ n3W

gqb̃ 2 1D
b ¥ W

o(n; b̃)−q2 1 D
b ¥ n2W

o(n; b̃)q2

x

n2
k−1g=1 D

b ¥ n2
k−1
W

g−qb̃ D
b ¥ nW
gqb̃ 2 1D

b ¥ W
o(n; b̃)−q2 1 D

b ¥ n2
k−1
W

o(n; b̃)q2 .

Therefore

g(ng) (n2g) · · · (n2
k−1g)=1 D

b ¥ W
o(n; b̃)−q2

2k 1 D
b ¥ CN

o(n; b̃)q2=fg
2k

nf
=−1,

by (c). Thus the proof of (d) is complete.
We will use Theorem 3.5 to calculate div(f). It is immediately clear that

ordQt (f)=0 for all the cusps Qt. On the other hand, letting WŒ denote the
coset of W containing the reduction of b̃t, and using the fact that
B2(x)=B2(1−x), we can calculate

ordPt (f)=q 1 C
b ¥ W
2k
N
2
B2 1
b̃t modN
N
2− C

b ¥ CN

N
2
B2 1
b̃t modN
N
22

=q 12k−1N C
b ¥ WŒ

1 b̃2
N2
−
b̃
N
+
1
6
2−N
2
(−r)
6N
2

=q2k−1 C
b ¥ WŒ

1 b̃2
N
−b̃2+q 12k−1N #W

6
+
r
12
2 .
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By Lemma 4.7, the first term is an integer and clearly it is divisible by 2k.
Using the identities #W=2zv, r=2k+1zv, qz=3, the latter term in the
above sum reduces to

2k−1(N+1) v,

which is divisible by 2k since N+1 is even. So we have completed the
proof of (e). L

We will need the following lemma. For a curve X defined over Q and a
field K containing Q, denote the function field of X over K by K(X). It is
well known that a finite abelian group equipped with a continuous action
of Gal(Q̄/Q) is the same as a finite étale commutative group scheme over
Q. We will use this identification throughout the rest of this paper.

Lemma 4.12. Let f: XQ Y be a finite étale reap of projective curves,
with X, Y and f defined over Q. Assume that f is Galois after some finite
base extension F/Q. Let C=Gal(Q̄(X)/Q̄(Y)) 5 Gal(F(X)/F(Y)) and
assume that C is commutative. By the Picard functoriality of the Jacobians,
we have an exact sequence

0QKQ Jac(Y) (Q̄ Q
f

Jac(X) (Q̄)C,

where K denotes the finite Gal(Q̄/Q)-module ker(fg). Then

(a) the group scheme K is isomorphic to CD, the Cartier dual of C;

(b) if C is cyclic, then fg surjects onto Jac(X) (Q̄)C.

Remark. To make sense of CD, we need to consider C as an étale group
scheme over Q. The group C is naturally acted upon by Gal(Q̄/Q) as
follows: for any s ¥ Gal(Q̄/Q) and y ¥ C, let s · y=s̃ys̃−1 where s ¥

Gal(Q̄(X)/Q(X)) 5 Gal(Q̄/Q) is any lift of s.

Proof. Taking the exact sequence of low degree terms for the
Hochschild–Serre spectral sequence of the étale cohomology of Gm over the
base Q̄ as in [12, III, Theorem 2.20], we obtain

0QH1(C, H0(Xet, Gm))QH1(Yet, Gm)Q

H0(C, H1(Xet, Gm))QH2(C, H0(Xet, Gm))

which is

0QH1(C, Q̄ ×)Q Pic(Y)Q Pic(X)CQH2(C, Q̄ ×)
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(where the third map is fg). Now since C acts trivially on Q̄ ×,
H1(C, Q̄ ×) 5 Hom(C, Q̄ ×) 5 CD. The kernel of fg: Pic(Y)Q Pic(X) is
contained in Jac(Y), so we have proved (a).

If C is cyclic, then by [16, VIII, Sect. 4], H2(C, Q̄ ×) 5 (Q̄ ×)C/
(Q̄ ×)N=0. But if fg: Pic(Y)Q Pic(X)C is surjective, then so is fg: Jac(Y)Q
Jac(X)C, which proves (b). L

Now we are almost ready to find extra points in J0(N)[I]. Recall that c
denotes the divisor 0−. on X0(N).

Theorem 4.13. Let d=(1/2k) div(f), considered as a point on J#0 (N).
Then

(a) the divisor d is rational over Q;
(b) the divisor d is in the image of fg: J0(N)Q J

#
0 (N);

(c) 2d=fg(v · c).

Remark. In essence, we are trying to find ‘‘one half of c’’ in the group
J0(N)[I]/S. Assertion (c) in the above theorem shows that d is ‘‘one half
of v · c’’. Recall from Definition 4.2 that v is the odd part of n, so this is as
good as finding half of c, but some calculations work out simpler this way.
Assertion (b) will be used to show that our point pulls back to J0(N), and
assertion (a) will be used to show that we are actually finding points in
J0(N)[I].

Proof. As can be seen from the proof of Theorem 4.11(e), div(f) is
concentrated at the cusps of X#0 (N) that lie over the cusp 0 of X0(N). All
of these cusps are rational over Q, hence so is d, proving (a).

By Lemma 4.12(b), it suffices to check that d is fixed by n, the generator
of the group Gal(X#0 (N)/X0(N)). By Theorem 4.11(c), div(f)−div(nf)=
−2k div(g), so

d− nd=
1
2k

div(f)−
1
2k

div(nf)=div(1/g),

which is a principal divisor, so d=nd in J#0 (N), concluding our proof of (b).
Let dŒ=div(f)/2k−1−div(h) be a divisor on X#0 (N). Using Theorem 3.5,

for any 1 [ t [ r,

ordQt (dŒ)=
1
2k−1
1 C
b ¥ W

2kq
12
− C
b ¥ CN

q
12
2− C

b ¥ W

2q
12
=0−2zvq/6=−v,
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and

ordPt (dŒ)=C
b ¥ W

2kqN
2k
B2 1
b̃t modN
N
2− C

b ¥ CN

qN
2k
B21
b̃t modN
N
2

− C
b ¥ W

2qN
2
B2 1
b̃t modN
N
2=−qN

2k
(−r)
6N
=v.

Hence dŒ=fg(v · c), so

2d−div(h)=fg(v · c)

as divisors. But h is a function defined on X#0 (N) by Theorem 4.11(b), so
this proves (c). L

5. THE GALOIS STRUCTURE OF J0(N)[I]

Theorem 5.14. Let D denote the group generated by d in J#0 (N). Let
A=(fg)−1 D. Then

(a) all the points of D are unramified at N;
(b) all the points of A are unramified at N;
(c) the group A is contained in J0(N)[I].

Remark. Since #ker(f)=#D=2k, the group A has cardinality 22k.
Therefore part (c) of the above theorem implies that A is the whole of the
2-primary component of J0(N)[I]. Since the odd part of J0(N)[I] is the
direct sum of the odd parts of C and S, we have now completed the
concrete description of J0(N)[I] that we were aiming for.

Proof. Assertion (a) is immediate from Theorem 4.13(a), since the
points of D are rational. (Note that since the action of Gal(Q̄/Q) on the
cusps of X#0 (N) factors through the cyclotomic character qN, the only way
for a divisor supported at the cusps to be unramified at N is to be rational.)

Assertion (b) follows from [10, II, Lemma (16.5)]. Note that since the
lemma just cited applies only to points of prime power order, we have to
apply it separately to each of the primary components of the point of A in
question.

Multiplication by 2k annihilates d. Therefore 2kA ı ker(fg) ı S, so cer-
tainly all points in A are torsion points. By [15, Proposition 3.3], all
torsion points of J0(N) that are unramified at N are in J0(N)[I], so we
have proved A ı J0(N)[I]. L
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Remark. For the reader’s convenience we summarize another proof of
part (c) of Theorem 5.14 that avoids invoking [15]. This proof also does
not need the results of parts (a) and (b) of Theorem 5.14. We shall use the
terminology and notation of [10]. Fix an embedding Q̄ + Q̄N and let J be
the Néron model of J0(N) over ZN. Let J/FN denote the special fiber of J,
and let J0/FN denote the irreducible component of the identity in J/FN . Let
S/FN denote the reduction of S to J/FN . Note that S 5 mn, and so S is
unramified at N. Therefore, by [17, Lemma 2], S reduces injectively to
S/FN . Then, by [10, II, Proposition (11.9)],

S/FN 5 J0/FN=0.

Thus, a point of S that reduces to a point in J0/FN must be zero. We shall
now use this observation to show that A ı J0(N)[I].

It suffices to show that for an arbitrary point x of A and any element T
of I, we have Tx=0. The group of irreducible components of J/FN is
Eisenstein, as can be seen from the title (and contents) of [6] (see also
[14]). Therefore, the operator T sends the reduction of x into the identity
component. In other words, Tx reduces into J0/FN .

On the other hand, we can use the formulae in [18, Sect. 2] to define
actions of Tl (for l ]N) and w on (J1(N) and therefore on) J#0 (N) that are
compatible with the actions defined on J0(N) via the map fg, and calculate
(in the spirit of the proof of Theorem 4.13(c)) that D is annihilated by each
1+l−Tl and by 1+w. Let TŒ be a lift of T to the ring Z[..., Tl, ..., w] and
let Tœ be the image of TŒ in End(J#0 (N)). Then we have a commutative
diagram

J0(N)0
f*
J#0 (N)

‡T ‡Tœ

J0(N)0
f*
J#0 (N).

Here x is mapped to fgx ¥D which is annihilated by Tœ. By the commuta-
tivity of the diagram we must have Tx ¥ ker(fg)=S. This completes our
proof that Tx=0.

Now that we established that A ı J0(N)[I], we will determine the action
of Gal(Q̄/Q) on A and then assemble what we know to find the action of
Gal(Q̄/Q) on the whole of J0(N)[I].

Definition 5.1. Let l: X##0 (N)QX
#
0 (N) be a minimal covering of

X#0 (N) on which f1/2
k

is defined.
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By Theorem 4.11, parts (a) and (e), the degree of l is 2k and l is étale. In
fact, after base extension to Q(m2k+1), l p f becomes a Galois covering with
Galois group C. The group C can be regarded as a finite étale group
scheme over Q, and by Lemma 4.12(a), A will be its Cartier dual. This
allows us to determine the action of Gal(Q̄/Q) on A.

Convention 5.15. Choose once and for all a primitive 2k+1st root of
unity z ¥ Q̄. Then z2 is the primitive 2kth root of unity that we will use in
explicit Cartier duality calculations.

Theorem 5.16. Let K denote the function field of X0(N) over Q and L
the function field of X#0 (N) over Q, so that L(f1/2

k
) is the function field of

X##0 (N) over Q.

(a) L(f1/2
k
, z)/K(z) is a Galois extension with

C=Gal(L(f1/2
k
, z)/K(z)) 5 Z/2kZ×Z/2kZ.

In terms of the basis described in the proof, any element s of Gal(Q̄/Q) acts
on C via the matrix

1 1 0

(q2k+1(s)−1)/2 q2k(s)
2 .

(b) The abelian group A is isomorphic to Z/2kZ×Z/2kZ, with s ¥

Gal(Q̄/Q) acting via

1q2k(s) (1−q2k+1(s))/2

0 1
2 .

Proof. We know that the field extension L/K is Galois of degree 2k

with cyclic Galois group generated by n, and this remains true for
L(z)/K(z). Clearly L(f1/2

k
, z)/L(z) is also Galois (and cyclic) of degree 2k.

Since K(z) (and hence L(z)) contains all 2kth roots of unity, and by
Theorem 4.11(c), (nf)/f=(zg)2

k
, we can conclude that L(f1/2

k
, z)=

L((nf)1/2
k
, z). This way we obtain that L(f1/2

k
, z) contains all the 2kth

roots of f, nf, ..., and therefore that L(f1/2
k
, z)/K(z) is a Galois exten-

sion.
To determine the group C=Gal(L(f1/2

k
, z)/K(z)), observe that the

field extension L(f1/2
k
, z)/K(z) contains all the conjugates of its generator

f1/2
k
. Therefore it is obtained as a splitting field of the polynomial F whose
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roots are all the 2kth roots of all conjugates of f. Since nf=(−1) g2
k
f, the

2kth roots of nf are zgf1/2
k
, z3gf1/2

k
, ..., z2

k+1−1gf1/2
k
. Then

n2f=n((−1) g2
k
f)=(−1) ng)2

k
(nf)

=(−1) (ng)2
k
(−1) g2

k
f=(ng)2

k
g2
k
f,

so the 2kth roots of n2f are (ng) gf1/2
k
, z2(ng) gf1/2

k
, ..., z2

k+1−2(ng) gf1/2
k
.

Hence it is clear that the roots of F are exactly the

di, j=z2i+j 1 D
j−1

k=0
(nkg)2 f1/2k,

where i and j range over the interval [0, 2k−1].
To determine C, observe that it must act simply transitively on the set of

all roots of F. Let + ¥ C be such that

+: d0, 0=f1/2
k
W d1, 0=z2f1/2

k
.

Taking 2kth powers, we see that + fixes f and hence all of L(f1/2
k
, z). So +

sends di, j to di+1, j (with d2k, j to be interpreted as d0, j).
Now consider the element n̄ ¥ C for which

n̄: d0, 0=f1/2
k
W d0, 1=zgf1/2

k
.

Taking 2kth powers again, we see that n̄ sends f to nf, so it acts as n on
L(z) (thereby justifying our choice of name for it). Note that

n̄(d0, 1)=n̄(zgf1/2
k
)=z(n̄g) (n̄f1/2

k
)=z(ng) zgf1/2

k
=z2(ng) gf1/2

k
=d0, 2,

similarly

n̄(d0, 2)=n̄(z2(ng) gf1/2
k
)=z3(n2g) (ng) gf1/2

k
=d0, 3,

and so on. Finally, using Theorem 4.11(d) we obtain

n̄(d0, 2k−1)=n̄(z2
k−1(n2

k−2g) · · · (ng) gf1/2
k
)=z2

k
(n2

k−1g) · · · (ng) gf1/2
k

=(−1) (−1) f1/2
k
=f1/2

k
=d0, 0.

Hence n̄ sends di, j to di, j+1 (with di, 2k to be interpreted as di, 0).
This shows that C is generated by two commuting elements of order 2k.

In other words, we have C 5 Z/2kZ×Z/2kZ, and we can represent ele-
ments of C as column vectors over Z/2kZ, with n̄ corresponding to (10) and
+ corresponding to (01).
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As for the action of Gal(Q̄/Q) on C, take some s ¥ Gal(Q̄/Q) and
consider its natural action on L(f1/2

k
, z) that leaves L(f1/2

k
) fixed. Both

sn̄s−1 and + (q2
k+1(s)−1)/2 n̄ fix z and

sn̄s−1: f1/2
k
W f1/2

k
W zgf1/2

k
W zq2

k+1(s)gf1/2
k

+ (q2
k+1(s)−1)/2 n̄: f1/2

k
W zgf1/2

k
W zq2

k+1(s)gf1/2
k
.

Therefore sn̄s−1=+ (q2
k+1(s)−1)/2 n̄. Similarly both s+s−1 and +q2

k(s) fix z and

s+s−1: f1/2
k
W f1/2

k
W z2f1/2

k
W z2q2k+1 (s)f1/2

k

+q2
k(s): f1/2

k
W z2q2

k(s)f1/2
k
=z2q2k+1 (s)f1/2

k
.

Therefore s+s−1=+q2
k(s). Hence s ¥ Gal(Q̄/Q) does act on the elements of

C (represented by column vectors) as required. With this the proof of (a) is
complete.

For (b), a simple calculation shows that if G is an étale group scheme
over Q that is isomorphic to Z/mZ×Z/mZ with a Galois action described
by

1a(s) b(s)
c(s) d(s)

2 : Gal(Q̄/Q)Q GL2(Z/mZ),

then its Cartier dual GD is also isomorphic to Z/mZ×Z/mZ, but with a
Galois action described in terms of the usual dual basis by

1qm(s) a(s
−1) qm(s) c(s−1)

qm(s) b(s−1) qm(s) d(s−1)
2 : Gal(Q̄/Q)Q Gl2(Z/mZ),

In our case this means that A 5 CD is isomorphic to Z/2kZ×Z/2kZ
with the action of s ¥ Gal(Q̄/Q) described by

1q2k(s) q2k(s) (q2k+1(s−1)−1)/2

0 1
2

in terms of the basis n̄D=(10), +
D=(01). But q2k(s) (q2k+1(s−1)−1)/2 —

(1−q2k+1(s))/2 (mod 2k) so we have completed the proof of this
theorem. L

Proof of Theorem 1.1. Since the quotient group Gal(L(z)/K(z)) of C is
spanned by n, the dual subgroup S0=ker(J0(N)Q J

#
0 (N)) is spanned

by n̄D in A. One checks easily that d ¥ ker(J#0 (N)Q J
##
0 (N)) corresponds

to the image of + in A/S0 under Cartier duality, so we can see by
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Theorem 4.13(c) that v · c ¥ A is represented by some vector (g2) in A. But
since v · c ¥ A is Gal(Q̄/Q)-invariant, we can use Theorem 5.16(b) to
conclude that v · c=(12).

The odd part of J0(N)[I] is a direct product mv×Z/vZ. The constant
part is generated by 2kc, so we can choose a basis g1, 2kc so that for any
s ¥ Gal(Q̄/Q), s(g1)=qv(s) g1 and s(2kc)=2kc. Taking the basis con-
sisting of g1 and g2=(2kc−g1) (v+1)/2 instead, we have 2kc=g1+2g2
and s acts via

1qv(s) (1−q2v(s))/2

0 1
2 .

Now pick integers a, b such that va+2kb=1. Then

e1=an̄D+bg1

e2=a+D+bg2

is a basis of J0(N)[I] that clearly has all properties required in
Theorem 1.1.

Finally, observe that if N – 1 (mod 8), then n=v and the 2-primary part
of J0(N)[I] is 0. So formally setting n̄D=+D=0, we still have
v · c=n·c=0=n̄D+2+D and +D ¥ S. The above argument about the prime-
to-2 part works without a change, so we have proved Theorem 1.1 in this
case too. L

Remark. As described in [15], H. W. Lenstra and K. Ribet proved a
version of Theorem 1.1, where the expression (1−q2n(s))/2 in the state-
ment of the theorem is replaced by a function

b: Gal(Q̄/Q)Q Z/nZ,

satisfying the properties that for each s, y ¥ Gal(Q̄/Q),

b(sy)=b(s)+qn(s) b(y),

2b(s)=1−qn(s),

and that the kernel of b cuts out the 2nth cyclotomic field. We shall show
here that his result is strictly weaker than Theorem 1.1.

Indeed, let b0(s)=(1−q2n(s))/2, and let

e: Gal(Q̄/Q)Q Z/2Z
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be a homomorphism that factors through Gal(Q(mn)/Q). It is easy to check
that for any such e, the function

b(s)=b0(s)+
n
2

e(s)

satisfies all of the above conditions. Since there is more than one choice for
such a function e when n divisible by 4, we have shown that the above
result is weaker than Theorem 1.1.
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