
Journal of Number Theory 128 (2008) 2138–2158

www.elsevier.com/locate/jnt

Average values of L-functions in characteristic two ✩

Yen-Mei J. Chen

Department of Mathematics, National Central University, Jhongli City, Taoyuan County, 32001, Taiwan

Received 2 June 2007; revised 19 December 2007

Available online 1 April 2008

Communicated by Dinesh Thakur

Abstract

Gauss made two conjectures about average values of class numbers of orders in quadratic number fields,
later on proven by Lipschitz and Siegel. A version for function fields of odd characteristic was established
by Hoffstein and Rosen. In this paper, we extend their results to the case of even characteristic. More
precisely, we obtain formulas of average values of L-functions associated to orders in quadratic function
fields over a constant field of characteristic two, and then derive formulas of average class numbers of these
orders.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let D be an integer, which is a non-square and congruent to 0 or 1 modulo 4. Denote by OD

the order Z + Z
√

D in the quadratic field Q(
√

D ). And denote by hD the class number of OD .
Based on extensive numerical evidence, Gauss made two conjectures about the average value of
the class numbers hD , reformulated as follows:

Conjecture 1. If D is negative and D = −4k, then
∑

1�k�N hD ∼ 4π
21ζ(3)

N
3
2 .
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Conjecture 2. If D is positive and D = 4k, then
∑

1�k�N hDRD ∼ 4π2

21ζ(3)
N

3
2 . Here RD is the

regulator of the order OD .

Let ψD(n) = (D
n
) denote the Kronecker symbol and consider the associated L-function

L(s,ψD) =
+∞∑
n=1

ψD(n)

ns
.

Denote by wD the number of roots of unity in OD . Dirichlet proved the following famous class
number formula:

L(1,ψD) =
⎧⎨⎩

2πhD

wD

√|D| if D < 0,

hDRD√|D| if D > 0.

Then the following result of Siegel implies the two conjectures:

∑
L(1,ψD) = 1

2

ζ(2)

ζ(3)
N + O

(
N

1
2 logN

)
,

where the sum is over all positive discriminants D between 1 and N , or all negative discrimi-
nants D such that 1 � |D| � N .

Let k = Fq(t) be the rational function field over the finite field Fq with q elements, where q

is odd. Let A = Fq [t] be the corresponding polynomial ring, and let A+ be the subset consisting
of monic polynomials in A. Consider the quadratic function field K = k(

√
M ), where M is a

non-square polynomial in A. Let OM be the A-order A + A
√

M in the ring of integers OK ; and
denote by hM the class number of OM . If P ∈ A+ is irreducible, define χM(P ) according to

χM(P ) =
{0 if P | M,

1 if P � M and M is a square modulo P,

−1 if P � M and M is a non-square modulo P.

One can extend χM(N) to all N ∈ A+ multiplicatively. The following analogy of Dirichlet’s
Theorem is proven in E. Artin’s thesis [1]:

Theorem. (See Artin [1].) Let M be a square-free polynomial in Fq [t] of degree m, where q is
odd. Then

(a) if m is odd, L(1, χM) =
√

q√|M|hM ,

(b) if m is even and sgn2(M) = −1, L(1, χM) = q+1
2
√|M|hM ,

(c) if m is even and sgn2(M) = 1, L(1, χM) = q−1√|M|hMRM .

Here RM is the regulator of OM and sgn2(M) = 1 (respectively −1) if the leading coefficient
of M is a square (respectively non-square) in F� .
q
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Recall the Dedekind zeta function of A: for s ∈ C with �(s) > 1,

ζA(s) :=
∑

N∈A+

1

|N |s =
∞∑

n=0

qn

qns
= 1

1 − q1−s
.

Then the previous theorem of Artin leads to the following average theorem:

Theorem. (See Hoffstein and Rosen [5], 1992.) Let hM be the class number of the A-order
OM = A + A

√
M . The following sums are over all non-square monic polynomials in Fq [t] of

degree m, where q is odd.

(a) If m is odd, q−m
∑

M hM = ζA(2)
ζA(3)

q
m−1

2 − 1
q

.

(b) If m is even, q−m
∑

M hγM = 2
q+1

ζA(2)
ζA(3)

q
m
2 + 2

q
, where γ ∈ F�

q is a non-square constant.

(c) If m is even, q−m
∑

M hMRM = 1
q−1 (

ζA(2)
ζA(3)

q
m
2 − q+1

q
) − m

q
.

The previous theorem of Hoffstein and Rosen is for odd characteristic. The main purpose of
this paper is to extend it to characteristic 2. In this case, all separable quadratic extensions are
Artin–Schreier, and a detailed study of this elementary theory is given in [2]. We will briefly
review this theory in next section. However, it is remarkable that separable quadratic extensions
of the rational function field Fq(t) in characteristic 2 are indeed more complicate than the odd
characteristic case. First, all ramification is wild. Secondly, the discriminant does not determine
the quadratic field alone. There are many quadratic fields with the same discriminant while in the
classical case and the odd characteristic case, the discriminant uniquely determines the quadratic
field. The crucial point of this paper is that we succeed in finding a “good” parameterization of
these quadratic fields. That makes these beautiful averaging formulas come into view. At this
moment, we would like to state an average theorem in characteristic 2, that is a combination of
Corollaries 4.16, 4.10, and 4.7.

Theorem in characteristic 2. Let m be a positive integer, and let d be a nonnegative integer.

(a) The following sum is over all A-orders with finite discriminants of degree 2m in imaginary
quadratic fields whose local discriminants at infinity have degree 2d + 2

∑
[(D̃,M)]∈D̃m,d

h(D̃,M)

#D̃m,d

= ζA(2)

ζA(3)
qm+d + 1

q
.

(b) The following sum is over all A-orders with discriminants of degree 2m in imaginary
quadratic fields that are non-constant field extensions and unramified at infinity

∑
[(D′,M)]∈D′

m
h(D′,M)

#D′
m

= 2

q + 1

ζA(2)

ζA(3)
qm.
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(c) The following sum is over all A-orders with discriminants of degree 2m in real quadratic
fields ∑

[(D,M)]∈Dm
R(D,M)h(D,M)

#Dm

= 1

q − 1

ζA(2)

ζA(3)
qm − 2m

q
+ 2m

q

1

qm − 1
.

Here Dm, D′
m, D̃m,d parameterize all the A-orders in the three cases above and will be

introduced in Section 4.

In Section 2 we describe some elementary facts about quadratic function fields of characteris-
tic 2, then recall the Hasse symbols [4], and finally prove the analogue of Dirichlet’s class number
formula in characteristic 2 (cf. Theorem 2.5). In Section 3 we define several exponential sums
and prove some lemmas that will be used later. Finally in Section 4, we derive some formulas
(Theorems 4.5, 4.9, and 4.14 below) about sums of values of L-functions associated to A-orders
in quadratic function fields over a constant field of characteristic 2 and hence obtain formulas of
average class numbers of these A-orders.

2. Quadratic function fields of characteristic two

Let k = Fq(t) be the rational function field over the finite field Fq with q elements, where q is
even. Let A = Fq [t] be the corresponding polynomial ring, and let A+ be the subset consisting of
monic polynomials in A. Let ℘ : k → k be the additive homomorphism defined by ℘(x) = x2 +x.
For f ∈ A, denote by sgn(f ) the leading coefficient of f . From now on, we fix a constant
ξ ∈ Fq \ ℘(Fq).

Let K/k be a separable quadratic extension. Then K = k(α), where α is a root of x2 +x = D1
D2

.
Here D1,D2 ∈ A can be normalized to satisfy the following conditions (cf. [4]):

(1) sgn(D2) = 1, gcd(D1,D2) = 1, and D2 =
s∏

i=1

P
2ei−1
i ,

(2) if deg(D1) = deg(D2), then sgn(D1) = ξ,

(3) if deg(D1) > deg(D2), then 2 � deg(D1) − deg(D2),

where Pi ’s are distinct monic irreducible polynomials in A and ei ’s are positive integers. Note
that D2 is uniquely determined, but D1 is not.

There are three possibilities about the ramification of the place at infinity (cf. [4]):⎧⎨⎩
∞ ramifies if deg(D1) > deg(D2) and 2 � deg(D1) − deg(D2), (I)
∞ is inert if deg(D1) = deg(D2) and sgn(D1) = ξ, (II)
∞ splits if deg(D1) < deg(D2). (III)

In cases (I) and (II), K is said to be imaginary; in case (III), K is said to be real. Let G(K) =∏s
i=1 P

ei

i . Then OK is a rank 2 A-module, which can be explicitely described as follows:

Fact. OK = A + G(K)αA.
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Proof. Denote G(K) by G for simplicity. Given any a, b ∈ A, one can see that a + bGα is a
root of the monic quadratic polynomial

x2 + bGx + a2 + abG + b2G2D1/D2,

which is a polynomial in A[x] by the definition of G. Hence a + bGα ∈OK .
Conversely, assume a + bGα ∈ OK , where a, b ∈ k. Then bG and a2 + abG + b2G2D1/D2

are both elements in A. For monic irreducible P with P � G, it is clear that ordP (b) � 0 and
thus ordP (a) � 0. For monic irreducible P with P | G, observe that ordP (a2) is even and
ordP (b2G2D1/D2) is odd. One can conclude that both ordP (a) and ordP (b) are always non-
negative. Therefore, a and b are both elements in A. �

Denote by g(K) the genus of K . Recall that the discriminant of K is of degree 2g(K) + 2 in
all cases (cf. [4]). By the previous fact, the discriminant of OK is equal to G(K)2. In case (I),
one can check that the local discriminant of K at infinity has degree deg(D1)− deg(D2)+ 1 and
thus

g(K) = deg
(
G(K)

) + deg(D1) − deg(D2) − 1

2
.

In cases (II) and (III), it is clear that the local discriminant of K at infinity has degree 0 and thus
g(K) = deg(G(K)) − 1.

Now we recall the definition of Hasse symbols in characteristic 2. Let P ∈ A+ be irreducible.
For a ∈ k which is P -integral, define the Hasse symbol [a,P ) with value in F2 by

[a,P ) =
{

0 if x2 + x ≡ a (mod P) is solvable in A,

1 otherwise.

For N ∈ A prime to the denominator of a, write N = ε
∏s

i=1 P
ei

i , where ε = sgn(N), Pi ’s
are distinct monic irreducible in A+ and ei ’s are positive integers, and define [a,N) to be∑s

i=1 ei[a,Pi).
For a ∈ k, N ∈ A, N 
= 0 also define the quadratic symbol:{

a

N

}
=

{
(−1)[a,N) if N is prime to the denominator of a,

0 otherwise.

This symbol is clearly additive in its first variable, and multiplicative in its second variable.
For the quadratic field K , one associates a character χK on A+ that is defined by χK(N) =

{D1/D2
N

}. Consider the L-function of K : for s ∈ C with �(s) � 1,

LK(s) =
∑

N∈A+

χK(N)

|N |s =
∏

P∈A+

(
1 − χK(P )

|P |s
)−1

.

Recall the Dedekind zeta function of OK : for s ∈ C with �(s) > 1,

ζOK
(s) =

∑
N(A)−s ,
A
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where the sum ranges over nonzero integral ideals in K . Then one has ζOK
(s) = ζA(s)LK(s)

(cf. [4]). Note that LK(s) is not the L-function associated to the field extension K/k, but is
obtained from the latter by suppressing the Euler factors at infinity.

The following theorem relates the class number hK of the maximal order OK to the special
value of the L-function of K at s = 1.

Theorem 2.1. (See Chen and Yu [2], Theorem 5.2.) Let K/k be quadratic of genus g. Then

LK(1) =
{

hK/qg if ∞ ramifies,
(q + 1)hK/2qg+1 if ∞ is inert,
(q − 1)RKhK/qg+1 if ∞ splits.

Note that one has LK(s) = ∑∞
n=0

σn

qns where σn = ∑
N∈A

+
deg(N)=n

χK(N).

Remark 2.2. (See [2, Proposition 5.1] and [4, Eq. (31)].) If K/k is quadratic of genus g, LK(s) is
a polynomial in q−s of degree less than 2g + 2 and hence σn = 0 for all n � 2g + 2.

All the orders considered in this paper are A-orders. The following proposition can be proven
almost in the same way as in classical case (cf. [3] or [6]).

Proposition 2.3. Let O be an order in a quadratic field K of conductor F . Then

hO
(
O�

K : O�
) = hK |F |

∏
P |F

(
1 − χK(P )

|P |
)

.

Proof. For any order O in K , denote by I (O) and P(O) the groups of proper ideals and proper
principal ideals. And for M ∈ A+, denote by I (O,M) and P(O,M) the subgroups of ideals
prime to M . Then

I (O)/P (O) ∼= (O,F )/P (O,F ) ∼= I (OK,F )/PA(OK,F ). (1)

Here PA(OK,F ) is the subgroup of principal ideals of the form βOK , where β ∈ OK satisfies
β ≡ N mod FOK for some N ∈ A (with gcd(N,F ) = 1). One can see immediately that the
following sequence is exact:

1 → I (OK,F ) ∩ P(OK)

PA(OK,F )
→ I (OK,F )

PA(OK,F )
→ I (OK)

P (OK)
→ 1. (2)

To complete the proof, for any order O in K , we denote by O(1) the subgroup of O� consisting
of norm 1 elements, namely,

O(1) = {
β ∈O�: NK

k (β) = 1
}
.

Then O� ∼= F� ×O(1) and O� /O� ∼= O(1)
/O(1). Define two functions f and g as follows:
q K K
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f :

(
A

FA

)�

× O(1)
K

O(1)
→

( OK

FOK

)�

(
a + FA, uO(1)

) �→ au + FOK,

g :

( OK

FOK

)�

→ I (OK,F ) ∩ P(OK)

PA(OK,F )

β + FOK �→ (β)PA(OK,F ).

Then one can check directly that f and g are both well-defined homomorphisms, f is injective,
g is surjective and im(f ) ⊂ ker(g) (since the composition of f and g is the trivial homomor-
phism). Note that, for any (β) ∈ PA(OK,F ), can write β = au for some a ∈ A and u ∈ O�

K .
Since NK

k (u) ∈ F�
q = (F�

q)2 (because q is even), say NK
k (u) = c2 where c ∈ F�

q . Then ca ∈ A,

c−1u ∈O(1)
K and β = (ca)(c−1u). This implies that im(f ) = ker(g). So we can conclude that the

following sequence is exact:

1 →
(

A

FA

)�

× O(1)
K

O(1)
→

( OK

FOK

)�

→ I (OK,F ) ∩ P(OK)

PA(OK,F )
→ 1. (3)

Combining (1), (2) and (3), one has

h(O)
(
O�

K : O�
) = h(OK) × ∣∣(OK/FOK)�

∣∣ × ∣∣(A/FA)�
∣∣−1

= h(OK)|F |
∏
P |F

(
1 − χK(P )

|P |
)

. �

Let

D = {
(D,M): D ∈ A, M ∈ A+, gcd(D,M) = 1, D/M2 /∈ ℘(k),

sgn(D) = ξ if deg(D) = 2 deg(M), 2 � deg(D) if deg(D) > 2 deg(M)
}
.

For (D,M) ∈ D, denote by K(D,M) the field k(α), where α is a root of x2 + x = D

M2 (cf. [8]).
Then, for any (D,M) ∈ D, K(D,M) is a quadratic field with G(K(D,M)) dividing M . Let
O(D,M) = A + MαA, which is an order in the quadratic field K(D,M) of conductor equal to
M/G(K(D,M)). Thus the discriminant of O(D,M) is M2. Conversely, we have

Proposition 2.4. Given any quadratic function field K and any order O of conductor F in K ,
there exists (D,M) ∈D such that K = K(D,M) and O = O(D,M).

Proof. Suppose that the discriminant of the maximal order OK is G2. Let Q be the product of
distinct monic irreducible factors of G and let D2 = G2/Q. Then K = k(α), where α is a root
of the equation x2 + x = D1/D2 for some D1 ∈ A satisfying gcd(D1,D2) = 1, sgn(D1) = ξ

if deg(D1) = deg(D2), and 2 � deg(D1) − deg(D2) if deg(D1) > deg(D2). Recall that OK =
A + GαA and thus O = A + FGαA, since O is of conductor F . Let M = FG. Then take any
B ∈ A with deg(B) < deg(M) and gcd(B,M) = 1. Let

D = D1QF 2 + B2 + BM.
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Note that gcd(D,M) = 1 by the definition of Q and gcd(B,M) = 1. In the definition of D, we
divide by M2 and use M = FG to derive

D/M2 = D1/D2 + (B/M)2 + B/M,

which shows that (D,M) ∈ D and the roots of the equations x2 + x = D1/D2 and x2 + x =
D/M2 give the same field extension of k. So K = K(D,M). Finally, note O(D,M) = A + M(α +
B/M)A = A + MαA = O. �

For (D,M) ∈ D, let h(D,M) denote the class number of the order O(D,M). For simplicity,
denote K(D,M) by K . Then, by applying Proposition 2.3, one can obtain the equality

h(D,M)(O�
K :O�

(D,M))

|M| = hK

|G(K)|
∏
P |M

(
1 − χK(P )

|P |
)

.

In particular, if K is real, then

h(D,M)R(D,M)

|M| = hKRK

|G(K)|
∏
P |M

(
1 − χK(P )

|P |
)

,

where RK and R(D,M) denote the regulators of OK and O(D,M) respectively.
Now, for (D,M) ∈D, one associates a character χ(D,M) on A+ that is defined by

χ(D,M)(N) =
{

D/M2

N

}
.

One may then consider its L-function

L(s,χ(D,M)) =
∑

N∈A+

χ(D,M)(N)

|N |s =
∏

P∈A+

(
1 − χ(D,M)(P )

|P |s
)−1

.

Observe that
∏

P |M(1 − χK(P )
|P | ) = L(1,χ(D,M))

LK(1)
. So Theorem 2.1 and Proposition 2.3 imply the

following theorem that is an analogue of Dirichlet’s class number formula.

Theorem 2.5. Let (D,M) ∈ D with deg(D) = d and deg(M) = m. Let h(D,M) and R(D,M)

denote the class number and the regulator of the order O(D,M) respectively. Then

L(1, χ(D,M)) =
⎧⎨⎩h(D,M)/q

d−1
2 if d > 2m,

(q + 1)h(D,M)/2qm if d = 2m,

(q − 1)R(D,M)h(D,M)/q
m if d < 2m.
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3. Some lemmas

For M,N ∈ A+, we define two sums TN,M and ΓN,M :

TN,M =
∑
D∈A

deg(D)<deg(M),gcd(D,M)=1

{
D/M

N

}
,

ΓN,M =
∑
D∈A

deg(D)<deg(M)

{
D/M

N

}
.

For M = ∏s
i=1 P

ei

i ∈ A+, let D2(M) = ∏s
i=1 P

2ei−1
i . Then one has

Lemma 3.1. Let M,N ∈ A+ with deg(N) � 2 deg(M) − 1. Suppose that gcd(M,N) = 1 and N

is not a perfect square. Then ΓN,D2(M) = 0.

Proof. Since gcd(N,M) = 1 and deg(N) � 2 deg(M) − 1, the set{
D/M2: D ∈ A, deg(D) < 2 deg(M)

}
contains a complete residue system modulo N . So the map D �→ {D/M2

N
} is a surjective additive

character from the set {D ∈ A: deg(D) < 2 deg(M)} onto {±1}. Hence there exists some D ∈ A

of degree less than 2 deg(M) satisfying {D/M2

N
} = −1. Then one can normalize D/M2 to

D1/D2(M), where D1 ∈ A satisfies deg(D1) < deg(D2(M)), namely

D1/D2(M) − D/M2 ∈ ℘(k).

So {D1/D2(M)
N

} = {D/M2

N
} = −1. Therefore, the map D �→ {D/D2(M)

N
} is also a surjective addi-

tive character from {D ∈ A: deg(D) < deg(D2(M))} onto {±1}. Hence one can conclude that
ΓN,D2(M) = 0. �

Observe that the following equality holds:

ΓN,M =
∑

M̄∈A+, M̄|M
TN,M̄ .

By the Möbius Inversion formula, one has

TN,M =
∑

M̄∈A+, M̄|M
μ(M̄)ΓN,M/M̄ .

Fact 3.2. Let M,M̄ ∈ A+ with M̄ | M . If Γ ¯ = 0, then ΓN,M = 0.
N,M
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Proof. Since ΓN,M̄ = 0, there exists some D̄ ∈ A with deg(D̄) < deg(M̄) such that { D̄/M̄
N

} = −1.

Consider D = D̄ ·M/M̄ ∈ A. Then one can see that deg(D) < deg(M) and {D/M
N

} = −1. There-
fore, ΓN,M = 0. �

Observe that if M and N are not relatively prime, then TN,M2 is always zero by the definition
of the quadratic symbol. If gcd(N,M) = 1 and N is a perfect square, then TN,M2 = |M|Φ(M).
The following lemma follows from Lemma 3.1 and Fact 3.2:

Lemma 3.3. Let M,N ∈ A+ with deg(N) � 2 deg(M) − 1. Then

(a) if M and N are not relatively prime, then TN,M2 = 0,
(b) if gcd(N,M) = 1 and N is not a perfect square, then TN,M2 = 0,
(c) if gcd(N,M) = 1 and N is a perfect square, then TN,M2 = |M|Φ(M).

For M,N ∈ A+ and positive integer d , we define another two sums T̃N,M,d and Γ̃N,M,d :

T̃N,M,d =
∑
D∈A

deg(D)−deg(M)=d,gcd(D,M)=1

{
D/M

N

}
,

Γ̃N,M,d =
∑
D∈A

deg(D)−deg(M)=d

{
D/M

N

}
.

Lemma 3.4. Let M,N ∈ A+ and let d be a nonnegative integer with deg(N) � 2 deg(M) +
2d + 1. Suppose that gcd(M,N) = 1 and N is not a perfect square. Then Γ̃N,D2(M),2d+1 = 0.

Proof. By Lemma 3.1, one has ΓN,D2(M) = 0, so there exists some D1 ∈ A with deg(D1) <

deg(D2(M)) satisfying {D1/D2(M)
N

} = −1. Define two sets D+ and D− as follows:

D+ =
{
D: deg(D) = deg

(
D2(M)

) + 2d + 1,

{
D/D2(M)

N

}
= 1

}
,

D− =
{
D: deg(D) = deg

(
D2(M)

) + 2d + 1,

{
D/D2(M)

N

}
= −1

}
.

Then the mapping D �→ D + D1 establishes a bijection between D+ and D−. Hence one can
conclude that Γ̃N,D2(M),2d+1 = 0. �

Observe that the following equality holds:

Γ̃N,M,d =
∑

M̄∈A+, M̄|M
T̃N,M̄,d .

By the Möbius Inversion formula, one has

T̃N,M,d =
∑

¯ + ¯
μ(M̄)Γ̃N,M/M̄,d .
M∈A ,M|M
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Fact 3.5. Let M,M̄ ∈ A+ with M̄ | M . If Γ̃N,M̄,d = 0, then Γ̃N,M,d = 0.

Proof. Since Γ̃N,M̄,d = 0, there exists D̄ ∈ A with deg(D̄)−deg(M̄) = d such that { D̄/M̄
N

} = −1.

Consider D = D̄ · M/M̄ ∈ A. Then one can see that deg(D) − deg(M) = d and {D/M
N

} = −1.
Therefore, Γ̃N,M,d = 0. �

Observe that if M and N are not relatively prime, then T̃N,M2,d is zero by the definition
of the quadratic symbol. If gcd(N,M) = 1 and N is a perfect square, then T̃N,M2,2d+1 =
(q − 1)q2d+1|M|Φ(M). The following lemma follows from Lemma 3.4 and Fact 3.5:

Lemma 3.6. Let M,N ∈ A+ and let d be a nonnegative integer with deg(N) � 2 deg(M) +
2d + 1. Then

(a) if M and N are not relatively prime, then T̃N,M2,2d+1 = 0,
(b) if gcd(N,M) = 1 and N is not a perfect square, then T̃N,M2,2d+1 = 0,
(c) if gcd(N,M) = 1 and N is a perfect square, then

T̃N,M2,2d+1 = (q − 1)q2d+1|M|Φ(M).

4. Average value theorems in characteristic two

Given (D,M), (D′,M ′) ∈D, we say that they are equivalent if

M = M ′ and D/M2 + D′/M2 ∈ ℘(k).

Fix (D,M) ∈D, let[
(D,M)

] = {
(D′,M) ∈D: (D′,M) is equivalent to (D,M)

}
.

Denote by Φ the Euler-phi function on A. Then one has

Fact 4.1.

(a) Let (D,M), (D′,M ′) ∈ D. Then K(D,M) = K(D′,M ′) and O(D,M) = O(D′,M ′) if and only if
(D,M) and (D′,M ′) are equivalent.

(b) For any (D,M) ∈ D,

#
[
(D,M)

] =
{

Φ(M) if deg(D) � 2 deg(M),

1
2q

deg(D)−2 deg(M)+1
2 Φ(M) if deg(D) > 2 deg(M).

Proof. (a) It is clear that K(D,M) = K(D′,M ′) and O(D,M) = O(D′,M ′) if (D,M) and (D′,M ′)
are equivalent. Conversely, recall that the discriminant of O(D,M) is equal to M2. So O(D,M) =
O(D′,M ′) implies that M = M ′. Then one can check directly that D/M2 + D′/M2 ∈ ℘(k) if the
roots of x2 + x = D/M2 and x2 + x = D′/M2 give the same field extension of k.

(b) Write M = ∏s
i=1 P

ei

i , where Pi are distinct monic irreducible factors of M . Given any
D′ ∈ A, there is a unique solution of the congruence equation x2 ≡ D′ mod Pi , say D2 ≡ D′
i
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mod Pi . Observe that, for any B ∈ A, gcd(D′ +B2 +BM,M) = 1 if and only if B 
≡ Di mod Pi

for all 1 � i � s.
If (D′,M) ∈D is equivalent to (D,M) where deg(D) � 2 deg(M), then there exists a unique

B ∈ A with deg(B) < deg(M) and B 
≡ Di mod Pi for all 1 � i � s such that D′ = D +
B2 + BM . There are in total Φ(M) such B’s. Hence [(D,M)] = Φ(M).

Now assume deg(D) > 2 deg(M). For any D′ ∈ A, one can uniquely write D′ = QD′M2 +
RD′ , where QD′ ,RD′ ∈ A satisfy deg(RD′) < 2 deg(M). Note that the homomorphism ℘ : A →
A is two-to-one since ker(℘) = F2. If (D′,M) ∈ D is equivalent to (D,M), then there are exactly
two A ∈ A with deg(A) < (deg(D)− 2 deg(M)+ 1)/2 such that QD′ = QD +A2 +A and there
exists a unique B ∈ A with deg(B) < deg(M) and B 
≡ Di mod Pi for all 1 � i � s such that

RD′ = RD + B2 + BM . There are q
deg(D)−2 deg(M)+1

2 possible A’s and Φ(M) possible B’s. So

[(D,M)] = 1
2q

deg(D)−2 deg(M)+1
2 Φ(M). �

In the sequel, we proceed to averaging values over orders in real quadratic function fields. For
positive integer m, denote by A+

m the subset of A consisting of monic polynomials of degree m

and let

Dm = {[
(D,M)

]
: (D,M) ∈D, M ∈ A+

m, deg(D) < 2m
}
.

By Proposition 2.4 and Fact 4.1, one can conclude that there is a one-to-one correspondence
between the set Dm and the set of orders with discriminants of degree 2m in real quadratic
function fields. Observe that, for any M ∈ A+,

#
{
D ∈ A: gcd(D,M) = 1, deg(D) < 2 deg(M), D/M2 ∈ ℘(k)

} = Φ(M).

Therefore, one has

#Dm =
∑

M∈A
+
m

(|M|Φ(M) − Φ(M)
)
/Φ(M) = q2m − qm.

For [(D,M)] ∈Dm and nonnegative integer n, let

σn(D,M) =
∑

N∈A
+
n

{
D/M2

N

}
.

Then L(s,χ(D,M)) = ∑+∞
n=0

σn(D,M)
qns . To sum up the L-functions, set

Sm,n =
∑

[(D,M)]∈Dm

σn(D,M).

By Remark 2.2, one has

Fact 4.2. If m is a positive integer and n is a nonnegative integer with n � 2m, then, for any
[(D,M)] ∈ Dm, one has σn(D,M) = 0 and Sm,n = 0.
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In order to compute Sm,n with n � 2m− 1, one just need to recall the definition of the follow-
ing arithmetic function on A:

Φn(M) = #
{
N ∈ A+

n : gcd(M,N) = 1
}
,

where n is a nonnegative integer. Then, for positive integer m, if n is a nonnegative integer, define
Φ

(m)
n = ∑

M∈A
+
m

Φn(M); otherwise set Φ
(m)
n = 0.

Proposition 4.3. If m is a positive integer and n is a nonnegative integer with n � 2m − 1, then
Sm,n = qmΦ

(m)
n
2

− Φ
(m)
n .

Proof. By Fact 4.1 and the definition of TN,M2 , one has

Sm,n =
∑

[(D,M)]∈Dm

∑
N∈A

+
n

{
D/M2

N

}

=
∑

M∈A
+
m

1

Φ(M)

∑
N∈A

+
n

(
TN,M2 − Φ(M)

)
=

∑
M∈A

+
m

1

Φ(M)

∑
N∈A

+
n

gcd(M,N)=1

(
TN,M2 − Φ(M)

)
.

Note that an odd-degree polynomial will never be a perfect square. For odd integer n, by
applying Lemma 3.3, one has

Sm,n = −
∑

M∈A
+
m

Φn(M) = −Φ(m)
n = qmΦ

(m)
n
2

− Φ(m)
n .

For even integer n, by applying Lemma 3.3 again, one has

Sm,n =
∑

M∈A
+
m

|M|Φn
2
(M) −

∑
M∈A

+
m

Φn(M) = qmΦ
(m)
n
2

− Φ(m)
n . �

In the paper of Hoffstein and Rosen [5, Proposition 1.2] (or cf. [7, Proposition 17.11]), the
authors proved the following:

Proposition 4.4. Let m be a positive integer and let n be a nonnegative integer. Then

Φ(m)
n =

{
qm if n = 0,

(1 − 1
q
)qm+n otherwise.

Consider the following sum of L-functions:

∑
L(s,χ(D,M)) =

∑ +∞∑ σn(D,M)

qns
=

∑ 2m−1∑ σn(D,M)

qns
[(D,M)]∈Dm [(D,M)]∈Dm n=0 [(D,M)]∈Dm n=0
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=
2m−1∑
n=0

Sm,n

qns
= qm

2m−1∑
n=0

Φ
(m)
n
2

qns
−

2m−1∑
n=0

Φ
(m)
n

qns

= qm

m−1∑
n=0

Φ
(m)
n

q2ns
−

2m−1∑
n=0

Φ
(m)
n

qns
. (�)

Now we arrive at our first main theorem:

Theorem 4.5. Let m be a positive integer.

(a) If s ∈ C with s 
= 1,1/2, then

∑
[(D,M)]∈Dm

L(s,χ(D,M)) = 1

q

(
q2m − qm

) + q2m

(
1 − 1

q

)(
1 − qm(1−2s)

)
ζA(2s)

− qm

(
1 − 1

q

)(
1 − q2m(1−s)

)
ζA(s).

(b) If s = 1, then

∑
[(D,M)]∈Dm

L(1, χ(D,M)) = ζA(2)

ζA(3)

(
q2m − qm

) − 2mqm

(
1 − 1

q

)
.

Proof. (a) By Proposition 4.4 and (�), one has∑
[(D,M)]∈Dm

L(s,χ(D,M))

= qm

(
qm +

(
1 − 1

q

)m−1∑
n=1

qn+m

q2ns

)
−

(
qm +

(
1 − 1

q

) 2m−1∑
n=1

qn+m

qns

)

= q2m

(
1

q
+

(
1 − 1

q

)m−1∑
n=0

qn(1−2s)

)
− qm

(
1

q
+

(
1 − 1

q

) 2m−1∑
n=0

qn(1−s)

)

= 1

q

(
q2m − qm

) + q2m

(
1 − 1

q

)(
1 − qm(1−2s)

)
ζA(2s)

− qm

(
1 − 1

q

)(
1 − q2m(1−s)

)
ζA(s).

(b) For the special value at s = 1, by using the same argument, we have∑
[(D,M)]∈Dm

L(1, χ(D,M))

= qm

(
qm +

(
1 − 1

q

)m−1∑ qn+m

q2n

)
−

(
qm +

(
1 − 1

q

) 2m−1∑ qn+m

qn

)

n=1 n=1
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= q2m

(
1

q
+

(
1 − 1

q

)m−1∑
n=0

q−n

)
− qm

(
1

q
+

(
1 − 1

q

) 2m−1∑
n=0

1

)

=
(

1 + 1

q

)(
q2m − qm

) − 2mqm

(
1 − 1

q

)
.

Observe that ζA(2)/ζA(3) = 1 + 1/q , hence the desired equality holds. �
Recall that #Dm = q2m − qm. Thus we can obtain the following limits:

Corollary 4.6.

(a) If s ∈ C with �(s) � 1, then

lim
m→+∞

∑
[(D,M)]∈Dm

L(s,χ(D,M))

#Dm

= 1

q
+

(
1 − 1

q

)
ζA(2s).

(b) If s = 1, then

lim
m→+∞

∑
[(D,M)]∈Dm

L(1, χ(D,M))

#Dm

= ζA(2)

ζA(3)
.

Recall that, for [(D,M)] ∈ Dm, L(1, χ(D,M)) = (q −1)R(D,M)h(D,M)/q
m, where R(D,M) and

h(D,M) denote the regulator and the ideal class number of the order O(D,M) in the real quadratic
field K(D,M). The following sum is over all A-orders with discriminants of degree 2m in real
quadratic function fields.

Corollary 4.7. Let m be a positive integer. Then∑
[(D,M)]∈Dm

R(D,M)h(D,M)

#Dm

= 1

q − 1

ζA(2)

ζA(3)
qm − 2m

q

qm

qm − 1
.

Now we turn to average values over imaginary quadratic function fields that are unramified at
infinity. For positive integer m, denote by D′

m the following set:{[
(D′,M)

]
: (D′,M) ∈ D, M ∈ A+

m, deg(D′) = 2m, K(D′,M) 
∼= Fq2(t)
}
.

Again, by Proposition 2.4 and Fact 4.1, one can conclude that there is a one-to-one correspon-
dence between the set D′

m and the set of orders with discriminants of degree 2m in imaginary
quadratic function fields that are non-constant field extensions and unramified at infinity. Observe
that

#D′
m = #Dm = q2m − qm.

For [(D′,M)] ∈D′
m and nonnegative integer n, let

σ ′
n(D

′,M) =
∑

+

{
D′/M2

N

}
.

N∈An
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Then L(s,χ(D′,M)) = ∑+∞
n=0

σ ′
n(D′,M)

qns . To sum up the L-functions, set

S′
m,n =

∑
[(D′,M)]∈D′

m

σ ′
n(D

′,M).

Note that for any N ∈ A+
n , { ξ

N
} = (−1)n. So σ ′

n(D
′,M) = (−1)nσn(D,M), where D = D′ + ξ

and thus one has S′
m,n = (−1)nSm,n for all positive integer m and nonnegative integer n. There-

fore, by Fact 4.2 and Proposition 4.3, one has

Fact 4.8. If m is a positive integer and n is a nonnegative integer, then

S′
m,n =

{
qmΦ

(m)
n
2

− (−1)nΦ
(m)
n if n � 2m − 1,

0 if n � 2m.

Similar to the real case, one has:

∑
[(D′,M)]∈D′

m

L(s,χ(D′,M)) = qm

m−1∑
n=0

Φ
(m)
n

q2ns
−

2m−1∑
n=0

(−1)n
Φ

(m)
n

qns
. (��)

Now we arrive at our second main theorem:

Theorem 4.9. Let m be a positive integer.

(a) If s ∈ C with s 
= 1,1/2, then∑
[(D′,M)]∈D′

m

L(s,χ(D′,M))

= 1

q

(
q2m − qm

) + q2m

(
1 − 1

q

)(
1 − qm(1−2s)

)
ζA(2s)

+ qm

(
1 − 1

q

)(
1 − q2m(1−s)

)
ζA(s) − 2qm

(
1 − 1

q

)(
1 − q2m(1−s)

)
ζA(2s − 1).

(b) If s = 1, then ∑
[(D′,M)]∈D′

m

L(1, χ(D′,M)) = ζA(2)

ζA(3)

(
q2m − qm

)
.

Proof. (a) By Proposition 4.4 and (��), one has∑
[(D′,M)]∈D′

m

L(s,χ(D′,M))

= qm

(
qm +

(
1 − 1

q

)m−1∑ qn+m

q2ns

)
−

(
qm +

(
1 − 1

q

) 2m−1∑ (−1)nqn+m

qns

)

n=1 n=1
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= q2m

(
1

q
+

(
1 − 1

q

)m−1∑
n=0

qn(1−2s)

)
− qm

(
1

q
+

(
1 − 1

q

) 2m−1∑
n=0

(−1)nqn(1−s)

)

= q2m

(
1

q
+

(
1 − 1

q

)m−1∑
n=0

qn(1−2s)

)
+ qm

(
1

q
+

(
1 − 1

q

) 2m−1∑
n=0

qn(1−s)

)

− 2qm

(
1 − 1

q

)m−1∑
n=0

q2n(1−s)

= 1

q

(
q2m − qm

) + q2m

(
1 − 1

q

)(
1 − qm(1−2s)

)
ζA(2s)

+ qm

(
1 − 1

q

)(
1 − q2m(1−s)

)
ζA(s) − 2qm

(
1 − 1

q

)(
1 − q2m(1−s)

)
ζA(2s − 1).

(b) For the special value at s = 1, by using the same argument, we have∑
[(D′,M)]∈D′

m

L(1, χ(D′,M))

= qm

(
qm +

(
1 − 1

q

)m−1∑
n=1

qn+m

q2n

)
−

(
qm +

(
1 − 1

q

) 2m−1∑
n=1

(−1)nqn+m

qn

)

= q2m

(
1

q
+

(
1 − 1

q

)m−1∑
n=0

q−n

)
− qm

(
1

q
+

(
1 − 1

q

) 2m−1∑
n=0

(−1)n

)

=
(

1 + 1

q

)(
q2m − qm

)
. �

Recall that #D′
m = q2m − qm. Then we can obtain the following limits:

Corollary 4.10. Let m be a positive integer. Then

(a) If s ∈ C with �(s) � 1, then

lim
m→+∞

∑
[(D′,M)]∈D′

m
L(s,χ(D′,M))

#D′
m

= 1

q
+

(
1 − 1

q

)
ζA(2s).

(b) If s = 1, then

lim
m→+∞

∑
[(D′,M)]∈D′

m
L(1, χ(D′,M))

#D′
m

= ζA(2)

ζA(3)
.

Recall that, for [(D′,M)] ∈D′
m, L(1, χ(D′,M)) = (q +1)h(D′,M)/2qm, where h(D′,M) denotes

the ideal class number of the order O(D′,M) in the imaginary quadratic function field K(D′,M).
The following sum is over all A-orders with discriminants of degree 2m in imaginary quadratic
function fields that are non-constant field extensions and unramified at infinity.
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Corollary 4.11. Let m be a positive integer. Then∑
[(D′,M)]∈D′

m
h[(D′,M)]

#D′
m

= 2

q + 1

ζA(2)

ζA(3)
qm.

Finally, we continue to average values over imaginary quadratic function fields that are rami-
fied at infinity. For positive integers m and nonnegative integer d , let

D̃m,d = {[
(D̃,M)

]
: (D̃,M) ∈ D, M ∈ A+

m, deg(D̃) = 2m + 2d + 1
}
.

Again, by Proposition 2.4 and Fact 4.1, one can conclude that there is a one-to-one correspon-
dence between the set D̃m,d and the set of orders with finite discriminants of degree 2m in
imaginary quadratic function fields that are ramified at infinity with local discriminants at infin-
ity of degree 2d +2. Observe that, for any M ∈ A+

m and D̃ ∈ A with deg(D̃)−2 deg(M) = 2d +1,
D̃/M2 /∈ ℘(k). So one has

#D̃m,d =
∑

M∈A
+
m

(q − 1)q2d+1|M|Φ(M)

1
2qd+1Φ(M)

= 2(q − 1)q2m+d .

For [(D̃,M)] ∈ D̃m,d and nonnegative integer n, let

σ̃n(D̃,M) =
∑

N∈A
+
n

{
D̃/M2

N

}
.

Then L(s,χ(D̃,M)) = ∑+∞
n=0

σ̃n(D̃,M)
qns . To sum up the L-functions, set

S̃m,d,n =
∑

[(D̃,M)]∈D̃m

σ̃n(D̃,M).

By Remark 2.2, one has

Fact 4.12. If m is a positive integer and d , n are nonnegative integers with n � 2m + 2d + 2,
then, for any (D̃,M) ∈ D̃m,d , σ̃n(D̃,M) = 0 and S̃m,d,n = 0.

Proposition 4.13. If m is a positive integer and d , n are nonnegative integers with n � 2m +
2d + 1, then S̃m,d,n = 2(q − 1)qm+dΦ

(m)
n
2

.

Proof. By Fact 4.1 and the definition of T̃N,M2,2d+1, one has

S̃m,d,n =
∑

[(D̃,M)]∈D̃m,d

∑
N∈A

+
n

{
D̃/M2

N

}
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=
∑

M∈A
+
m

1
1
2qd+1Φ(M)

∑
N∈A

+
n

T̃N,M2,2d+1

=
∑

M∈A
+
m

2

qd+1Φ(M)

∑
N∈A

+
n

gcd(M,N)=1

T̃N,M2,2d+1.

Note that an odd-degree polynomial will never be a perfect square. For odd integer n, by
applying Lemma 3.6, one has S̃m,d,n = 0.

For even integer n, by applying Lemma 3.6 again, one has

S̃m,d,n =
∑

M∈A
+
m

∑
N1∈A

+
n
2

gcd(M,N1)=1

2(q − 1)qm+d = 2(q − 1)qm+dΦ
(m)
n
2

. �

Consider the following sum of L-functions:

∑
[(D̃,M)]∈D̃m,d

L(s,χ(D̃,M)) =
∑

[(D̃,M)]∈D̃m,d

+∞∑
n=0

σ̃n(D̃,M)

qns

=
∑

[(D̃,M)]∈D̃m,d

2m+2d+1∑
n=0

σ̃n(D̃,M)

qns

=
2m+2d+1∑

n=0

S̃m,d,n

qns

= 2(q − 1)qm+d

m+d∑
n=0

Φ
(m)
n

q2ns
. (���)

Now we arrive at our third main theorem:

Theorem 4.14. Let m be a positive integer and let d be a nonnegative integer.

(a) If s ∈ C with s 
= 1,1/2, then∑
[(D̃,M)]∈D̃m,d

L(s,χ(D̃,M))

= 2(q − 1)q2m+d−1 + 2(q − 1)q2m+d

(
1 − 1

q

)(
1 − q(m+d+1)(1−2s)

)
ζA(2s).

(b) If s = 1, then ∑
[(D̃,M)]∈D̃m,d

L(1, χ(D̃,M)) = 2(q − 1)
ζA(2)

ζA(3)
q2m+d + 2(q − 1)qm−1.
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Proof. (a) By Proposition 4.4 and (���), one has∑
[(D̃,M)]∈D̃m,d

L(s,χ(D̃,M))

= 2(q − 1)qm+d

(
qm +

(
1 − 1

q

)m+d∑
n=1

qn+m

q2ns

)

= 2(q − 1)q2m+d

(
1

q
+

(
1 − 1

q

)m+d∑
n=0

qn(1−2s)

)

= 2(q − 1)q2m+d−1 + 2(q − 1)q2m+d

(
1 − 1

q

)(
1 − q(m+d+1)(1−2s)

)
ζA(2s).

(b) To obtain the special value at s = 1, one can simply substitute s = 1 in (a):∑
[(D̃,M)]∈D̃m,d

L(1, χ(D̃,M))

= 2(q − 1)q2m+d−1 + 2(q − 1)q2m+d

(
1 − 1

q

)(
1 − q−(m+d+1)

)
ζA(2)

= 2(q − 1)

(
1 + 1

q

)
q2m+d + 2(q − 1)qm−1. �

Recall that #D̃m,d = 2(q − 1)q2m+d . Then we can obtain the following limits:

Corollary 4.15. Let m be a positive integer and let d be a nonnegative integer.

(a) If s ∈ C with �(s) � 1, then

lim
m→+∞

∑
[(D̃,M)]∈D̃m,d

L(s,χ(D̃,M))

#D̃m,d

= 1

q
+

(
1 − 1

q

)
ζA(2s).

(b) If s = 1, then

lim
m→+∞

∑
[(D̃,M)]∈D̃m,d

L(1, χ(D̃,M))

#D̃m,d

= ζA(2)

ζA(3)
.

Recall that, for [(D̃,M)] ∈ D̃m,d , L(1, χ(D̃,M)) = h(D̃,M)/q
m+d , where h(D̃,M) denotes the

class number of the order O(D̃,M) in the imaginary quadratic function field K(D̃,M). The fol-
lowing sum is over all A-orders with finite discriminants of degree 2m in imaginary quadratic
function fields whose local discriminants at infinity have degree 2d + 2.

Corollary 4.16. Let m be a positive integer and let d be a nonnegative integer. Then∑
[(D̃,M)]∈D̃m,d

h(D̃,M)˜ = ζA(2)

ζ (3)
qm+d + 1

q
.

#Dm,d A
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To end this paper, we would like to make the final remark that, for the problem of averaging
over all fundamental discriminants, it is extremely difficult even in odd characteristic. However,
Hoffstein and Rosen succeeded in obtaining beautiful results on this problem in their 1992 paper
(cf. [5]). We believe that this is also a very hard problem in characteristic 2.
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