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We evaluate the action of Hecke operators on Siegel Eisenstein
series of degree 2, square-free level N and arbitrary character χ ,
without using knowledge of their Fourier coefficients. From this
we construct a basis of simultaneous eigenforms for the full
Hecke algebra, and we compute their eigenvalues. As well, we
obtain Hecke relations among the Eisenstein series. Using these
Hecke relations, we discuss how to generate the Fourier series of
Eisenstein series in a basis from the Fourier series of one basis
element.
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1. Introduction

Modular forms are of central interest in number theory, particularly because Hecke theory tells us
that their Fourier coefficients carry number theoretic information. Eisenstein series are fundamental
examples of modular forms and play an important role in the theory of modular forms. In the case of
elliptic modular forms (i.e. Siegel degree 1), the Eisenstein series are well-understood; for instance, we
have explicit formulas for their Fourier coefficients, we know that the space of Eisenstein series can be
simultaneously diagonalised with respect to the Hecke operators attached to primes not dividing the
level, and when the level is square-free, the space can be simultaneously diagonalised with respect
to the full Hecke algebra. In the case of Siegel degree n > 1, the situation is less well understood,
but some parallel results have been established. Freitag [3] has shown that the space of Eisenstein
series can be simultaneously diagonalised with respect to the Hecke operators attached to primes not
dividing the level. Many authors have worked on computing Fourier coefficients of Siegel Eisenstein
series with n > 1. We do not try to give a comprehensive list of all the work that has contributed
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to this, but rather give a sampling. For level 1, see [8,9] for degree 2; [5] for degree 3; [1,2,6,7] for
arbitrary degree. For degree 2, level N and primitive character modulo N , Fourier coefficients for 1
of the Eisenstein series E(N ,1,1) have been computed in [10] when N is odd and square-free, and in
[11] for arbitrary N .

In this work, without using any knowledge of Fourier coefficients, we evaluate the action of Hecke
operators on the natural basis {Eρ} for the space of degree 2 Siegel Eisenstein series of square-
free level N and arbitrary character χ (Propositions 3.3–3.10); here ρ = (N0,N1,N2) varies so that
N0N1N2 = N and χ2

N1
= 1. This evaluation reveals Hecke relations among these Eisenstein series in

the case that χ2 is not primitive. Using these relations, we construct another basis {Ẽρ} consisting of
eigenforms for the full Hecke algebra (which is generated by {T (p), T1(p2): p prime}); when χ2 is
primitive, Ẽρ = Eρ . Then for any prime p, the eigenvalues of Ẽρ for T (p) and T1(p2) are(

χN0(p)pk−1 + χN1N2(p)
)(

χN0N1(p)pk−2 + χN2(p)
)

and (
p + χN1

(
p2))(χN0

(
p2)p2k−3 + χ(p)pk−3(p − 1) + χN2

(
p2))

(Theorem 3.11). In the case that χ2 is not primitive, these Hecke relations also allow us to generate
some of the other Eisenstein series from E(N ,1,1) by applying particular elements of the Hecke alge-
bra; in particular, when χ = 1, we can generate a basis from E(N ,1,1) (Theorem 3.12). In the remark
following this theorem, we briefly discuss how we can use [4] and the Fourier coefficients of the
degree 2, level 1 Eisenstein series E to generate the Fourier coefficients of all the degree 2, level N
Eisenstein series in the case that N is square-free and the character χ = 1.

2. Preliminaries

Here we set notation and define degree 2 Siegel Eisenstein series and Hecke operators. We begin
by fixing square-free N ∈ Z+ . With Sp2(Z) the group of 4 × 4 integral symplectic matrices, we set

Γ∞ =
{(∗ ∗

0 ∗
)

∈ Sp2(Z)

}
,

Γ0(N ) =
{
γ ∈ Sp2(Z): γ ≡

(∗ ∗
0 ∗

)
(N )

}
.

The 0-dimensional cusps for Γ0(N ) correspond to the elements of the double coset Γ∞ \ Sp2(Z)/

Γ0(N ). For k ∈ Z+ and χ a Dirichlet character modulo N , we have one Siegel Eisenstein series
for each cusp, defined as follows. For γ0 ∈ Sp2(Z), the Eisenstein series associated to the cusp
Γ∞γ0Γ0(N ) is

Eγ0(τ ) =
∑

χ(det Dγ −1
0 γ )1|γ (τ )

where Γ∞γ varies over the Γ0(N )-orbit of Γ∞γ0,

τ ∈ H(2) = {
X + iY : X, Y ∈ R2,2

sym, Y > 0
}

where Y > 0 denotes that Y is the matrix for a positive definite quadratic form, and

1
∣∣∣( A B

C D

)
(τ ) = det(Cτ + D)−k.



2702 L.H. Walling / Journal of Number Theory 132 (2012) 2700–2723
This sum is well-defined provided χ2
q = 1 whenever q is a prime dividing N and rankq M0 = 1 where

γ0 = ( ∗ ∗
M0 N0

)
and rankq M0 denotes the rank of M0 modulo q. When well-defined, the sum is non-

zero provided χ(−1) = (−1)k , and it is absolutely uniformly convergent on compact regions provided
k � 4 (and hence it is analytic, meaning analytic in each variable of τ ). For γ ′ ∈ Γ0(N ), Γ∞γ γ ′
varies over the Γ0(N )-orbit of Γ∞γ0 as Γ∞γ does, and hence Eγ0 |γ ′ = χ(det Dγ ′ )Eγ0 . As noted in
[3], these Eisenstein series are linearly independent, and the 0th Fourier coefficient of Eγ0 is 0 unless
γ0 ∈ Γ0(N ), in which case it is 1.

A pair of 2 × 2 matrices (M N) is called symmetric if M t N = N t M with t N denoting the transpose
of N; it is called a coprime pair if M , N are integral and (GM GN) is integral only if G is. Note that
(M N) is a coprime pair if and only if, for each prime p, rankp(M N) = 2. It is well known that
for γ ,γ ′ ∈ Sp2(Z), γ and γ ′ lie in the same coset in Γ∞ \ Sp2(Z) if and only if γ = ( ∗ ∗

M N

)
, γ ′ =( ∗ ∗

GM GN

)
for some G ∈ GL2(Z). Thus these cosets can be parameterised by GL2(Z)-equivalence classes

of coprime symmetric pairs; so Eγ0 is supported on a set of GL2(Z)-equivalence class representatives
for the Γ0(N )-orbit of GL2(Z)(M0 N0).

For each prime p, we have Hecke operators T (p) and T1(p2) that act on degree 2 Siegel modular
forms, and {T (p), T1(p2): p prime} generates the Hecke algebra. For f a degree 2 Siegel modular
form of weight k, level N , and character χ , and for γ ′ = ( A B

C D

)
, we set

γ ′ ◦ τ = (Aτ + B)(Cτ + D)−1

and

f (τ )
∣∣γ ′ = (

detγ ′)k/2
det(Cτ + D)−k f

(
γ ′ ◦ τ

)
.

Then

f |T (p) = pk−3
∑
γ

χ(det Dγ ) f
∣∣δ−1γ

where δ = ( pI2
I2

)
and γ varies over a set of coset representatives for

(
δΓ0(N )δ−1 ∩ Γ0(N )

) \ Γ0(N ).

Somewhat similarly,

f |T1
(

p2) = pk−3
∑
γ

χ(det Dγ ) f
∣∣δ−1

1 γ

where δ1 = ( X
X−1

)
, X = ( p

1

)
, and γ varies over a set of coset representatives for

(
δ1Γ0(N )δ−1

1 ∩ Γ0(N )
) \ Γ0(N ).

In Propositions 2.1 and 3.1 of [4] we computed an explicit set of upper triangular block matrices
giving the action of the Hecke operators, and we will use these here in evaluating the action of Hecke
operators on Eisenstein series. (Note that in [4] we did not introduce the normalisation of T1(p2)

until we averaged the Hecke operators to produce an alternative basis for the Hecke algebra.)
Given Q ∈ Z2,2

sym and F = Z/pZ, p prime, we can think of Q as a quadratic form on V = Fx1 ⊕Fx2.
We say a non-zero vector v ∈ V is isotropic if Q (v) = 0 (in F). Suppose p is odd. Then Q is a GL2(F)

conjugate of H = 〈1,−1〉 or of A = 〈1,−ω〉 where (ω
p ) = −1 and 〈∗,∗〉 denotes a diagonal matrix;

we write V � H or V �A accordingly. Note that when V � H, V contains 2 isotropic lines, and when
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V � A, V contains no isotropic lines. Now suppose p = 2; then either Q is a GL2(F) conjugate of I
or (over F) of Q = ( 0 1

1 0

)
(which is stabilised under conjugation by GL2(F)). When V � I , V contains

1 isotropic line; when V � ( 0 1
1 0

)
, all 3 lines in V are isotropic.

3. Action of Hecke operators on Eisenstein series of square-free level

Throughout this section, we assume k ∈ Z+ with k � 4, and that N is square-free. We first show
that we can parameterise the Γ0(N ) cusps by multiplicative partitions ρ = (N0,N1,N2) where
N0N1N2 =N : For such ρ , fix diagonal Mρ ∈ Z2,2 so that

Mρ ≡
⎧⎨⎩

0 (N0),( 1
0

)
(N1),

I (N2).

Then set γρ = ( I 0
Mρ I

)
. For γ = ( K L

M N

)
, γ ′ = ( K ′ L′

M′ N ′
) ∈ Sp2(Z), we know that Γ∞γ = Γ∞γ ′ if and only

if G(M N) = (M ′ N ′) for some G ∈ GL2(Z). Thus it suffices to show that for a coprime symmetric pair
(M N), we have GL2(Z)(M N) in the Γ0(N )-orbit of GL2(Z)(Mρ I) if and only if rankq M = rankq Mρ

for all primes q|N .
To do this, suppose first that (M N) is a coprime symmetric pair so that (M N) ≡ (Mρ I) (N ).

So there is some
( K L

M N

) ∈ Sp2(Z). Since N ≡ I(N ), L is symmetric modulo N so we can choose

symmetric W ≡ −L(N ). Then

(
K ′ L′
M N

)
=

(
I W
0 I

)(
K L
M N

)
∈ Sp2(Z)

with L′ ≡ 0 (N ); so K ′ ≡ I (N ). Thus

(
I 0

−Mρ I

)(
K ′ L′
M N

)
∈ Γ0(N ),

and hence (M N) ∈ (Mρ I)Γ0(N ).

Now suppose (M N) is a coprime symmetric pair so that for each prime q|N , we have rankq M =
rankq Mρ . We want to show that for some E ∈ GL2(Z) and γ ∈ Γ0(N ) we have E(M N)γ ≡
(Mρ I) (N ). We know SL2(Z) projects onto SL2(Z/NZ). Also,

SL2(Z/NZ) � SL2(Z/N0Z) × SL2(Z/N1Z) × SL2(Z/N2Z)

via the map G (N ) 
→ (G (N0), G (N1), G (N2)), which is well-defined with inverse map

(
G (N0), G (N1), G (N2)

) 
→ rN1N2G0 + sN0N2G1 + tN1N1G2 (N )

where r, s, t ∈ Z so that rN1N2 + sN0N2 + tN0N1 = 1. Thus we can choose E, G ∈ SL2(Z) so that

E MG ≡
{( 1

0

)
(N1),( 1 )
(N2)
m
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where m is a unit modulo N2, and E N t G−1 ≡ I (N0). Write E N t G−1 = ( n1 n2
n3 n4

)
; then by symmetry,

n3 ≡ mn2 (N2), n3 ≡ 0 (N1), and since M , N are coprime, n4 is a unit modulo N1. Now choose
symmetric W so that

W ≡
⎧⎨⎩

( 1−n1 −n2
−n2 0

)
(N1),( 1−n1 −n2

−n2 m2−mn4

)
(N2)

and
( a b

c d

) ∈ SL2(Z) so that

(
a b
c d

)
≡

⎧⎪⎨⎪⎩
I (N0),( n4

n4

)
(N1),(m

m

)
(N2).

Set

γ =
(

G
t G−1

)(
I W

I

)⎛⎜⎝
1 0

a b
0 1

c d

⎞⎟⎠ .

Then γ ∈ Γ0(N ) and E(M N)γ ≡ (Mρ I) (N ). Hence with the previous paragraph, we have that
GL2(Z)(M N) is in the Γ0(N )-orbit of GL2(Z)(Mρ I), as claimed. (So the GL2(Z)-equivalence classes
of two coprime symmetric pairs (M N), (M ′ N ′) are in the same Γ0(N )-orbit if and only if rankq M =
rankq M ′ for all primes q|N .)

Note that

GL2(Z)(Mρ I) = SL2(Z)(Mρ I) ∪ SL2(Z)(Mρ I)

⎛⎜⎝
−1

1
−1

1

⎞⎟⎠ ,

so we can identify the cusp with SL2(Z)(Mρ I)Γ0(N ). We use Eρ to denote Eγρ . To ease the discus-
sions during our computations we consider 2Eρ to be supported on a set of representatives for the
SL2(Z)-equivalence classes in the Γ0(N )-orbit of (Mρ I).

For q prime, we say (M N) has q-type i if (M N) is a coprime symmetric pair with rankq M = i.
For (M N) of q-type i, choose E ∈ GL2(Z) so that q divides the lower 2 − i rows of E M; then we say

(M N) (or simply M) is q2-type i, j where j = rankq
( Ii

1
q I2−i

)
E M . Given square-free N and a partition

ρ = (N0,N1,N2) of N , we say (M N) has N -type ρ if (M N) is a coprime symmetric pair and, for
each prime q|Ni , rankq M = i.

Given a character χ modulo N , and (M N) = (Mρ I)γ where γ = ( A B
C D

) ∈ Γ0(N ), we can describe
χ(det D) in terms of M , N , ρ as follows. For each prime q|N0, we have N ≡ D (q), so χq(det D) =
χq(det N). For each prime q|N2, we have M ≡ A ≡ t D (q), so χq(det D) = χq(det M). Now take a

prime q|N1; write D = ( d1 d2
d3 d4

)
. Thus modulo q we have

A ≡ det D

(
d4 −d3

−d d

)
,

2 1
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so consequently modulo q we have

M ≡ det D

(
d4 −d3
0 0

)
, N ≡

( ∗ ∗
d3 d4

)
.

We know q � (d3 d4), so χq(det D) = χq(m1)χq(n4) or χq(−m2)χq(n3), whichever is non-zero. Take
E ∈ SL2(Z) so that q divides row 2 of E M; thus E ≡ ( α β

0 α

)
(q), and with

E M =
(

m′
1 m′

2
qm′

3 qm′
4

)
, E N =

(
n′

1 n′
2

n′
3 n′

4

)
,

we have

χq
(
m′

1

)
χq

(
n′

4

) = χq(m1)χq(n4), χq
(−m′

2

)
χq

(
n′

3

) = χq(−m2)χq(n3)

provided χ2
q = 1. So when χ2

q = 1 and (M N) has q-type 1, we can choose E ∈ SL2(Z) so that

E M = ( m1 m2
qm3 qm4

)
, E N = ( n1 n2

n3 n4

)
; set χ(1,q,1)(M, N) = χq(m1)χq(n4) or χq(−m2)χq(n3) (whichever is

non-zero). Then set

χρ(M, N) =
∏

q|N0

χq(det N)
∏

q|N1

χ(1,q,1)(M, N)
∏

q|N2

χq(det M).

Hence 2Eρ(τ ) = ∑
χρ(M, N)det(Mτ + N)−k where (M N) varies over a set of SL2(Z)-equivalence

class representatives for pairs of N -type ρ . Also note that for G ∈ SL2(Z), χρ(GM, GN) = χρ(M, N),

and since
( G

t G−1

) ∈ Sp2(Z), we have χρ(MG, N t G−1) = χρ(M, N).
For the remainder of this section, fix a partition ρ = (N0,N1,N2) of N , and fix a character χ

modulo N . We decompose χ as χN0χN1χN2 where χNi has modulus Ni ; we assume χ has been
chosen so that χ2

N1
= 1. For p prime, let G1(p) be a set of representatives for{

γ ∈ SL2(Z): γ ≡
(∗ 0

∗ ∗
)

(p)

}
\ SL2(Z);

note that for p �N , we can take the elements in G1(p) to be congruent modulo N to I .
When evaluating the action of the Hecke operators, we often use the following simple lemmas.

Lemma 3.1. Say p is a prime and (M N) is p-type 1, M = ( m1 m2
pm3 pm4

)
, and N = ( n1 n2

n3 n4

)
. Then p|m1 if and only

if p|n4 , and p|m2 if and only if p|n3 .

Proof. Say p|m1. Then p � m2 since rankp M = 1; by symmetry, p|m2n4 and hence p|n4. The other
arguments needed to prove the lemma are essentially identical to this. �
Lemma 3.2. Let V = Fx1 ⊕ Fx2 where F = Z/pZ, p prime. For G ∈ G1(p), let (x′

1 x′
2) = (x1 x2)

t G. Then as
G varies over G1(p), Fx′

1 varies over all lines in V .

Proof. Representatives for G1(p) are
( 0 −1

1 0

)
,

( 1 α

0 1

)
where α varies modulo p. Thus Fx′

1 varies as
claimed. �
Proposition 3.3. For p a prime not dividing N , we have

Eρ |T (p) = (
χN0

(
p2)χN1(p)p2k−3 + χN0N2(p)pk−2(p + 1) + χN1(p)χN2

(
p2))Eρ.
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Proof. Decompose Eρ as E0 +E1 +E2 where Ei is supported on pairs of N -type ρ and p-type i.
Using the matrices for T (p) as described in Proposition 3.1 of [4], we can describe Eρ |T (p) as

follows. First, let G1 = G1(p). Then

2Eρ(τ )|T (p) = p2k−3
∑

0�r�2
Gr ,Yr

χ
(

p2−r)χρ(M, N)det
(
M Dr G−1

r τ + pN D−1
r

t Gr + MYr
t Gr

)−k

where (M N) varies over a set of SL2(Z)-equivalence class representatives for pairs of N -type ρ ,
Dr = ( Ir

pI2−r

)
, G0 = G2 = I , G1 varies over G1, Y0 = 0, Y1 = ( y

0

)
with y varying modulo p, and

Y2 ∈ Z2,2
sym varying modulo p. For convenience, we choose Yi ≡ 0 (N ).

Case I. Say r = 0. We take (M ′ N ′) = D−1
� (pM N) where � = rankp N , and the SL2(Z)-equivalence class

representative (M N) is chosen so that p divides the lower 2 − � rows of N .
First suppose � = 2. Thus rankp M ′ = 0, and

χ
(

p2)χρ

(
M ′, N ′) = χN0

(
p2)χN1(p)χρ(M, N).

So the contribution from these terms is χN0 (p2)χN1 (p)p2k−3E0.
Next suppose � = 1. So p divides row 2 of N and hence does not divide row 2 of M , and hence

rankp M ′ = 1 with p dividing row 1 of M ′ , p not dividing row 1 of N ′ (and so (M ′, N ′) = 1). We
have χ(p2)χρ(M ′, N ′) = χN0N2 (p)χρ(M, N). Reversing, take (M ′ N ′) of N -type ρ , p-type 1. We

need to count the equivalence classes SL2(Z)(M N) so that
( 1

1
p

)
(pM N) ∈ SL2(Z)(M ′ N ′). For any

E ∈ SL2(Z), we have
( 1

p

)
E
( 1

1
p

) ∈ SL2(Z) if and only if E ≡ ( ∗ 0
∗ ∗

)
(p); thus we need to count the

integral, coprime pairs (M N) = ( 1
p

)
E(M ′/p N ′) where E varies over G1. (Note that we automatically

have M t N symmetric since M ′ t N ′ is symmetric.) We can assume p divides row 2 of M ′ . To have M
integral, we need p dividing row 1 of E M ′; there is 1 choice of E so that this is the case. Thus p
does not divide row 2 of M or row 1 of N , so (M, N) = 1. So the contribution from these terms is
χN0N2 (p)pk−3E1.

Now suppose � = 0. Thus rankp M = 2 = rankp M ′ . We have

χ
(

p2)χρ

(
M ′, N ′) = χN1(p)χN2

(
p2)χρ(M, N).

So the contribution from these terms is χN1 (p)χN2 (p2)p−3E2.

Case II. r = 1. Here we take

(
M ′G N ′ t G−1) = D−1

�

(
M

(
1

p

)
N

(
p

1

)
+ MY

)
,

where � = rankp
(
M

( 1
p

)
N

( p
1

))
, G ∈ G1, Y = ( y

0

)
, and the equivalence class representative (M N)

is adjusted so that (M ′ N ′) is integral.
Suppose � = 2. Then (M ′, N ′) = 1, rankp M ′ = 1, and χ(p)χρ(M ′, N ′) = χN0 (p2)χN1 (p)χρ(M, N).

Reversing,

(M N) =
(

M ′G
(

1
1
p

) (
N ′ t G−1 − M ′GY

)( 1
p

1

))
.

We can assume p divides row 2 of M ′; to have M integral, we need to choose the unique G so that
q|m2 where M ′G = ( m1 m2

pm pm

)
. Then p � m1, and by symmetry, p � n4 where N ′ t G−1 = ( n1 n2

n n

)
. To have
3 4 3 4
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N integral, we need to choose the unique y modulo p so that n1 ≡ m1 y (p). So M, N are integral and
coprime, and the contribution from these terms is χN0 (p2)χN1 (p)p2k−3E1.

Say � = 1. Then we must have M = ( m1 m2
pm3 m4

)
, N = ( n1 n2

n3 pn4

)
with p � (m1 n2); since (M, N) = 1, we

must also have p � (m4 n3). Thus (M ′, N ′) = 1 with rankp M ′ = 0,1, or 2, and

χ(p)χρ

(
M ′, N ′) = χN0N2(p)χρ(M, N).

Reversing,

(M N) =
(

1
p

)
E

(
M ′G

(
1

1
p

) (
N ′ t G−1 − M ′GY

)( 1
p

1

))
,

E ∈ G1.
Still assuming � = 1, suppose rankp M ′ = 0. Then to have N integral, for each E we must choose

the unique G so that q|n1 where E N ′ t G−1 = ( n1 n2
n3 n4

)
. Thus p � n2n3, and hence rankp N = 2 for all

choices of y. So the contribution from these terms is χN0N2 (p)pk−3 · p(p + 1)E0.
Continuing with the assumption � = 1, suppose rankp M ′ = 1; we can assume p divides row 2

of M ′ . To have M , N integral, we need p|m2, n1 ≡ m1 y (p) where E M ′G = ( m1 m2
m3 m4

)
, E N ′ t G−1 =( n1 n2

n3 n4

)
. Say p divides row 2 of E M ′ (this is the case for q choices of E); then we need to choose

the unique G so that p|m2. Then p � m1, and by symmetry, p|n3. But then p divides row 2 of both
M and N , so (M, N) �= 1. So take the unique E so that p does not divide row 2 of E M ′; thus, by our
choice of representatives in G1, we have p dividing row 1 of E M ′ . To have N integral, we need to
choose the unique G so that p|n1. Then p � n2, and by symmetry, p|m4. Since rankp M ′ = 1, p � m3.
To have (M, N) = 1, we need to choose y so that n3 �≡ m3 y (p); so we have p − 1 choices for y. The
contributions from these terms is χN0N2 (p)pk−3(p − 1)E1.

Now assume � = 1, rankp M ′ = 2. Then for each E , choose the unique G so that p|m2 where
E M ′G = ( m1 m2

m3 m4

)
; then M is integral. Also, p � m1m3 so rankp M = 2. Choose the unique y so that n1 ≡

m1 y (p); so M, N are integral and coprime. The contributions from these terms is χN0N2 (p)pk−3(p +
1)E2.

Now assume � = 0; since (M, N) = 1, we must have M = ( pm1 m2
pm3 m4

)
, N = ( n1 pn2

n3 pn4

)
with p � m2n3 −

n1m4. Thus (M ′, N ′) = 1, with rankp M ′ � 1, and

χ(p)χρ

(
M ′, N ′) = χN1(p)χN2

(
p2)χρ(M, N).

Reversing,

(M N) = p

(
M ′G

(
1

1
p

) (
N ′ t G−1 − M ′GY

)( 1
p

1

))
.

Say rankp M ′ = 1; we can assume p divides row 2 of M ′ . So to have (M, N) = 1 we need to choose
G so that p � m2 where

M ′G =
(

m1 m2
pm3 pm4

)
;

this gives us p choices for G . Write

N ′ t G−1 =
(

n1 n2
n n

)
;

3 4
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by symmetry, if p|n3 then we must have p|n4, and consequently (M ′, N ′) �= 1. So p � n3, and (M, N) =
1 for all choices of y. The contribution from these terms is χN1 (p)χN2 (p2)p−1E1.

Now say rankp M ′ = 2; write

M ′G =
(

m1 m2
m3 m4

)
, N ′ t G−1 =

(
n1 n2
n3 n4

)
.

Then (M, N) = 1 unless
( n1

n3

) − ( m1
m3

) ∈ spanp
( m2

m4

)
. This gives us p − 1 choices for y, and the contri-

bution is χN1 (p)χN2 (p2)p−3(p2 − 1)E2.

Case III. r = 2. So (M ′ N ′) = D−1
� (M pN + MY ) where Y ∈ Z2,2

sym varies modulo p, and � = rankp M
and we assume p divides the lower 2 − � rows of M .

Suppose � = 2. So (M N) = (M ′ (N ′ − M ′Y )/p); there is a unique Y so that N ′ ≡ M ′Y (p). The
contribution is χN0 (p2)χN1 (p)p2k−3E2.

Now suppose � = 1; so rankp M ′ � 1, and χρ(M ′, N ′) = χN0N2 (p)χρ(M, N). Reversing,

(M N) =
(

1
p

)
E
(
M ′ (

N ′ − M ′Y
)
/p

)
where E varies over G1. Say rankp M ′ = 2; write

E M ′ =
(

m1 m2
m3 m4

)
, E N ′ =

(
n1 n2
n3 n4

)
.

To have N integral, we need (n1 n2) ≡ (m1 m2)Y (p), and to have (M, N) = 1, we need (n3 n4) �≡
(m3 m4)Y (p). Thus we have p − 1 choices for Y , and the contribution from these terms is
χN0N2 (p)pk−3(p2 − 1)E2.

Say � = 1 and rankp M ′ = 1; assume p divides row 2 of M ′ (so p does not divide row 2 of N ′). To
have N integral, we need p not dividing row 1 of E M ′ and (n1 n2) ≡ (m1 m2)Y (p); this gives us p
choices for E and p choices for Y . Then p does not divide row 1 of M or row 2 of N , so (M, N) = 1.
The contribution from these terms is χN0N2 (p)pk−3 · p2E1.

Say � = 0. So rankp M ′ = 0,1, or 2, and

χρ

(
M ′, N ′) = χN1(p)χN2

(
p2)χρ(M, N).

Reversing, we have

(M N) = p
(
M ′ (

N ′ − M ′Y
)
/p

)
.

Say rankp M ′ = 2. We need to choose Y so that rankp(M ′N ′ − Y ) = 2; as Y varies over Z2,2
sym

modulo p, so does M ′N ′ − Y , and p2(p − 1) of these matrices have p-rank 2. Thus the contribution
from these terms is χN1 (p)χN2 (p2)p−1(p − 1)E2.

Now say � = 0 and rankp M ′ = 1; we can assume p divides row 2 of M ′ . To have (M, N) = 1,
we need (n1 n2) − (m1 m2)Y /∈ spanp(n3 n4). For each α modulo p, we have p choices of Y so that
(n1 n2) − (m1 m2)Y ≡ α(n3 n4) (p). Thus we have p2(p − 1) choices for Y so that (M, N) = 1. The
contribution from these terms is χN1 (p)χN2 (p2)p−1(p − 1)E1.

Finally, say � = 0 and rankp M ′ = 0. Thus rankp N ′ = 2 = rankp N for all choices of Y . So the con-
tribution from these terms is χN1 (p)χN2 (p2)E0.

Combining all the terms yields the result. �
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Proposition 3.4. For p a prime not dividing N ,

Eρ |T1
(

p2) = (p + 1)
(
χN0

(
p2)p2k−3 + χ(p)pk−3(p − 1) + χN2

(
p2))Eρ.

Proof. Let G1 = G1(p), and let E0, E1, E2 be defined as in the proof of Proposition 3.3. Decompose
E1,E2 as E1 = E1,1 +E1,2, E0 = E0,0 +E0,1 +E0,2 where Ei, j is supported on pairs (M N) of p2-type
i, j. Further, we split E0,2 as E0,2,+ +E0,2,− where, for p odd, E0,2,ν is supported on pairs (M N) so
that

ν

(
det(MN/p)

p

)
= 1,

and for p = 2, E0,2,+ is supported on pairs (M N) where 1
2 M t N � I (2) and E0,2,− on pairs (M N)

where 1
2 M t N ≡ ( 0 1

1 0

)
(2). When p is odd, set ε = (−1

p ).

Using Proposition 2.1 of [4], the action of T1(p2) is given by matrices parameterised by r0, r1, r2 ∈
Z�0 where r0 + r1 + r2 = 1.

Case I. r0 = 1. Here the summands are

pk−3χρ(M, N)det

(
M

( 1
p

1

)
G−1τ + N

(
p

1

)
t G + M

( 1
p

1

)
Y t G

)−k

where (M N) varies over pairs of N -type ρ , G varies over G1, and Y = ( y1 y2
y2 0

)
with y1 varying

modulo p2 and y2 varying modulo p.

Case Ia. Say M
( 1

p

1

)
is not integral. Then we can adjust the equivalence class representative for

(M ′ N ′) so that

(
M ′G N ′ t G−1) =

(
p

1

)(
M

( 1
p

1

)
N

(
p

1

)
+ M

( 1
p

1

)
Y

)

is coprime with rankp M ′ = 1 or 2. So χρ(M ′, N ′) = χN0 (p2)χρ(M, N). Using the techniques
used in the proof of Proposition 3.2, we find that in the case rankp M ′ = 2 the contribution is
χN0 (p2)pk−3 pk(p + 1)E2, and in the case rankp M ′ = 1 the contribution is χN0 (p2)pk−3 pk+1E1.

Case Ib. Suppose M
( 1

p

1

)
is integral and that (M ′, N ′) = 1 where

(
M ′G N ′ t G−1) =

(
M

( 1
p

1

)
N

(
p

1

)
+ M

( 1
p

1

)
Y

)
.

Note that rankp M ′ � 1, else rankp N ′ � 1 and hence (M ′, N ′) �= 1. Also, note that χρ(M ′, N ′) =
χ(p)χρ(M, N).

Reversing, when rankp M ′ = 2, we find that for each G , there are p − 1 choices for Y so that
(M N) is an integral, coprime pair; the contribution from these terms is χ(p)pk−3(p2 − 1)E2. When
rankp M ′ = 1, we can assume p divides row 2 of M ′; to have N integral we need to choose the unique
G ∈ G1 so that p divides the 2,1-entry of N ′ t G−1, and then we have p(p − 1) choices for Y so that
(M, N) = 1. So the contribution from these terms is χ(p)pk−3 · p(p − 1)E1.
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Case Ic. Suppose M
( 1

p

1

)
is integral and that

rankp

(
M

( 1
p

1

)
N

(
p

1

))
< 2;

adjusting the equivalence class representative, we have (M ′, N ′) = 1 where

(
M ′G N ′ t G−1) =

(
1

1
p

)(
M

( 1
p

1

)
N

(
p

1

)
+ M

( 1
p

1

)
Y

)
.

Also, χρ(M ′, N ′) = χN2 (p2)χρ(M, N).
Reversing, take a coprime pair (M ′ N ′). Then arguing as above, we find that when rankp M ′ = 2,

the contribution is χN2 (p2)p−2(p2 − 1)(p + 1)E2. When rankp M ′ = 1, the contribution is
χN2 (p2)p−1(p2 + p − 1)E1. When rankp M ′ = 0, the contribution is χN2 (p2)pk−3 · p3−k(p + 1)E0.

Case II. r1 = 1. Here the summands are

pk−3χ(p)χρ(M, N)det

(
MG−1τ + N t G + M

( y
p

0

)
t G

)−k

where (M N) varies over pairs of N -type ρ , y varies modulo p with p � y, G varies over tG1.

Case IIa. Say M
( 1

p

1

)
is not integral. Adjust the representative (M N)

(
M ′G N ′ t G−1) =

(
p

1

)(
M N + M

( y
p

0

))
is integral. Then (M ′, N ′) = 1 with (M ′ N ′) of p2-type 1,2 or 0,1 or 0,2. Also, χ(p)χρ(M ′, N ′) =
χN0 (p2)χρ(M, N).

Reversing, when (M ′ N ′) is p2-type 1,2, we can assume p divides row 2 of M ′; we find there are
unique choices for G, Y so that N is integral, and then we get (M, N) = 1. Thus the contribution from
these terms is χN0 (p2)pk−3 · pkE1,2.

Next suppose M ′ is p2-type 0,1; we can assume p2 divides row 2 of M ′ . For 1 choice of E we have
p2|(m1 m2); but then we cannot have N integral and coprime to M . For the other p choices of E we
have p2|(m3 m4). Choose the unique G so that p|n2; so p � n1n4 and p2 � m1, else by symmetry p2|m2,
contradicting that M ′ is p2-type (0,1). Then choose the unique y �≡ 0 (p) so that n1 ≡ m1

y
p (p); we

get p not dividing row 1 of M or row 2 of N , so (M, N) = 1. The contribution from these terms is
χN0 (p2)pk−3 · pk · pE0,1.

Now suppose (M ′ N ′) is p2-type 0,2. For each choice of E ∈ G1, we choose the unique G ∈ t G−1

so that E N ′G = ( n1 pn2
n3 n4

)
(thus p � n1n4). To have N integral, we need to choose y �≡ 0 (p) so that

n1 ≡ m1
y
p (p); this is possible if and only if p2 � m1. Let V = Fx1 ⊕Fx2 be equipped with the quadratic

form 1
p M ′ t N ′ relative to the basis (x1 x2). Then with (x′

1 x′
2) = (x1 x2)

t E , Fx′
1 varies over all lines in V ,

and 1
p E M ′ t N ′ t E represents the quadratic form relative to (x′

1 x′
2). When p is odd and V � H, there

are 2 choices of E so that Fx′
1 is isotropic; equivalently, when V � H there are 2 choices of E so that

p2|m1 (since the value of the quadratic form on x′
1 is m1n1/p ∈ F). When p is odd and V �� H, we

have p2 � m1 for all p + 1 choices of E . So the contribution when p is odd is

χN0

(
p2)pk−3 · pk(p − 1)E0,2,ε + χN0

(
p2)pk−3 · pk(p + 1)E0,2,−ε .
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When p = 2 and V � ( 0 1
1 0

)
we have Fx′

1 isotropic for all E; when V � I we have Fx′
1 isotropic for 1

choice of E . So the contribution when p = 2 is 2χN0 (p2)p2k−3E0,2,+ .

Case IIb. Suppose M
( 1

p

1

)
is integral, and

(
M ′G N ′ t G−1) =

(
M N + M

( y
p

0

))
is a coprime symmetric pair with rankp M ′ � 1. Note that χ(p)χρ(M ′, N ′) = χ(p)χρ(M, N).

Reversing, first suppose that rankp M ′ = 1, and assume p divides row 2 of M ′ . To have N integral,
choose the unique G so that p|m1 (so p � m2). To have (M, N) = 1, we need p not dividing row 2
of N . If M ′ is p2-type (1,1), we can assume p2 divides row 2 of M ′ and then for any choice of
y �≡ 0 (p) we have p not dividing row 2 of N . If M ′ is p2-type (1,2) then p2 � m3 so there are p − 2
choices for y �≡ 0 (p) so that p does not divide row 2 of N . Thus the contribution from these terms
is χ(p)pk−3(p − 1)E1,1 + χ(p)pk−3(p − 2)E1,2.

Now suppose M ′ is p2-type (0,0); then N is invertible modulo p for all choices of G and y. Hence
the contribution is χ(p)pk−3(p2 − 1)E0,0.

Suppose M ′ is p2-type (0,1); then we can assume p2 divides row 2 of M ′ . For 1 choice of G we
have p2|m1 and then for any y we have rankp N = 2. Say we take any of the other p choices for G
so that p � m1. By symmetry, p � n4. So there are p − 2 choices of y �≡ 0 (p) so that rankp N = 2. Thus
the contribution from these terms is χ(p)pk−3(p2 − p − 1)E0,1.

Suppose M ′ is p2-type (0,2). Let V = Fx1 ⊕ Fx2 be equipped with the quadratic form 1
p N ′M ′

relative to (x1 x2). Then with (x′
1 x′

2) = (x1 x2)G , Fx′
1 varies over all lines in V as G varies over tG1,

and the value of the quadratic form on x′
1 is det N ′(m1n4 −m3n2)/p. We have rank2 N = 2 if and only

if det N ′ �≡ y(m1n4 − m3n2)/p (p). When p is odd and V � H, there are 2 choices of G so that x′
1 is

isotropic, and then rankp N = 2 for all y �≡ 0 (p); for a choice of G so that x′
1 is anisotropic, there are

p − 2 choices of y �≡ 0 (p) so that rankp N = 2. Hence the contribution from these terms when p is
odd is χ(p)pk−3 · p(p − 1)E0,2,ε + χ(p)pk−3 · (p + 1)(p − 2)E0,2,−ε . When p = 2, we have y ≡ 1 (p);
when V � ( 0 1

1 0

)
, Fx′

1 is isotropic for all 3 G , and when V � I there is 1 choice of G so that Fx′
1 is

isotropic. So the contribution when p = 2 is χ(p)pk−3E0,2,+ + 3χ(p)pk−3E0,2,− .

Case IIc. Suppose M
( 1

p

1

)
is integral and

rankp

(
M N + M

( y
p

0

))
= 1;

we can adjust the representative so that

(
M ′G N ′ t G−1) =

(
1

1
p

)(
M N + M

( y
p

0

))
is an integral pair. Then (M ′, N ′) = 1 with rankp M ′ � 1, and

χ(p)χρ

(
M ′, N ′) = χN2

(
p2)χρ(M, N).

Reversing, we need to count the equivalence classes SL2(Z)(M N) so that
( 1

1
p

)(
M N + M

(
y
p 0

)) ∈
SL2(Z)(M ′ N ′). Thus we need to count the integral, coprime pairs
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(M N) =
(

1
p

)
E

(
M ′G N ′ t G−1 − M ′G

( y
p

0

))
,

where E ∈ G1. Write E M ′G = ( m1 m2
m3 m4

)
, E N ′ t G−1 = ( n1 n2

n3 n4

)
.

Say rankp M ′ = 2. To have N integral, choose the unique G so that p|m1 (and hence p � m2m3).
Then for any choice of y, (M, N) = 1. So the contribution from these terms is χN2 (p2)pk−3 ·
p−k(p2 − 1)E2.

Now say rankp M ′ = 1; we can assume p divides row 2 of M ′ . For p choices of E , we have p
dividing row 2 of E M ′ , and then p divides row 2 of (M N) (meaning (M, N) �= 1). So take the unique
E so that p divides row 1 of E M ′ (and hence p does not divide row 1 of E N ′). So to have (M, N) = 1,
we need to choose G so that p � m3; this gives us p choices for G . Then for every y �≡ 0 (p), we have
(M, N) = 1. So the contribution from these terms is χN2 (p2)pk−3 · p−k · p(p − 1)E1.

Case III. r2 = 1. Here the summands are

χ
(

p2)χρ(M, N)pk−3 det

(
M

(
p

1

)
G−1τ + N

( 1
p

1

)
t G

)−k

,

where (M N) varies over pairs of N -type ρ , and G varies over tG1.

Case IIIa. Suppose N
( 1

p

1

)
is not integral. We can adjust the representative so that N = ( n1 n2

pn3 n4

)
(so

p � n1). Write M = ( m1 m2
m3 m4

)
. Then p � (m4 n4), else by symmetry, p|m3 and (M, N) �= 1. Thus with

(
M ′G N ′ t G−1) =

(
p

1

)(
M

(
p

1

)
N

( 1
p

1

))
,

we have (M ′, N ′) = 1 and rankp M ′ � 1. When rankp M ′ = 1, we must have M ′ of p2-type 1,1 with p
dividing row 1 of M ′ , and

χ
(

p2)χρ

(
M ′, N ′) = χN0

(
p2)χρ(M, N).

Reversing,

(M N) =
( 1

p
1

)
E

(
M ′G

( 1
p

1

)
N ′ t G−1

(
p

1

))
.

We know
( 1

p

1

)
E
( p

1

) ∈ SL2(Z) if and only if E ≡ ( ∗ 0
∗ ∗

)
(p). Write E M ′G = ( m1 m2

m3 m4

)
, E N ′ t G−1 =( n1 n2

n3 n4

)
.

First suppose M ′ is p2-type 1,1 with p dividing row 1 of M ′ . We know p divides row 1 of E M ′ if
and only if E ≡ ( ∗ 0

∗ ∗
)

(p); thus we only need to consider E = I , and we can assume p2 divides row 1

of M ′ . To ensure N is integral, we need to choose the unique G ∈ tG1 so that p|n2; then by symmetry,
p|n3, and since rankp M ′ = 1, p � m4. Then M , N are integral and coprime. So the contribution from
these terms is χN0 (p2)pk−3 · pkE1,1.

Now suppose M ′ is p2-type 0,0. Then for each E ∈ G1, there is a unique G ∈ tG1 so that p|n2
(and hence p � n1n4). Thus rankp N = 1 so (M, N) = 1, and the contribution from these terms is
χN0 (p2)pk−3 · pk(p + 1)E0,0.

Suppose M ′ is p2-type 0,1; we can assume p2 divides row 2 of E M ′ . Suppose p2 divides row 2 of
E M ′; to have M integral, we choose the unique G so that p2|m1. Then p2 � m2, and by symmetry, p|n4.
Hence p � n2n3, and N is not integral. So choose E so that p2 does not divide row 2 of E M ′; we have



L.H. Walling / Journal of Number Theory 132 (2012) 2700–2723 2713
1 choice for E , and then p2 divides row 1 of E M ′ . Choose the unique G so that p|n2; then p � n1n4,
and N is integral with rankp N = 2. So the contribution from these terms is χN0 (p2)pk−3 · pkE0,1.

Suppose M ′ is p2-type 0,2. For each E ∈ G1, choose the unique G ∈ tG1 so that q|n2. To have M
integral, we need p2|m1. Let V = Fx1 ⊕ Fx2 be equipped with the quadratic form given by 1

p M ′ t N ′

relative to (x1 x2). Then with (x′
1 x′

2) = (x1 x2)
t E , the quadratic form on V is given by 1

p E M ′ t N ′ t E

relative to (x′
1 x′

2). As E varies over G1, Fx′
1 varies over all lines in V . Suppose p is odd; then

to have p2|m1, we need V � H, and then p|m1 for 2 choices of E . Hence the contribution from
these terms when p is odd is 2χN0 (p2)pk−3 · pkE0,2,ε . In the case that p = 2, the contribution is
χN0 (p2)p2k−3E0,2,+ + 3χN0 (p2)p2k−3E0,2,− .

Case IIIb. Suppose N
( 1

p

1

)
is integral, and rankp(M ′ N ′) = 2 where

(
M ′G N ′ t G−1) =

(
M

(
p

1

)
N

( 1
p

1

))
.

So rankp M � 1, rankp M ′ � 1, and M ′ cannot be p2-type 0,0. Also, when M ′ is p-type 1, we can
assume p divides row 2 of M

( p
1

)
; then using symmetry, we see p divides row 2 of N , so we must

have M ′ of p2-type 1,2. Note that χ(p2)χρ(M ′, N ′) = χ(p)χρ(M, N).

Reversing, (M N) = (
M ′G

( 1
p

1

)
N ′ t G−1

( p
1

))
. Write

M ′G =
(

m1 m2
m3 m4

)
, N ′ t G−1 =

(
n1 n2
n3 n4

)
.

Suppose M ′ is p2-type 1,2; assume p divides row 2 of M ′ . Choose the unique G so that p|m1;
thus p � m2, p2 � m3. So (M, N) = 1 and the contribution from these terms is χ(p)pk−3E1,2.

Suppose M ′ is p2-type 0,1; assume p2 divides row 2 of M ′ . We have (M, N) = 1 if and only if
p2 � m1n4; by symmetry, p2|m1 if and only if p|n4. So choose G so that p|m1; we have p choices
for G , and hence the contribution from these terms is χ(p)pk−3 · pE0,1.

Now suppose that (M ′ N ′) is p2-type 0,2. Let V = Fx1 ⊕ Fx2 be equipped with the quadratic
form given by 1

p N ′M ′ relative to (x1 x2). So relative to (x′
1 x′

2) = (x1 x2)G , the quadratic form is given

by 1
p

t GN ′M ′G ≡ d
( n4m1/p ∗

∗ ∗
)

(p) where d = det N ′ (recall that p2|m3). We know Fx′
1 varies over all

lines in V as G varies over tG1. When p is odd, p2 � m1n4 for p − 1 choices of G if V � H, and
p2 � m1n4 for p + 1 choices of G otherwise. So the contribution from these terms when p is odd is
χ(p)pk−3(p − 1)E0,2,ε + χ(p)pk−3(p + 1)E0,2,−ε . When p = 2 the contribution is 2χ(p)pk−3E0,2,+ .

Case IIIc. Suppose N
( 1

p

1

)
is integral with

rankp

(
M

(
p

1

)
N

( 1
p

1

))
= 1.

Adjust the equivalence class representative of (M N) so that p divides row 2 of
(
M

( p
1

)
N

( 1
p

1

)) = 1.

Set

(
M ′G N ′ t G−1) =

(
1

1
p

)(
M

(
p

1

)
N

( 1
p

1

))
= 1.

Since M ′ , N ′ are integral and (M, N) = 1, we have (M ′, N ′) = 1. Also, rankp M ′ � 1 and
χ(p2)χρ(M ′, N ′) = χN2 (p2)χρ(M, N).
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Reversing, take (M ′ N ′) of p-type 1 or 2, and set

(M N) =
(

1
p

)
E

(
M ′G

( 1
p

1

)
N ′ t G−1

(
p

1

))

where E ∈ G1. Write E M ′G = ( m1 m2
m3 m4

)
, E N ′ t G−1 = ( n1 n2

n3 n4

)
.

First suppose rankp M ′ = 2. For each E , choose the unique G so that p|m1. Thus p � m2m3, so
(M, N) = 1. The contribution from these terms is χN2 (p2)pk−3 · p−k · (p + 1)E2.

Finally, suppose rankp M ′ = 1; assume p divides row 2 of M ′ . Suppose p divides row 2 of E M ′;
choosing G so that p|m1, by symmetry p|n4 and hence (M, N) �= 1. So choose the unique E so that
p does not divide row 2 of E M ′; then p divides row 1 of E M ′ . To have (M, N) = 1, choose G so that
p � m3; we have p choices for G , and the contribution from these terms is χN2 (p2)pk−3 · p1−kE1.

Combining all the contributions yields the result. �
Now we determine the action on Eisenstein series of T (q), T1(q2) where q is a prime dividing N .

We let F denote Z/qZ; when q is odd, we let ε = (−1
q ), and we fix ω so that (ω

q ) = −1. Let G1 =
G1(q); note that we can choose the elements of G1 to be congruent modulo N /q to I .

Proposition 3.5. Suppose q is a prime dividing N2; then

Eρ |T (q) = χN0

(
q2)χN1(q)q2k−3Eρ.

Proof. From Proposition 3.1 of [4], we know that

2Eρ(τ )|T (q) = q2k−3
∑

χ(N0,N1,N2/q)(M, N)χq(det M)det(Mτ + qN + MY )−k

where (M N) varies over a set of SL2(Z)-equivalence class representatives for pairs of N -
type ρ , and Y varies over all symmetric matrices modulo q; recall that we can choose Y ≡
0 (N /q). Take (M N) of N -type ρ; set (M ′ N ′) = (M qN + MY ). Thus (M ′ N ′) is N -type ρ;
also, χ(N0,N1,N2/q)(M ′, N ′) = χ(N0,N1,N2/q)(M, N). Reversing, take (M ′ N ′) of N -type ρ; set
(M N) = (M ′ 1

q (N ′ − M ′Y )). So we need to choose Y ≡ M ′N ′ (q) to have N integral. Thus

χ(N0,N1,N2/q)(M ′, N ′) = χN0 (q
2)χN1 (q)χ(N0,N1,N2/q)(M, N). �

Proposition 3.6. For q a prime dividing N1 , let ρ ′ = (N0,N1/q,qN2); then

Eρ |T (q) =
{

χN0N2(q)(qk−1Eρ + qk−3(q2 − 1)Eρ ′) if χq = 1,

χN0N2(q)qk−1Eρ if χq �= 1.

Proof. Recall that we must have χ2
q = 1 since q|N1. Take (M N) of N -type ρ so that q divides row 2

of M . Set

(
M ′ N ′) =

(
1

1
q

)
(M qN + MY );

since q does not divide row 1 of M or row 2 of N , (M ′, N ′) = 1. Also, rankq M ′ � 1, and
χ(N0,N1/q,N2)(M ′, N ′) = χN0N2 (q)χ(N0,N1/q,N2)(M, N).
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Reversing, take (M ′ N ′) of q-type 1 or 2, N /q-type (N0,N1/q,N2); set

(M N) =
(

1
q

)
E
(
M ′ (

N ′ − M ′Y
)
/q

)
,

E ∈ G1. Write E M ′ = ( m1 m2
m3 m4

)
, E N ′ = ( n1 n2

n3 n4

)
.

First suppose rankq M ′ = 2. To have N integral, we need to choose Y so that (n1 n2) ≡
(m1 m2)Y (q); then to have (M, N) = 1, we need (n3 n4) �≡ (m3 m4)Y (q). If q � m1 then y4 can
be chosen freely; if q|m1 then y1 can be chosen freely. This gives us q − 1 choices for Y . Summing
over these Y , we have

∑
Y

χ(1,q,1)(M, N) =
{

q − 1 if χq = 1,
0 if χq �= 1.

So the contribution from these terms is{
q2k−3 · q−k

(
q2 − 1

)
Eρ ′ if χq = 1,

0 if χq �= 1.

Now suppose rankq M ′ = 1; assume q divides row 2 of M ′ . To have rankq M = 1, we cannot have q
dividing row 1 of E M ′; this leaves us q choices for E , and with these choices we have q dividing row
2 of E M ′ . Then choose Y so that (n1 n2) ≡ (m1 m2)Y (q); we have q choices for Y . Then row 2 of N
is congruent modulo q to (n3 n4), so (M, N) = 1 and∑

Y

χ(1,q,1)(M, N) = (q − 1)χ(1,q,1)

(
M ′, N ′).

So the contribution from these terms is χN0N2 (q)qk−1Eρ . �
Proposition 3.7. For q a prime dividing N0 , set

ρ ′ = (N0/q,qN1,N2), ρ ′′ = (N0/q,N1,qN2).

Then

Eρ |T (q) =

⎧⎪⎨⎪⎩
χN1(q)χN2(q

2)(Eρ + q−1(q − 1)Eρ ′ + q−1(q − 1)Eρ ′′) if χq = 1,

χN1(q)χN2(q
2)(Eρ + εq−2(q − 1)Eρ ′′) if χ2

q = 1, χq �= 1,

χN1(q)χN2(q
2)Eρ if χ2

q �= 1.

Proof. Take (M N) of N -type ρ , and set

(
M ′ N ′) = 1

q
(M qN + MY ).

Since rankq N = 2, we have rankq(M ′ N ′) = rankq(M ′ N) = 2; hence (M ′, N ′) = 1. Also,

χ(N0/q,N1,N2)

(
M ′, N ′) = χN1(q)χN2

(
q2)χ(N0/q,N1,N2)(M, N).

Reversing, take (M ′ N ′) of N /q-type (N0/q,N1,N2). Set

(M N) = (
qM ′ N ′ − M ′Y

)
.
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Write M ′ = ( m1 m2
m3 m4

)
, N ′ = ( n1 n2

n3 n4

)
. We need to choose Y so that rankq N = 2. Then we sum∑

Y χq(det N); since χq(det N) = 0 when rankq N < 2, we can simply sum over all Y .
First suppose rankq M ′ = 2. Then M ′N ′ − Y varies over all symmetric matrices modulo q as Y does

(here M ′M ′ ≡ I (q)), and each invertible symmetric matrix is either in the GL2(F)-orbit of I or of
J = ( 1

ω

)
, where (ω

q ) = −1 and GL2(F) acts by conjugation. With q odd and G varying over GL2(F),
we have

∑
Y

χq(det N) = χq(det M ′)
o(I)

∑
G

χ2
q(det G) + χq(ω det M ′)

o( J )

∑
G

χ2
q(det G)

where o(T ) = #{C ∈ GL2(F): t C T C = T }; it is known that o(I) = 2(q − ε) and o( J ) = 2(q + ε) when
q is odd. Now, χ2

q ◦ det is a character on GL2(F), and it is the trivial character if and only if χ2
q = 1.

Hence

∑
Y

χq(det N) =
⎧⎨⎩

q2(q − 1) if χq = 1,
εq(q − 1)χq(det M ′) if χ2

q = 1, χq �= 1,

0 if χ2
q �= 1.

So the contribution from these terms when q is odd is

⎧⎪⎨⎪⎩
χN1(q)q−1(q − 1)Eρ ′′ if χq = 1,

εχN1(q)q−2(q − 1)Eρ ′′ if χ2
q = 1, χq �= 1,

0 if χ2
q �= 1.

When q = 2 we have
∑

Y χq(det N) = 4 so the contribution is χN1 (q)q−1(q − 1)Eρ ′′ .
Now say rankq M ′ = 1; we can assume q divides row 2 of M ′ . Choose E ∈ SL2(Z) so that M ′E ≡( m′

1 0
0 0

)
(q); by symmetry, N ′ t E−1 ≡ ( n′

1 n′
2

0 n′
4

)
(q). Clearly E−1Y t E−1 varies over all symmetric matrices

as Y does, so

∑
Y

χq(det N) = q2
∑
u (q)

χq
((

n′
1 − m′

1u
)
n′

4

)
=

{
q2(q − 1) if χq = 1,
0 otherwise.

Thus the contribution from these terms is{
q−1(q − 1)Eρ ′ if χq = 1,
0 otherwise.

Finally, suppose rankq M ′ = 0. Then
∑

Y χq(det N) = q3χq(det N ′), so the contribution is
χN1 (q)χN2 (q

2)Eρ. �
Proposition 3.8. For q a prime dividing N2 , we have

Eρ |T1
(
q2) = χN0

(
q2)(q + 1)q2k−3Eρ.
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Proof. From Proposition 2.1 of [4], we know 2Eρ(τ )|T1(q2) is the sum of terms

pk−3χρ(M, N)det

(
M

( 1
q

1

)
G−1τ + N

(
q

1

)
t G + M

( 1
q

1

)
Y t G

)−k

where (M N) varies over SL2(Z)-equivalence class representatives of pairs of N -type ρ , G ∈ G1,
Y = ( y1 y2

y2 0

)
with y1 varying modulo q2, y2 modulo q. Recall that we can choose G ≡ I (N /q) and

Y ≡ 0 (N /q).

We know M
( 1

q

1

)
is never integral. Adjust the equivalence class representative for (M N) so that

(
M ′G N ′ t G−1) =

(
1

q

)(
M

( 1
q

1

)
N

(
q

1

)
+ M

( 1
q

1

)
Y

)
is an integral pair. Since rankq M ′ = 2, we have (M ′, N ′) = 1. Also,

χ(N0,N1,N2/q)

(
M ′, N ′) = χN0N1

(
q2)χ(N1,N1,N2/q)(M, N),

and we know χ2
N1

= 1.
Reversing, choose (M ′ N ′) of N -type ρ , and set

(M N) =
(

1
1
q

)
E

(
M ′G

(
q

1

) (
N ′ t G−1 − M ′GY

)( 1
q

1

))
,

where E ∈ tG1. Write E M ′G = ( m1 m2
m3 m4

)
, E N ′ t G−1 = ( n1 n2

n3 n4

)
.

For each choice of E , we need to choose the unique G so that q|m4 to ensure M is integral.
Thus q � m2m3. Choose y2 so that n4 ≡ m3 y2 (q); then choose yq so that n3 ≡ m3 y1 + m4 y2 (q2). By
symmetry, m1n3 + m2n4 ≡ m3n1 (q). Thus

m3n1 ≡ m3m3 y1 + m2m3 y2 (q),

so n1 ≡ m1 y1 + m2 y2 (q), and hence N is integral. Also, det M = det M ′ , so χρ(M ′, N ′) =
χN0 (q

2)χρ(M, N). �
Proposition 3.9. For q a prime dividing N1 , set ρ ′ = (N0,N1/q,qN2). Then

Eρ |T1
(
q2)

=
{

(χN0(q
2)q2k−2 + χN2(q

2)q)Eρ + q−1(χN /q(q)qk−2 + χN2(q
2))(q2 − 1)Eρ ′ if χq = 1,

(χN0(q
2)q2k−2 + χN2(q

2)q)Eρ if χq �= 1.

Proof. Recall that we must have χ2
q = 1 since q|N1. Take (M N) of N -type ρ; assume q divides

row 2 of M ′ .
First suppose M

( 1
q

1

)
is not integral; thus by symmetry,

N =
(∗ ∗

∗ n4

)
where q � n4. Thus (M ′, N ′) = 1 where
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(
M ′G N ′ t G−1) =

(
q

1

)(
M

( 1
q

1

)
N

(
q

1

)
+ M

( 1
q

1

)
Y

)
.

We know q � M ′ and q|det M ′ , so rankq M ′ = 1. Also,

χ(N0,N1/q,N2)

(
M ′, N ′) = χN0

(
q2)χ(N0,N1/q,N2)(M, N).

Reversing, take (M ′ N ′) of N -type ρ; assume q divides row 2 of M ′ . Set

(M N) =
( 1

q
1

)
E

(
M ′G

(
q

1

) (
N ′ t G−1 − M ′GY

)( 1
q

1

))
where E ∈ G1. Write E M ′G = ( m1 m2

m3 m4

)
, E N ′ t G−1 = ( n1 n2

n3 n4

)
. For 1 choice of E , q divides row 1 of E M ′;

then to have N integral we need q|(n1 n2), which is impossible since (M ′, N ′) = 1. So choose E so that
q does not divide row 1 of E M ′ (q choices for E). Thus q divides row 2 of E M ′; to have M integral,
choose the unique G so that q|m2; so q � m1, and by symmetry, q|n3 (so q � n4). Choose the unique
y2 (q) so that n2 ≡ m1 y2 (q) and choose the unique y1 (q2) so that n1 ≡ m1 y1 + m2 y2 (q2). Thus
(M, N) = 1, and χρ(M ′, N ′) = χρ(M, N). So the contribution from these terms is χN0 (q

2)q2k−2Eρ .

Now suppose M
( 1

q

1

)
is integral with

rankq

(
M

( 1
q

1

)
N

(
q

1

))
= 2.

Thus M ≡ ( m1 m2
m3 m4

)
(q) where q|m1,m3,m4, q � m2. By symmetry, q divides row 2 of N

( q
1

)
. So

rankq
(
M

( 1
q

1

)
N

( q
1

))
� 1. In the case this rank is 2, we have q2 � m3, and rankq M ′ = 2 where

(
M ′G N ′ t G−1) =

(
M

( 1
q

1

)
N

(
q

1

)
+ M

( 1
q

1

)
Y

)
.

Also, χ(N0,N1/q,N2)(M ′, N ′) = χN /q(q)χ(N0,N1/q,N2)(M, N).
Reversing, first choose (M ′ N ′) of N -type (N0,N1/q,qN2). Set

(M N) =
(

M ′G
(

q
1

) (
N ′ t G−1 − M ′GY

)( 1
q

1

))
.

Write M ′G = ( m1 m2
m3 m4

)
, N ′ t G−1 = ( n1 n2

n3 n4

)
. Suppose rankq M ′ = 2. Then for each G , adjust the equiva-

lence class representative so that q|m4 (so q � m2m3). Take u, y2 so that

M ′
(

n1
n3

)
≡

(
u
y2

)
(q);

set y1 = u + qu′ where u′ varies modulo q. Then summing over corresponding Y , with n′
3 = (n3 −

m3u − m4 y2)/q, we have ∑
Y

χ(1,q,1)(M, N) =
∑

u′
χq(−m2)χq

(
n′

3 − m3u′)
=

{
(q − 1) if χq = 1,
0 otherwise.

Thus the contribution from these terms is χN /q(q)qk−3(q2 − 1)Eρ ′ if χq = 1, and 0 otherwise.
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Suppose M
( 1

q

1

)
is integral, rankq

(
M

( 1
q

1

)
N

( q
1

)) = 1. Since q � m2n3, (M ′ N ′) is an integral

coprime pair where

(
M ′G N ′ t G−1) =

(
1

1
q

)(
M

( 1
q

1

)
N

(
q

1

)
+ M

( 1
q

1

)
Y

)
.

Note that rankq M ′ � 1. So

χ(N0,N1/q,N2)

(
M ′, N ′) = χN2

(
q2)χ(N0,N1/q,N2)(M, N).

Reversing, take (M ′ N ′) of N /q-type (N0,N1/q,N2), rankq M ′ � 1. Set

(M N) =
(

1
q

)
E

(
M ′G

(
q

1

) (
N ′ t G−1 − M ′GY

)( 1
q

1

))
,

E ∈ G1. Write E M ′G = ( m1 m2
m3 m4

)
, E N ′ t G−1 = ( n1 n2

n3 n4

)
.

To have rankq M = 1, we need to choose E, G so that q � m2, and to have N integral with
(M, N) = 1, we need to choose Y so that n1 ≡ m1 y1 + m2 y2 (q), n3 �≡ m3 y1 + m4 y2 (q).

First suppose rankq M ′ = 2. To have rankq M = 1, for each E we need to choose G so that q � m2
(for each E , this gives us q choices for G). If q � m3 then we choose y1 freely; if q|m3 then q � m1m4,
so we can choose y2 freely (subject to n3 �≡ m4 y2 (q)). In either case, we get

∑
Y

χ(1,q,1)(M, N) = χq(−m2)
∑

Y

χq(n3 − m3 y1 − m4 y2)

=
{

q(q − 1) if χq = 1,
0 otherwise.

So the contribution from these terms is χN2 (q
2)q−1(q2 − 1)Eρ ′ if χq = 1, 0 otherwise.

Finally, suppose rankq M ′ = 1; assume q divides row 2 of M ′ . We have q choices for E so that q
does not divide row 1 of E M ′ (and then q divides row 2 of E M ′); then we have q choices for G so
that q � m2. By symmetry, q � n3. Choose y1 freely, then choose y2 so that n1 ≡ m1 y1 + m2 y2 (q). So
the contribution from these terms is χN2 (q

2)qE1. �
Proposition 3.10. Let q be a prime dividing N0 . Set

ρ ′ = (N0/q,qN1,N2), ρ ′′ = (N0/q,N1,qN2).

Then

Eρ |T1
(
q2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χN2(q
2)(q + 1)Eρ

+ q−1(χN /q(q)qk−1 + χN2(q
2))(q − 1)Eρ ′

+ χN2(q
2)q−2(q2 − 1)Eρ ′′ if χq = 1,

χN2(q
2)(q + 1)Eρ + εχN2(q

2)q−2(q2 − 1)Eρ ′′ if χ2
q = 1, χq �= 1,

χN2(q
2)(q + 1)Eρ if χ2

q �= 1.

Proof. Take (M N) of N -type ρ . So rankq M = 0, rankq M
( 1

q
)
� 1.
1
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First suppose (M ′, N ′) = 1 where

(
M ′G N ′ t G−1) =

(
M

( 1
q

1

)
N

(
q

1

)
+ M

( 1
q

1

)
Y

)
.

Since rankq N
( q

1

) = 1, we must have rankq M ′ = 1. Also,

χ(N0/q,N1,N2)

(
M ′, N ′) = χN /q(q)χ(N0/q,N1,N2)(M, N).

Reversing, take (M ′ N ′) of N -type ρ ′; set

(M N) =
(

M ′G
(

q
1

) (
N ′ t G−1 − M ′GY

)( 1
q

1

))
.

Write M ′G = ( m1 m2
m3 m4

)
, N ′ t G−1 = ( n1 n2

n3 n4

)
; we can assume that q|(m3 m4). To have q|M , choose the

unique G so that q|m2; then q � m1, and by symmetry q|n3 (so q � n4). To have N integral, choose u
so that n1 ≡ m1u (q) and set y1 = u + qu′ . For each choice of u′ , y2, we have det N ≡ x − m1n4u′ (q)

where x does not depend on u′ . Hence, fixing y2,

∑
u′ (q)

χq
(
x − m1n4u′) =

{
(q − 1) if χq = 1,
0 otherwise.

So, letting y2 vary modulo q, we see the contribution from these terms is{
χN /q(q)qk−3 · q(q − 1)Eρ ′ if χq = 1,
0 otherwise.

Now say rankq
(
M

( 1
q

1

)
N

( q
1

)) = 1; adjust the equivalence class representative (M N) as neces-

sary so that

(
M ′G N ′ t G−1) =

(
1

1
q

)(
M

( 1
q

1

)
N

(
q

1

)
+ M

( 1
q

1

)
Y

)
is integral. Then (M ′, N ′) = 1 since rankq N ′ = 2. Also,

χ(N0/q,N1,N2)

(
M ′, N ′) = χN2

(
q2)χ(N0/q,N1,N2)(M, N).

Reversing, take (M ′ N ′) of N /q-type (N0/q,N1,N2), and set

(M N) =
(

1
q

)
E

(
M ′G

(
q

1

) (
N ′ t G−1 − M ′GY

)( 1
q

1

))
,

E ∈ G1. Write E M ′G = ( m1 m2
m3 m4

)
, E N ′ t G−1 = ( n1 n2

n3 n4

)
.

Say rankq M ′ = 2. To have q|M , for each E we need to choose the unique G so that q|m2; thus
q � m1m4. To have N integral, choose u so that n1 ≡ m1u (q); set y1 = u + qu′ , u′ varying modulo q.
By symmetry, m1n3 ≡ m3n1 +m4n2 (q), so n3 ≡ m1m3n1 +m1m4n2 (q); hence det N ≡ −m1m4(m1n2 −
y2)

2 (q). Thus summing over Y where y1 = u + qu′ ,
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∑
Y

χq(det N) = qχq(−m1m4)
∑

y2 (q)

χ2
q (m1n2 − y2)

=
{

q(q − 1)χq(−m1m4) if χ2
q = 1,

0 otherwise.

So the contribution from these terms is⎧⎨⎩
χN2

(
q2

)
q−2

(
q2 − 1

)
Eρ ′′ if χq = 1,

χN2

(
q2

)
qk−3 · q−k · q

(
q2 − 1

)
εEρ ′′ if χq �= 1, χ2

q = 1,

0 otherwise.

Now say rankq M ′ = 1; we can assume q divides row 2 of M ′ . For q choices of E we have q dividing
row 2 of E M ′ . Then to have q|M , choose the unique G so that q|m2; so q � m1 and by symmetry,
q|n3. But then q divides row 2 of (M N), so (M, N) �= 1. With the 1 other choice of E , we have q
dividing row 1 of E M ′ . Then to have N integral, choose the unique G so that q|n1. Then q � n2 (since
(M ′, N ′) = 1), so by symmetry, q|m4 (and hence q � m3). Thus

∑
Y

χq(det N) =
∑

Y

χq
(−n2(n3 − m3 y1)

)
=

{
q3 if χq = 1,
0 otherwise.

So the contribution from these terms is{
χN2

(
q2

)
qk−3 · q−k · q2(q − 1)Eρ ′ if χq = 1,

0 otherwise.

Finally, say rankq M ′ = 0. So to have N integral, for each E we need to choose the unique G so
that q|n1. Then q � n2n3, and for each choice of Y we have N integral with det N ≡ det N ′ (q). Hence
the contribution from these terms is χN2 (q

2)qk−3 · q−k · q3(q + 1)Eρ. �
With these results, we now construct a basis of simultaneous Hecke eigenforms.

Theorem 3.11. Take square-free N ∈ Z+ and a Dirichlet character χ modulo N so that χ(−1) = (−1)k.
There is a basis {

Ẽ(N0,N1,N2): N0N1N2 = N , χ2
N1

= 1
}

for the space E (2)

k (N ,χ) of degree 2 Siegel Eisenstein series of weight k, level N , character χ so that for any

prime p, Ẽ(N0,N1,N2)|T (p) = λ(p)Ẽ(N0,N1,N2) and Ẽ(N0,N1,N2)|T1(p2) = λ1(p2)Ẽ(N0,N1,N2) where

λ(p) = (
χN0(p)pk−1 + χN1N2(p)

)(
χN0N1(p)pk−2 + χN2(p)

)
and

λ1
(

p2) = (
p + χN1

(
p2))(χN0

(
p2)p2k−3 + χ(p)pk−3(p − 1) + χN2

(
p2)).
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Proof. Fix a partition ρ = (N0,N1,N2) of N . For q an odd prime dividing N , set ε = (−1
q ), and set

aρ(q) =
{

− χN1N2
(q)q−1(q−1)

χN0
(q)qk−1−χN1N2

(q)
if χq = 1,

0 otherwise;

bρ(q) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− χN2

(q2)q−1(q−1)(χN0
(q)qk−3−χN1N2

(q))

(χN0
(q)qk−1−χN1N2

(q))(χN0
(q2)q2k−3−χN2

(q2))
if χq = 1,

− εχN2
(q2)q−2(q−1)

χN0
(q2)q2k−3−χN2

(q2)
if χq �= 1, χ2

q = 1,

0 otherwise;

cρ(q) =
{

− χN2
(q)q−2(q2−1)

χN0N1
(q)qk−2−χN2

(q)
if χq = 1,

0 otherwise.

Extend these functions multiplicatively, and set

Ẽρ =
∑

Q 0 Q ′
0|N0

Q 1|N1

aρ(Q 0)bρ

(
Q ′

0

)
cρ(Q 1)E(N0/(Q 0 Q ′

0),Q 0N1/Q 1,Q ′
0 Q 1N2).

Since aρ(Q 0) = 0 unless χQ 0 = 1, bρ(Q ′
0) = 0 unless χ2

Q ′
0
= 1, and cρ(Q 1) = 0 unless χQ 1 = 1, Propo-

sitions 3.3, 3.4, 3.5, and 3.8 show that Ẽρ is an eigenform for all T (p), T1(p2) where p �N0N1, with
eigenvalues as claimed in the theorem. For a prime q|N1, write

Ẽρ =
∑

Q 0 Q ′
0|N0

Q 1|N1/q

aρ(Q 0)bρ

(
Q ′

0

)
cρ(Q 1)

· (E(N0/(Q 0 Q ′
0),Q 0N1/Q 1,Q ′

0 Q 1N2) + cρ(q)E(N0/(Q 0 Q ′
0),Q 0N1/(qQ 1),qQ ′

0 Q 1N2)

)
.

Propositions 3.5, 3.6, 3.8 and 3.9 show that Ẽρ is an eigenform for T (q) and T1(q2), with eigenvalues
as claimed. For q|N0, using Propositions 3.5 through 3.10 and a similar rearrangement of the sum
defining Ẽρ , we find Ẽρ is an eigenform for T (q) and T1(q2), with eigenvalues as claimed. �

Note that for q a prime dividing N with χ2
q = 1, Propositions 3.6, 3.7, 3.9 and 3.10 give us Hecke

relations among Eisenstein series. In particular, when condχ2 < N we can generate some of the
Eisenstein series from E(N ,1,1) . To see this, let q be a prime dividing N so that χ2

q = 1. If χq = 1, set

c(q) = q2

(q−1)(χN /q(q)qk−1)
,

S1(q) = c(q)
[
T1

(
q2) − q−1(q + 1)T (q) − q−1(q2 − 1

)]
and

S2(q) = c(q)
[(

χN /q(q)qk−1 + 1
)
T (q) − T1

(
q2) − q

(
χN /q(q)qk−2 − 1

)];
if χq �= 1, set

S2(q) = (−1
q )q2

(q − 1)

[
T (q) − 1

]
.

Extending these maps multiplicatively, we have the following.
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Theorem 3.12. Suppose N is square-free, N0N1N2 =N , χN1 = 1, and χ2
N2

= 1. Then

E(N0,N1,N2) = E(N ,1,1)|S1(N1)S2(N2).

In particular, when χ = 1, {
E(N ,1,1)|S1(N1)S2(N2): N1N2|N

}
is a basis for E (2)

k (N ,1).

Proof. When χq = 1, we use Propositions 3.7, 3.10 to solve for E(N0/q,qN1,N2) and for E(N0/q,N1,qN2)

in terms of E(N0,N1,N2) , presuming q|N0. When χq �= 1 we use Proposition 3.7 to get E(N0/q,N1,qN2)

in terms of E(N0,N1,N2) , again presuming q|N0. Now a simple induction argument yields the re-
sult. �
Remarks. (1) When f is a Siegel modular form with Fourier coefficients a(T ), we have a(t GT G) =
a(T ) for all G ∈ GL2(Z) if k is even, and for all G ∈ SL2(Z) if k is odd. Thus we can consider the Fourier
series of f to be supported on lattices Λ equipped with a positive, semi-definite quadratic form given
by T (relative to some basis), with Λ oriented if k is odd; for such Λ we set a(Λ) = a(T ). Then by
Theorem 6.1 of [4], with Q P square-free, the Λth coefficient of f |T1(Q 2)T (P ) is∑

Q Λ⊂Ω⊂Λ
[Λ:Ω]=Q

a
(
Ω P )

,

where Ω P denotes the lattice Ω whose quadratic form has been scaled by P . (Note that an orienta-
tion on Λ induces an orientation on Ω ⊂ Λ.)

(2) With E the degree 2 Eisenstein series of level 1, we have

E(τ ) =
∑

N0N1N2=N
E(N0,N1,N2).

Thus formulas for the Fourier coefficients of E together with our Hecke relations can be used to gen-
erate Fourier coefficients of all degree 2, square-free level N Eisenstein series with trivial character.
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