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Let f be a primitive Maass cusp form for a congruence sub-
group Γ0(D) ⊂ SL(2, Z) and λf (n) its n-th Fourier coeffi-
cient. In this paper it is shown that with knowledge of only 
finitely many λf (n) one can often solve for the level D, and 
in some cases, estimate the Laplace eigenvalue to arbitrarily 
high precision. This is done by analyzing the resonance and 
rapid decay of smoothly weighted sums of λf (n)e(αnβ) for 
X ≤ n ≤ 2X and any choice of α ∈ R, and β > 0. The 
methods include the Voronoi summation formula, asymptotic 
expansions of Bessel functions, weighted stationary phase, and 
computational software. These algorithms manifest the belief 
that the resonance and rapid decay nature uniquely charac-
terizes the underlying cusp form. They also demonstrate that 
the Fourier coefficients of a cusp form contain all arithmetic 
information of the form.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

The primary arithmetic information attached to a Maass cusp form is its Laplace 
eigenvalue. However, in the case of cuspidal Maass forms, the range that these eigenvalues 
can take is not well-understood. In particular it is unknown if, given a real number r, 
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one can prove that there exists a primitive Maass cusp form with Laplace eigenvalue 
1/4 + r2 (in [9] Hejhal gives a numerical approach which approximates a possible form). 
Conversely, given the Fourier coefficients of a primitive Maass cusp form f on Γ0(D), it 
is not clear whether or not one can determine its Laplace eigenvalue. In this paper we 
show that given only a finite number of Fourier coefficients one can often determine the 
level D, and then Laplace eigenvalue to arbitrarily high precision. Doing so requires f to 
have a spectral parameter r which is not too large with respect to the number of known 
Fourier coefficients of f . This is made precise in the corollaries.

The key to our results will be understanding of the resonance and rapid decay 
properties of Maass cusp forms. Let f be a primitive Maass cusp form with Fourier 
coefficients λf (n). The resonance sum for f (see [15] for background) is given by

∑
n≥1

λf (n)φ
( n

X

)
e(αnβ) (1)

where φ ∈ C∞
c ((1, 2)) is a Schwartz function and α ∈ R and β, X > 0 are real numbers, 

and e(x) := exp(2πix).
Sums of this form were first considered in Iwaniec–Luo–Sarnak [11] for f a normalized 

Hecke eigenform for the full modular group with α = 2√q for q ∈ Z>0 and β = 1/2. 
Later in [15] Ren and Ye investigated this sum in the case when f was a normalized 
Hecke eigenform for the full modular group, but with no restrictions on α and β. Sun 
and Wu did the same in [22] for f a Maass cusp form for the full modular group. Ren and 
Ye then gave resonance results for SL(3, Z) Maass cusp forms in [16] and [18]. Next, Ren 
and Ye in [17] and Ernvall-Hytönen–Jääsaari–Vesalainen in [6] considered resonance for 
SL(n, Z) Maass cusp forms for n ≥ 2. Finally, resonance sums were considered in special 
cases such as Rankin–Selberg products in [5], arithmetic functions relating to primes 
in [21], and used to derive bounds in terms of the spectral parameter r in [20].

In this paper we take f to be a primitive Maass cusp form for a congruence subgroup 
Γ0(D) ⊂ SL(2, Z). Thus our result extends the family of automorphic forms for which 
their resonance properties are known. Similar analysis and algorithms can be easily 
implemented for holomorphic cusp forms for Γ0(D).

In all the above cases estimations of (1) were driven by an interest in understanding of
the resonance and rapid decay of this sum. That is, for which choices of α and β does the 
sum have a large main term in X, and for which choices is it of rapid decay in X. However, 
in [19] Ren and Ye proposed that resonance could be used in an algorithm to detect 
the presence of automorphic forms. This view of resonance sums is radically different 
from that which came before. Traditionally resonance sums are estimated roughly to 
get a general picture of their behavior. Yet to use them in a computational algorithm 
one would need to have very precise estimates. The results in this paper grew out of an 
investigation into the feasibility of implementing the algorithm suggested by Ren and Ye.

The idea of using analytic properties to locate spectral parameters for which Maass 
cusp forms exist was first considered by Hejhal in [9] (also see [3]). Hejhal’s approach was 
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to use the well-understood asymptotics of the Bessel functions along with the automor-
phy properties of Maass forms to single out eigenvalues. In [3] Booker–Strömbergsson–
Venkatesh use Hejhal’s approach to compute the first ten eigenvalues on PSL(2, Z)\H to 
more than 1000 decimal places, and several hundred of the corresponding Fourier coeffi-
cients to more than 900 decimal places. Later in [2], Ce Bian showed that one could use 
a philosophically similar approach to compute GL(3) automorphic forms. In particular 
he considered a sum of Fourier coefficients twisted by Dirichlet characters, along with 
appropriate asymptotics, to solve for GL(3) spectral parameters. This was the first case 
where one could (partially) write down a Maass cusp form for GL(3) which did not come 
from the Gelbart–Jacquet lift of a GL(2) form (see [8]). Finally, Farmer–Lemurell [7]
used the approximate functional equation to construct non-linear systems of equations, 
and used these to compute more than 2000 spectral parameters associated to GL(4) 
Maass forms.

Our goal is to work in the reverse direction. Given only limited information about a 
primitive Maass cusp form f (in particular a finite list of high Fourier coefficients of f), 
we will determine its level and estimate its spectral parameter, and thus its Laplace 
eigenvalue. The estimate for the Laplace eigenvalue depends on the eigenvalue not being 
too large with respect to the level D and a parameter X. Since a priori the spectral 
parameter is unknown, this presents some uncertainty into the calculations. However, by 
visual inspection (as demonstrated in Section 4 at the end of this paper) one may still 
be able to obtain a reliable estimate.

Theorem 1 gives the precise form of the resonance sum for f , which is useful for de-
termining computational precision. Corollaries 1 and 2 answer the classical resonance 
questions “for which parameters α and β does the sum (1) have resonance and rapid 
decay?” These two corollaries extend Sun and Wu’s result because we allow f to be 
a form on a congruence subgroup Γ0(D). Corollary 3 is the result of greatest interest, 
since it potentially allows one to estimate the spectral parameter r (and thus the Laplace 
eigenvalue of f) to arbitrarily high precision, using easily available mathematical soft-
ware. Corollary 4 gives a computational test to determine a range for the level D, and in 
many cases solve it explicitly. In Section 4 we give numerical examples illustrating these 
ideas. The results are as follows:

Theorem 1. Let f be a primitive Maass cusp form for a Hecke congruence subgroup Γ0(D)
of SL(2, Z) with Laplace eigenvalue 1/4 + r2, and λf (n) its n-th Fourier coefficient. Let 
φ ∈ C∞

c ((1, 2)) be a smooth cutoff function and α ∈ R, β > 0, X > 0 be real numbers. 
Then for any positive integer N ,

∑
n≥1

λf (n)e(αnβ)φ
( n

X

)
= i− 1

Dλf (D)
∑

n<4b∗
λfD(n)

N−1∑
k=0

Cr,kX
3/4−k

×
( n

D

)−1/4−k

P+
α,β,X

(
−sgn(α)2

√
nX

D
, k

)
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− 1 + i

4πDλf (D)
∑

n<4b∗
λfD(n)

N−1∑
k=0

Cr,kdr,kX
1/4−k

×
( n

D

)−3/4−k

P−
α,β,X

(
−sgn(α)2

√
nX

D
, k

)

+ EN (X, r),

where

b∗ := (|α|β)2X2β−1Dmin{1, 21−2β}, (2)

Cr,k := (−1)kΓ(2ir + 2k + 1/2)
22k−1(4π)2k+1(2k)!Γ(2ir − 2k + 1/2) = Ok

(
r4k), (3)

P±
α,β,X(w, k) :=

√
2∫

1

t±1/2−2kφ(t2)e(αXβt2β + wt)dt, (4)

dr,k := −4r2 + (2k + 1/2)2

2(2k + 1) = Ok

(
r2), (5)

λfD(n) :=
{

λf (n) if (n,D) = 1;
λf (n) if (n,D) > 1,

and the error term EN (X, r) satisfies

EN (X, r) �φ,β,N
1

λf (D)

[
e−4π

√
X/D

(
X

D

) 3
4

+ r4N
(
X

D

) 1
2−2N

+
(
X

D

) 3
4−N

× (1 + r2)
X
[(

r4D
X

)N

− 1
]

r4D −X

]
.

Set

Q = min
t∈[1,

√
2]

∣∣∣∣∣2|α|βXβt2β−1 − sgn(α)
√

nX

D

∣∣∣∣∣. (6)

If Q �= 0 then

P±
α,β,X

(
−sgn(α)2

√
nX

D
, k

)
= Oβ,k,φ

(
αXβ

Q3 + 1
Q2

)
.

In particular, by trivial estimation P±
α,β,X(w, k) �φ 1 regardless of the value of Q.
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Corollaries 1 and 2 simplify Theorem 1 by preserving only the largest terms. Corol-
lary 1 gives conditions for rapid decay, while Corollary 2 gives conditions for a main 
term. Comparing Corollary 2 to the result of Sun and Wu [22] one can see that our 
result shows the same main term of size X3/4, however our corollary also shows the role 
that the level D plays.

Corollary 1. With notations as in Theorem 1, if for some ε > 0 one has r4D � X1−ε

and

|α|βXβ min{1, 2 1
2−β} <

1
2

√
X

D
,

then
∑
n≥1

λf (n)φ
( n

X

)
e(αnβ) � X−M

for all M > 0. The implied constant may depend on α, β, r, D, M , ε and φ, but not 
on X.

Corollary 2 arises from substituting N = 1 into Theorem 1, fixing specific choices 
of α and β, and grouping more terms into the error term for a simpler expression. 
In addition, the reader should note that the error term in Corollary 2 can potentially 
dominate the main term, depending on the relationship between r, D and X. In order 
to obtain maximum precision we leave the error term as is in Corollary 2, and consider 
a special case in Corollary 3 with a more controlled error term.

Corollary 2. With notations as in Theorem 1, let q < X/D be a positive integer, set 
α = 2

√
q/D and β = 1/2. Then

∑
n≥1

λf (n)φ
( n

X

)
e

(
2
√

qn

D

)
= c+

q
1
4λf (D)

(
X

D

) 3
4

λfD(q)

+ c−dr,0

q
3
4λf (D)

(
X

D

) 1
4

λfD(q)

+ E ′
1(X, r)

where

c+ := i− 1
2π

√
2∫

1

t
1
2φ(t2)dt, c− := − i + 1

8π2

√
2∫

1

t−
1
2φ(t2)dt,

dr,0 = −2r2 − 1
,
8
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and

E ′
1(X, r) �φ

1
λf (D)

[
e
−4π

√
X
D

(
X

D

) 3
4

+ r4
(
X

D

)− 3
2

+ (1 + r2)
(
X

D

)− 1
4

+ q

X

(
1 + r2

(
X

D

)− 1
2
)]

.

In Corollary 3 we see that by carefully keeping track of all constants in Theorem 1, 
one can use the resonance properties of f to solve for the spectral parameter r. Doing 
so requires knowing the level D of f , which is handled in Corollary 4. The error term in 
Corollary 3 comes from the error term in Corollary 2. However the error in Corollary 2
can dominate the main term, depending on the relationship between r, D and X. By 
imposing the condition r4D � X1−ε we guarantee that the error term is of decay in X, 
thus increasing the accuracy as X tends to infinity.

Corollary 3. With notation as in Theorem 1, recall that f has Laplace eigenvalue 1
4 + r2. 

If for some ε > 0 one has r4D � X1−ε, then

r =

∣∣∣∣∣λf (D)
2c−

(
X

D

)−1/4
( ∑

X≤n≤2X
λf (n)φ

( n

X

)
e

(
2
√

n

D

)
− c+

λf (D)

(
X

D

)3/4
)

− 1
16

∣∣∣∣∣
1
2

+ ON,φ

(
λf (D) 1

2

(
X

D

)−ε)
,

where c± are as in Corollary 2.

In Corollary 4 the parameter c plays the role of a “guess” at the level D. Indeed, 
if c = D, then αε will satisfy the rapid decay conditions of Corollary 1, and αq will 
satisfy the resonance conditions on Corollary 2. Thus Corollary 4 shows that if the c
behaves sufficiently like the level D, then in fact the two are close. Numerical examples 
demonstrating the ideas in Corollaries 3 and 4 are given in Section 4.

Corollary 4. With notation as in Theorem 1, for a fixed choice of q, c ∈ Z>0 and 0 <
ε < 1, define

αε(c) = ε√
c
, αq(c) = 2

√
q

c
.

Suppose that for some Maass cusp form f as in Theorem 1 and r4D � X1−ε,

∑
λf (n)φ

( n

X

)
e
(
αε(c)

√
n
)
� X−M
n≥1
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for all M > 0 as X → ∞, and

∑
n≥1

λf (n)φ
( n

X

)
e
(
αq(c)

√
n
)

= O
(
Xδ

)

for some δ > 0 as X → ∞. Then we have the inequalities

c(√
q +

√
c

4X
)2 < D <

c

ε2
.

Since D is an integer, if one can choose ε and q to make this range small enough that 
it only contains a single integer, then one has solved for D. Note that as X → ∞ the 
range for D becomes c/q ≤ D ≤ c/ε2. Thus unless some computational reason prohibits 
it, choosing q = 1 and ε close to 1 is optimal.

Since our approach allows one to ascertain properties of a given Maass form, one may 
wonder where Maass forms show up in the larger theory. A Maass form can be lifted to an 
automorphic cuspidal representation π = ⊗ν≤∞πν of GL(2) over the adelic ring AQ of Q
(see [4] Section 3.2). Our analysis and algorithms show that the non-Archimedean local 
representations πp, p < ∞, or a finite list of them, can be used to uniquely determine the 
Archimedean local representation π∞ and the global conductor. This can be regarded 
as a new type of strong multiplicity one theorem. The Langlands program (see [14]) 
predicts that all L-functions can be expressed as products of automorphic L-functions 
for cuspidal representations of GL(n, AQ). Our results offer a possible new approach to 
this conjecture when an otherwise defined L-function is only known to match finitely 
many local components and L-factors of an automorphic L-function.

The fact that resonance and rapid decay of sums of Fourier coefficients of f can be 
used to determine the level D and Laplace eigenvalue 1/4 + r2 supports the belief that 
these resonance and rapid decay properties can be used to characterize the underlying 
Maass form. This valuable insight allows us to understand more about the oscillatory 
nature of Maass forms.

2. Proof of Theorem 1

Let f be a primitive Maass cusp form for Γ0(D) with Laplace eigenvalue 1/4 + r2. 
Then f has Fourier expansion (see [4] Section 1.9)

f(z) =
∑
n 	=0

λf (n)√yKir(2π|n|y)e(nx).

Here Kir is the modified Bessel function of rapid decay (see [25] p. 181). If Φ ∈ C∞(R>0)
vanishes in a neighborhood of zero and is rapidly decreasing, then we have the Voronoi 
summation formula (see Kowalski–Michel–VanderKam [13] Appendix A)
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∑
n≥1

λf (n)Φ(n) = 1
Dλf (D)

∑
n≥1

λfD(n)
∞∫
0

Φ(x)Jf
(

4π
√

nx

D

)
dx (7)

+ εf
Dλf (D)

∑
n≥1

λfD(n)
∞∫
0

Φ(x)Kf

(
4π

√
nx

D

)
dx,

where

Jf (z) := −π

sin(πir)

(
J2ir(z) − J−2ir(z)

)
, Kf (z) := 4εf cosh(πr)K2ir(z),

λfD(n) =
{

λf (n) if (n,D) = 1;
λf (n) if (n,D) > 1.

Here J±2ir is the Bessel function of the first kind (see [25] p. 181), and εf = ±1 depending 
on whether f is an even or odd Maass form respectively. In our case we set

Φ(n) = φ
( n

X

)
e(αnβ) (8)

where φ ∈ C∞
c ((1, 2)) is a smooth cutoff function. Asymptotics for Jv(z) and Kv(z) for 

|z| � 1 are given in [1] p. 86 by

Kv(z) =
√

π

2z e
−z

(
1 + O

(
ν2 − 1

4
z

))
(9)

and

J±ν(z) =
√

2
πz

cos
(
z ∓ π

2 ν − π

4

)[
N−1∑
k=0

(−1)kΓ(ν + 2k + 1/2)
(2z)2k(2k)!Γ(ν − 2k + 1/2) + R1(N)

]

−
√

2
πz

sin
(
z ∓ π

2 ν − π

4

)[
N−1∑
k=0

(−1)kΓ(ν + 2k + 3/2)
(2z)2k+1(2k + 1)!Γ(ν − 2k − 1/2) + R2(N)

]
,

where

|R1(N)| <
∣∣∣∣ Γ(ν + 2N + 1/2)
(2z)2N (2N)!Γ(ν − 2N + 1/2)

∣∣∣∣ = ON

(
ν4Nz−2N)

,

|R2(N)| <
∣∣∣∣ Γ(ν + 2N + 3/2)
(2z)2N+1(2N + 1)!Γ(ν − 2N − 1/2)

∣∣∣∣ = ON

(
ν4N+2z−2N−1),

for any ν ∈ C. After rearranging we have
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Jf (z) = eiz(i + 1)
√

π

z

N−1∑
k=0

(4π)2k+1

2
Cr,k

z2k

(
1 − dr,k

iz

)
(10)

− e−iz(i− 1)
√

π

z

N−1∑
k=0

(4π)2k+1

2
Cr,k

z2k

(
1 + dr,k

iz

)

+ ON,φ

(
Fr,N

z2N+1/2

)
,

where

dr,k := −4r2 + (2k + 1/2)2

2(2k + 1) = Ok

(
r2),

Cr,k := (−1)kΓ(2ir + 2k + 1/2)
22k−1(4π)2k+1(2k)!Γ(2ir − 2k + 1/2) = Ok

(
r4k),

Fr,N := 1
(2N)!

4N∏
	=1

(
2ir + 1

2 − 

)

= ON

(
r4N)

, (11)

with Cr,k and dr,k first defined in (3) and (5). We note that this definition of Cr,k appears 
somewhat unnatural, since it includes an extra factor 2(4π)−2k−1 which is canceled out 
in (10). However, this definition of Cr,k will lead to simpler expressions in (15) and (16). 
Finally, note that the implied constants do not depend on the spectral parameter r or 
the level D.

We first apply the asymptotics of K2ir(z) from (9) to Kf (z) := 4εf cosh(πr)K2ir(z)
appearing in (7), to arrive at

∞∫
0

φ

(
x

X

)
e(αxβ)Kf

(
4π

√
nx

D

)
dx

� cosh(πr)
(

D

16π2n

) 1
4

2X∫
X

φ

(
x

X

)
e(αxβ)x− 1

4 e−4π
√

nx/D

×
{

1 + O
((

4r2 + 1
4

)( D

nx

) 1
2
)}

dx

�φ cosh(πr)
(
D

n

) 1
4
{

1 +
(

4r2 + 1
4

)(
D

nX

) 1
2
} 2X∫

X

x− 1
4 e−4π

√
nx/Ddx

� X
3
4

(
D

n

) 1
4

e−4π
√

nX/D cosh(πr)
{

1 +
(

4r2 + 1
4

)(
D

nX

) 1
2
}
.

Using the known bound λf (n) � nθ for θ = 7 + ε (see [12]) we see that
64
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E(1)(X, r) := 1
Dλf (D)

∑
n≥1

λfD(n)
∞∫
0

φ

(
x

X

)
e(αxβ)Kf

(
4π

√
nx

D

)
dx (12)

�Φ
1

λf (D)

(
X

D

) 3
4 ∑
n≥1

nθ− 1
4 e−4π

√
nX/D

(
1 +

(
4r2 + 1

4

)(
D

nX

) 1
2
)

� 1
λf (D)

(
X

D

) 3
4

e−4π
√

X/D

(
1 + r2

(
D

X

) 1
2
)
.

Thus the term involving the integral transform of Kf is of rapid decay in X, and so will 
be part of the error term.

Next we use the asymptotics for Jf from (10). To simplify the presentation we write

1
Dλf (D)

∑
n≥1

λfD(n)
∞∫
0

φ

(
x

X

)
e(αxβ)Jf

(
4π

√
nx

D

)
dx

= 1
Dλf (D)

∑
n≥1

λfD(n)G+
N (n) + 1

Dλf (D)
∑
n≥1

λfD(n)G−
N (n) + E(2)(X, r), (13)

where G+
N (n) comes from substituting the first sum in (10), G−

N(n) from substituting 
the second,

E(2)(X, r) = O

⎛
⎝ Fr,N

Dλf (D)
∑
n≥1

λfD(n)n−2N−1/2
∞∫
0

φ

(
x

X

)
e(αxβ)

(
D

x

)2N+1/2

dx

⎞
⎠

comes from the error term in (10), and Fr,n is defined in (11). Recall that N ≥ 1, 
and thus the sum in the error term is absolutely convergent. In addition, the function 
Φ(y) = φ(y/X)e(αyβ) defined in (8) has compact support in (X, 2X) ⊂ R, and thus 
the integral in the error term is also absolutely convergent. In particular the integral 
(estimated trivially) is �φ X(D/X)2N+1/2. Using the bound λf (n) � nθ for θ = 7/64 +ε

the sum in E(2)(X) is �N,φ 1 for N ≥ 1. Thus

E(2)(X, r) �N,φ
r4N

λf (D)

(
X

D

) 1
2−2N

. (14)

We now return to estimating the sums involving G±
N . After making the change of 

variables x = Xt2 we arrive at

G+
N (n) = (1 + i)

N−1∑
k=0

Cr,kX
3
4−k

( n

D

)− 1
4−k

P+
α,β,X

(
2
√

nX

D
, k

)
(15)

+ i− 1
4π

N−1∑
Cr,k dr,kX

1
4−k

( n

D

)− 3
4−k

P−
α,β,X

(
2
√

nX

D
, k

)

k=0
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and

G−
N (n) = (i− 1)

N−1∑
k=0

Cr,kX
3
4−k

( n

D

)− 1
4−k

P+
α,β,X

(
−2

√
nX

D
, k

)
(16)

− 1 + i

4π

N−1∑
k=0

Cr,k dr,kX
1
4−k

( n

D

)− 3
4−k

P−
α,β,X

(
−2

√
nX

D
, k

)
,

where

P±
α,β,X(w, k) =

∞∫
0

t±1/2−2kφ(t2)e(αXβt2β + wt)dt,

as defined in (4). It is helpful to note that the superscript in G±
N matches the sign of the 

term ±2
√
nX/D in the oscillatory integral Pα,β,X , as this sign will play an important 

role in the size of these oscillatory integrals.
A similar situation arises in [19] in the proof of Theorem 4, however with N = 1 and 

with the terms appearing in the SL(3, Z) case. Nonetheless the techniques are the same, 
and so we use the analogous techniques for our situation. We will now summarize that 
approach.

Let w ∈ R, k ∈ Z≥0, α ∈ R and β ∈ R>0. By repeated integration by parts we have

P±
α,β,X(w, k) =

√
2∫

1

g±s (t; k)e(ψ(t))dt,

where

ψ(t) := αXβt2β + wt

is the phase function, and

g±0 (t; k) = t±1/2−2kφ(t2), g±s (t; k) =
(
g±s−1(t; k)
2πiψ′(t)

)′

for s ≥ 1.

Since α, w ∈ R the phase function is real. Suppose that |ψ′(t)| � Q = Q(w) > 0. Then 
by the arguments in [19] p. 13 we have

P±
α,β,X(w, k) �φ,β,s

∑
0≤m≤s

(|α|βXβ)m

Q(w)m+s
. (17)

If sgn(α) = sgn(w) then the phase function

ψ(t) = αXβt2β + wt = sgn(α)
(
|α|Xβt2β + |w|t

)
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has no critical points, provided the terms |α|β and w are not both zero, since

|ψ′(t)| � |α|βXβ + |w|.

Now, set

w = ±2
√

nX

D
(18)

with n ≥ 1, as arising in (15) and (16). For this choice (up to sign) of w we may choose

Q

(
±2

√
nX

D

)
= Q = |α|Xβ + 2

√
nX

D
.

Thus when sgn(α) = sgn(w), by (17) we obtain

P±
α,β,X

(
sgn(α)2

√
nX

D
, k

)
�φ,β,s

(
nX

D

)−s/2

for all s ≥ 0. On the other hand, if sgn(α) = −sgn(w) we set

b∗ = (|α|β)2X2β−1Dmin{1, 21−2β},

as defined in (2). For n ≥ 4b∗ one has

|ψ′(t)| =
∣∣∣∣2|α|βXβt2β−1 − 2

√
nX

D

∣∣∣∣ � Q :=
√

nX

D
�

√
b∗X � |α|βXβ .

Thus when sgn(α) = −sgn(w), by (17) we have

P±
α,β,X

(
−sgn(α)2

√
nX

D
, k

)
�φ,β,s

(
nX

D

)−s/2

for all s ≥ 0. We therefore rewrite (13) as

1
Dλf (D)

∑
n<4b∗

λfD(n)G−sgn(α)
N (n) + E(2)(X, r) + E(3)(X, r)

where

E(3)(X, r) := 1
Dλf (D)

∑
n≥1

λfD(n)Gsgn(α)
N (n) + 1

Dλf (D)
∑

n≥4b∗
λfD(n)G−sgn(α)

N (n),

and E(2) is given in (14). We will show that the terms appearing in E(3)(X, r)
can be bounded sufficiently for our purposes using the above analysis. Indeed, when 



P. Savala / Journal of Number Theory 173 (2017) 1–22 13
sgn(α) = sgn(w) (and n ≥ 1) or sgn(α) = −sgn(w) (and n ≥ 4b∗), by the analysis 
above as well the asymptotics for Cr,k and dr,k given in (3) and (5), we have

G
±sgn(α)
N (n) �φ,β,N,s X

N−1∑
k=0

Cr,k

(
nX

D

)−k− s
2− 1

4

(1 + dr,k)

� X

(
nX

D

)− 1
4− s

2

(1 + r2)
N−1∑
k=0

(
r4D

X

)k

= X

(
nX

D

)− 1
4− s

2

(1 + r2)
X
[(

r4D
X

)N

− 1
]

r4D −X
.

Set s = 4N . Then by the above analysis and the bound λf (n) � nθ with θ = 7/64 + ε, 
we have

E(3)(X, r) �φ,β,N
1

λf (D) (1 + r2)
(
X

D

) 3
4−2N X

[(
r4D
X

)N

− 1
]

r4D −X
(19)

for all N ≥ 1.
Combining the above estimates we have

∑
n≥1

λf (n)e(αnβ)φ
( n

X

)
= 1

Dλf (D)
∑

n<4b∗
λfD(n)G−sgn(α)

N (n) + EN (X, r) (20)

for all N ≥ 1, where EN (X, r) = E(1)(X, r) +E(2)(X, r) +E(3)(X, r). By combining the 
estimates for E(i)(X, r) given in (12), (14) and (19) we have

EN (X, r) �φ,β,N
1

λf (D)

[
e−4π

√
X/D

(
X

D

) 3
4

+ r4N
(
X

D

) 1
2−2N

(21)

+ (1 + r2)
(
X

D

) 3
4−2N X

[(
r4D
X

)N

− 1
]

r4D −X

]
.

We note that the implied constants in the bound on EN(X, r) do not depend on the 
spectral parameter r or the level D, as this fact will be important in the corollaries. In 
addition, we note that if one substitutes the definition of G−sgn(α)

N (n) given in (15) and 
(16) into (20), then this gives the estimate for the resonance sum in Theorem 1.

Next we estimate the integral

P±
α,β,X(w, k) =

√
2∫
t±

1
2−2kφ(t2)e(αXβt2β + wt)dt,
1
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as defined in (4). In particular we will estimate the integral when α ∈ R, w as in (18)
and sgn(α) = −sgn(w). We use the weighted first derivative test from Huxley [10], 
Lemma 5.5.5.

Set

g±(t) = t±1/2−2kφ(t2),

f(t) = αXβt2β − sgn(α)2t
√

nX

D
. (22)

Then

P±
α,β,X

(
−sgn(α)2

√
nX

D
, k

)
=

√
2∫

1

g±(t)e(f(t))dt.

Following the notation of [10] the integral will be estimated in terms of the real param-
eters satisfying

|f (r)(t)| ≤ Cr
T

Mr
,

|g(s)
± (t)| ≤ Cs

U

Nr
,

for r = 2, 3 and s = 0, 1, 2, where f (r) denotes the r-th derivative of f , and similarly 
for g

(s)
± . Since φ(t) is a Schwartz function and t ∈ [1, 

√
2] we have

|g(s)
± (t)| ≤ Cs

for some constant Cs depending only on φ. In addition,

f (r)(t) = 2β(2β − 1) · · · (2β − r + 1) αX
β

t2β−r

for all r ≥ 2. Set

Cr = |2β(2β − 1) · · · (2β − r + 1)|max{1, 2β− r
2 },

T = |α|Xβ ,

M = 1,

and for g± we set U = N = 1. Finally, we set

Q := min
t∈[1,

√
2]
|f ′(t)|,

as defined in (6). If f ′(t) is not identically zero, then applying the weighted first derivative 
test we have
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P±
α,β,X

(
−sgn(α)2

√
nX

D
, k

)
= Oβ,k,φ

(
|α|Xβ

Q3 + 1
Q2

)
. (23)

These estimates conclude the proof of Theorem 1. �
3. Proof of corollaries

Proof of Corollary 1. This is the case of rapid decay. There will be no main terms 
precisely when the sum on the right-hand side of (20) vanishes, which is when 4b∗ < 1. 
Rearranging this we see that there will be no main terms if

|α|βXβ min{1, 2 1
2−β} <

1
2

√
X

D
.

The condition r4D � X1−ε is needed to ensure that (21) is of rapid decay in X. �
Proof of Corollary 2. Corollary 2 covers the case of a single Fourier coefficient λfD(n)
appearing on the right-hand side (besides the term λf(D) appearing as a coefficient). 
This gives a simpler asymptotic for the resonance sum, at the expense of an error term 
which is not of rapid decay in X. Moreover, Ren and Ye [15] showed that resonance 
for SL(2, Z) holomorphic forms occurs at α = ±2√q and β = 1/2. Sun and Wu [22]
showed the same result, but for Maass cusp forms for the full modular group. In this 
corollary we do the same, but modify α to reflect the dependence on the level (which for 
the previously mentioned papers was D = 1, since they only considered the full modular 
group).

We first consider a special case of the asymptotic (23). For a fixed choice of n ∈ Z>0
we set

β = 1
2 , α = 2

√
q

D
, w = −sgn(α)2

√
nX

D
,

in (23). If n = q, then the phase function f (as defined in (22)) satisfies f ′(t) ≡ 0, and 
thus

P±
2
√

q
D , 12 ,X

(
−2

√
qX

D
, k

)
=

√
2∫

1

t±
1
2−2kφ(t2)dt

in fact has no dependence on D, q or X. If n �= q, then

|f ′(t)| =
∣∣√q −

√
n
∣∣√X

D
,

and thus
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P±
2
√

q
D , 12 ,X

(
−2

√
nX

D
, k

)
= Ok,φ

(
D

X|√n−√
q|2

(
1 +

√
q

|√n−√
q|

))
. (24)

We can use the asymptotics given in (24) for the integral P±
α,1/2,X(w, k) defined in (4)

to calculate the contribution for n �= q in the resonance sum estimate (20). This gives

1
Dλf (D)

∑
n<4b∗
n 	=q

λfD(n)G−
N (n) (25)

�
√
q

Xλf (D)

N−1∑
k=0

r4k
(
X

D

)−k ∑
1≤n<4b∗

n 	=q

nθ− 1
4−k 1

|√n−√
q|

(
1 +

√
q

|√n−√
q|

)

×
(

1 + dr,k

(
nX

D

)− 1
2
)

� q

Xλf (D)

(
1 + r2

(
X

D

)− 1
2
)N−1∑

k=0

(
r4D

X

)k

= q

Xλf (D)

(
1 + r2

(
X

D

)− 1
2
)X

[(
r4D
X

)N

− 1
]

r4D −X
.

Combining this estimate with those in (21) we arrive at

∑
n≥1

λf (n)e
(

2
√

qn

D

)
φ
( n

X

)
= λfD(q)

Dλf (D)G
−
N (q) + E ′

N (X, r) (26)

for any integer N ≥ 1, where E ′
N (X, r) is EN (X, r) plus the contribution for n �= q

calculated in (25). Thus

E ′
N (X, r) �φ,β,N

1
λf (D)

[
e
−4π

√
X
D

(
X

D

) 3
4

+ r4N
(
X

D

) 1
2−2N

(27)

+ (1 + r2)
(
X

D

) 3
4−2N X

[(
r4D
X

)N

− 1
]

r4D −X

+ q

X

(
1 + r2

(
X

D

)− 1
2
)X

[(
r4D
X

)N

− 1
]

r4D −X

]
.

To allow easier comparison to similar results for holomorphic cusp forms and Maass 
cusp forms for the full modular group we set N = 1 and substitute the definition of 
G−

N (q) given in (13) to arrive at
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∑
n≥1

λf (n)φ
( n

X

)
e

(
2
√

qn

D

)
= i− 1

2π
λfD(q)
Dλf (D)X

3
4

( q

D

)− 1
4
P+

2
√

q
D , 12 ,X

(
−2

√
qX

D
, 0
)

− 1 + i

8π2
λfD(q)
Dλf (D)dr,0X

1
4

( q

D

)− 3
4
P−

2
√

q
D , 12 ,X

(
−2

√
qX

D
, 0
)

+ E ′
1(X, r), (28)

where

E ′
1(X, r) �φ

1
λf (D)

[
e
−4π

√
X
D

(
X

D

) 3
4

+ r4
(
X

D

)− 3
2

+ (1 + r2)
(
X

D

)− 5
4

+ q

X

(
1 + r2

(
X

D

)− 1
2
)]

.

Note that some of these error terms can be larger or smaller than the others depending on 
the relationship between r, X, D and q. Thus for the time being we preserve all terms to 
allow maximum accuracy and flexibility in the application of this corollary. In Corollary 3
we will impose a relationship on these variables to arrive at a simpler error term.

Set

c+ := i− 1
2π P+

2
√

q
D , 12 ,X

(
−2

√
qX

D
, 0
)

= i− 1
2π

√
2∫

1

t
1
2φ(t2)dt, (29)

c− := − i + 1
8π2 P−

2
√

q
D , 12 ,X

(
−2

√
qX

D
, 0
)

= − i + 1
8π2

√
2∫

1

t−
1
2φ(t2)dt.

Then (28) becomes

∑
n≥1

λf (n)φ
( n

X

)
e

(
2
√

qn

D

)
= c+

q
1
4λf (D)

(
X

D

) 3
4

λfD(q) (30)

+ c−dr,0

q
3
4λf (D)

(
X

D

) 1
4

λfD(q)

+ E ′
1(X, r).

This gives Corollary 2. �
Proof of Corollary 3. From Corollary 2 we see that it is simple to solve for dr,0 =
−2r2 − 1

8 , and thus for r. Indeed, one can rearrange (30) to solve for r for any value of q. 
However, it is desirable to simultaneously maximize the main term and minimize the 
error term in (30). This is accomplished when q = 1, and thus this is the case we use. 
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Numerical computations show that once q gets larger one needs to choose significantly 
larger X to achieve similar accuracy. The condition r4D � X1−ε gives the desired decay 
of the error term, increasing accuracy as X → ∞. Finally, note that all constants in the 
corollary are nonzero. �

It is interesting to ask whether one can improve the error term in Corollary 3. The 
obvious way to do this is to use N ≥ 2 in Theorem 1, since the error term decays as 
N grows. However when N = 2, rather than having a quadratic polynomial in r (as 
in the case for N = 1), one has a degree 6 polynomial. While this cannot be solved 
by hand, it can be numerically solved. If one first estimates the eigenvalue with the 
equation in Corollary 3, then it is feasible to improve the precision of r (without needing 
to know more Fourier coefficients) by using N = 2 and throwing away the extraneous 
solutions. Indeed, if one only has very limited knowledge of the Fourier coefficients then 
this approach may be useful.

Proof of Corollary 4. To prove Corollary 4 we first consider αε. From Corollary 1 we see 
that the resonance sum will be of rapid decay if and only if

αβXβ min{1, 2 1
2−β} <

1
2

√
X

D

Setting β = 1/2 and α = αε the assumption of rapid decay means that

ε√
c
<

1√
D

Solving for D this becomes

D <
c

ε2
(31)

Using Corollary 2 we see that the resonance sum will not be of rapid decay when 
α = αq. Then setting β = 1/2 and α = αq the assumption of a main term at some q
means that ∣∣∣∣

√
q

c
−

√
q

D

∣∣∣∣ < 1
2X

− 1
2

Solving this for D yields

4cqX(
2
√
qX +

√
c
)2 < D <

4cqX(
2
√
qX −√

c
)2 (32)

Using q ≥ 1 and combining the left-hand side of (32) with (31) we arrive at
c(

1 +
√

c
4qX

)2 < D <
c

ε2
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Fig. 1. Absolute value of the resonance sum (1) with α = αq(c) for X from 1000 to 2200 and q = 1.

Note that as X → ∞ this bound on D becomes

c ≤ D ≤ c

ε2
. �

4. Numerical examples

In this section we illustrate the above ideas with a concrete example. We take a specific 
primitive self-dual Maass cusp form f (see [23] for details of this particular form, and 
[24] for many other examples) and estimate its level and spectral parameter r, and then 
compare these to the known values.

We begin by estimating the level of f . This involves evaluating the sums given in 
Corollary 4 for various choices of c ≥ 1. We first evaluate the sum involving αq(c) as 
defined in Corollary 4. To make the range for D given in Corollary 4 as small as possible 
we choose q = 1. Unless some computational purpose prohibits it, this choice is optimal. 
In Fig. 1 above we show four graphs illustrating the size of∣∣∣∣∣∣

∑
n≥1

λf (n)φ
( n

X

)
e(α

√
n)

∣∣∣∣∣∣
for α = αq(c) as a function of X. We see that at c = 5 the graph grows as a positive 
power of X. Thus we evaluate the sum with α = αε(c) (as defined in Corollary 4) for 
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Fig. 2. Absolute value of the resonance sum (1) with α = αε(c) for X from 1000 to 2200 with ε = 0.95 and 
c = 5.

Fig. 3. A main term with α = αq(c) for q = c = 1, but no rapid decay for αε(c).

c = 5 and ε = 0.95. In Fig. 2 we see that this graph shows rapid decay in X. Thus 
from Figs. 1 and 2 we deduce that D ≈ 5. Using Corollary 4 we can guarantee that 
4.77 < D < 5.54 and thus D = 5. Indeed, f is a Maass cusp form on Γ0(5).

It is important to note that neither graph alone can determine the level. In Fig. 3 we 
see that for c = 1 and q = 1 the resonance sum with α = αq(c) has a main term, and 
thus would suggest D ≈ 1. However, the sum with α = αε(1) does not show rapid decay, 
and thus D is in fact not near 1.

Now that we have located the level, we will use this knowledge to compute the eigen-
value. All terms in Corollary 3 are easily computed. Recall that the constants c± both 
involve integrals coming from (4), however the integrals are of the form

√
2∫
t±

1
2φ(t2)dt
1
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Fig. 4. Calculated spectral parameter r using Corollary 3 for X from 1000 to 2200. The true spectral 
parameter is approximately 8.01848237839.

and are easily handled by any modern mathematical software. In Fig. 4 we see that 
as X → ∞ the graph seems to converge to a value near 8. Indeed, the true spectral 
parameter is r ≈ 8.01848237839. For X = 2200 the calculated value is off by only 0.02. 
In cases where one can easily compute tens of thousands of Fourier coefficients one could 
achieve arbitrarily high accuracy.

All computations were carried out on the Neon High Performance Computing Cluster 
at the University of Iowa, and run in Mathematica 10.
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