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1. Introduction

It is well known (due to Shafarevich) that the number of isomorphism classes of 
elliptic curves over a given number field and having good reduction outside a finite set 
of primes is finite. In particular, given a positive integer N , there are only finitely many 
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isomorphism classes of elliptic curves over Q of conductor N . Note that modularity of 
elliptic curves over Q gives, as a trivial corollary, finiteness of the set of isogeny classes 
of elliptic curves of a given conductor.

The conductor NE of an elliptic curve E over Q is a positive integer that encodes the 
primes of bad reduction. We always have NE|ΔE (where ΔE denotes the discriminant 
of E), and prime divisors of NE and ΔE are the same. If p|NE, then p||NE exactly if 
E has multiplicative reduction at p. E has additive reduction at p exactly if p2+δp ||NE , 
where δp = 0 for p ≥ 5, and 0 ≤ δ2 ≤ 6, 0 ≤ δ3 ≤ 3 can be calculated explicitly using 
Ogg-Saito formula (see [20], Appendix C16).

The online tables by Cremona [5] exhibit all elliptic curves over Q of conductors up 
to 400000, together with much additional information (torsion subgroup, rank, etc.). Let 
us mention that the paper by Cremona and Lingham [6] gives an explicit algorithm for 
finding all the elliptic curves over a number field with good reduction outside a given 
finite set of (nonarchimedean) primes.

Let us give an overview of known results concerning classification of elliptic curves 
over Q with good reduction outside at most two primes.

(i) N = pk, with p a prime. Elliptic curves of conductors 2k (resp. 3k) were completely 
classified by Ogg [16] (resp. Hadano [9]). Setzer [19] proved, that there is an elliptic curve 
over Q of conductor p with a rational point of order 2 if and only if p = 17 or p = u2 +64
for some integer u. Assuming p ≡ ±1(mod 8), and the class numbers of both Q(√p) and 
Q(

√−p) are not divisible by 3, Setzer proved that in these cases each elliptic curve of 
conductor p defined over Q has a rational point of order 2. Edixhoven et al. [8] proved 
that if p ≡ 5(mod 12), then every elliptic curve over Q of conductor p2 is a twist of one 
of conductor p.

(ii) N = 2np, with p odd prime. Elliptic curves of conductors 2k3 were completely 
classified by Ogg [17]. Ivorra [12] has classified elliptic curves over Q of conductor 2kp
with a rational point of order 2. Let us mention the following result by Hadano: assume 
p ≡ 1, 7(mod 8), and the class numbers of the following four fields Q(√p), Q(

√−p), 
Q(

√
2p) and Q(

√−2p) are not divisible by 3, then each elliptic curve of conductor 2kp
defined over Q has a rational point of order 2.

(iii) N = pmqn, with p, q different odd primes. Bennett, Vatsal and Yazdani [3]
classified all elliptic curves over Q with a rational 3-torsion point and good reduction 
outside the set {3, p}, for a fixed prime p. It is an open problem to classify elliptic curves 
over Q with a rational 3-torsion point and good reduction outside the set {p, q}, with 
p and q different primes ≥ 5. In a paper by Howe [10] it is proved that if there is an 
elliptic curve over Q of odd conductor pq with a rational point of order 2, then one of 
the diophantine equation (from an explicit list) has a solution. In that paper, Howe also 
stated some general existence and non-existence results. In a recent paper by Sadek [18], 
the author finds all elliptic curves defined over Q with good reduction outside two distinct
primes and a rational point of fixed order N ≥ 4 (actually, he only finds possible minimal 
discriminants of such curves). It turns out that some of his claims are incomplete - for 
instance some curves with a rational point of order 8 are missing (see subsection 5.4).
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Our paper is a common extension (and clarification) of the work given by Ogg, 
Hadano, Neumann, Setzer, Edixhoven-de Groot-Top, Ivorra, Bennett-Vatsal-Yazdani, 
Howe, Sadek and others. In sections 3 and 5, we give explicit description of elliptic 
curves over Q with good reduction outside two odd primes and a rational point of order 
2 or ≥ 4, and exhibit some families of elliptic curves with a rational point of order 3. 
It turns out that an elliptic curve with a rational point of order 2 belongs to one of 77
(conjecturally, infinite) families or to a finite “exceptional set”. Elliptic curves with a 
rational point of order 4 belong to one of 16 (conjecturally, infinite) families or to a finite 
“exceptional set”. In section 6 we collect some general existence/non-existence results. 
In section 7 we present some information concerning upper bounds for ranks of elliptic 
curves of odd conductors paqb and with Q-rational point of order 2.

Acknowledgment. We would like to thank the anonymous referee for useful suggestions 
and comments which allow to improve the final version of the article.

2. Some Diophantine equations

In this section we list some of the diophantine equations we use in the next sections.
Consider a generalized Fermat equation xp + yq = zr, with p, q, r positive integers 

satisfying 1/p +1/q+1/r < 1, and where x, y, z are coprime integers. If we fix the triple 
(p, q, r), then the number of solutions to such an equation is finite [7]. It is expected 
(commonly known as Tijdeman-Zagier conjecture) that the following ten solutions are 
the only solutions to the above equation:

1p + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282,

14143 + 22134592 = 657, 92623 + 153122832 = 1137,

438 + 962223 = 300429072, 338 + 15490342 = 156133.

Lemma 1. ([18], Lemma 2.2) There are no integer solutions (x, m, y, n) to the equation 
16xm + 1 = yn, where |x|, n are primes, m > 1, and y = lt with |l| a prime and t > 0.

The diophantine equation (Lebesgue-Nagell equation) x2 + C = yn (x, y ≥ 1, n ≥ 3) 
has a rich history. This equation has no solution for many values of C (see, for instance, 
[4], where all solutions of this equation are given when 1 ≤ C ≤ 100). Barros [2] in his 
PhD thesis considered the range −100 ≤ C ≤ −1. Here are special cases for C = ±16
and 64.

Lemma 2. There are no integer solutions (x, y, n), y odd, n ≥ 3, to the equations x2±16 =
yn and x2 + 64 = yn.



A. Dąbrowski, T. Jędrzejak / Journal of Number Theory 202 (2019) 254–277 257
3. Elliptic curves over Q with good reduction outside two odd primes and a rational 
point of order two

Theorem 1. Let p �= q be odd primes. Any elliptic curve E defined over Q, of conductor 
N = pq, and with E(Q)[2] � (Z/2Z)2 is isomorphic (over Q) to one of the following 
four curves of the form Y 2 = X3 + AX2 + BX:

A B ΔE E(Q)tors A B ΔE E(Q)tors
a 14 −15 32 × 52 Z/2Z× Z/4Z c −2 −63 34 × 72 Z/2Z× Z/4Z
b 6 −55 52 × 112 (Z/2Z)2 d −10 −39 32 × 132 (Z/2Z)2

or belongs to one of the following two families:

A B condition ΔE

e ±2
√

64 + pαqβ pαqβ pα − qβ = ±16 p2αq2β

f ±2
√

64p2a + εqβ εqβ qβ − 16pα = ε p2αq2β

where ε = ±1 and the sign before the quadratic square is chosen so that it is congruent 
to 3 modulo 4.

Remark. (i) Primes of the type p = qβ ± 16 (with q another odd prime and β ≥ 1) 
give an explicit (conjecturally, infinite) family of elliptic curves of conductor pq with 
three Q-rational points of order 2. The diophantine equations p2 = qβ ± 16 (β ≥ 2) 
have solutions only for β = 2 (use Lemma 2), and produce the elliptic curve Y 2 =
X3−34X2 +225X of conductor 15. If we believe the (mentioned in Section 2) conjecture 
of Tijdeman and Zagier then there are no other solutions (and, hence, there are no 
corresponding elliptic curves).

(ii) Lemma 1 states that the diophantine equation qβ − 16pα = ±1 has only the 
obvious solutions q = 16pα ± 1, and we obtain an explicit (conjecturally, infinite) family 
of elliptic curves of conductor pq with three Q-rational points of order 2.

Theorem 2. Let p �= q be odd primes. Any elliptic curve E defined over Q, of conductor 
N = pq, and with E(Q)[2] � Z/2Z is isomorphic (over Q) to one of the following four 
curves of the form Y 2 = X3 + AX2 + BX:

A B ΔE E(Q)tors A B ΔE E(Q)tors
a 1 16 −32 × 7 Z/4Z c −3 16 −5 × 11 Z/2Z
b 5 16 −3 × 13 Z/2Z d −7 16 −3 × 5 Z/4Z
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or belongs to one of the following families of elliptic curves (with ε = ±1).

A B conditions ΔE

ia ±2u qβ u2 = qβ − 64p2α, ±u ≡ 3(mod 4) −p2αq2β

ib ±2u pαqβ u2 = pαqβ − 64, ±u ≡ 3(mod 4) −p2αq2β

iia ±2u 1 u2 = 64p2αq2β+1 + 1, ±u ≡ 3(mod 4) p2αq2β+1

iib ±2u εpα u2 = 64q2β+1 + εpα, ±u ≡ 3(mod 4) p2αq2β+1

iic ±u 16ε u2 = p2αq2β+1 + 64ε, ±u ≡ 1(mod 4) p2αq2β+1

iid ±u 16εpα u2 = q2β+1 + 64εpα, ±u ≡ 1(mod 4) p2αq2β+1

iiia ±2u pα u2 = pα − 64q2β+1, ±u ≡ 3(mod 4) −p2αq2β+1

iiib ±u 16pα u2 = 64pα − q2β+1, ±u ≡ 1(mod 4) −p2αq2β+1

iva ±2u 1 u2 = 64p2α+1q2β+1 + 1, ±u ≡ 3(mod 4) p2α+1q2β+1

ivb ±u 16ε u2 = p2α+1q2β+1 + 64ε, ±u ≡ 1(mod 4) p2α+1q2β+1

Remark. It is still a conjecture that there are infinitely many elliptic curves over Q with 
a rational point of order two and of odd conductor pq (p, q different odd primes). On 
the other hand, there are infinitely many elliptic curves over Q with rational point of 
order two, and of conductor p or pq. It is enough to consider the Neumann-Setzer curves 
[19], and the (generalized Neumann-Setzer) curves (ii.d) or (v.b) above, and apply the 
following result of Iwaniec [13]: there are infinitely many integers n such that n2 + 64 is 
the product of at most two primes.

Theorem 3. Let p �= q be odd primes. Any elliptic curve E defined over Q, of con-
ductor N = paq (a ≥ 2), and with E(Q)[2] � (Z/2Z)2 is isomorphic (over Q) to 
one of the following curves of the form Y 2 = X3 + AX2 + BX (all with E(Q)tors �
(Z/2Z)2):

A B ΔE A B ΔE

a −75 −400 56 × 172 e 30 −351 38 × 132

b 45 −144 36 × 172 f 30 −1375 58 × 112

c −51 144 38 × 52 g 14 −3087 34 × 78

d 85 400 32 × 58 h −363 32912 116 × 172

or belongs to one of the following families (with ε = ±1):
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A B conditions ΔE

i ±2up εpm+2 u2 = 64q2n + εpm, ±up ≡ 3(mod 4) p2m+6q2n

ii ±15p −16p2 p �= 17, ±p ≡ 3(mod 4) 172p6

iii ±up 16εp2m+2 u2 = q2n + 64εp2m, ±up ≡ 1(mod 4) p2m+6q2n

iv ±2up εp2qn u2 = 64p2m + εqn, ±up ≡ 3(mod 4) p2m+6q2n

v ±2up pm+2qn u2 = 64 + pmqn, ±up ≡ 3(mod 4) p2m+6q2n

vi ±up 16εp2qn u2 = p2m−2 + 64εqn, ±up ≡ 1(mod 4) p2m+4q2n

vii ±up 16pm+2qn u2 = 1 + 64pmqn, ±up ≡ 1(mod 4) p2m+6q2n

Remark. The conditions in (i), (iv) and (vii) lead to diophantine equations of the type 
pa− 16qb = ±1 or qb− 16pa = ±1. The condition in (v) leads to diophantine equation of 
the type pa−qb = ±16. The conditions in (iii) and (vi) lead to both types of diophantine 
equations.

Theorem 4. Let p �= q be odd primes. Any elliptic curve E defined over Q, of conductor 
N = paq (a ≥ 2), and with E(Q)[2] � Z/2Z is isomorphic (over Q) to one of the 
following curves of the form Y 2 = X3 + AX2 + BX:

A B ΔE E(Q)tors A B ΔE E(Q)tors
a −3 144 −38 × 7 Z/2Z k 41 656 −23 × 413 Z/2Z

b −7 784 −32 × 77 Z/4Z l −47 752 −17 × 473 Z/2Z

c 9 48 −33 × 37 Z/2Z m 53 848 −11 × 533 Z/2Z

d −3 48 −33 × 61 Z/2Z n −59 944 −5 × 593 Z/2Z

e −15 80 −53 × 19 Z/2Z o 61 976 −3 × 613 Z/2Z

f 5 80 −53 × 59 Z/2Z p 21 144 −37 × 5 Z/2Z

g −11 176 −113 × 53 Z/2Z q −15 144 −37 × 13 Z/4Z

h 17 272 −173 × 47 Z/2Z r −35 400 −3 × 57 Z/2Z

i −23 368 −233 × 41 Z/2Z s 33 1936 −5 × 117 Z/4Z

j 37 592 −33 × 373 Z/2Z t 65 2704 −3 × 137 Z/4Z

or belongs to one of the following families of elliptic curves (with ε = ±1)
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A B conditions ΔE

ia ±2up pm+2 u2 = pm − 64q2n, ±up ≡ 3(mod 4) −p2m+6q2n+6

ib ±2up p2qn u2 + 64 = qn, ±up ≡ 3(mod 4) −p6q2n

ic ±2upm+1 p2qn u2p2m + 64 = qn, ±upm+1 ≡ 3(mod 4) −p6q2n

id ±2up p2qn u2 + 64p2m = qn, ±up ≡ 3(mod 4) −p2m+6q2n

ie ±2up pm+2qn u2 + 64 = pmqn, ±up ≡ 3(mod 4) −p2m+6q2n

iia ±66p p2 p �= 17, ±p ≡ 3(mod 4) 17p6

iib ±2upm+1 p2 u2p2m = 1 + 64q2n−1, ±upm+1 ≡ 3(mod 4) p6q2n−1

iic ±2up p2 u2 = 1 + 64p2mq2n−1, ±up ≡ 3(mod 4) p2m+6q2n−1

iid ±2up εpm+2 u2 = 64q2n−1 + εpm, ±up ≡ 3(mod 4) p2m+6q2n−1

iie ±up 16εp2 u2 = q2n−1 + 64ε, ±up ≡ 1(mod 4) p6q2n−1

iif ±upm+1 16εp2 u2p2m = q2n−1 + 64ε, ±upm+1 ≡ 1(mod 4) p6q2n−1

iig ±up 16εp2 u2 = p2mq2n−1 + 64ε, ±up ≡ 1(mod 4) p2m+6q2n−1

iih ±up 16εpm+2 u2 = q2n−1 + 64εpm, ±up ≡ 1(mod 4) p2m+6q2n−1

iiia ±2up pm+2 u2 = pm − 64q2n−1, ±up ≡ 3(mod 4) −p2m+6q2n−1

iva ±2upk εp2k−2m+1 u2p2m−1 = 64q2n + ε, ±upk ≡ 3(mod 4) p6k−6m+3q2n

ivb ±2up p2 u2 = 1 + 64p2m−1q2n, ±up ≡ 3(mod 4) p2m+5q2n

ivc ±upk 16εp2k−2m+1 u2p2m−1 = q2n + 64ε, ±upk ≡ 1(mod 4) p6k−6m+3q2n

ivd ±up 16εp2 u2 = p2m−1q2n + 64ε, ±up ≡ 1(mod 4) p2m+5q2n

ive ±2upk εp2k−2m+1qn u2p2m−1 = 64 + εqn, ±upk ≡ 3(mod 4) p6k−6m+3q2n

ivf ±2up εp2qn u2 = 64p2m−1 + εqn, ±up ≡ 3(mod 4) p2m+5q2n

ivg ±upk 16p2k−2m+1qn u2p2m−1 = 1 + 64qn, ±upk ≡ 1(mod 4) p6k−6m+3q2n

ivh ±up 16εp2qn u2 = p2m−1 + 64εqn, ±up ≡ 1(mod 4) p2m+5q2n

va ±2upk p2k−2m+1qn u2p2m−1 = qn − 64, ±upk ≡ 3(mod 4) −p6k−6m+3q2n

vb ±2up p2qn u2 = qn − 64p2m−1, ±up ≡ 3(mod 4) −p2m+5q2n

vc ±upk 16p2k−2m+1qn u2p2m−1 = 64qn − 1, ±upk ≡ 1(mod 4) −p6k−6m+3q2n

vd ±up 16p2qn u2 = 64qn − p2m−1, ±up ≡ 1(mod 4) −p2m+5q2n

via ±2upk εp2k−2m+1 u2p2m−1 = 64q2n−1 + ε, ±upk ≡ 3(mod 4) p6k−6m+3q2n−1

vib ±2up p2 u2 = 64p2m−1q2n−1 + 1, ±up ≡ 3(mod 4) p2m+5q2n−1

vic ±upk 16εp2k−2m+1 u2p2m−1 = q2n−1 + 64ε, ±upk ≡ 1(mod 4) p6k−6m+3q2n−1

vid ±up 16εp2 u2 = p2m−1q2n−1 + 64ε, ±up ≡ 1(mod 4) p2m+5q2n−1

where m, n are positive integers, and k = m, m + 1.

Remark. There are infinitely many elliptic curves over Q with a rational point of order 
two and of odd conductor paq (p, q different odd primes and a ≥ 2). Take the family (ii) 
in Theorem 3 or the family (iia) in Theorem 4.

Theorem 5. Let p �= q be odd primes. Any elliptic curve E defined over Q, of conductor 
N = paqb (a, b ≥ 2), and with E(Q)[2] � (Z/2Z)2 is isomorphic (over Q) to one of the 
following four curves of the form Y 2 = X3 +AX2 +BX (all with E(Q)tors � (Z/2Z)2):

A B ΔE A B ΔE

a 918 44217 36 × 178 c −255 3600 38 × 58

b −1275 −115600 56 × 178 d −6171 9511568 116 × 178

or belongs to one of the following four families (with ε = ±1):

A B conditions ΔE

i ±2upq εp2qn+2 u2 = 64p2m + εqn, ±upq ≡ 3(mod 4) p2m+6q2n+6

ii ±2upq εpm+2qn+2 u2 = 64 + εpmqn, ±upq ≡ 3(mod 4) p2m+6q2n+6

iii ±306p 173p2 p �= 17, ±p ≡ 3(mod 4) 178p6

iv ±upq 16pm+2qn+2 u2 = 64pmqn + 1, ±upq ≡ 1(mod 4) p2m+6q2n+6
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Remark. The conditions in (i) and (iv) lead to diophantine equations of the type pa −
16qb = ±1 or qb−16pa = ±1. The condition in (ii) leads to diophantine equations of the 
type pa ± qb = 16.

Theorem 6. Let p �= q be odd primes. Any elliptic curve E defined over Q, of conductor 
N = paqb (a, b ≥ 2), and with E(Q)[2] � Z/2Z is isomorphic (over Q) to one of the 
following curves of the form Y 2 = X3 + AX2 + BX:

A B ΔE E(Q)tors A B ΔE E(Q)tors
a 126 −63 36 × 73 Z/2Z l −799 217328 −177 × 473 Z/2Z
b 21 7056 −38 × 77 Z/2Z m 285 28880 −53 × 197 Z/2Z
c −63 1008 −36 × 73 Z/2Z n −943 347024 −237 × 413 Z/2Z
d −130 65 53 × 133 Z/2Z o 333 65712 −33 × 377 Z/2Z
e 65 1040 53 × 133 Z/2Z p −943 618608 −233 × 417 Z/2Z
f 165 48400 −57 × 117 Z/2Z q −799 600848 −173 × 477 Z/2Z
g −195 24336 −37 × 137 Z/2Z r −583 494384 −113 × 537 Z/2Z
h 105 3600 −37 × 57 Z/4Z s −295 278480 −53 × 597 Z/2Z
i −183 8784 −37 × 613 Z/2Z t −183 178608 −33 × 617 Z/2Z
j −295 23600 −57 × 593 Z/2Z u −111 5328 −39 × 373 Z/2Z
k −583 102608 −117 × 533 Z/2Z

or belongs to one of the following families of elliptic curves (with ε = ±1)

A B conditions ΔE

ia ±2upm+1q p2qn+2 u2p2m + 64 = qn, ±upm+1q ≡ 3(mod 4) −p6q2n+6

ib ±2upq pm+2q2 u2 = pm − 64q2n, ±upq ≡ 3(mod 4) −p2m+6q2n+6

ic ±2upq pm+2qn+2 u2 = pmqn − 64, ±upq ≡ 3(mod 4) −p2m+6q2n+6

iia ±2upm+1q p2q2 u2p2m = 64q2n−1 + 1, ±upm+1q ≡ 3(mod 4) p6q2n+5

iib ±2upq εpm+2q2 u2 = 64q2n−1 + εpm, ±upq ≡ 3(mod 4) p2m+6q2n+5

iic ±2upq p2q2 u2 = 64p2mq2n−1 + 1, ±upq ≡ 3(mod 4) p2m+6q2n+5

iid ±2upql εpm+2q2l+1−2n u2q2n−1 = 64 + εpm, ±upql ≡ 3(mod 4) p2m+6q6l−6n+3

iie ±2upql εp2q2l+1−2n u2q2n−1 = 64p2m + ε, ±upql ≡ 3(mod 4) p2m+6q6l−6n+3

iif ±42p −7p2 p �= 7, ±p ≡ 3(mod 4) 73p6

iig ±upm+1q 16εp2q2 u2p2m = q2n−1 + 64ε, ±upm+1q ≡ 1(mod 4) p6q2n+5

iih ±upq 16εpm+2q2 u2 = q2n−1 + 64εpm, ±upq ≡ 1(mod 4) p2m+6q2n+5

iii ±upq 16εp2q2 u2 = p2mq2n−1 + 64ε, ±upq ≡ 1(mod 4) p2m+6q2n+5

iij ±upql 16εp2q2l+1−2n u2q2n−1 = p2m + 64ε, ±upql ≡ 1(mod 4) p2m+6q6l−6n+3

iik ±upql 16p2m+2q2l+1−2n u2q2n−1 = 64p2m + 1, ±upql ≡ 1(mod 4) p4m+6q6l−6n+3

iiia ±2upq pm+2q2 u2 = pm − 64q2n−1, ±upq ≡ 3(mod 4) −p2m+6q2n+5

iiib ±2upql pm+2q2l+1−2n u2q2n−1 = pm − 64, ±upql ≡ 3(mod 4) −p2m+6q6l−6n+3

iiic ±upq 16pm+2q2 u2 = 64pm − q2n−1, ±upq ≡ 1(mod 4) −p2m+6q2n+5

iiid ±upql 16pm+2q2l+1−2n u2q2n−1 = 64pm − 1, ±upql ≡ 1(mod 4) −p2m+6q6l−6n+3

iiie ±21p 112p2 p �= 7, ±p ≡ 1(mod 4) −73p6

iva ±2upql εp2q2l+1−2n u2q2n−1 = 64p2m−1 + ε, ±upql ≡ 3(mod 4) p2m+5q6l−6n+3

ivb ±2upq p2q2 u2 = 64p2m−1q2n−1 + 1, ±upq ≡ 3(mod 4) p2m+5q2n+5

ivc ±upql 16εp2q2l+1−2n u2q2n−1 = p2m−1 + 64ε, ±upql ≡ 1(mod 4) p2m+5q6l−6n+3

ivd ±upq 16εp2q2 u2 = p2m−1q2n−1 + 64ε, ±upq ≡ 1(mod 4) p2m+5q2n+5

where m, n are positive integers, and l = n, n + 1.
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Remark. There are infinitely many elliptic curves over Q with a rational point of order 
two and of odd conductor paqb (p, q different odd primes and a, b ≥ 2). Take the family 
(iii) in Theorem 5 or the families (iif), (iiie) in Theorem 6.

4. Proofs of Theorems 1 - 6

4.1. Proofs of Theorems 1 and 2

Any semistable elliptic curve defined over Q, with Q-rational point of order 2, has a 
unique Weierstrass model of the type

Y 2 = X3 + AX2 + BX, (1)

where A, B ∈ Z and gcd(A, B) = 1 ([14], Lemme 1). This model is minimal outside 
2, with the discriminant Δ = 24B2(A2 − 4B) and c4 = 24(A2 − 3B). The minimal 
discriminant ΔE = 2−8B2(A2 − 4B) (note that c4/16 is odd).

Lemma 3. We can choose A, B such that

A ≡ 6(mod 8), B ≡ 1(mod 8) (2)

or

A ≡ 1(mod 4), B ≡ 0(mod 16). (3)

Proof. See [19], p. 374 or [14], Remarque on p. 176.

Proof of Theorem 1. Our assumptions lead to Δ = 212psqt, with 2 | s and 2 | t (note 
that Δ must be a square of a nonzero integer, since the equation X2 +AX +B = 0 has 
two rational solutions). Hence

B2(A2 − 4B) = 28p2αq2β

with the assumption gcd(A, B, pq) = 1 (since E has multiplicative reduction at p and q).
From (2) it follows that A = 2A0, A0 ≡ 3(mod 4), hence B2(A2

0 −B) = 26p2αq2β and 
26 | A2

0 −B, gcd(B, A2
0 −B) = 1. Therefore we have the following possibilities:

A2
0 −B = 64p2αq2β , B = 1, (4)

A2
0 −B = 64p2α, B2 = q2β (A2

0 −B = 64q2β , B2 = p2α), (5)

A2
0 −B = 64, B2 = p2αq2β . (6)
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Consider the case (4). Then we have A2
0 − 1 = (A0 − 1)(A0 +1) = 64p2αq2β , A0 − 1 ≡

2(mod 4), 32 | A0 + 1 and gcd(A0 − 1, A0 + 1) = 2. Elementary calculations show that 
there exist no elliptic curve satisfying these conditions.

Consider the case (5). We have A2
0−64p2α = ±qβ . Since (A0−8pα) +16pα = (A0+8pα), 

hence gcd(A0−8pα, A0+8pα, q) = 1. Moreover, A0−8pα ≡ A0+8pα ≡ 3(mod 4). Taking 
into account the above conditions, we are arriving at the following two possibilities:

A0 − 8pα = −qβ and A0 + 8pα = −1,

A0 − 8pα = −1 and A0 + 8pα = qβ .

The corresponding families of elliptic curves are given by the following models:

Y 2 = X3 ± 2
√

26p2α + εqβX2 + εqβX, if qβ − 16pα = ε,

where ε = ±1, and the sign before the quadratic square is chosen so that it is congruent 
to 3 modulo 4.

Let us consider the remaining case (6). Here we have A2
0 − 26 = ±pαqβ , gcd(A0 −

8, A0 + 8, pq) = 1 and A0 − 8 ≡ A0 + 8 ≡ 3(mod 4). The possibilities

A0 − 8 = −1 and A0 + 8 = 15 = pαqβ , (7)

A0 − 8 = −pα and A0 + 8 = qβ , (8)

A0 − 8 = −qβ and A0 + 8 = pα, (9)

produce the four elliptic curves (a), (b), (c) and (d). The remaining cases lead to the 
equations pαqβ = ±17 (which have no solution) or pα − qβ = ±16. The last equations 
produce the family

Y 2 = X3 ± 2
√

64 + pαqβX2 + pαqβX, if pα − qβ = ±16,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
We will show that the case (3) does not produce any new curve. In this case B = 16B0, 

B2
0(A2 − 64B0) = p2αq2β , 2 � B0, and gcd(B0, A2 − 64B0) = 1. Therefore we have the 

following possibilities:

A2 − 64B0 = p2αq2β , B2
0 = 1, (10)

A2 − 64B0 = p2α, B2
0 = q2β (A2 − 64B0 = q2β , B2

0 = p2α), (11)

A2 − 64B0 = 1, B2
0 = p2αq2β . (12)

Note that (10) implies A2 − p2αq2β = ±64. The equation A2 − p2αq2β = −64 leads 
to conditions pαqβ = ±17, hence does not produce any elliptic curve. On the other 
hand, the equation A2 − p2αq2β = 64 leads to an elliptic curve Y 2 = X3 + 17X2 + 16X
(isomorphic to (a)).
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The case (11) implies A2 − 64qβ = ±p2α. From (A − pα) + 2pα = A + pα it follows 
that one of the factors A − pα, A + pα is divisible by 25, and the other by 2. Moreover, 
of course gcd(A − pα, A + pα, q) = 1. Checking all the possibilities, we obtain the curves 
(isomorphic to) (b), (c) and (d) if pα + qβ = 16, and the following families:

Y 2 = X3 ±
√
p2α + 64qβX2 + 16qβX, if 16qβ − pα = 1 or pα − qβ = −16,

Y 2 = X3 ±
√
p2α − 64qβX2 − 16qβX, if 16qβ − pα = −1 or pα − qβ = 16,

where the sign before the quadratic square is chosen so that it is congruent to 1 modulo 4. 
If pα− qβ = ±1 (respectively, 16pα− qβ = ±1), then the change of variables x 	→ x ± qβ , 
y 	→ y (respectively, x 	→ x − 1, y 	→ y) leads to elliptic curves from the family (e) 
(respectively (f)).

Let us consider the remaining case (12). The conditions (A − 1)(A + 1) = 64pαqβ , 
A + 1 ≡ 2(mod 4) imply 2 | A + 1, 32 | A − 1. Here we produce the elliptic curve 
Y 2 = X3 − 31X2 + 240X (isomorphic to (a)), and the family

Y 2 = X3 ±
√

64pαqβ + 1X2 + 16pαqβX, if 16pα − qβ = ±1 or 16qβ − pα = ±1,

where the sign before the quadratic square is chosen so that it is congruent to 1 modulo 4. 
The change of variables x 	→ x + qβ , y 	→ y, leads to elliptic curves from the family (f).

Proof of Theorem 2. We start in the same way as in the proof of Theorem 1. Note that 
now Δ is not a square of a nonzero integer. Also notice that still A0 = A/2 in the case 
(2), and B0 = B/16 in the case (3) (cf. Lemma 3).

Δ < 0, s = 2α, t = 2β. In this case we have B2(A2 − 4B) = −28p2αq2β , hence B > 0.
Assume, that A, B satisfy the conditions (2). We have the following cases:

A2
0 −B = −64p2αq2β , B = 1, (13)

A2
0 −B = −64p2α, B = qβ (A2

0 −B = −64q2β , B = pα), (14)

A2
0 −B = −64, B = pαqβ . (15)

The case A2
0 − B = −1 does not hold, since otherwise B = 8pαqβ , which contradicts 

the condition for B in (2). Let us consider the case (13). We have A2
0 − B = A2

0 − 1 =
(A0 − 1)(A0 + 1) = −64p2αq2β , where A0 − 1 ≡ 2(mod 4), A0 + 1 ≡ 0(mod 32) and 
gcd(A0 − 1, A0 + 1) = 2. Hence it is easy to see that (13) does not produce any elliptic 
curve.

Let us consider the case (14). We have A2
0 + 64p2α = qβ . Consequently, we obtain the 

following models of elliptic curves:

Y 2 = X3 ± 2
√

qβ − 64p2αX2 + qβX,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
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Let us consider the case (15). Then we have A2
0 − pαqβ = −64, and we obtain the 

following models of elliptic curves:

Y 2 = X3 ± 2
√
pαqβ − 64X2 + pαqβX,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
Assume that A, B satisfy the conditions (3). We have the following cases:

A2 − 64B0 = −p2αq2β , B0 = 1, (16)

A2 − 64B0 = −p2α, B0 = qβ (A2 − 64B0 = −q2β , B0 = pα), (17)

A2 − 64B0 = −1, B0 = pαqβ . (18)

Let us consider the case (16). The corresponding equation A2 + p2αq2β = 64 has no 
solution (reduce modulo 8).

The case (17) (resp. the case (18)) leads to A2+p2α = 64qβ (resp. to A2+1 = 64pαqβ), 
with no solution.

Δ > 0, s = 2α, t = 2β + 1.
Assuming (2), we obtain B2(A2

0 −B) = 64p2αq2β+1, and, in consequence:

A2
0 −B = 64p2αq2β+1, B = 1, (19)

A2
0 −B = 64q2β+1, B = p2α. (20)

The conditions (19) lead to the following pairs of equations:

A0 − 1 = ±2p2α and A0 + 1 = ±32q2β+1,

A0 − 1 = ±2q2β+1 and A0 + 1 = ±32p2α,

A0 − 1 = ±2p2αq2β+1 and A0 + 1 = ±32.

Consequently, if 16q2β+1 − p2α = ±1 or 16p2α − q2β+1 = ±1, we obtain the following 
models of elliptic curves:

Y 2 = X3 ± 2
√

64p2αq2β+1 + 1X2 + X,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
The conditions (20) lead to the following models of elliptic curves:

Y 2 = X3 ± 2
√

64q2β+1 ± pαX2 ± pαX,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
Assume that A, B satisfy the conditions (3). Then we obtain the following classes of 

elliptic curves:
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Y 2 = X3 ±
√

p2αq2β+1 + 64X2 + 16X, if p2α − q2β+1 = ±16,

Y 2 = X3 ±
√

p2αq2β+1 − 64X2 − 16X,

Y 2 = X3 ±
√
q2β+1 + 64pαX2 + 16pαX,

Y 2 = X3 ±
√
q2β+1 − 64pαX2 − 16pαX,

where the sign before the quadratic square is chosen so that it is congruent to 1 modulo 4.

Δ < 0, s = 2α, t = 2β + 1. If we assume the conditions (2), then B = 1 or B = pα. 
The case B = 1 does not produce any elliptic curve. On the other hand, the case B = pα

(and conditions (2)) lead to:

Y 2 = X3 ± 2
√
pα − 64q2β+1X2 + pαX,

where the sign before the quadratic square is chosen so that it is congruent to 1 modulo 4.
The conditions (3) lead to the following models of elliptic curves:

Y 2 = X3 −X2 + 16X,

Y 2 = X3 ±
√

64pα − q2β+1X2 + 16pαX,

where the sign before the quadratic square is chosen so that it is congruent to 1 modulo 4.

Δ < 0, s = 2α + 1, t = 2β + 1. In this case B2(A2 − 4B) = −28p2α+1q2β+1. Of course 
B > 0. The conditions (2) lead to

A2
0 −B = −64p2α+1q2β+1, B = 1,

hence (A0 − 1)(A0 + 1) = −64p2α+1q2β+1, where A0 − 1 ≡ 2(mod 4) and A0 + 1 ≡
0(mod 32). This case does not produce any elliptic curve.

Assume that A, B satisfy the conditions (3). Then we obtain

A2 − 64B0 = −p2α+1q2β+1, B0 = 1,

hence A2+p2α+1q2β+1 = 64, where A ≡ 1(mod 4). Consequently, we obtain the following 
models of elliptic curves:

Y 2 = X3 + 5X2 + 16X,

Y 2 = X3 − 3X2 + 16X,

Y 2 = X3 − 7X2 + 16X.

Δ > 0, s = 2α + 1, t = 2β + 1. Assuming (2) we obtain B2(A2
0 − B) = 64p2α+1q2β+1, 

hence
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A2
0 −B = 26p2α+1q2β+1, B2 = 1.

B = −1 leads to A2
0 + 1 = 64p2α+1q2β+1 with no solution.

If B = 1, then we have the following possibilities:

A0 − 1 = ±2 and A0 + 1 = ±32p2α+1q2β+1,

A0 − 1 = ±2p2α+1 and A0 + 1 = ±32q2β+1,

A0 − 1 = ±2q2β+1 and A0 + 1 = ±32p2α+1,

A0 − 1 = ±2p2α+1q2β+1 and A0 + 1 = ±32.

In this case we obtain the family of elliptic curves

Y 2 = X3 ± 2
√

64p2α+1q2β+1 + 1X2 + X, if p2α+1 − 16q2β+1 = ±1,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
Assuming (3) we obtain B2

0(A2 − 64B0) = p2α+1q2β+1, and hence

A2 − 26B0 = p2α+1q2β+1, B2
0 = 1.

If B0 = −1, then we obtain the family of elliptic curves

Y 2 = X3 ±
√
p2α+1q2β+1 − 64X2 − 16X,

where the sign before the quadratic square is chosen so that it is congruent to 3 modulo 4.
If B0 = 1, then (A − 8)(A + 8) = p2α+1q2β+1, when gcd(A − 8, A + 8, pq) = 1, 

A − 8 ≡ A + 8 ≡ 1(mod 4). In this case we obtain the family of elliptic curves

Y 2 = X3 ±
√

p2α+1q2β+1 + 64X2 + 16X, if p2α+1 − q2β+1 = ±16,

where the sign before the quadratic square is chosen so that it is congruent to 1 modulo 4.

4.2. Proofs of Theorems 3 - 6

Proof of Theorem 3. Now E has additive reduction at p (so p|ΔE and p|c4). Hence, in 
this case, E has a unique Weierstrass model of the type Y 2 = X3 + AX2 + BX, where 
A, B ∈ Z with A = apk, B = bpl, gcd(p, ab) = 1, and gcd(a, b) = 1. Our assumptions 
lead to Δ = 212p2αq2β . Hence

b2(a2p2k − 4bpl) = 28p2α−2kq2β

with the assumptions gcd(ab, p) = 1, and gcd(a, b) = 1. We have four cases to consider: 
(i) b2 = 1, (ii) b2 = 28, (iii) b2 = q2β , and (iv) b2 = 28q2β .
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The case (i) leads to four subcases (with a0 = a/2):
a2
0 − 64q2β = ±1 (no solution),

a2
0p

2m − 64q2β = ±1 (no solution),
a2
0 − 64p2mq2β = ±1 (no solution),

a2
0 − 64q2β = εpm (produces the family (i)).

The case (ii) leads to four subcases:
a2 ± 64 = q2β (produces the family (ii)),
a2p2m ± 64 = q2β (produces examples (a), (b)),
a2 ± 64 = p2mq2β (produces examples (c), (d)),
a2 − 64εp2m = q2β (produces the family (iii),

The case (iii) leads to four subcases (with a0 = a/2):
a2
0 − 64 = ±qβ (produces the family (ii)),

a2
0p

2m − 64 = ±qβ (produces an example (b),
a2
0 − 64p2m = εqβ (produces the family (iv)),

a2
0 − 64 = ±pmqβ (produces the family (v) and examples (e), (f), (g)).

The case (iv) leads to four subcases:
a2 − 1 = ±64qβ (produces the family (ii)),
a2p2m − 1 = ±64qβ (produces examples (b), (h)),
a2 − p2m = 64εqβ (produces the family (vi)),
a2 − 1 = ±64pmqβ (produces the family (vii)).

The equations in (i) - (vii) have discriminants 212p2αq2β . These equations are minimal 
(the conductor is even) or non-minimal at 2 (the conductor is odd). To decide this we 
apply Tate’s algorithm at 2, obtaining the conditions for ±up, ±2up, etc.

Proof of Theorem 4. Follows the same lines as above.

Proof of Theorem 5. Now E has additive reduction at p and at q (so pq|ΔE and pq|c4). 
Hence, in this case, E has a unique Weierstrass model of the type Y 2 = X3+AX2+BX, 
where A, B ∈ Z with A = apkql, B = bpsqt, gcd(pq, ab) = 1, and gcd(a, b) = 1. Our 
assumptions lead to Δ = 212p2αq2β . Hence

b2(a2p2kq2l − 4bpsqt) = 28p2α−2sq2β−2t

with the assumptions gcd(ab, pq) = 1, and gcd(a, b) = 1. We have two cases to consider: 
(i) b2 = 1 and (ii) b2 = 28. The case (i) produces an example (a), and the families (i), 
(ii), (iii), and the case (ii) produces examples (a), (b), (c), (d), and the family (iv). To 
decide the signs of ±p and ±upq, we use Tate’s algorithm at 2.

Proof of Theorem 6. Theorem 5 treats the case ΔE = p2αq2β . Theorem 6 treats the 
remaining cases, and the proof follows under the same (case by case) method.
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5. Elliptic curves over Q with good reduction outside two odd primes and a rational 
point of order ≥ 3

5.1. Elliptic curves over Q with odd conductor paqb and a rational point of order 3

Bennett, Vatsal and Yazdani [3] completely characterized elliptic curves over Q that 
possess both a rational 3-torsion point and conductor 3aqb for nonnegative integers a and 
b, and q a prime > 3. They proved that such an elliptic curve E is isogenous over Q to a 
curve of the form Y 2+a1XY +a3Y = X3, with coefficients given by explicit list of values 
([3], Prop. 6.1). To do this, they first develop machinery to solve ternary Diophantine 
equations of the shape Axn + Byn = Cz3 for various choices of coefficients (A, B, C). 
Next, they solve (among others) Diophantine equations of the type xn +3αyn = Cz3 for 
specific choices of C ([3], Theorem 1.5). When q � |a1, then there exists a nonzero integer 
x and a nonnegative integer m such that one of the following occurs: (i) x3 = qn ± 3m, 
(ii) 3mx3 = qn±1, (iii) x3 = 3mqn±1. They use Theorem 1.5 to conclude that the largest 
prime factor of n is at most 3. Such a reduction is crucial for the proof of Proposition 6.1.

The next task is to characterize elliptic curves over Q that possess both a rational 
3-torsion point and a conductor paqb for any different odd primes p, q ≥ 5, and 1 ≤
a, b ≤ 2. In general, it is a difficult problem. Variants of the equations (i) - (iii) above 
lead to new cases of Diophantine equations Axn + Byn = Cz3, which are very difficult 
to solve.

Below we exhibit several families of semistable elliptic curves over Q that possess a 
rational point of order 3 of conductor pq, where p and q are different primes > 3. First 
let us observe the following easy result.

Lemma 4. Assume that an elliptic curve (over Q) E : Y 2 + a1XY + a3Y = X3 has 
conductor pα1

1 . . . pαk

k , with p1, . . . , pk different primes ≥ 5. If vpi
(a1) = 0 for all i =

1, . . . , k, then E is semistable.

Proof. We have c4 = a1(a3
1 − 27a3) and Δ = a3

3(a3
1 − 27a3) = ±pβ1

1 . . . pβk

k . It is easy to 
observe that vpi

(a1) = 0 implies vpi
(c4) = 0, and the assertion follows.

Theorem 7. The following families give elliptic curves over Q of conductor pq and a 
rational point of order 3.

(i) Y 2 + (pk + 3)XY + Y = X3, where p and q = p2k + 9pk + 27 are primes ≥ 5,
(ii) Y 2 + aXY + pY = X3, where p and q = 27p − a3 are primes ≥ 5,

Proof. The minimal discriminants are pq in case (i) and −p3q in case (ii), respectively. 
In both cases, the point (0, 0) has order 3.

Remark. The families in Theorem 7 have the torsion subgroups isomorphic to Z/3Z (use 
the results of Sadek [18] that there are no elliptic curves over Q of conductor odd pq and 
a rational point of order 6 or 9).
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5.2. Elliptic curves over Q with odd conductor paqb and a rational point of order 4

Theorem 8. Any elliptic curve E over Q with odd NE = pq and E(Q)[4] �= {0} is 
isomorphic (over Q) to one of the following curves of the form Y 2 = X3 + AX2 + BX:

A B ΔE E(Q)tors A B ΔE E(Q)tors
14 −15 32 × 52 Z/2Z× Z/4Z 54 25 54 × 11 Z/4Z
−2 −63 34 × 72 Z/2Z× Z/4Z 1 16 −32 × 7 Z/4Z
−34 225 34 × 54 Z/2Z× Z/4Z 6 841 −13 × 294 Z/4Z
14 625 −32 × 58 Z/8Z 62 1 3 × 5 Z/4Z
38 169 3 × 134 Z/4Z −7 16 −3 × 5 Z/4Z
46 81 38 × 7 Z/8Z

or belongs to one of the following families

A B conditions ΔE

−2(p2m − 16) (p2m + 16)2 q = p2m + 16 −p2mq4

2(16p2m − 1) (16p2m + 1)2 q = 16p2m + 1 −p2mq4

2pm + 64 p2m pm + 16 = q2n−1, q ≡ 3(mod 4) p4mq2n−1

p2m + 8 16 q = p2m + 16 p2mq

1 + 8pm 16p2m q2n−1 = 16pm + 1 p4mq2n−1

−2(pm − 32) p2m pm = q2n−1 + 16, q ≡ 1(mod 4) −p4mq2n−1

1 − 8pm 16p2m q2n−1 = 16pm − 1 −p4mq2n−1

where m, n are positive integers.

Theorem 9. Any elliptic curve E over Q with odd NE = paq (a ≥ 2) and E(Q)[4] �= {0} is 
isomorphic (over Q) to one of the following five curves of the form Y 2 = X3+AX2+BX

with E(Q)tors � Z/4Z:

A B ΔE A B ΔE

−7 784 −32 × 77 65 2704 −3 × 137

−15 144 −37 × 13 582 9 37 × 72

33 1936 −5 × 117

or belongs to one of the following families of elliptic curves
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A B conditions ΔE

p (p− 8) 16p2 p = 16 + q2n p7q2n

2p
(
1 + 16p2m−1) p2q2n qn = 16p2m−1 − 1, p ≡ 3 (mod 4) p2m+5q4n

p (1 + 8qn) 16p2q2n 16qn = p2m−1 − 1, p ≡ 1 (mod 4) p2m+5q4n

2p
(
16p2m−1 − 1

)
p2q2n qn = 16p2m−1 + 1, p ≡ 1 (mod 4) −p2m+5q4n

p (8qn − 1) 16p2q2n 16qn = p2m−1 + 1, p ≡ 3 (mod 4) −p2m+5q4n

2p
(
32p2m−1 + 1

)
p2 q2n−1 = 16p2m−1 + 1, p ≡ 3 (mod 4) p2m+5q2n−1

2p
(
32p2m−1 − 1

)
p2 q2n−1 = 16p2m−1 − 1, p ≡ 1 (mod 4) p2m+5q2n−1

p
(
p2m−1 − 8

)
16p2 p2m−1 = q2n−1 + 16 p2m+5q2n−1

p
(
p2m−1 + 8

)
16p2 p2m−1 = q2n−1 − 16 p2m+5q2n−1

where m, n are positive integers.

Theorem 10. If E is an elliptic curve over Q with odd NE = paqb (a, b ≥ 2) and 
E(Q)[4] �= {0}, then E is isomorphic (over Q) to the curve Y 2 = X3 + 105X2 + 3600X
of the (minimal) discriminant Δ = −37 × 57.

Proof. For the proofs of Theorems 8, 9 and 10, we consider all elliptic curves listen in 
Theorems 1 - 6, and check whether exists a point P ∈ E(Q) such that 2P has order 
two or not. Let E : Y 2 = X3 + AX2 + BX. Existence of a point P ∈ E(Q) such that 
2P = (0, 0) leads to the conditions (and is equivalent to) (i) B is a square of an integer, 
(ii) at least one of the numbers A ± 2

√
B is a square of an integer. If E has three points 

of order two ((0, 0), P1, and P2, say), then we have additionally to consider the equations 
2P = Pi, i = 1, 2.

5.3. Elliptic curves over Q with odd conductor paqb and a rational point of order 5

Theorem 11. If E is an elliptic curve over Q with (possibly even) NE = paqb and 
E(Q)[5] �= {0}, then E is isomorphic to one of the following curves of the form 
Y 2 + a1XY + a3Y = X3 + a2X

2 with E(Q)tors � Z/5Z:

a1 a2 a3 NE a1 a2 a3 NE

a 3 2 4 38 g 8 7 49 203
b 5 4 16 58 h 1 −2 −4 50
c 9 8 64 50 i 6 −7 −49 175
d 4 3 9 75 j 14 13 169 325
e 10 9 81 57 k 38 37 1369 1147
f 6 5 25 155

or belongs to one of the following two families of elliptic curves with odd conductor pq
(p �= 5)
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a1 a2 a3 conditions ΔE

l qv − 1 −qv −q2v p2k+1 = q2v + 11qv − 1, k, v ≥ 0 −p2k+1q5v

m qv + 1 qv q2v p2k+1 = q2v − 11qv − 1, k, v ≥ 0 p2k+1q5v

We will use the following elementary result.

Lemma 5. The equation 1 +11qv−q2v = pu has exactly seven solutions in positive integers 
u, v and primes p, q:

q v p u q v p u

2 1 19 1 3 2 19 1
2 2 29 1 5 1 31 1
2 3 5 2 7 1 29 1
3 1 5 2

Proof. Easy calculations.

Proof of Theorem 11. Less explicit version of this theorem is also given in [18]; below 
we give independent and short proof of this result.

Any elliptic curve over Q, with a rational 5-torsion point is isomorphic to a curve 
E : Y 2+(1 −c)XY −cY = X3−cX2, where c is any nonzero rational number [11]. Writing
c = a/b, (a, b ∈ Z, b > 0, gcd(a, b) = 1) we obtain E : Y 2+(b −a)XY −ab2Y = X3−abX2. 
We have ΔE = a5b5(a2 − 11ab − b2).

Assume ΔE = ±pαqβ . The case a2 − 11ab − b2 = ±1 does not produce any elliptic 
curve of conductor pnqm. The remaining case we divide into two subcases.

(i) a = 1, b = qv, 1 − 11qv − q2v = ±pu. Of course, 1 − 11qv − q2v < 0.
Assuming p = 5, we deduce u = 2, q = 2, v = 1 or u = 3, q = 7, v = 1, and obtain 

the elliptic curves (h) and (i).
Assume p �= 5. It turns out that the equation q2v + 11qv − pu − 1 = 0 has no solution 

in primes p �= 5 and q, if u = 2k. The case u = 2k + 1 leads to the family (l).
(ii) a = −1, b = qv, 1 + 11qv − q2v = ±pu. The equation 1 + 11qv − q2v = pu has 

exactly seven solutions with u, v ≥ 1 and p, q primes (cf. Lemma 5). The corresponding 
elliptic curves are given by (a),...,(g).

Consider the equation 1 +11qv−q2v = −pu. Assuming p = 5, we deduce u = 2, q = 13, 
v = 1; the corresponding elliptic curve is (j). Now assume p �= 5. It turns out that the 
equation q2v − 11qv − 1 − pu = 0 has no solution in primes p, q, p �= 5, if u = 2k + 2. 
The case u = 2 leads to the elliptic curve (k): p = 31, q = 37, u = 2, v = 1. The case 
u = 2k + 1 leads to the family (m).

We have c4 = q4v + 12q3v + 14q2v − 12qv + 1 = p4k+2 − 10qvp2k+1 + 5q2v in case 
(l), and c4 = q4v + −2q3v + 14q2v + 12qv + 1 = p4k+2 + 10qvp2k+1 + 5q2v in case (m). 
Therefore, if p �= 5, then the elliptic curves from families (l) and (m) have multiplicative 
reductions at p and q.



A. Dąbrowski, T. Jędrzejak / Journal of Number Theory 202 (2019) 254–277 273
Remark. We expect that the family (l) consists of the curves with k = 0 only. Similarly 
for the family (m). It leads to the following question, which may be of independent 
interest.

Question. Let p be an odd prime, different from 5. Does the equation t2 − 125 = 4p2k+1

has any solution in positive integers t, k?

5.4. Elliptic curves over Q with odd conductor paqb and a rational point of order ≥ 6

From the results of Sadek [18] it follows that there are no elliptic curves over Q of 
odd conductor paqb and a rational point of order ≥ 6. On the other hand, it is easy to 
check that, for instance, the curves A : Y 2 = X3 + 14X2 + 625X (with Δ = −32 × 58) 
and B : Y 2 = X3 + 46X2 + 81X (with Δ = 38 × 7) both have a rational point of order 
8. We have checked, using Theorems 8 - 10, that these are the only elliptic curves over 
Q of odd conductor paqb and a rational point of order 8.

Proof of Theorem 3.7 in [18] is erroneous, since the Weierstrass equations considered 
there are, in general, not minimal. For instance, the curve A has non-minimal model 
y2−14xy−120y = x3−20x2 (i.e. s = 1, t = 6), and in this case the proof in [18] doesn’t 
work. The same for the second curve B.

6. Existence and non-existence of elliptic curves over Q with certain odd conductors 
paqb

The following results by Howe [10] concern the problem of existence/non-existence 
of elliptic curves over Q with certain odd conductors pq, and generalize Theorems 1 
and 3 from [19]. Proofs of these results use the methods of Ogg [16] [17] and Setzer [19], 
applying in particular basic class field theory.

Theorem 12. ([10], Theorem 4.8) Let N = pq, with p �= q, and p, q ≡ ±1(mod 8). Assume 
that the class numbers of the quadratic fields Q(

√±p), Q(
√±q), and Q(

√±pq) are not 
divisible by 3. Then any elliptic curve over Q of conductor N has a rational point of 
order 2.

Theorem 13. ([10], Theorem 6.1) Assume that p, q are distinct primes satisfying p ≡
7(mod 16), q ≡ 15(mod 16). Assume furthermore that the class numbers of the quadratic 
fields Q(

√±p), Q(
√±q), and Q(

√±pq) are not divisible by 3. Then there are no elliptic 
curves over Q of conductor pq.

Edixhoven, de Groot and Top in [8] considered elliptic curves over Q with bad reduc-
tion at only one prime p and proved inter alia that for p ≡ 5 (mod 12) any such a curve 
with conductor p2 is a twist of one with conductor p. Here we prove analogous result for 
elliptic curves with conductor p2q2.
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Let p and q be distinct prime numbers greater than 3. Given an elliptic curve over 
the rationals with additive reduction at p and q, and good reduction at all other primes 
(i.e. with the conductor p2q2), one can twist it over quadratic extension of Q unramified 
outside {p, q}. The discriminant of the resulting elliptic curve is a product of powers of 
p and q as well. Moreover, we have the following

Lemma 6. Let p, q ≥ 5 be distinct primes and K be the quadratic extension of Q unram-
ified outside {p, q}. Then up to quadratic twist over K all elliptic curves over Q with 
good reduction away from p and q are

(i) the ones with multiplicative reduction at p and q,
(ii) the ones with multiplicative reduction at p and additive reduction at q or vice 

versa,
(iii) the ones with discriminant ±piqj, where i, j ∈ {2, 3, 4}.

Proof. We proceed similarly as in the proof of Lemma 1 in [8]. We omit the details.

Now we present an auxiliary diophantine result.

Lemma 7. If p and q are distinct primes congruent to 5 modulo 12 and 
(

p
q

)
= 1, then 

the diophantine equation

pqx3 − y2 = ±1728psqt, where s, t ∈ {0, 1, 2} (21)

has no integer solution (x, y) with y �= 0.

Proof. Since p ≡ 5 (mod 12), by quadratic reciprocity laws we get −1 = (2
3 ) = (p3 ) = ( 3

p ), 

and the same holds for q. Consequently, 
(

±1728
p

)
=

(
±1728q

p

)
=

(
±1728

q

)
=

(
±1728p

q

)
=

−1. If (21) has a solution for s = 0, then −y2 ≡ ±1728qt (mod p), so ±1728qt must be a 
square modulo p, but it is not true. If t = 0, then we obtain a contradiction by the same 
way. Assume now that (21) has a solution (x, y) for s = 2. Then p divides y, and so p
divides x too. Putting x′ = x/p, y′ = y/p, we get p2qx′3 − y′2 = ±1728qt. Hence again 
±1728qt must be a square modulo p which is impossible. The similar argument holds for 
t = 2. Now assume that pqx3 − y2 = ±1728pq has a solution (x, y). Then y = pqy′ for 
some integer y′. Consequently pqy′2 = x3 ∓ 1728, and we obtain the rational affine point 
on the quadratic twist of the elliptic curve Y 2 = X3 + 1 by ∓3pq. Nagell [15] showed 
that if an integer d is not divisible by primes congruent to ±1 or 7 modulo 12 then the 
only rational solution of dy2 = x3 + 1 is the one with y = 0. Therefore the assertion 
follows.

The above two lemmata imply:
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Theorem 14. If p and q are distinct primes congruent to 5 modulo 12 and 
(

p
q

)
= 1, then 

every elliptic curve over Q with conductor p2q2 is a twist of one with conductor pq, p2q

or pq2.

Proof. Suppose that such elliptic curve do not come from the ones with multiplicative 
reduction at p or at q. Then by Lemma 6, it has discriminant Δ = ±piqj , where i, j ∈
{2, 3, 4}. Moreover, the invariants c4 and c6 satisfy the relation c34 − c26 = 1728Δ, and 
by assumption p and q divide c4. Consequently also p and q divide c6, and we obtain 
equation (21). But by Lemma 7, this equation has no nontrivial integral solution, and 
we are done.

7. Upper bounds for the ranks

Here we present some information about upper bounds for ranks of elliptic curves E
defined over Q of odd conductor NE = paqb (a, b ≥ 1) and with a Q-rational point of 
order 2. If E has three Q-rational points of order 2 and NE = pq, we also compute the 
coefficients ap(E) and aq(E) explicitly (where al(E) := l + 1 − #E(Fl) for any prime 
l, and any elliptic curve E over Q), and consequently we (conjecturally) determine the 
ranks. We start with the following

Lemma 8. Let E be an elliptic curve over Q with a Q-rational point of order 2. Let m and 
n denote the number of primes of multiplicative and additive reduction of E respectively. 
Then rank (E(Q)) ≤ m + 2n − 1.

Proof. It follows by descent via 2-isogeny. See also ([1], Prop. 1.1).

We immediately obtain the following corollaries.

Corollary 1. Any elliptic curve E over Q of conductor pq and with a Q-rational point of 
order 2 has rank ≤ 1.

Corollary 2. Any elliptic curve E over Q of conductor paq (a > 1) and with a Q-rational 
point of order 2 has rank ≤ 2.

Corollary 3. Any elliptic curve E over Q of conductor paqb (a, b > 1) and with a 
Q-rational point of order 2 has rank ≤ 3.

Now we restrict to the case when NE = pq and E has three Q-rational points of 
order 2 (i.e., to the curves from Theorem 1). It is easy to check using Magma (or find in 
Cremona online tables [5]) that the elliptic curves a)-d) from Theorem 1 all have rank 0. 
For the elliptic curves given by e) and f) we have the following results which allow us to 
compute their ranks under the parity conjecture.
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Proposition 1. Let E1 : Y 2 = X3±2
√

64 + pαqβX2 +pαqβX, where pα−qβ = ±16, and 
E2 : Y 2 = X3 ± 2

√
64p2α + εqβX2 + εqβX, where qβ − 16pα = ε, be the curves given by 

e) and f) in Theorem 1. Then

ap (E1) =
{

1 if p ≡ 1 (mod 4) or α is even
−1 if p ≡ 3 (mod 4) and α is odd,

aq (E1) =
{

1 if q ≡ 1 (mod 4) or β is odd
−1 if q ≡ 3 (mod 4) and β is even,

ap (E2) = 1,

aq (E2) =
{

1 if q ≡ 1 (mod 4)
−1 if q ≡ 3 (mod 4) .

Proof. First consider the family E1 : Y 2 = X3 +AX2 +BX, where A = 2η
√

64 + pαqβ , 
B = pαqβ , η = ±1 and η

√
64 + pαqβ ≡ 3 (mod 4). Without loss of generality pα−qβ = 16

(in the case pα − qβ = −16 we switch p and q). Note that A = 2η(pα − 8) = 2η(qβ + 8), 
in particular ηpα ≡ ηqβ ≡ 3 (mod 4). Hence the curve E1 after reduction modulo p has 
the form Y 2 = X2 (X − 16η). Then

#E1 (Fp) = 1 +
p−1∑
x=0

(
1 +

(
x2 (x− 16η)

p

))

= 1 + p +
p−1∑
x=1

(
x− 16η

p

)
= 1 + p−

(
−η

p

)
,

hence ap (E1) =
(

−η
p

)
. Similarly, E1 modulo q is Y 2 = X2 (X + 16η), so aq (E1) =

(
η
q

)
. 

Since ap (E1) = 1 ⇔ η = −1 or η = 1 and p ≡ 1 (mod 4), we obtain the above formula for 
ap (E1). In similar way, we get the formula for aq (E1). Now consider the curve E2 i.e., 
A = 2η

√
64p2α + εqβ and B = εqβ , where qβ−16pα = ε = ±1. Then A = 2η (8pα + ε) =

η
(
qβ + ε

)
, in particular ηε ≡ 3 (mod 4) hence ε = −η. Then reducing modulo p we have 

Y 2 = X (X − 1)2, so ap (E2) = 1, and modulo q we obtain Y 2 = X2 (X − 1), hence 

aq (E2) =
(

−1
q

)
, and the assertion follows.

Corollary 4. Let w (Ei) = ±1 denote the global root number of Ei (i = 1, 2). Then 
w (E1) = −ap (E1) aq (E1) = −1 if and only if q ≡ 1 (mod 4), and w (E2) = −aq (E2) =
−1 if and only if q ≡ 1 (mod 4). Therefore under the parity conjecture

rank (E1 (Q)) =
{

0 if q ≡ 3 (mod 4) ,
1 if q ≡ 1 (mod 4) .
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rank (E2 (Q)) =
{

0 if q ≡ 3 (mod 4) ,
1 if q ≡ 1 (mod 4) .

In particular, the curve E2 with ε = −1 has always rank zero.
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