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In this paper, we consider Abelian varieties over function fields 
that arise as twists of Abelian varieties by cyclic covers of 
irreducible quasi-projective varieties. Then, in terms of Prym 
varieties of the cyclic covers, we prove a structure theorem 
on their Mordell–Weil group. Our results give an explicit 
method to construct elliptic curves, hyper- and super-elliptic 
Jacobians that have large ranks over function fields of certain 
varieties.
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1. Introduction and main results

Let A be an Abelian variety defined over an arbitrary global field k. By famous 
Mordell–Weil Theorem, the set A(k) of k-rational points on A is a finitely generated 
abelain group [6]. In other words, one has A(k) ∼= A(k)tors ⊕ Zr where A(k)tors is a 
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finite subgroup of A(k) called the torsion subgroup, and r is a non-negative number 
called the (Mordell–Weil) rank of A over k and denoted by rk(A(k)). It is a mysterious 
quantity associated to an Abelian variety. Finding Abelian varieties with large ranks is 
one of the most challenging problems in Arithmetic and Diophantine geometry.

For example, when A is an elliptic curve defined over k = Q, it is a folklore conjecture 
that the rank can be arbitrary large [12]. This conjecture should now be regarded as 
being in serious doubt by the results of J. Park and et al., in [10]. In short, they predict 
that the number of elliptic curves over Q with rank ≥ 21 is finite. However, in 2006, 
Elkies presented an elliptic curve over Q with 28 independent generators. In the case of 
the quadratic number fields, Najman showed that there exists an elliptic curve of rank 
at least 30 over k = Q(

√
−3). To see the equation of these curves and more information 

on the high rank elliptic curves over rational numbers and quadratic number fields, we 
refer the reader to [3].

In contrast, for any prime p, there are known explicit elliptic curves over k = Fp(t)
with arbitrary large rank [13,14]. In the case k = C(t), it has been proved that for a very 
general elliptic curve E over k with height d ≥ 3 and every finite rational extension k′

of k the Mordell–Weil group E(k′) is a trivial group, see [15].
In this paper, we generalize the main result of Hazama in [5] to arbitrary cyclic 

s-covers of irreducible quasi-projective varieties for any integer s ≥ 2. We fix a global 
field k of characteristic 0 or a prime number p ≥ 2 not dividing s that contains an s-th 
root of unity denoted by ζ. Let us denote by A[s](k) the subgroup of k-rational s-division 
points of A. Assume that there exists an automorphism σ ∈ Aut(A) of order s. Given the 
irreducible quasi-projective varieties V and V ′ with function fields K and K′, respectively, 
we denote Prym variety of the cyclic s-cover π : V ′ → V by PrymV′/V , all defined over 
k. See Section 2 for the definition and some of the properties of PrymV′/V . Let G = 〈γ〉
be the order s cyclic Galois group of the extension K′|K. Denote by Aa the twist of A
with the extension K′|K, equivalently by the 1-cocycle a = (au) ∈ Z1(G, Aut(A)) given 
by aid = id and aγj = σj for each γj ∈ G, see [2,4] for more on Twist Theory. Then, we 
have the following theorem which is the main result of this article.

Theorem 1.1. Notation being as above, assume that there exists a k-rational point v′0 ∈
V ′(k). Then, as an isomorphism of Abelian groups, we have:

Aa(K) ∼= Homk(PrymV′/V ,A) ⊕A[s](k).

Moreover, if PrymV′/V is k-isogenous to An × B for some positive integer n and an 
Abelian variety B over k, where dim(B) = 0 or dim(B) > dim(A) with no irreducible 
component k-isogenous to A, then rk(Aa(K)) ≥ n · rk(Endk(A)).

For any curve C, let J(C) be the Jacobian variety of C and denote by J(C)[s](k) its 
subgroup of k-rational and s-division points. As an application of the above Theorem, for 
given integers s ≥ 2 and 1 ≤ r ≤ n, we consider the cyclic s-cover π : Cn → Vn where 
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Cn is the product of n copies of the curve Cs,f given by the affine equation ys = f(x), 
where f(x) ∈ k[x] of degree r and non-zero discriminate, and Vn is the quotient of Cn

by a certain cyclic subgroup of Aut(Cn) of order s, see Section 5. Let Cξ
s,f be the twist 

of Cs,f by the cyclic extension L|K, where K = k(Vn) and L = k(Cn). We have the 
following result.

Theorem 1.2. With the above notations and assuming that there exists some k-rational 
point c ∈ Cs,f (k), we have

J(Cξ
s,f )(K) ∼=

(
Endk(J(Cs,f ))

)n ⊕ J(Cs,f )[s](k),

as an isomorphism of Abelian groups; and hence,

rk(J(Cξ
s,f )(K)) ≥ n · rk(Endk(J(Cs,f ))).

The structure of this paper is as follows. In Section 2, we investigate some of the 
properties of Prym varieties of the cyclic covers of quasi-projective varieties. In Section 3, 
we recall the main result of Hazama from [5] that we are going to extend in this paper. 
Finally, we prove Theorems 1.1 and 1.2 in Sections 4 and 5, respectively.

2. Prym varieties of the cyclic covers

The notion of Prym variety was introduced by Mumford in [9] and has been extensively 
studied for double covers of curves in [1]. It has been generalized to the double covers of 
irreducible quasi-projective varieties in [5]. Here, we generalize this notion to the case of 
cyclic s-covers of varieties.

Definition 2.1. For an integer s ≥ 2, the Prym variety of the cyclic s-cover π : V ′ → V of 
irreducible quasi-projective varieties over k is defined by the quotient Abelian variety

PrymV′/V := Alb(V ′)
Im(id + γ̃ + · · · + γ̃s−1) ,

where Alb(V ′) is Albanese variety and γ̃ is the automorphism of Alb(V ′) induced by an 
order s automorphism γ ∈ Aut(V ′) defined over k.

We note that if both of the varieties V and V ′ are curves, then this definition is 
compatible with the one given in [8], according to the following lemma.

Lemma 2.2. Given an integer s ≥ 2, let π : V ′ → V be a cyclic s-cover of irreducible 
quasi-projective varieties, both as well as π defined over k. Suppose that γ ∈ Aut(V ′) is 
an automorphism of order s defined over k. Denote by γ̃ the automorphism of Alb(V ′)
induced by γ. Then there is a k-isogeny of Abelian varieties,
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PrymV′/V ∼k ker(id + γ̃ + · · · + γ̃s−1 : Alb(V ′) → Alb(V ′))◦,

where (∗)◦ means the connected component of its origin.

Proof. Let A = Alb(V ′) and define m = dimA, m1 := dim ker(id − γ)◦, and m2 :=
dim ker(id + γ + · · · + γs−1)◦. Then, m = m1 + m2 by considering the induced action 
on the tangent space of A at the origin. We have γ(P ) = P for all P ∈ ker(id − γ)◦ ∩
ker(id + γ + · · · + γs−1)◦, so 0 = (id + γ + · · · + γs−1)(P ) = sP which implies that 
ker(id − γ)◦ ∩ ker(id + γ + · · · + γs−1)◦ ⊆ A[s]. This shows the k-isogeny,

A ∼k ker(id− γ)◦ × ker(id + γ + · · · + γs−1)◦.

Moreover, we note that Im(id + γ + · · · + γs−1) ⊆ ker(id − γ)◦ and

m−m2 = dim Im(id + γ + · · · + γs−1) = dim ker(id− γ)◦ = m1.

Therefore, Im(id + γ + · · · + γs−1) = ker(id − γ)◦ that gives the desired result. �
Here, we describe a general method to construct new s-cover using the given ones. 

Then, we determine the relation between their Prym Varieties. We will use this result in 
the proof of Theorem 1.2.

For i = 1, 2, let πi : V ′
i → Vi be s-covers of irreducible quasi-projective varieties, all 

defined over k. Assume that there exists some k-rational simple point v′i ∈ V ′
i. Denote 

by Gi the cyclic Galois group of the corresponding function field extensions. Then, the 
covering π1 × π2 : V ′

1 × V ′
2 → V1 × V2 has Galois group G1 × G2 ∼= Z/sZ × Z/sZ. 

Suppose that W is its intermediate cover V ′
1 × V ′

2/G, where G is the group generated 
by γ = (γ1, γ2) ∈ Aut(V ′

1 × V ′
2). Let γ̃ = (γ̃1, ̃γ2) be the order s automorphism in 

Aut(Alb(V ′
1) × Alb(V ′

2)) corresponding to γ where γ̃i is an automorphism of Alb(V ′
i)

induced by γi ∈ Aut(V ′
i) of order s ≥ 2 for i = 1, 2. Then there exists a k-rational 

isomorphism

φ := Alb(V ′
1) × Alb(V ′

2) → Alb(V ′
1 × V ′

2)

given by φ = φ̃1 + φ̃2 where φ̃i : Alb(V ′
i) → Alb(V ′

1) × Alb(V ′
2) is induced by the 

inclusion map φi : V ′
i → V ′

1 × V ′
2 defined by φ1(v) = (v, v′2) and φ2(v) = (v′1, v). By this 

isomorphism, we have ker(μ) ∼k ker(μ1) ×ker(μ2), where μ := id +γ̃+· · ·+γ̃s−1 and μi :=
id +γ̃i+· · ·+γ̃s−1

i for i = 1, 2. This implies that ker(μ)◦ ∼k ker(μ1)◦×ker(μ2)◦. Therefore, 
applying Lemma 2.2 and putting everything together, we conclude the following result.

Proposition 2.3. As a k-rational isogeny of Abelian varieties, we have

PrymV′
1×V′

2/W ∼k PrymV′
1/V1

× PrymV′
2/V2

.
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3. The result of Hazama

In [4,5], using the twist theory [2,4], Hazama gives an explicit method for construction 
of Abelian varieties with large rank over function fields. In [16], Wang extended the result 
of [4] to cyclic covers of the projective line with prime degrees. Inspired by Hazama’s 
result, in [17], Yamagishi reduced the problem of identifying the elliptic curves of rank 
1 ≤ n ≤ 7 with given x-coordinate of generators to the problem of finding rational 
points on certain varieties. By providing a parametrization for the rational points on 
those varieties, she obtained all of the elliptic curves of rank 1 ≤ n ≤ 7 defined over a 
field of characteristic different from two.

Here, we briefly recall the main result of Hazama from [5]. Let A be an Abelian variety 
over k with characteristic different from two. Suppose that π : V ′ → V is a double cover 
with Prym variety PrymV′/V , of irreducible quasi-projective varieties V and V ′ defined 
over k. Let K and K′ be the function fields of V and V ′, respectively, and G be the 
Galois group of the extension K′|K. Denote by Aa the twist of A by the extension K′|K, 
equivalently by the 1-cocycle a = (au) ∈ Z1(G, Aut(A)) given by aid = id and aι = −id.

Theorem 3.1. With the above notations, assume that there exists a k-rational simple 
point v′0 ∈ V ′. Then we have an isomorphism of Abelian groups,

Aa(K) ∼= Homk(PrymV′/V ,A) ⊕A[2](k).

Moreover, if PrymV′/V is k-isogenous with En × B for some positive integer n, where 
E is an elliptic curve over k and B is an Abelian variety with no simple component 
k-isogenous to E, then rk(Ab(K)) = n · rk(Endk(E)).

We refer the reader to Theorem 2.2 and Corollary 2.3 in [5] to see the proof.

4. Proof of Theorem 1.1

Suppose that the natural map iV′ : V ′ → Alb(V ′) sends v′0 to the origin of Alb(V ′) so 
that iV′ is defined over k. Then, using Theorem 4 of Chapter II in [7], we have A(K′) =
{k-rational maps V ′ → A} ∼= Homk(Alb(V ′), A) ⊕ A(k), where P ∈ A(K′) corresponds 
to the pair (λ, Q) ∈ Homk(Alb(V ′), A) ⊕A(k) such that P (v′) = λ(iV′(v′)) +Q for each 
v′ ∈ V ′. This implies that the action of γj ∈ G is given by γj(λ, Q) = (λ ◦ γ̃j , Q) for 
j = 0, · · · , s − 1, where γ̃ is the automorphism of the Albanese variety Alb(V ′) induced 
by γ ∈ Aut(V ′). Since γs = id and hence γ̃s = id, so

Aa(K) ∼= {P ∈ A(K′) : bγj ·γj

(P ) = P, ∀γj ∈ G},

by applying Proposition 1.1 in [4]. This implies that (λ, Q) ∈ Aa(K) if and only if 
γj(λ, Q) = (λ ◦ γ̃j , Q) = (λ ◦ γ̃s−j , Q) = γs−j(λ, Q). Thus (λ, Q) ∈ Aa(K) if and only if 
λ annihilates Im(id + γ̃ + · · · + γ̃s−1) and Q ∈ A[s](k). Therefore,
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Aa(K) ∼= Homk(PrymV′/V ,A) ⊕A[s](k).

Furthermore, if we assume that PrymV′/V is k-isogenous with An×B for some positive 
integer n and some Abelian variety B defined over k such that dim(B) = 0 or dim(B) >
dim(A) with no irreducible component k-isogenous to A, then

Aa(K) ∼= Homk(PrymV′/V ,A) ⊕A[s](k)
∼= Homk(An × B,A) ⊕A[s](k)
∼= Homk(An,A) ⊕ Homk(B,A) ⊕A[s](k)
∼= (Endk(A))n ⊕ Homk(B,A) ⊕A[s](k).

Therefore, as Z-modules, we have rk(Aa(K)) ≥ n · rk(Endk(A)).

5. The proof of Theorem 1.2

Given the integers s ≥ 2 and 1 ≤ r ≤ n, fix a polynomial f(x) ∈ k[x] of degree 
r and non-zero discriminant. Consider the curve Cs,f : ys = f(x) with a rational point 
c ∈ Cs,f (k) that admits an order s automorphism ι : (x, y) �→ (x, ζ ·y). For each 1 ≤ i ≤ n, 
let C(i)

s,f be a copy of Cs,f defined by the affine equation ysi = f(xi) and denote by ιi the 

corresponding automorphism for each of these curves. Define Cn :=
∏n

i=1 C
(i)
s,f which can 

be expressed by the simultaneous equations ysi = f(xi) for i = 1, · · · , n. Let G = 〈γ〉 be 
the order s cyclic subgroup of Aut(Cn), where γ := (ι1, · · · , ιn), and define Vn := Cn/G. 
If we assume that L is the function field of Cn, i.e., L = k(x1, x2, · · · , xn, y1, y2, · · · , yn)
where x1, x2, · · · , xn are independent transcendental variables and each yi defines a de-
gree s extension by the equation ysi − f(xi) = 0, then K = k(Vn) the function field of 
Vn is equal to the set of all G-invariant elements of L, i.e.,

K = LG = k(x1, · · · , xn, y
s−1
1 y2, · · · , ys−1

1 yn−1).

Since (ys−1
1 yi+1)s = f(x1)s−1f(xi+1) holds for i = 1, · · · , n − 1, so by defining zi :=

ys−1
1 yi+1 the variety Vn can be expressed by zsi = f(x1)s−1f(xi+1) for i = 1, · · · , n − 1. 

Hence L|K is a cyclic extension of degree s determined by ys1 = f(x1), i.e.,

L = K(y1) = k(x1, · · · , xn, z1, · · · , zn−1)(y1).

Define Cξ
s,f to be the twist of Cs,f by the extension L|K. In a similar way as Corollary 3.1 

in [4], one can see that Cξ
s,f is defined by the affine equation f(x1)zs = f(x). It is also 

easy to check that Cξ
s,f contains the following K-rational points:

P1 := (x1, 1) and Pi := (xi+1, zi/f(x1)) for (1 ≤ i ≤ n− 1). (1)
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Remark 5.1. The construction of Cn and Vn generalizes that given by Yamagishi in [17], 
which is used to characterize the elliptic curves of rank ≤ 7 with a given set of algebraic 
numbers as x-coordinates of the generators of their Mordell–Weil group.

By the fact that the Albanese and Jacobian varieties of curves coincide and applying 
Lemma 2.2 to V ′ = C(i)

s,f = Cs,f and V = P1, we have

PrymC(i)
s,f/P

1 =
J(C(i)

s,f )
Im(id + ι̃ + · · · + ι̃s−1) ∼k ker

(
id + ι̃ + · · · + ι̃s−1)◦.

Since 0 = id − ι̃s = (id − ι̃)(id + ι̃ + · · · + ι̃s−1) and id �= ι̃, we have

0 = id + ι̃ + · · · + ι̃s−1 ∈ End(J(C(i)
s,f )) = End(J(Cs,f )),

which implies that PrymC(i)
s,f/P

1 = J(C(i)
s,f ) for each i = 1, · · · , n. Applying Proposition 2.3, 

one can get an k-isogeny of Abelian varieties

PrymCn/Vn
∼k

n∏

i=1
PrymC(i)

s,f/P
1 = J(Cs,f )n. (2)

Let us denote by Qi the image of Pi (i = 1, · · · , n) given by (1) under the canonical 
embedding of Cξ

s,f into J(Cξ
s,f ). Define a = (au) ∈ Z1(G, Aut(J(Cs,f )) by aid = id and 

aγj = ι̃j where γj ∈ G and ι̃ : J(Cs,f ) → J(Cs,f ) is the automorphism induced by 
ι : Cs,f → Cs,f . Denote by J(Cs,f )a the twist of J(Cs,f ) with the 1-cocycle a = (au). 
Then J(Cs,f )a = J(Cξ

s,f ) by the lemma on page 172 in [4]. Applying Theorem 1.1 with 
V ′ = Cn, V = Vn, and A = J(Cs,f ), we have

J(Cξ
s,f )(K) ∼= Homk(PrymCn/Vn

, J(Cs,f )) ⊕ J(Cs,f )[s](k)
∼= Homk(J(Cs,f )n, J(Cs,f )) ⊕ J(Cs,f )[s](k)
∼= (Endk(J(Cs,f )))n ⊕ J(Cs,f )[s](k).

Thus, as Z-modules, we have

rk(J(Cξ
s,f )(K) ≥ n · rk(Endk(J(Cs,f ))).

Tracing back the above isomorphisms shows that the points Q1, · · · , Qn belong to the 
set of independent generators of J(Cξ

s,f )(K).
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