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Abstract
. . SRy+Ry+---+Ry
It is proved that the function @(z) = >, -, i %RO‘)((L:IRI )“'E‘lizkk
certain continued fraction, takes algebraically independent values at any distinct nonzero
algebraic numbers inside the unit circle if the sequence {Ry},~, is the generalized Fibonacci

numbers.
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1. Introduction
Let {Fi};~, be the sequence of the Fibonacci numbers defined by
Fo=1, F =2, Fu=Fu.+F (k=0).

Beresin, Levine, and Lubell [1] proved that if

[T -2 =3 sk,

k=0 k=0
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then ¢(k) = 0 or +1 for any k>0. Tamura [7] generalized this result by proving the
following theorem: Let { R}, -, be a linear recurrence of positive integers satisfying

Rk+n = Rk+n71 + -+ Ry (k>0)

with n>2 and let

P(z)= [ (1 =zR) =" e(k)z.

k=0 k>0

Then, if 7 is even, {e(k) | k=0} is a finite set; if in addition R, = 2F (0<k<n—1),
¢(k) = 0 or +1 for any k>0. He also showed that P(g~!) is irrational for any integer
g with |g|>2. In the same paper, he studied a Lambert-type series

ZR()+R|+'“+R/(

COEDY (1= zR) (1 — zR)oo (1 — zR0)

k=0

and proved, using its continued fraction expansion
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ZRn (1—zRn-1)

TF

that ©(g~") is irrational for any integer g=>2. It is conjectured in [7] that P(«) and
O (a) are transcendental for any algebraic number o with 0 < |«| < 1. We note that the
transcendency of P(«), and even the algebraic independence of the values of P(z) at
distinct algebraic numbers, can be deduced from Theorem 5 in [9]: Let o, ..., be
algebraic numbers with 0<|o;| <1 (1<i<r) such that none of o;/o; (1<i<j<r)isa
root of unity. Then P(¢;) (1<i<r) are algebraically independent. In this paper we
prove the algebraic independency of the values at algebraic numbers of @(z) defined
by a linear recurrence which is more general than {Ry},-,. Such values can be
reduced to those of Mahler functions of several variables, which satisfies a more
general type of functional equation than that discussed in [9], so that we need new
techniques in this paper to treat these functions.
Let {ax}; -, be a linear recurrence of positive integers satisfying

Ajetn = Cljyn—1 + -+ + Culj (kZO), (1)

where ¢y, ..., ¢, are nonnegative integers with ¢, #0. For any k>0, let N, be the
greatest common divisor of n consecutive terms ay, dgi1, ..., dkin—1- We define a
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polynomial associated with (1) by

PX)=X"—c X" — ... —¢,. (2)

Theorem. Let {ai}; - be a linear recurrence satisfying (1). Suppose that {ay}; -, is
not a geometric progression. Assume that ®(+1)#0 and the ratio of any pair of
distinct roots of ®(X) is not a root of unity. Define

Za0+u|+'“+ak
f(Z) - ];) (1 _Zu())(l — Z“l)...(l _Z“k)
z%
s B St ) | ¥
- —z%(1 — z4)
1+
—z (] — 1)

1+

Let oy, ..., 0, be algebraic numbers with 0<|o;| <1 (1<i<r). Thenf (o), ...,f (o) are

algebraically dependent if and only if there exist some k>0 and distinct i,j (1<i,j<r)

such that oN* = ¢,

i j

Remark 1. Theorem with r =1 implies that f(«) and so in particular @(x) is
transcendental, since the characteristic polynomial X" — (X"~ !4 ... +1) of
{Ri}iso 1is irreducible over Q@ and its roots py,...,p, satisfy p;>1>
max{|p,l, ..., |p,|} (cf. Lemma 10 in [6]) and so, by Remark 1 in [8], none of
pi/p; (i#]) is a root of unity, which means that Theorem can be applied to O(z).
Thus, both of the Tamura’s problems mentioned above has been completely settled.

As a corollary of Theorem, we find a new class of functions each of which takes
algebraically independent values at any given distinct algebraic numbers different
from zero.

Corollary. Let {ai};-, be as in Theorem. Suppose in addition that N; =
g.cd.(ak, ki1, -y Arin-1) = 1 for any k=0. Let f(z) be the function of the variable
z defined by (3) and let oy, ..., a, be algebraic numbers with 0<|o;| <1 (1<i<r). Then
f(ar), ....f () are algebraically independent if oy, ..., o, are distinct.

Remark 2. The condition that Ny =1 for any k>0 is satisfied if ¢, =1 in (1)
and g.c.d.(ag, ...,a,—1) = 1. For instance, the linear recurrence {R/c}k>0 defined
above satisfies this condition if g.c.d.(Ry, ..., R,—1) = 1.
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Example. If g.c.d.(Ry, ..., R,—1) =1, then O(w;),...,0O(x,) are algebraically inde-
pendent for any distinct algebraic numbers o, ..., o, with 0 <|o;| <1 (1<i<r) by the
corollary with Remarks 1 and 2.

2. Lemmas
Let F(zy,...,z,) and F([[z,...,z,]] denote the field of rational functions and the
ring of formal power series in variables zj, ...,z, with coefficients in a field F,

respectively, and F* the multiplicative group of nonzero elements of F. Let Q = (;)
be an n x n matrix with nonnegative integer entries. Then the maximum p of the
absolute values of the eigenvalues of  is itself an eigenvalue (cf. [2, Theorem 3, p.
66]). If z = (z1, ..., z,) is a point of C" with C the set of complex numbers, we define
a transformation Q: C"— C" by

n n
Qz = < z](-alf, ,H z](.”"j). (4)

J=1 Jj=1

We suppose that Q and an algebraic point a = (o, ..., ®,), where o; are nonzero
algebraic numbers, have the following four properties:

(I) 2 is nonsingular and none of its eigenvalues is a root of unity, so that in
particular p>1.
(I) Every entry of the matrix Q" is O(p*) as k tends to infinity.
(1D 1f we put Qfa = (ocgk), ...,rxf,k>), then

log |o¢fk)|< - cpk (1<i<n)

for all sufficiently large k, where c¢ is a positive constant.
(IV) For any nonzero f(z) € C[[zy, ..., z,]] which converges in some neighborhood of

the origin, there are infinitely many positive integers k such that f° (Qka) #0.

We note that property (I1) is satisfied if every eigenvalue of Q of absolute value p is
a simple root of the minimal polynomial of Q.

Lemma 1 (Tanaka [8, Lemma 4, Proof of Theorem 2]). Suppose that ®(+1)#0 and
the ratio of any pair of distinct roots of ®(X) is not a root of unity, where ®(X) is the
polynomial defined by (2). Let

C1 1 0 0
(&) 0 1

Q= 0 (5)
1

o
=
(e
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and let By, ..., be multiplicatively independent algebraic numbers with
0<|B;|<1 (1<j<s). Let p be a positive integer and put

Q' = diag(, ..., Q).
————

Then the matrix Q' and the point

B=(1, 1, By 1y 1, B)
S~—— N——

have properties (I)—~(1V).

Lemma 2 (Kubota [3], see also Nishioka [5]). Let K be an algebraic number field.
Suppose that f(z2), ...,fm(z) €K][[z1, ..., z4]] converge in an n-polydisc U around the
origin and satisfy the functional equations

fi(Qz) = ai(z)fi(z) + bi(z) (1<i<m),

where a;(z),bi(z) € K(z1, ..., zy) and a;(0) is defined and nonzero. Assume that the n X n
matrix Q and a point ae U whose components are nonzero algebraic numbers have

properties ()—(IV) and that a;(z) are defined and nonzero at Q*a for all k=0. If
f1(2), ..., fm(z) are algebraically independent over K(zi, ...,z,), then fi(a), ..., fm(a)
are algebraically independent.

Lemma 2 is essentially due to Kubota [3] and improved by Nishioka [5].

In what follows, C denotes a field of characteristic 0. Let L = C(zy, ..., z,) and let
M be the quotient field of C[[zy, ..., z,]]. Let Q be an n x n matrix with nonnegative
integer entries having property (I). We define an endomorphism 7: M — M by

I7(z) =/(Qz) (f(z)eM)
and a subgroup H of L* by

H={g'g"" |geL"}.

Lemma 3 (Kubota [3], see also Nishioka [5]). Let fie M (i =1, ...,m) satisfy
7= adi+ by,

where a;e L™, b;e L (1<i<m). Suppose that a;,b; (1<i<m) have the following
properties:

(i) For any i (1<i<m), there is no element g of L satisfying

g" =a;g+cb;, ceC*.
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(1) For any distinct i,j (1<i,j<m), a,»aj*I ¢H.

Then the functions f; (1<i<m) are algebraically independent over L.

We adopt the usual vector notation, that is, if 7 = (iy, ..., #,) e Ny with Ny the set
of nonnegative integers, we write z/ = z{ ---zi». We denote by C|zy, ..., z,] the ring of
polynomials in variables zy, ..., z, with coefficients in C.

Lemma 4 (Nishioka [5]). If 4, Be Clzy, ..., z,| are coprime, then (A%, B*) = 7, where
IeNj.

Lemma 5 (Tanaka [9]). Let Q be an n X n matrix with nonnegative integer entries
which has property (1). Let R(z) be a nonzero polynomial in Clzy, ...,z,]. If R(Qz)
divides R(z)z', where 1€ N}y, then R(z) is a monomial in z, ..., zy.

Lemma 6. Let P(z) be a nonconstant polynomial in z = (z1, ...,z,) withn=2. Let Q be
an n x n matrix with positive integer entries which has property (1). Then

deg. P(Qz)>deg, P(z).

Proof. Let ¢z’ be a term of P(z) for which deg, P(z) = J'1 holds, where 1=
(1,...,1)eN{. Then ¢z’ is a term of P(Qz) and so

deg, P(Qz)>JQ'1>nJ'1>J'1.
This completes the proof of the lemma. O

Let {ax};~, be a linear recurrence satisfying (1) and define a monomial

P(z) =z ez (6)

n?

which is denoted similarly to (4) by
P(z) = (ap-1, ...,a0)z (7)
Let Q be the matrix defined by (5). It follows from (1), (4), and (7) that

P(ka) — Z‘f/ﬁrn—l _“ZZI\' (k;o)

Lemma 7 (Tanaka [9]). Suppose that {a;}, - is not a geometric progression. Assume
that ®(+1)+#0 and the ratio of any pair of distinct roots of ®(X) is not a root of unity.
Let C be an algebraically closed field of characteristic 0. Suppose that G(z) is an
element of the quotient field of C[[z1, ...,z,)] satisfying the functional equation of the
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form
pH+q—1
<H Ok (P ) G(22),

where Q is defined by (5), p>0, q=0 are integers, and Qr(X)e C(X) (¢q<k<p+
q — 1) are defined and nonzero at X = 0. If G(z)e C(zy, ...,z,), then G(z)eC and
Or(X)eC™ (g<k<p+q-1).

3. Proof of Theorem

Proof of Theorem. First, we prove that if ocjlvko = ocg/“‘ for some ky>0 and distinct
i, (1<it,ib<r), then f(o;,) and f(o;,) are algebraically dependent. We see by (1)
that Ny, divides a; for any k> ko. Hence, if ocl].:/k” = 12’“7 then of* = o* for any k>ko,
so that

k=0 1 k=0 [=0 1
k OC?]
=> I
]
k>ko I=ko %;
k OC?’
=> 1+
—_
k=ko I=ko alz
ko—1 1 — o ko—1 k o
_ ) )
- H o f(aiz) - H 11— )
k=0 iy k=0 [=0 i

which means that f(o;,) and f(o;,) are algebraically dependent.

Next we prove that if f(a;), ..., f(x,) are algebraically dependent, then there exist
some k>0 and distinct i,i (1<i;,i<r) such that ocf?fk = cxg". Suppose that

f(o1), ..., f (o) are algebraically dependent. There exist multiplicatively independent

algebraic numbers f;, ..., f; with 0<|B;| <1(1<j<s) such that
ol o
w=0 [] 87 (1<i<r), ®)
J=1
where (j, ..., {, are roots of unity and e¢; (1 <i<r, 1<j<s) are nonnegative integers

(cf. [4,5]). Take a positive integer N such that C,N =1 for any i (1<i<r). We can
choose a positive integer p and a sufficiently large integer ¢ such that aiy, =
ar (mod N) for any k>q. Let y;; (1<j<s, 1</A<n) be variables and let y, =



T.-a. Tanaka | Journal of Number Theory 105 (2004) 38—48 45

Wity -y ¥in) (1<j<s), y = (v1, ..., ¥y). Define

[ 5T 7@y
kzq I=q L= H./':I P(Qly./‘)e[/

(I<i<r)

)

where P(z) and Q are defined by (6) and (5), respectively. Letting

B=(1,. .0l By 1, 1B,
N—— S~——
n—1 n—1
we see that
k O({h
gl(ﬁ) = H 1 _laal
k=q I=q i
and so

Hence the values g;(B) (1<i<r) are algebraically dependent. Let
Q = diag (¥, ..., Q"),
—_——

s

where p is replaced by its multiple such that all the entries of ©” are positive. (We can
choose such a p. For the proof see [8].) Then each ¢;(y) satisfies the functional

equation
g1 ae T8 ko, \eir
a0 = 11 - I} . :lsP(Q yfc) - i(2y)
k=q 1= Hj:l P(Q y_/) !

Pl e T P
k=q l=q 1= H;:l P(Qlyj)ei'

+

where Q'y = (Qy,, ..., 2Q%p,). Let D = |det(Q — I)|, where I is the identity matrix.
Then D is a positive integer, since @(1)#0, where &(X) is the polynomial

defined by (2). Let ), = y/l;/D (I1<j<s, 1<a<n), ¥y = (), -0 ) (1<),

and y' = (y},...,y,). Noting that [[_, P((Q—1)"'Q%)% =[[_, P(D(Q-1I)""
Q1y))7 e Q(y'), we define

hi(y') = f[ P((Q - 1)_19"y,~)""">gf(y) - Ri())
=1

H P(D “laty )e">gt(y') - Ri(y) (I<i<r),
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where )
R G
gi y/ = s ev.eQ ' )
0 =2 = F i a2V

s ki k arTrs op Ql 1\ Deij _
) (H P(D(@ — 1)) ) [ o)
=1 =G ey PQy)™

k=q I=q

and k; is such a large integer that 4;(y') e Q[[y’']] (1<i<r). Then each &;(y’) satisfies
the functional equation

p+q—1 ay
hi(y') = ( 11 o Cl’ oy /)De,)h (@)

k=q

; e (T, PP
-1 ;i j=1
(o o) ST T e
=

(Pii[l C{%
+ — - | Ri(QY) — Ri(y),
iy 1= T, P@by)Pe

where Q'y' = (Qy), ..., Q"y’). Since g;(B) (1<i<r) are algebraically dependent, so
are h;(B') (1<i<r), where
B=(1, . LB/ 1, L YD),
—_ S~——

n—1 n—1

By Lemma 1, the matrix € and B have properties (I)~(IV). Then the functions
hi(y') (1<i<r) are algebraically dependent over Q(y') by Lemma 2. Hence
g:(») (1<i<r) are algebraically dependent over Q(y') and so they are algebraically
dependent over Q(y). Therefore by Lemma 3, at least one of the following two cases
arises:

() For some i (1<i<r), there exist an algebraic number ¢#0 and F(y)e Q(y)
such that

+q— aj s k e
F(y) = <p -l P@y) )F(Q’y)

k=g 1= H;:l P(Qkyj)e'j
S |
+ ¢ Z 1 ap A ! (’ij.
=q I=¢ * G Hj:l P(Q.V_/)

(ii) For some distinct iy,i, (1<iy,i,<r), there exists G(y)e Q(»)\{0} such that

(pﬁl ak H;V . P( k )(’;1/( _ Qk H;:l P(Qky/)e,»z/')
T, P(@) ™ (1 — LTI, P(2y,))

Gy) = ) G(Qy). (10
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Let M be a positive integer and let

Y= eevn) = @2 (1<),

where M is so large that the following two properties are both satisfied:

@) If (e, ..., ei) #(en, ..., ens), then Zj L eiM- ‘;ézls':le,va
(b) Fr(z) = F(zM, ...,z . 200 2MYeQ(z, ... zn),

n

G*(z) = G(Z{W, ...72,]1” 211\/1*7 ...,zfl"['\)eQ(zl, <, z)\{0}.

Then by (9) and (10), at least one of the following two functional equations holds:

. pt+g-1 é’;lkP Ok \Ei . prg—1 k aIP Ql
F@:<Hffﬁﬁ%ﬁyw Z:Hr%$&> .

k=q k=q I=q

Ptq—1 rax k NEi (1 _ rak K, \Eiy
@@:< GrP(Q9)" (1= (i P(@2)"™)

k=q C?ZI"P(ka)Eiz(l _ CakP(Q )E )) G*(sz) (12)

where E; = 377, e; M/ for any i (1<i<r).
Suppose that (11) holds. Letting F*(z) = A(z)/B(z), where A(z) and B(z) are

coprime polynomials in Q|zy, ..., z,], we have
ptg-1
AR)B@7) [[ (- P@2)")
k=q
ptg—1

B(z) H (4 p(QFz)”
p+q71

+ B()B Z H/:“fP @27 [ a-cp@ 3

m=k+1

by (11). We can put (4(Q’z), B(Q'z)) = z!, where I € Njj, by Lemma 4. Then B(Q’z)
divides B(z)z Herq ' P(Q*7)%. Therefore B(z) is a monomial in zi,...,z, by
Lemmas 1 and 5. If ¢ is sufficiently large, the right-hand side of (13) is divided by
2z, B(Q°z) and thus A(z) is divided by z;---z,. Since 4(z) and B(z) are coprime,
B(z)eQ*. If A(z)¢Q, then deg, A(Q’z)>deg, A(z) by Lemma 6, which is a
contradiction by comparing the total degrees of both sides of (13). Hence 4(z) € Q.
Letting z; = --- =z, =0 in (13), we get 4(z) = 0. Dividing both sides of (13) by
P(qu)E" and then letting z; = --- =z, =0, we see that ¢ =0, a contradiction.
Therefore (12) must hold.
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Then by Lemma 7 we see that

C?lkXE,-l (1 _ (?;«XEQ)
Cgk XE’Z (1 _ é’?lk XE” )

:"/kGQX

for any k (g<k<p+q¢—1), where X is a variable. Hence E; = E;,, y, =1 and
(i =3 (g<k<p+q—1). Therefore (e;1, ..., €i5) = (€p1, ..., €ps) by the property
(a), and (" = (¥ (k=q) since ary, = ax (mod N) for any k>gq. Hence o =
oc?z" (g<k<g+n—1) by (8) and so ocg" = ocg". This completes the proof of the
theorem.
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