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Abstract

Let ζ be a nonzero real number and let α be a Salem number. We show that the difference between the
largest and smallest limit points of the fractional parts of the numbers ζαn, when n runs through the set of
positive rational integers, can be bounded below by a positive constant depending only on α if and only if
the algebraic integer α − 1 is a unit.
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1. Introduction

The problem of studying the distribution mod 1 of the powers of a fixed real number α greater
than 1, has been of interest for some time. In his monograph [4], R. Salem considered the case of
certain special real numbers α. For instance, he showed that if α is a Pisot number then αn mod 1
tends to zero, whereas if α is a Salem number then the sequence αn mod 1 is dense in the unit
interval. Recall that a Pisot (respectively a Salem) number is a real algebraic integer greater
than 1 whose other conjugates are of modulus less than 1 (respectively are of modulus at most 1
and with a conjugate of modulus 1). Throughout, when we speak about a conjugate, the minimal
polynomial or the degree of an algebraic number we mean over the field of the rationals Q.

A slightly finer problem concerns studying the distribution of the fractional parts {ζαn} of the
numbers ζαn, where ζ is a fixed real number and where n runs through the set of non-negative
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rational integers N. Recall that {ζαn} is the difference ζαn − [ζαn] and [ζαn] is the greatest
rational integer less than or equal to ζαn. In a recent paper [1], A. Dubickas has shown that if α

is algebraic and ζ is not in the field Q(α) when α is either a Pisot or a Salem number, then the
distance Δ(ζ,α) between the largest limit point of the sequence ({ζαn})n∈N and the smallest one
satisfies

Δ(ζ,α) � 1

L(α)
, (1)

where L(α) is the sum of the absolute values of the coefficients of the minimal polynomial
of α. The aim of this paper is to show when α is a Salem number, ζ ∈ Q(α) and ζ �= 0, that
inequality (1) remains true only if α − 1 is a unit:

Theorem. Let α be a Salem number and let ζ be a nonzero element of the field Q(α). Then,

(i) Δ(ζ,α) > 0;
(ii) if ζ is an algebraic integer, then Δ(ζ,α) = 1;

(iii) if α − 1 is a unit, then Δ(ζ,α) � 1
L(α)

;
(iv) if α − 1 is not a unit, then infζ Δ(ζ,α) = 0.

We prove this theorem in Section 3. In the next one we show some auxiliary results. As usual
we denote the ring of rational integers, the field of complex numbers and the ring of polynomials
with rational integer coefficients by Z, C and Z[X], respectively.

It is worth noting that the case ζ = 1 of the theorem (ii) is a corollary of the much stronger
result of R. Salem: the sequence ({ζαn})n∈N is dense in the unit interval. Using the same argu-
ment as in [4, p. 33], it is easy to check that the sequence ({ζαn})n∈N is dense in the unit interval
when ζ ∈ Z and ζ �= 0. However, we shall show in Remark 1 that for any Salem number α there
is a nonzero integer ζ of the field Q(α) and a subinterval Iζ of the unit interval such that the
sequence ({ζαn})n∈N has no limit point in Iζ ; moreover, the number ζ can be chosen so that the
length of the interval Iζ is close to 1.

2. Some lemmas

Lemma 0. If α is a Salem number of degree d , then d is even, d � 4 and 1
α

is the only conjugate
of α with modulus less than 1 (all the other conjugates are of modulus 1).

Proof. The proof follows immediately from the definition of Salem numbers. �
Lemma 1. [3] Let α1 be an algebraic number with conjugates α1, α2, . . . , αd , where d � 2.
Assume that for some N ∈ N, some subset {i1, i2, . . . , ik} of {1,2, . . . , d} with 1 � k � d − 1, and
some λi1, λi2, . . . , λik ∈ C we have

∑
1�j�k

λij α
n
ij

∈ Q

for all rational integers n � N . Then,

λi1 = λi2 = · · · = λik = 0.
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Lemma 2. Let ε > 0 and let α1, α2, . . . , αd−2 be the conjugates with modulus 1 of a Salem

number α labelled so that α2j = α2j−1 for all j ∈ {1,2, . . . , d
2 − 1}. Then,

(i) for any subset {η1, η2, . . . , ηd−2} of C, where η2j = η2j−1 and |η2j | = 1 for all j ∈
{1,2, . . . , d

2 − 1}, there is n ∈ N arbitrarily large such that

∣∣αn
k − ηk

∣∣ < ε

for all k ∈ {1,2, . . . , d − 2};
(ii) there exists a nonzero element R ∈ Z[X] of degree at most d − 1 satisfying

∣∣R(αk)
∣∣ < ε

for all k ∈ {1,2, . . . , d − 2}, and

R(1) ≡ 1 mod
(
P(1)

)
,

where P is the minimal polynomial of α.

Proof. (i) By Lemma 0 the conjugates of α can be labelled as in Lemma 2. Let α1 = eiπθ1 ,
α3 = eiπθ3, . . . , αd−3 = eiπθd−3 (where i2 = −1) be the conjugates of α in the upper half plane.
By a result of Pisot [4, p. 32], the numbers 1, θ1, θ3, . . . , θd−3 are linearly independent over Q.
It follows by Kronecker’s theorem [4, Appendix 8] that there are n ∈ N arbitrarily large and
p1,p3, . . . , pd−3 ∈ Z such that

∣∣∣∣nθj − φj

2
+ pj

∣∣∣∣ <
ε

2π
,

where ηj = eiπφj and j ∈ {1,3, . . . , d − 3}; thus

∣∣α2n
j − ηj

∣∣ = ∣∣ei2nπθj − eiπφj
∣∣ < ε

for all j ∈ {1,3, . . . , d − 3} and by complex conjugation we obtain the result.
(ii) By the same argument as above and with the same notation, there are p1,p3, . . . , pd−3 ∈ Z

and n ∈ N such that for all j ∈ {1,3, . . . , d − 3} we have

∣∣∣∣nθj −
(

− θj

2|P(1)|
)

− pj

∣∣∣∣ < ε
r

2|P(1)|π ,

where r = minj∈{1,2,...,d−2} |αj − 1|. It follows that

∣∣α1+2n|P(1)|
j − 1

∣∣ = ∣∣ei(1+2n|P(1)|)πθj − ei2π |P(1)|pj
∣∣ < εr

and so by complex conjugation we obtain for all j ∈ {1,2, . . . , d − 2} that |C(αj )| < εr , where

C(x) = x2n|P(1)|+1 − 1 ∈ Z[X].
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Let R be the remainder of the Euclidean division of the polynomial

C(x)

x − 1
= 1 + x + · · · + x2n|P(1)|

by the monic polynomial P . Then, R ∈ Z[X], R is of degree at most d −1, R(1) ≡ 1 mod (P (1))

and

0 <
∣∣R(αj )

∣∣ =
∣∣∣∣ C(αj )

αj − 1

∣∣∣∣ < ε

for all j ∈ {1,2, . . . , d − 2}, since α > 1 and |R(α)| = |C(α)
α−1 | �= 0. �

The following result is a corollary of [1, Lemma 1].

Lemma 3. [1] If P(x) = adxd + ad−1x
d−1 + · · · + a0 = ad

∏
1�i�d(x − αi) is the minimal

polynomial of an algebraic number, then the linear system

∑
1�i�d

Xiα
n
i = qn (n = 0,1, . . . , d − 1),

where q0, q1, . . . , qd−1 are fixed in Q, has a unique solution (X1,X2, . . . ,Xd), where

X1 =
∑

0�k�d−1 qkβk

P ′(α1)
, βk =

∑
k+1�l�d

alα
l−k−1
1 ,

Xi = σi(X1), σi is the embedding of Q(α1) into C sending α1 to αi and i ∈ {1,2, . . . , d}.

Lemma 4. Let α1, α2, . . . , αd be the roots of a polynomial P with coefficients in C, where αi �= αj

for all 1 � i < j � d . If P(1) �= 0, then

∑
1�i�d

α
j
i

(1 − αi)P ′(αi)
= 1

P(1)

for all j ∈ {0,1, . . . , d − 1}.

Proof. From the known equalities [5, p. 56]

∑
1�i�d

1

(1 − αi)P ′(αi)
= 1

P(1)
, and

∑
1�i�d

αk
i

P ′(αi)
= 0,

where k ∈ {0,1, . . . , d − 2}, we have when j ∈ {1,2, . . . , d − 1}
∑ 1 − α

j
i

(1 − αi)P ′(αi)
=

∑ ∑ αk
i

P ′(αi)
=

∑ ∑ αk
i

P ′(αi)
= 0
1�i�d 1�i�d 0�k�j−1 0�k�j−1 1�i�d
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and

∑
1�i�d

α
j
i

(1 − αi)P ′(αi)
=

∑
1�i�d

α
j
i − 1

(1 − αi)P ′(αi)
+

∑
1�i�d

1

(1 − αi)P ′(αi)
= 1

P(1)
. �

Lemma 5. Let P(x) = xd + ad−1x
d−1 +· · ·+ a0 = ∏

1�i�d(x −αi) be the minimal polynomial

of an algebraic integer and let (X1,X2, . . . ,Xd) be the solution of the linear system

∑
1�i�d

Xiα
n
i = tn + s

P (1)
(n = 0,1, . . . , d − 1),

where s, t0, t1, . . . , td−1 ∈ Z. Then, the sequence (tn)n∈N defined by

tn+d = −(ad−1tn+d−1 + ad−2tn+d−2 + · · · + a0tn + s)

satisfies

∑
1�i�d

Xiα
n
i = tn + s

P (1)

and tn ∈ Z for all n ∈ N.

Proof. We use induction on n. By hypothesis Lemma 5 is true for n ∈ {0,1, . . . , d − 1}. Assume
that for some n ∈ N we have

∑
1�i�d Xiα

n+j
i = tn+j + s

P (1)
for all j ∈ {0,1, . . . , d − 1}. Then,

∑
0�j�d−1

aj

( ∑
1�i�d

Xiα
n+j
i

)
=

∑
0�j�d−1

aj tn+j + s

∑
0�j�d−1 aj

P (1)

and so

−
∑

1�i�d

Xiα
n+d
i =

∑
0�j�d−1

aj tn+j + s − s

P (1)
= −tn+d − s

P (1)
,

since

∑
0�j�d−1

aj

( ∑
1�i�d

Xiα
n+j
i

)
=

∑
1�i�d

Xiα
n
i

( ∑
0�j�d−1

ajα
j
i

)
=

∑
1�i�d

Xiα
n
i

(−αd
i

)
. �

Lemma 6. Let (a0, a1, . . . , ad) be a finite sequence of rational integers, where a0 = ad = 1, and
let R ∈ Z[X] of degree at most d − 1. Then, R can be written

R(x) = 1 − t0 − t0

( ∑
1�l�d

alx
l−1

)
+ (x − 1)

∑
1�k�d−1

tk
∑

k+1�l�d

alx
l−(k+1),

for some t0, t1, . . . , td−1 ∈ Z, if and only if R(1) ≡ 1 mod (
∑

0�l�d al).
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Proof. It is clear that if R has the form as in Lemma 6, then R(1) = 1 − t0(
∑

0�l�d al), since
a0 = 1, and so R(1) ≡ 1 mod (

∑
0�l�d al). Conversely, a simple induction shows that if R ∈

Z[X] of degree at most d − 1, then there are b0, b1, . . . , bd−1 ∈ Z such that

R(x) =
∑

0�k�d−2

bk

∑
k+2�l�d

alx
l−(k+1) + bd−1.

Now, for k ∈ {0,1, . . . , d − 2} set

tk+1 = t0 + b0 + b1 + · · · + bk,

where t0 is the rational integer defined by the equality R(1) = 1 − t0
∑

0�i�d ai . Then, tk+1 ∈ Z,
tk+1 − tk = bk for all k ∈ {0,1, . . . , d − 2} and the polynomial R can be written in this case

R(x) =
∑

0�k�d−2

(tk+1 − tk)
∑

k+2�l�d

alx
l−(k+1) + bd−1,

where

bd−1 = 1 − t0

( ∑
0�l�d

al

)
−

∑
0�k�d−2

(tk+1 − tk)
∑

k+2�l�d

al = 1 − t0 −
∑

0�k�d−1

tkak+1.

Hence,

R(x) = 1 −
(

t0 +
∑

0�k�d−1

tkak+1

)
+

∑
0�k�d−2

(tk+1 − tk)
∑

k+2�l�d

alx
l−(k+1)

and the result follows by a simple computation. �
3. Proof of the theorem

Let

P(x) = a0 + a1x + · · · + adxd =
∏

1�i�d

(x − αi)

be the minimal polynomial of a Salem number α = α1. Then, by Lemma 0, 1
α

is a conjugate,
say α2, of α and a0 = ad = 1. Let ζ be a nonzero element of the field Q(α), n ∈ N, yn = {ζαn}
and xn = [ζαn]. Then, from the equality

a0ζαn + a1ζαn+1 + · · · + adζαn+d = 0,

we have

a0(xn + yn) + a1(xn+1 + yn+1) + · · · + ad(xn+d + yn+d) = 0
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and the real number

sn = a0yn + a1yn+1 + · · · + adyn+d (2)

satisfies

sn = −a0xn − a1xn+1 − · · · − adxn+d ;
thus sn ∈ Z. Let μ = lim supyn and λ = lim infyn. Then, for any ε > 0 there is N ∈ N such that
for all n � N we have

λ − ε � yn � μ + ε,

and so by (2) we obtain

(λ − ε)

( ∑
ai>0

ai

)
+ (μ + ε)

( ∑
ai<0

ai

)
� sn � (μ + ε)

( ∑
ai>0

ai

)
+ (λ − ε)

( ∑
ai<0

ai

)
.

It follows when sequence (sn)n∈N takes infinitely many times at least two distinct values that

(μ − λ + 2ε)L(α) = (μ − λ + 2ε)

( ∑
ai>0

ai

)
+ (λ − μ − 2ε)

( ∑
ai<0

ai

)
� 1

and so

Δ(ζ,α) = μ − λ � 1

L(α)
> 0.

Assume now that there are N ∈ N and s ∈ Z such that sn = s for all n � N . Then, by (2) we have

a0(yn+1 − yn) + a1(yn+2 − yn+1) + · · · + ad(yn+1+d − yn+d) = 0

and the characteristic equation of the linearly recurrent sequence (yn+1 − yn)n�N is P(x) = 0.
Hence, there are d complex numbers γ1, γ2, . . . , γd such that

yn+1 − yn = γ1α
n
1 + γ2α

n
2 + · · · + γdαn

d

for all n � N . Moreover, we have γ1 = 0, since |yn+1 − yn| � 1, and so

yn+1 − yn = γ2α
n
2 + γ3α

n
3 + · · · + γdαn

d . (3)

Let ζ1 = ζ, ζ2, . . . , ζd be the conjugates of ζ , where ζi = σi(ζ ) and σi is the embedding of Q(α)

into C sending α to αi , and let

zn = ζ1α
n
1 + ζ2α

n
2 + · · · + ζdαn

d .

Then, zn ∈ Q,

yn = zn − xn − (
ζ2α

n
2 + ζ3α

n
3 + · · · + ζdαn

d

)
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and so for n � N we have

yn+1 − yn = (zn+1 − xn+1) − (zn − xn) − ζ2(α2 − 1)αn
2 − · · · − ζd(αd − 1)αn

d .

It follows by the equality (3) that

(
γ2 + ζ2(α2 − 1)

)
αn

2 + · · · + (
γd + ζd(αd − 1)

)
αn

d = zn+1 − xn+1 − zn + xn ∈ Q

and so by Lemma 1 we obtain zn+1 − xn+1 = zn − xn. Consequently, there is c ∈ Q such that

yn = c − (
ζ2α

n
2 + ζ3α

n
3 + · · · + ζdαn

d

)
, (4)

for all n � N . Now, we claim that

μ = c + |ζ3| + |ζ4| + · · · + |ζd | (5)

and

λ = c − |ζ3| − |ζ4| − · · · − |ζd |. (6)

Indeed, for any ε > 0 there is M ∈ N, such that |ζ2α
n
2 | < ε for all n � M . Since, relation (4)

implies |yn−c| � |ζ2α
n
2 |+|ζ3|+|ζ4|+· · ·+|ζd | when n � N , we see that for all n � max(N,M)

we have

|yn − c| < ε + |ζ3| + |ζ4| + · · · + |ζd |.

So μ � c + |ζ3| + |ζ4| + · · · + |ζd | and λ � c − |ζ3| − |ζ4| − · · · − |ζd |. Conversely, Lemma 2(i)
asserts that there are infinitely many n ∈ N such that

∣∣ζiα
n
i + |ζi |

∣∣ < ε,

respectively such that

∣∣ζiα
n
i − |ζi |

∣∣ < ε

for all i ∈ {3,4, . . . , d}. Let εi = ζiα
n
i + |ζi | (respectively εi = ζiα

n
i − |ζi |), where i ∈

{3,4, . . . , d}. Then, by (4) we have when n � max(N,M)

yn = c + |ζ3| + · · · + |ζd | − (
ζ2α

n
2 + ε3 + · · · + εd

)

and

yn > c + |ζ3| + · · · + |ζd | − (d − 1)ε,

respectively

yn = c − |ζ3| − · · · − |ζd | − (
ζ2α

n
2 + ε3 + · · · + εd

)
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and

yn < c − |ζ3| − · · · − |ζd | + (d − 1)ε,

as the real number ζ2α
n
2 + ε3 + · · · + εd = c + |ζ3| + · · · + |ζd | − yn (respectively ζ2α

n
2 + ε3 +

· · · + εd = c − |ζ3| − · · · − |ζd | − yn) satisfies |ζ2α
n
2 + ε3 + · · · + εd | < (d − 1)ε. Hence, μ �

c + |ζ3| + |ζ4| + · · · + |ζd | (respectively λ � c − |ζ3| − · · · − |ζd |) and that proves the claim.
It follows immediately by (5) and (6) that 0 < c < 1, since μ � 1, 0 � λ and ζ �= 0. Further-

more, we have in this case that α − 1 is not a unit, because if |P(1)| = 1, then by relations (2)
and (4), we obtain c = s

P (1)
and c ∈ Z; so the proof of the theorem (iii) is now complete. Note

also by (5) and (6) that

Δ(ζ,α) = 2
(|ζ3| + |ζ4| + · · · + |ζd |) (7)

and so the theorem (i) is true.
To prove the theorem (iv), we have to show that for any ε > 0 there is ζ ∈ Q(α) and ζ �= 0

satisfying the two conditions:

(C1) There are s ∈ Z and N ∈ N such that a0xn + a1xn+1 + · · · + adxn+d = −s, for all n � N .
(C2) If i ∈ {3,4, . . . , d}, then |σi(ζ )| < ε (and we conclude by (7)).

First, consider the linear system

∑
1�i�d

Xiα
n
i = tn − 1

P(1)
(n = 0,1, . . . , d − 1), (8)

where t0, t1, . . . , td−1 ∈ Z. Then, by Lemma 3 we know that this system has a unique solution
X(t0, t1, . . . , td−1) = (X1,X2, . . . ,Xd), where

X(t0, t1, . . . , td−1) = −
∑

0�k�d−1 βk

P (1)P ′(α)
+

∑
0�k�d−1 tkβk

P ′(α)
,

βk =
∑

k+1�l�d

alα
l−(k+1)

and Xi = σi(X1) for all i ∈ {1,2, . . . , d}. Note also that X(t0, t1, . . . , td−1) �= 0, since t0 ∈ Z and
P(1) � −2 (P(1) � −2 because P(1) < 0 and α − 1 is not a unit). Moreover, by Lemma 4 we
have

X(0,0, . . . ,0) = 1

(α − 1)P ′(α)
.

It follows that

X(t0, t1, . . . , td−1) = 1
′ +

∑
0�k�d−1 tkβk

′
(α − 1)P (α) P (α)
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and so

X(t0, t1, . . . , td−1) = 1 + (α − 1)
∑

0�k�d−1 tkβk

(α − 1)P ′(α)
. (9)

Now, we claim that if for some t0, t1, . . . , td−1 ∈ Z system (8) has a solution (X1,X2, . . . ,Xd)

satisfying
∑

3�i�d |Xi | < 1
|P(1)| , then the condition (C1) holds with ζ = X1 and s = −1. Indeed,

if (ζ = ζ1, ζ2, . . . , ζd) is a solution of (8), then Lemma 5 shows that for all n ∈ N we have

∑
1�i�d

ζiα
n
i = tn − 1

P(1)
, (10)

where tn ∈ Z and tn+d + ad−1tn+d−1 + · · · + a0tn = 1. Moreover, the equality ζαn = xn + yn

together with relation (10), yield

|tn − xn| �
∣∣∣∣yn + 1

P(1)

∣∣∣∣ +
∑

3�i�d

|ζi | + |ζ2|
αn

and so |tn − xn| < 1 for n large, since P(1) � −2, |yn + 1
P(1)

| � 1 + 1
P(1)

and if
∑

3�i�d |ζi | <
− 1

P(1)
then there is N ∈ N such that

∑
3�i�d |ζi | + |ζ2|

αn < − 1
P(1)

for all n � N . Hence, there is

N ∈ N, such that if n � N , then tn = xn, and so

xn+d + ad−1xn+d−1 + · · · + a0xn = 1 (s = −1)

for all n � N . Consequently, it suffices to show that for any 0 < ε < 1
(d−2)|P(1)| , there are

t0, t1, . . . , td−1 ∈ Z such that the corresponding solution of (8) satisfies (C2). In fact, we will
show that for any ε > 0, in particular, when

ε <
minj∈{3,4,...,d} |(αj − 1)P ′(αj )|

(d − 2)|P(1)|
there are t0, t1, . . . , td−1 ∈ Z such that

∣∣∣∣1 + (αj − 1)
∑

0�k�d−1

tkσj (βk)

∣∣∣∣ < ε

for all j ∈ {3,4, . . . , d}, and we will conclude by (9). Indeed, we know by Lemma 2(ii) that for
any ε > 0 there is R ∈ Z[X] of degree at most d − 1 satisfying

∣∣R(αj )
∣∣ < ε (11)

for all j ∈ {3,4, . . . , d}. Moreover, we have R(1) ≡ 1 mod (P (1)) and so by Lemma 6, there are
t0, t1, . . . , td−1 ∈ Z such that

R(x) = 1 − t0 − t0

( ∑
alx

l−1
)

+ (x − 1)
∑

tk
∑

alx
l−(k+1).
1�l�d 1�k�d−1 k+1�l�d
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It follows by the equality β0 = − 1
α

that

R(α) = 1 − t0 − t0β0 + (α − 1)
∑

1�k�d−1

tkβk = 1 + (α − 1)
∑

0�k�d−1

tkβk

and so

R(αj ) = 1 + (αj − 1)
∑

0�k�d−1

tkσj (βk).

The last relation together with inequality (11) yield the result and this ends the proof of the
theorem (iv).

To prove the theorem (ii), we have to show that 0 and 1 are limit points of the sequence
({ζαn}), when ζ is an integer of the field Q(α). With the same notation (although the proof is
independent of the one above), we have zn = ζ1α

n
1 + ζ2α

n
2 + · · · + ζdαn

d ∈ Z, and

yn = zn − xn − (
ζ2α

n
2 + ζ3α

n
3 + · · · + ζdαn

d

)
.

Let α3 = eiθ3 , α5 = eiθ5, . . . , αd−1 = eiθd−1 (where i2 = −1) be the conjugates of α in the upper
half plane and let ζ3 = ρ3e

iφ3, ζ5 = ρ5e
iφ5, . . . , ζd−1 = ρd−1e

iφd−1 be the corresponding conju-
gates of ζ . Then,

yn = zn − xn − ζ2α
n
2 − 2

∑
2�j�d/2

ρ2j−1 cos(nθ2j−1 + φ2j−1). (12)

Now, let δ be a real number satisfying 0 < δ < min{ 1
2 ,2ρ3}. Then, by the same argument as in

the proof of Lemma 2(i) we have that for any ε > 0 there is n ∈ N arbitrarily large such that

∣∣2ρ3 cos(nθ3 + φ3) + δ
∣∣ < ε,

respectively such that

∣∣2ρ3 cos(nθ3 + φ3) − δ
∣∣ < ε,

and

∣∣2ρj cos(nθj + φj )
∣∣ < ε

for all j ∈ {5,7, . . . , d − 1}. It follows by (12) that there are infinitely many n such that

∣∣yn − (zn − xn) − δ
∣∣ <

d

2
ε,

respectively such that

∣∣yn − (zn − xn) + δ
∣∣ <

d

2
ε,

as |ζ2α
n| < ε when n is sufficiently large. Thus, we have for these n’s, when ε < 2 δ,
2 d
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0 < δ − d

2
ε < yn − (zn − xn) < δ + d

2
ε < 2δ < 1,

(zn − xn) < yn < (zn − xn) + 1

and so zn − xn = 0, respectively

−1 < −2δ < −δ − d

2
ε < yn − (zn − xn) < −δ + d

2
ε < 0,

(zn − xn) − 1 < yn < (zn − xn)

and so zn − xn = 1. Consequently, there are infinitely many n such that |yn − δ| � d
2 ε (respec-

tively such that |yn − (1 − δ)| � d
2 ε) and the number δ (respectively 1 − δ) is a limit point of the

sequence (yn). Finally, we obtain the result by letting δ tend to 0.

Remark 1. Let α be a Salem number. Then, for any 0 < ε < 1 there is an integer ζ of the field
Q(α) and a subinterval Iζ of the unit interval with length ε such that the sequence ({ζαn}) has
no limit point in Iζ . We prove this result only when the degree d of α is 4 (the proof is similar
for the case where d > 4). With the notation of the proof of the theorem (ii), where ζ = p2t , p is
a Pisot number satisfying Q(p) = Q(α + 1

α
), and t is a rational integer such that the conjugate,

say ζ ′, of ζ in the unit interval satisfies ζ ′ < 1
6 (ζ2 = ζ, ζ ′ = ζ3 = ζ4 = ρ3 and φ3 = 0), we have

by (12)

yn = zn − xn − ζαn
2 − 2ζ ′ cos(nθ3).

Since, there is N ′ ∈ N such that |ζαn
2 | < ζ ′ when n � N ′, we see (by the last equality) that

∣∣yn − (zn − xn)
∣∣ < 3ζ ′ < 1

2
,

(zn − xn) − 1 < yn < (zn − xn) + 1

and so zn − xn = 0 or 1 for all n � N ′. Consequently, there is no limit point of the sequence (yn)

between the positive numbers 3ζ ′ and 1−3ζ ′, because if zn −xn = 0, then yn < 3ζ ′ (respectively
if zn −xn = 1, then 1−yn < 3ζ ′ and yn > 1−3ζ ′). Letting t tend to infinity we obtain the result,
as in this case ζ ′ tends to 0.

Remark 2. With the hypothesis and the notation of the theorem (iv) and its proof, we have
infζ>0 Δ(ζ,α) = 0. Indeed, if ζ < 0 and ζαn = xn + yn, then {−ζαn} = 0 or {−ζαn} = 1 − yn,
and so there is N ∈ N such that for all n � N we have {−ζαn} = 1 − yn (if there are n and k ∈ N

with {−ζαn} = {−ζαk} = 0, then αk−n = q ∈ Q, 1
αk−n = q , q2 = 1 and |α| = 1). It follows that

lim sup{−ζαn} = 1 − λ, lim inf{−ζαn} = 1 − μ and Δ(−ζ,α) = Δ(ζ,α).

Remark 3. By the same arguments and with the same notation, we obtain when α is a Pisot
number and ζ ∈ Q(α) that Δ(ζ,α) = 0 or Δ(ζ,α) � 1

L(α)
. Note also by [4, Theorem 1, p. 3], that

we have the better result: Δ(ζ,α) = 0 or 1, when ζ is an integer of Q(α). Recently [2], Dubickas
showed that when α is Pisot number there is a positive number ζ satisfying Δ(ζ,α) = 0 if and
only if α = 2, or α − 1 is not a unit, or α is a strong Pisot number (assume that the conjugates α,
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α2, . . . , αd of the Pisot number α of degree d � 2 are labelled so that |α2| � |α3| � · · · � |αd |.
Then, α is said to be a strong Pisot number if α2 > 0).

Remark 4. It has been proved in [6] (using Salem’s construction [4, p. 30]) that any rational
integer greater than 1 is a limit of a sequence of Salem numbers (αn), where the algebraic integers
αn − 1 are units for all n.
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